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Abstract. A convergence result is proved for the equilibrium configurations of a
three-dimensional thin elastic beam, as the diameter h of the cross-section goes to
zero. More precisely, we show that stationary points of the nonlinear elastic func-
tional Eh , whose energies (per unit cross-section) are bounded by Ch2 , converge
to stationary points of the Γ-limit of Eh/h2 . This corresponds to a nonlinear
one-dimensional model for inextensible rods, describing bending and torsion ef-
fects. The proof is based on the rigidity estimate for low-energy deformations by
Friesecke, James, and Müller [4] and on a compensated compactness argument in
a singular geometry. In addition, possible concentration effects of the strain are
controlled by a careful truncation argument.
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1. Introduction and main result

In this paper we extend our previous work with M.G. Schultz on the convergence
of equilibria of planar thin elastic beams (see [10]) to the case of three-dimensional
thin beams.

To set the stage let h > 0 and let S be a bounded open connected subset of R
2

with Lipschitz boundary. We consider a thin beam whose reference configuration is
given by the open set Ωh = (0, L)×hS . Given any deformation v ∈ W 1,2(Ωh; R3),
we define the elastic energy (per unit cross-section) associated to v as

Eh(v) :=
1
h2

∫
Ωh

W (∇v) dz.

The stored-energy density function W : M
3×3 → [0,+∞] is assumed to satisfy the

following conditions:

(h1) frame indifference: W (RF ) = W (F ) for every R ∈ SO(3) and F ∈ M
3×3 ;

(h2) W = 0 on SO(3);

(h3) W (F ) ≥ cdist2(F, SO(3)), c > 0, for every F ∈ M
3×3 ;

(h4) W is of class C2 in a neighbourhood of SO(3).

Here SO(3) denotes the group of proper rotations. The frame indifference implies
that there exists a function W̃ defined on symmetric matrices such that W (∇v) =
W̃ ((∇v)T∇v); i.e., the elastic energy depends only on the pull-back metric of v .
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To discuss the limiting behaviour of Eh , as h → 0, it is convenient to rescale to
a fixed domain Ω = (0, L)×S by the change of variables

z = (x1, hx2, hx3) and y(x) = v(z(x)).

With the notation
∇hy = (∂1y| 1h∂2y| 1h∂3y)

we can write the elastic energy as

Eh(v) = Ih(y) :=
∫

Ω
W (∇hy) dx.

Without loss of generality we can assume that L2(S) = 1 and that the segment
(0, L)×{0}×{0} is a line of centroids for the beam; i.e.,∫

S
x2 dx2dx3 =

∫
S
x3 dx2dx3 =

∫
S
x2x3 dx2dx3 = 0. (1.1)

Under the previous assumptions it is possible to identify a complete hierarchy of
limiting rod theories, depending on the scaling of Ih , by means of Γ-convergence.
More precisely, for every β ≥ 0 we have

1
hβ
Ih Γ−→ Iβ , (1.2)

where, according to β , the functional Iβ describes a different elastic model for rods.
The Γ-convergence for β = 0 was proved by Acerbi, Buttazzo, and Percivale in
[1], leading to a nonlinear string model . The scaling β = 2, which corresponds to a
nonlinear rod model , has been studied in [8] and independently by Pantz in [12]. The
result for β = 4 has been proved in [9], while for the other scalings Γ-convergence
can be easily derived from [8] and [9].

The Γ-convergence results (1.2) guarantee that if (y(h)) is a compact sequence of
minimizers of Ih (with respect to some boundary conditions or body forces) such
that Ih(y(h)) ≤ Chβ , then, up to subsequences, (y(h)) converges to a minimizer of
Iβ (for a comprehensive introduction to Γ-convergence we refer to [2]).

In this paper we deal with the problem of the convergence of equilibria in the
scaling β = 2. In this case the natural class of admissible functions for the limit
problem turns out to be

A :=
{
(y, d2, d3) ∈W 2,2((0, L); R3)×W 1,2((0, L); R3)×W 1,2((0, L); R3) :

R := (y′|d2|d3) ∈ SO(3) a.e. in (0, L)
}
. (1.3)

On this class the Γ-limit functional is given by

I2(y, d2, d3) :=
1
2

∫ L

0
Q1(RTR′) dx1, (1.4)

where R := (y′|d2|d3). The density Q1 is a quadratic form on the space M
3×3
skw of

skew-symmetric matrices, defined as

Q1(A) := min
α∈W 1,2(S;R3)

∫
S
Q3

(
x2Ae2 + x3Ae3

∣∣∣ ∂2α
∣∣∣ ∂3α

)
dx2dx3 (1.5)

for every A ∈ M
3×3
skw , where Q3 is the quadratic form Q3(F ) := LF :F and L is the

linear map on M
3×3 given by L := D2W (Id).
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In this limit model the function y represents the deformation of the mid-fiber
of the rod, which has to be isometric because of the constraint |y′| = 1. The two
Cosserat vectors d2 and d3 determine the rotation undergone by the cross-section
of the rod at each point of the mid-fiber. We remark also that, as R belongs to
SO(3) a.e., the matrix RTR′ is skew-symmetric. Moreover, the entries (RTR′)1j

for j = 2, 3 are related to the curvature of the deformed mid-fiber, while (RTR′)23
is related to the torsion of the mid-fiber and to the twist of the cross-section, after
the deformation. Finally, the solutions to (1.5) with A replaced by RT (x1)R′(x1)
describe the warping of the cross-section with respect to the normal plane (see [8]).

If, in addition, W is isotropic and S is a disc, then the quadratic form Q1 can
be explicitly computed and reduces to

Q1(A) :=
1
2π

µ(3λ+ 2µ)
λ+ µ

(A2
12 +A2

13) +
µ

2π
A2

23,

where λ and µ are the Lamé coefficients of the rod (see [8, Remark 3.5]).
We assume the beam to be subject to a body force of density h2g , with g ∈

L2((0, L); R3); thus, we consider the functionals

Jh(y) =
∫

Ω
(W (∇hy) − h2g(x1) · y) dx. (1.6)

The corresponding Γ-limit at scale h2 is then given by

J2(y, d2, d3) = I2(y, d2, d3) −
∫ L

0
g · y dx1 (1.7)

if (y, d2, d3) ∈ A , while J2 takes the value +∞ if (y, d2, d3) /∈ A (here we took the
liberty to identify maps on Ω which are independent of x2, x3 with maps on (0, L)).
It is convenient to fix one end of the rod by requiring, e.g., y(0) = 0 and dk(0) = ek
for k = 2, 3, where {e1, e2, e3} denotes the canonical basis in R

3 .
We are now in a position to state the main theorem of the paper.

Theorem 1.1. Assume that (h1)–(h4) are satisfied and that W is differentiable
with globally Lipschitz derivative DW . Let g ∈ L2((0, L); R3). Let (y(h)) be a se-
quence of stationary points of Jh , subject to the boundary condition y(h)(0, x2, x3) =
(0, hx2, hx3) at x1 = 0 and to natural boundary conditions on the remaining bound-
aries. Assume further that there exists a constant C > 0 such that∫

Ω
W (∇hy

(h)) dx ≤ Ch2 (1.8)

for every h. Then, up to subsequences,

y(h) → ȳ in W 1,2(Ω; R3), (1.9)
1
h∂ky

(h) → d̄k in L2(Ω; R3), k = 2, 3, (1.10)

where (ȳ, d̄2, d̄3) ∈ A is a stationary point of

J2(y, d2, d3) =
1
2

∫ L

0
Q1(RTR′) dx1 −

∫ L

0
g · y dx1

with respect to the boundary conditions y(0) = 0, dk(0) = ek for k = 2, 3, and
natural boundary conditions at x1 = L.
Remark 1.2. An easy application of the Poincaré inequality shows that the estimate
(1.8) holds automatically for minimizers.
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Remark 1.3. In [7] Mielke used a centre manifold approach to compare solutions
in a thin strip to a 1d problem. His approach gives a comparison already for finite
h , but it requires that the nonlinear strain (∇hy)T∇hy is close to the identity in
C0,α (and applied forces g cannot be easily included).

In the case of planar thin beams the Euler-Lagrange equations corresponding to
the limit functional J2 can be expressed in terms of a single ODE in the variable θ ,
describing the angle of the tangent vector to the deformed mid-fiber with respect to
a fixed direction. One of the major differences in the case of three-dimensional thin
beams is that the limiting Euler-Lagrange equations involve both a linear system of
PDEs in the cross-section and a system of ODEs in terms of the bending moments of
the rod (see Section 2). This requires an extra work in all the derivation argument.

However, the main ingredients of the proof of Theorem 1.1 remain basically the
same as in the planar case discussed in [10]. First the quantitative rigidity estimate
in [4] is used to define suitable strain-like and stress-like variables G(h) and E(h) ,
which are almost curl-free and divergence-free (see Steps 2 and 3). Then we can
argue in the spirit of the theory of compensated compactness, developed by Murat
and Tartar [11, 14, 15], to obtain strong compactness of the stress E(h) . This then
allows us to pass to the limit in the Euler-Lagrange equations (see Step 7).

To rule out possible concentration effects of the strain a careful truncation argu-
ment for gradients in thin domains is employed (see Lemma 4.3). We emphasize
that in the planar case this result can be proved using a simple extension argument
by successive reflection, while in the 3d case an appropriate choice of the extension
operator is needed.

2. Preliminary results

The aim of this section is to derive the Euler-Lagrange equations for the functional
J2 introduced in the previous section.

We begin by collecting some properties of the minimum problem (1.5) defining
the limit density Q1 . Using Korn’s inequality and the direct method of the calculus
of variations it is easy to see that problem (1.5) has a solution. Moreover, there
exists a unique minimizer belonging to the class

B :=
{
α ∈W 1,2(S) :

∫
S
α dx2dx3 =

∫
S
∂2α dx2dx3 =

∫
S
∂3αdx2dx3 = 0

}
(see [8, Remark 3.4]). The Euler-Lagrange equations for problem (1.5) are computed
in the next lemma.
Lemma 2.1. Let A ∈ M

3×3
skw and let FA : W 1,2(S; R3) → [0,+∞) be the functional

defined by

FA(α) :=
∫

S
Q3

(
x2Ae2 + x3Ae3

∣∣∣ ∂2α
∣∣∣ ∂3α

)
dx2dx3 (2.1)

for every α ∈ W 1,2(S; R3). Then a function α ∈ B is the minimizer of FA if and
only if the function E : S → M

3×3 given by

E := L
(
x2Ae2 + x3Ae3

∣∣∣ ∂2α
∣∣∣ ∂3α

)
satisfies (in a weak sense) the boundary value problem{

divx2,x3(Ee2 |Ee3) = 0 in S,

(Ee2 |Ee3) ν∂S = 0 on ∂S,
(2.2)
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where ν∂S is the outer unit normal to ∂S . Moreover, the minimizer depends linearly
on the entries of A.

Proof. As FA is a convex functional, a function α ∈ B minimizes FA if and only if
it satisfies ∫

S
L

(
x2Ae2 + x3Ae3

∣∣∣ ∂2α
∣∣∣ ∂3α

)
:
(
0 | ∂2β | ∂3β

)
dx2dx3 = 0

for every β ∈W 1,2(S; R3), which is equivalent to (2.2). The linear dependence of α
on the entries of A follows directly from the equation (2.2). �
Remark 2.2. Let (y, d2, d3) ∈ A , let R := (y′ | d2 | d3), and let A := RTR′ . For ev-
ery x1 ∈ (0, L) let α(x1, ·) ∈ B be the minimizer of (1.5) with A replaced by A(x1).
Since α(x1, ·) depends linearly on A(x1) by Lemma 2.1 and A ∈ L2((0, L); M3×3

skw),
we conclude that α ∈ L2(Ω; R3) and ∂kα ∈ L2(Ω; R3) for k = 2, 3.

The next lemma is concerned with the derivation of the Euler-Lagrange equations
for the functional J2 . The stationary condition for a triple (y, d2, d3) ∈ A satisfying
the boundary conditions will be expressed in terms of the bending moments Ẽ and
Ê defined below. Let E : Ω → M

3×3 be the stress corresponding to the deformation
(y, d2, d3), defined by

E(x) := L
(
x2A(x1)e2 + x3A(x1)e3

∣∣∣ ∂2α(x)
∣∣∣ ∂3α(x)

)
, (2.3)

where A := RTR′ , R := (y′ | d2 | d3), and α ∈ L2((0, L); R3) is such that α(x1, ·) ∈ B
solves (1.5), with A replaced by A(x1), for a.e. x1 ∈ (0, L). We call the bending
moments associated with the deformation (y, d2, d3) the functions Ẽ : (0, L) →
M

3×3 and Ê : (0, L) → M
3×3 given by

Ẽ(x1) :=
∫

S
x2E(x) dx2dx3, Ê(x1) :=

∫
S
x3E(x) dx2dx3

for every x1 ∈ (0, L).
Lemma 2.3. Let (y, d2, d3) ∈ A be such that y(0) = 0 and dk(0) = ek for k = 2, 3.
Then (y, d2, d3) is a stationary point of J2 with respect to the boundary conditions
y(0) = 0 and dk(0) = ek for k = 2, 3 (and natural boundary conditions at x1 = L)
if and only if the following system of equations is satisfied:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ẽ′
11 = A13(Ê21 − Ẽ31) −A23Ê11 −RT g̃ · e2,

Ê′
11 = −A12(Ê21 − Ẽ31) +A23Ẽ11 −RT g̃ · e3,

Ê′
21 − Ẽ′

31 = A12Ê11 −A13Ẽ11,

Ẽ11(L) = Ê11(L) = 0, Ê21(L) − Ẽ31(L) = 0,

(2.4)

where
g̃(x1) :=

∫ x1

L
g(t) dt

for every x1 ∈ (0, L).
Remark 2.4. If W is isotropic, that is,

W (F ) = W (FR) for every F ∈ M
3×3, R ∈ SO(3),

then the linear operator L associated with the second derivatives of W at the
identity reduces to

LF = 2µ symF + λ(trF )Id,
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where λ and µ are the Lamé coefficients of the rod.
If we assume in addition that the cross-section S is a disc, then the minimizer

α ∈ B of (1.5) can be explicitly computed and, in terms of the entries of the matrix
A = RTR′ , it is given by

α = −1
4

λ
λ+µ(x2

2A12 − x2
3A12 + 2x2x3A13)e2

−1
4

λ
λ+µ(−x2

2A13 + x2
3A13 + 2x2x3A12)e3,

(see [8, Remark 3.5]). In this case the stress is equal to

E =

⎛
⎝ µ(3λ+2µ)

λ+µ (x2A12 + x3A13) 1
2x3A23 −1

2x2A23
1
2x3A23 0 0
−1

2x2A23 0 0

⎞
⎠ ,

while the bending moments are

Ẽ = 1
4π

µ(3λ+2µ)
λ+µ A12e1 ⊗ e1 − 1

8πA23(e1 ⊗ e3 + e3 ⊗ e1),

Ê = 1
4π

µ(3λ+2µ)
λ+µ A12e1 ⊗ e1 + 1

8πA23(e1 ⊗ e2 + e2 ⊗ e1).

Proof of Lemma 2.3. Let R := (y′ | d2 | d3) and let A := RTR′ . It is convenient to
consider J2 as a functional defined on the class

R := {P ∈W 1,2((0, L); M3×3) : P ∈ SO(3) a.e. in (0, L), P (0) = Id},
whose tangent space at R is given by all functions of the form RB with B ∈
W 1,2((0, L); M3×3

skw) and B(0) = 0.
Let then B ∈ W 1,2((0, L); M3×3

skw) with B(0) = 0. In order to compute the
Gâteaux differential of J2 at R in the tangent direction given by RB , we consider
a smooth curve γ : [0, 1] → R such that γ(0) = R and γ̇(0) = RB (where the dot
denotes derivative with respect to the variable ε ∈ [0, 1]). Then we have

J2(γ(ε)) =
1
2

∫ L

0
Q1(γ(ε)T γ(ε)′) dx1 +

∫ L

0
g̃ · γ(ε)e1 dx1, (2.5)

where the prime denotes derivative with respect to x1 ∈ [0, L] . Now, let βε ∈
L2(Ω; R3) be such that βε(x1, ·) ∈ B is the solution to the problem (1.5) with A
replaced by γ(ε)T γ(ε)′ for a.e. x1 ∈ (0, L). Then

1
2

∫ L

0
Q1(γ(ε)T γ(ε)′) dx1

=
1
2

∫
Ω
Q3

(
x2 γ(ε)T γ(ε)′e2 + x3 γ(ε)T γ(ε)′e3

∣∣∣ ∂2β
ε
∣∣∣ ∂3β

ε
)
dx.

Differentiating equation (2.5) at ε = 0 and taking into account the previous formula,
we obtain

dJ2(R)[RB]

=
∫

Ω
E :

(
x2(AB −BA+B′)e2 + x3(AB −BA+B′)e3

∣∣∣ ∂2β
∣∣∣ ∂3β

)
dx

+
∫ L

0
RT g̃ ·Be1 dx1,

where E is the stress defined in (2.3) and β ∈ L2(Ω; R3) is such that β(x1, ·) ∈ B
is the solution to the problem (1.5) with A replaced by BTR′ + RTB′ for a.e.
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x1 ∈ (0, L). Here we used the fact that by Lemma 2.1 the function βε depends
linearly on the entries of γ(ε)T γ(ε)′ .

By (2.2) the vectorfield Ee2, Ee3 is divergence free in the variables x2, x3 , hence∫
S
(Ee2 · ∂2β +Ee3 · ∂3β) dx2dx3 = 0.

Thus the differential of J2 reduces to

dJ2(R)[RB] =
∫

Ω
Ee1 · (x2(AB −BA+B′)e2 + x3(AB −BA+B′)e3) dx

+
∫ L

0
RT g̃ ·Be1 dx1.

Integration with respect to x2, x3 in the first term on the right-hand side yields

dJ2(R)[RB] =
∫ L

0
(Ẽe1 ·B′e2 + Êe1 ·B′e3) dx1

+
∫ L

0
(Ẽe1 · (AB −BA)e2 + Êe1 · (AB −BA)e3) dx1 +

∫ L

0
RT g̃ ·Be1 dx1. (2.6)

As A is skew-symmetric, we have that for any F ∈ M
3×3 and for k = 2, 3

Fe1 · (AB −BA)ek = −AFe1 ·Bek −
∑
j �=k

AjkFe1 ·Bej.

Using (2.6) and the previous formula, it is easy to check that the condition

dJ2(R)[RB] = 0 for every B ∈W 1,2((0, L); M3×3
skw) with B(0) = 0

is equivalent to the following three equations:∫ L

0

(
φ′ Ẽ11 + φA13(Ê21 − Ẽ31) − φA23Ê11 − φRT g̃ · e2

)
dx1 = 0,∫ L

0

(
φ′ Ê11 − φA12(Ê21 − Ẽ31) + φA23Ẽ11 − φRT g̃ · e3

)
dx1 = 0,∫ L

0

(
φ′(Ê21 − Ẽ31) + φA12Ê11 − φA13Ẽ11

)
dx1 = 0

(2.7)

for every φ ∈ W 1,2(0, L) with φ(0) = 0. By integration by parts the previous
equations are equivalent to system (2.4). �

3. Proof of Theorem 1.1

Let (y(h)) be a sequence of stationary points of Jh ; i.e., suppose that the following
condition is satisfied:∫

Ω

(
DW (∇hy

(h)) :∇hψ − h2g · ψ
)
dx = 0 (3.1)

for every ψ ∈W 1,2(Ω; R3) such that ψ(0, x2, x3) = 0 for (x2, x3) ∈ S . Assume that
(1.8) holds true.

The proof is split into several steps.
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Step 1. Decomposition of the deformation gradients in rotation and strain.
By Proposition 4.1 there exists a sequence (R(h)) ⊂ C∞((0, L); M3×3) such that
R(h)(x1) ∈ SO(3) for every x1 ∈ (0, L) and

‖∇hy
(h) −R(h)‖L2 ≤ Ch, (3.2)

‖(R(h))′‖L2 + h‖(R(h))′′‖L2 ≤ C, (3.3)

|R(h)(0) − Id| ≤ C
√
h. (3.4)

By (3.3), up to subsequences, R(h) converge to some R weakly in W 1,2((0, L); M3×3),
hence uniformly in L∞((0, L); M3×3). Thus R(x1) ∈ SO(3) for every x1 ∈ (0, L).
From inequality (3.2) it follows that

∇hy
(h) → R strongly in L2(Ω; M3×3).

In particular, we have that ∂ky
(h) → 0 for k = 2, 3 and thus

∇y(h) → Re1 ⊗ e1 strongly in L2(Ω; M3×3). (3.5)

As |y(h)(0, x2, x3)| ≤ Ch → 0, we deduce from the Poincaré inequality that y(h)

converge to some ȳ strongly in W 1,2(Ω; R3) and that ȳ satisfies

∂1ȳ = Re1, ∂2ȳ = ∂3ȳ = 0 a.e. in Ω.

Therefore, setting d̄k := Rek for k = 2, 3, we have that (ȳ, d̄2, d̄3) ∈ A , and the con-
vergence properties (1.9) and (1.10) are proved. Moreover, the boundary conditions
at x1 = 0 follow from (3.4) and the uniform convergence of R(h) .

Let G(h) : Ω → M
3×3 be the function

G(h) := 1
h((R(h))T∇hy

(h) − Id).

As the functions G(h) are bounded in L2(Ω; M3×3) by (3.2), we can assume, up to
extracting a subsequence, that

G(h) ⇀ G weakly in L2(Ω; M3×3) (3.6)

for some G ∈ L2(Ω; M3×3). Moreover, from the definition of G(h) it follows imme-
diately that the deformation gradients can be decomposed as

∇hy
(h) = R(h)(Id+ hG(h)). (3.7)

Step 2. Consequence of compatibility for the strain.
The decomposition (3.7) suggests that, roughly speaking, the strains G(h) have the
structure of a scaled gradient, up to the factor (R(h))T . This implies that the limit
strain G has to satisfy some compatibility constraints. In order to deduce these
conditions we introduce a sequence of auxiliary deformations z(h) : Ω → R

3 defined
by

z(h)(x) := 1
hy

(h)(x) − 1
h

∫ x1

0
R(h)(s)e1 ds− x2R

(h)(x1)e2 − x3R
(h)(x1)e3. (3.8)

Using (3.7) we obtain

∇hz
(h) = 1

h(∇hy
(h) −R(h)) − x2(R(h))′e2 ⊗ e1 − x3(R(h))′e3 ⊗ e1

= R(h)(G(h) − x2A
(h)e2 ⊗ e1 − x3A

(h)e3 ⊗ e1), (3.9)
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where A(h) := (R(h))T (R(h))′ . Since R(h) ⇀ R in W 1,2((0, L); M3×3), we have

A(h) ⇀ A := RTR′ weakly in L2((0, L); M3×3). (3.10)

Using these two facts, together with (3.6), we conclude that

∇hz
(h) ⇀ R(G− x2Ae2 ⊗ e1 − x3Ae3 ⊗ e1) weakly in L2(Ω; M3×3). (3.11)

As |z(h)(0, x2, x3)| ≤ C
√
h by (3.4), we deduce from the Poincaré inequality that

z(h) converge to some z weakly in W 1,2(Ω; R3). Moreover, the limit function z
satisfies

RT∂1z = Ge1 − x2Ae2 − x3Ae3, ∂2z = ∂3z = 0 a.e. in Ω. (3.12)

In particular, z does not depend on x2, x3 and, thus, by the first equality in (3.12)
Ge1 is an affine function of x2, x3 . If we denote by Ḡ the zeroth moment of G
defined by

Ḡ(x1) :=
∫

S
G(x) dx2dx3, x1 ∈ (0, L),

then it follows immediately from (1.1) and (3.12) that

Ḡe1 = RT z′. (3.13)

To identify the second and third column of G(h) it is convenient to define α(h) :
Ω → R

3 as
α(h) := 1

h(R(h))T z(h) −
∫

S

1
h(R(h))T z(h) dx2dx3.

From (3.11) and the uniform convergence of R(h) it follows that

∂kα
(h) ⇀ Gek weakly in L2(Ω; R3) (3.14)

for k = 2, 3. By the Poincaré inequality on the cross-section S , there exists a
constant C > 0 such that for a.e. x1 ∈ (0, L)

‖α(h)(x1, ·)‖2
L2(S) ≤ C‖∂2α

(h)(x1, ·)‖2
L2(S) + C‖∂3α

(h)(x1, ·)‖2
L2(S).

Integrating with respect to x1 , we deduce by (3.14) that α(h) ⇀ α weakly in
L2(Ω; R3), where α satisfies α ∈ L2(Ω; R3), ∂kα ∈ L2(Ω; R3) for k = 2, 3, and
Gek = ∂kα for k = 2, 3. In particular, the function

β(x) := α(x) − x2

∫
S
∂2αdx2dx3 − x3

∫
S
∂3αdx2dx3

satisfies β ∈ L2(Ω; R3), ∂kβ ∈ L2(Ω; R3) for k = 2, 3, β(x1, ·) ∈ B for a.e. x1 ∈
(0, L), and

Gek − Ḡek = ∂kβ for k = 2, 3. (3.15)

Step 3. Consequences of the Euler-Lagrange equations.
Let E(h) : Ω → M

3×3 be the scaled stress defined by

E(h) := 1
hDW (Id+ hG(h)). (3.16)

Since DW is Lipschitz continuous and the G(h) are bounded in L2(Ω; M3×3), the
functions E(h) are also bounded in L2(Ω; M3×3). In fact, by Proposition 4.2 we
have that

E(h) ⇀ E := LG weakly in L2(Ω; M3×3). (3.17)
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We note in particular that E is symmetric, as LF = (LF )T for every F ∈ M
3×3 .

Note also that LF = L(symF ) for every F ∈ M
3×3 .

By the decomposition (3.7) and by frame indifference we obtain that

DW (∇hy
(h)) = R(h)DW (Id+ hG(h)) = hR(h)E(h).

Using this identity we can write the Euler-Lagrange equations (3.1) in terms of the
stresses E(h) . More precisely, we have∫

Ω
(R(h)E(h) :∇hψ − hg · ψ) dx = 0 (3.18)

for every ψ ∈ W 1,2(Ω; R3) with ψ = 0 on {x1 = 0}. Multiplying (3.18) by h and
passing to the limit as h→ 0, we get∫

Ω
(REe2 · ∂2ψ +REe3 · ∂3ψ) dx = 0. (3.19)

As R is a pointwise rotation depending only on x1 , the previous equation yields{
divx2,x3(Ee2 |Ee3) = 0 in S,
(Ee2 |Ee3) ν∂S = 0 on ∂S

(3.20)

for a.e. x1 ∈ (0, L). This implies in particular that for a.e. x1 ∈ (0, L)∫
S
Eek dx2dx3 = 0 for k = 2, 3. (3.21)

Step 4. Symmetry properties of E(h) .
From the frame indifference of W it follows that the matrix DW (F )F T is symmet-
ric. Applying this with F = Id+ hG(h) , we obtain that

E(h) − (E(h))T = −h(E(h)(G(h))T −G(h)(E(h))T ). (3.22)

As E(h) and G(h) are bounded in L2(Ω; M3×3), we deduce in particular the estimate

‖E(h) − (E(h))T ‖L1 ≤ Ch. (3.23)

Step 5. Moments of the Euler-Lagrange equations.
Let us introduce the zeroth and first moments of the stress E(h) , defined by

Ē(h)(x1) :=
∫

S
E(h)(x) dx2dx3,

Ẽ(h)(x1) :=
∫

S
x2E

(h)(x) dx2dx3, Ê(h)(x1) :=
∫

S
x3E

(h)(x) dx2dx3

for every x1 ∈ (0, L). We shall derive the Euler-Lagrange equations satisfied by the
moments.

Let ϕ ∈ C∞([0, L]; R3) be such that ϕ(0) = 0. Using ϕ as test function in the
Euler-Lagrange equation (3.18), we obtain∫

Ω
(R(h)E(h)e1 ·ϕ′ − hg ·ϕ) dx = 0.
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Integrating first with respect to the variables of S and taking into account that R(h) ,
ϕ, and g depend only on the x1 variable, we can rewrite the previous equality as∫ L

0
(R(h)Ē(h)e1 ·ϕ′ − hg ·ϕ) dx1 = 0.

Since this equation holds for every ϕ ∈ C∞([0, L]; R3) with ϕ(0) = 0, we deduce
that

Ē(h)e1 = −h(R(h))T g̃ a.e. in (0, L), (3.24)

where g̃ is the primitive of g defined in (2.6). In particular, passing to the limit, we
obtain

Ēe1 = 0 a.e. in (0, L). (3.25)

Together with (3.21), this implies that Ē = 0 a.e. in (0, L). As E = LG, we obtain
that E = L(G− Ḡ) and by (3.12), (3.13), and (3.15) we conclude that

E = L
(
x2Ae2 + x3Ae3 | ∂2β | ∂3β

)
. (3.26)

Equation (3.20) and Lemma 2.1 guarantee that β(x1, ·) is a solution to the problem
(1.5) defining Q1(A(x1)), for a.e. x1 ∈ (0, L).

As for the first moments, let ϕ ∈ C∞([0, L]; R3) be such that ϕ(0) = 0. Using
ψ(x) := x2ϕ(x1) as test functions in (3.18), we obtain∫

Ω
(x2R

(h)E(h)e1 ·ϕ′ + 1
hR

(h)E(h)e2 ·ϕ− hx2g ·ϕ) dx = 0.

Integrating first with respect to x2, x3 and using (1.1), the equation reduces to∫ L

0
(R(h)Ẽ(h)e1 ·ϕ′ + 1

hR
(h)Ē(h)e2 ·ϕ) dx1 = 0. (3.27)

In particular, if we choose ϕ of the form ϕ = φR(h)e1 with φ ∈ C∞([0, L]) and
φ(0) = 0, we obtain∫ L

0
(φ′ Ẽ(h)

11 + φ Ẽ(h)e1 ·A(h)e1 + φ 1
h Ē

(h)
12 ) dx1 = 0. (3.28)

From the estimate (3.23) and the identity (3.24) it follows that the term 1
h Ē

(h)
12

is bounded in L1(0, L). Since A(h) and Ẽ(h) are bounded in L2((0, L); M3×3),
the product Ẽ(h)e1 ·A(h)e1 is also bounded in L1(0, L). Therefore, equation (3.28)
implies that

‖∂1Ẽ
(h)
11 ‖L1 ≤ C, Ẽ

(h)
11 (L) = 0, (3.29)

hence the sequence Ẽ(h)
11 is strongly compact in Lp(0, L) for every p <∞ .

Analogously, one can show that∫ L

0
(R(h)Ê(h)e1 ·ϕ′ + 1

hR
(h)Ē(h)e3 ·ϕ) dx1 = 0 (3.30)

for every ϕ ∈ C∞([0, L]; R3) such that ϕ(0) = 0. Choosing the test function ϕ of
the form ϕ = φR(h)e1 with φ ∈ C∞([0, L]) and φ(0) = 0, one obtains∫ L

0
(φ′Ê(h)

11 − φ Ê(h)e1 ·A(h)e1 + φ 1
h Ē

(h)
13 ) dx1 = 0 (3.31)
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for every φ ∈ C∞([0, L]) with φ(0) = 0. From this equation one can deduce as
before that

‖∂1Ê
(h)
11 ‖L1 ≤ C, Ê

(h)
11 (L) = 0, (3.32)

hence the sequence Ê(h)
11 is strongly compact in Lp(0, L) for every p <∞ .

Finally, let us consider φR(h)e2 and φR(h)e3 as test functions in (3.30) and (3.27),
respectively, with φ ∈ C∞([0, L]) with φ(0) = 0. Taking the difference of the two
equations we obtain∫ L

0
φ′ (Ê(h)

21 − Ẽ
(h)
31 ) dx1 −

∫ L

0
φ (Ê(h)e1 ·A(h)e2 − Ẽ(h)e1 ·A(h)e3) dx1

+
∫ L

0
φ 1

h(Ē(h)
23 − Ē

(h)
32 ) dx1 = 0.

(3.33)

As A(h) and E(h) are bounded in L2(Ω; M3×3), the term (A(h)Ê(h))21−(A(h)Ẽ(h))31
is bounded in L1(0, L). The difference 1

h(Ē(h)
23 − Ē

(h)
32 ) is also bounded in L1(0, L)

by (3.23). Therefore, we deduce from equation (3.33) that

‖∂1(Ê
(h)
21 − Ẽ

(h)
31 )‖L1 ≤ C, Ê

(h)
21 (L) − Ẽ

(h)
31 (L) = 0, (3.34)

hence the sequence Ê(h)
21 − Ẽ

(h)
31 is strongly compact in Lp(0, L) for every p <∞ .

Step 6. Convergence of the energy by the div-curl lemma.

The strong compactness of the sequences (Ẽ(h)
11 ), (Ê(h)

11 ), and (Ê(h)
21 − Ê

(h)
31 ) allows

us to pass to the limit in the energy integral

1
h2

∫
Ω
DW (Id+ hG(h)) : hG(h) dx =

∫
Ω
E(h) :G(h) dx.

This can be done by exploiting the div-curl structure of the product E(h) :G(h) ;
indeed, the Euler-Lagrange equation (3.18) asserts that the scaled divergence of
R(h)E(h) is infinitesimal in L2(Ω; R3) as h → 0, while the decomposition (3.9)
guarantees that the matrix R(h)G(h) has basically the structure of a scaled gradient.

Let us fix ϕ ∈ C∞(0, L) with ϕ(0) = 0. Using formula (3.9) we have∫
Ω
ϕE(h) :G(h) dx =

∫
Ω
ϕR(h)E(h) :R(h)G(h) dx

=
∫

Ω
ϕR(h)E(h) :∇hz

(h) dx+
∫

Ω
ϕE(h)e1 · (x2A

(h)e2 + x3A
(h)e3) dx.

(3.35)

Concerning the first term on the right-hand side, the Euler-Lagrange equation (3.18)
yields ∫

Ω
ϕR(h)E(h) :∇hz

(h) dx = h

∫
Ω
ϕg · z(h) dx−

∫
Ω
ϕ′R(h)E(h)e1 · z(h) dx.

Since z(h) → z strongly in L2(Ω; R3) and R(h)E(h) ⇀ RE weakly in L2(Ω; M3×3),
we can pass to the limit in the formula above and we get

lim
h→0

∫
Ω
ϕR(h)E(h) :∇hz

(h) dx = −
∫

Ω
ϕ′REe1 · z dx.
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Taking into account the fact that z is independent of x2, x3 and using the identity
(3.25), we have ∫

Ω
ϕ′REe1 · z dx =

∫ L

0
ϕ′RĒe1 · z dx1 = 0,

hence

lim
h→0

∫
Ω
ϕR(h)E(h) :∇hz

(h) dx = 0. (3.36)

As for the last term in (3.35), integrating first with respect to the cross-section
variables we have ∫

Ω
ϕE(h)e1 · (x2A

(h)e2 + x3A
(h)e3) dx

=
∫ L

0
ϕ(Ẽ(h)

11 A
(h)
12 + Ê

(h)
11 A

(h)
13 ) dx1 +

∫ L

0
ϕ(Ê(h)

21 − Ẽ
(h)
31 )A(h)

23 dx1.

As Ẽ(h)
11 , Ê(h)

11 , and Ê
(h)
21 − Ẽ

(h)
31 are strongly compact in L2(0, L) by Step 5, we can

pass to the limit and we obtain

lim
h→0

∫
Ω
ϕE(h)e1 · (x2A

(h)e2 + x3A
(h)e3) dx

=
∫ L

0
ϕ(Ẽ11A12 + Ê11A13) dx1 +

∫ L

0
ϕ(Ê21 − Ẽ31)A23 dx1

=
∫

Ω
ϕEe1 · (x2Ae2 + x3Ae3) dx.

(3.37)

Now from the first equality in (3.12) it follows that∫
Ω
ϕEe1 · (x2Ae2 + x3Ae3) dx =

∫
Ω
ϕEe1 ·Ge1 dx−

∫
Ω
ϕEe1 ·RT z′ dx. (3.38)

Since RT z′ does not depend on x2, x3 , identity (3.25) implies∫
Ω
ϕEe1 ·RT z′ dx =

∫ L

0
ϕĒe1 ·RT z′ dx1 = 0.

Thus, equality (3.38) reduces to∫
Ω
ϕEe1 · (x2Ae2 + x3Ae3) dx =

∫
Ω
ϕEe1 ·Ge1 dx. (3.39)

Combining together (3.35)–(3.37) and (3.39), we conclude that

lim
h→0

∫
Ω
ϕE(h) :G(h) dx =

∫
Ω
ϕEe1 ·Ge1 dx (3.40)

By (3.20) the matrix (Ee2 |Ee3) is divergence free in S with zero normal component
on ∂S for a.e. x1 ∈ (0, L), while (Ge2 |Ge3) is a gradient by (3.15). As the test
function ϕ depends only on the variable x1 , the divergence theorem yields∫

Ω
ϕ(Ee2 ·Ge2 + Ee3 ·Ge3) dx = 0,

hence ∫
Ω
ϕE :Gdx =

∫
Ω
ϕEe1 ·Ge1 dx. (3.41)
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By (3.40) and (3.41) we finally obtain the convergence of the energies

lim
h→0

∫
Ω
ϕE(h) :G(h) dx =

∫
Ω
ϕE :Gdx (3.42)

for every ϕ ∈ C∞
0 (0, L).

Step 7. Definition of the truncated deformations.
In order to pass to the limit in the Euler-Lagrange equations (3.28), (3.31), and
(3.33), a strong L2 -compactness for the sequence (E(h)) is required. If hG(h) con-
verges to 0 uniformly, then by Taylor expansion one can replace E(h) by LG(h) in
(3.42). Using the fact that E = LG and L is positive definite on symmetric matri-
ces, one can conclude strong convergence for symG(h) and hence of E(h) , outside a
neighbourhood of x1 = 0 (see Step 7 of the proof of Theorem 1.1 in [10]).

To avoid the extra assumption h‖G(h)‖∞ → 0, we introduce an auxiliary sequence
of truncated deformations u(h) , whose corresponding scaled strains H(h) satisfy
h‖H(h)‖∞ → 0 (see (3.51)). The main point will be then to show strong convergence
of symH(h) (see Step 8). This will imply, as before, strong convergence of the
corresponding truncated stress F (h) (outside a neighbourhood of x1 = 0). To pass
to the limit in the Euler-Lagrange equations and conclude the proof, we will then
need to estimate the remainder term E(h) −F (h) . This will be done in Step 9, using
again the div-curl lemma and exploiting our careful choice of the truncations.

To carry out this plan, we consider the functions z(h) defined in (3.8) and their
rescalings ž(h)(x) := z(h)(x1,

x2
h ,

x3
h ). Applying Lemma 4.3 to ž(h) with a = h−5/8

and b = h−7/8 and undoing the rescaling, we construct a new sequence of functions
w(h) : Ω → R

3 with the following properties:

‖∇hw
(h)‖L∞ ≤ λh, (3.43)

λ2
hL3(Nh) ≤ C

ln(1/h)

∫
Ω
|∇hz

(h)|2 dx

≤ C

ln(1/h)

∫
Ω
(|G(h)|2 + |A(h)|2) dx, (3.44)

‖∇hz
(h) −∇hw

(h)‖2
L2 ≤ C

ln(1/h)

∫
Ω
|∇hz

(h)|2 dx, (3.45)

where λh ∈ [h−5/8, h−7/8] and Nh := {x ∈ Ω : z(h)(x) �= w(h)(x)}. In particular we
have

h1/2λh → ∞, hλh → 0, and λ2
hL3(Nh) → 0. (3.46)

We can introduce now the sequence of approximated deformations u(h) : Ω → R
3 ,

which are associated with the auxiliary functions w(h) :

u(h) := hw(h) +
∫ x1

0
R(h)(s)e1 ds+ hx2R

(h)e2 + hx3R
(h)e3.

Let H(h) : Ω → M
3×3 be the corresponding approximated strains defined by the

relation
∇hu

(h) = R(h)(Id+ hH(h)),
and let F (h) : Ω → M

3×3 be the corresponding stresses defined as

F (h) :=
1
h
DW (Id+ hH(h)). (3.47)
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Using the definition of u(h) it is easy to see that

H(h) = (R(h))T∇hw
(h) + x2A

(h)e2 ⊗ e1 + x3A
(h)e3 ⊗ e1. (3.48)

It follows from (3.45) that ∇hw
(h) and ∇hz

(h) have the same weak limit and hence
by (3.11)

H(h) ⇀ G weakly in L2(Ω; M3×3). (3.49)

Step 8. L∞ -convergence of hH(h) and strong convergence of symH(h) and F (h) .
We recall the estimate

sup |f − f̄ |2 ≤ 2‖f‖L2‖f ′‖L2 , with f̄ :=
1
L

∫ L

0
f dx. (3.50)

As (R(h))′ and h(R(h))′′ are bounded in L2(0, L) by (3.3), we deduce that |(R(h))′| ≤
Ch−1/2 , and therefore |A(h)| ≤ Ch−1/2 . This inequality and (3.43) imply that

h|H(h)| ≤ Chλh + Ch1/2 → 0. (3.51)

By Taylor expansion of DW around the identity matrix we have

F (h) =
1
h
DW (Id+ hH(h)) = LH(h) +

1
h
η(hH(h)), (3.52)

where |η(A)|/|A| → 0, as |A| → 0. For every t > 0 let us define

ω(t) := sup
{ |η(A)|

|A| : |A| ≤ t
}

;

then, it is easy to see that ω(t) → 0, as t → 0+ . The expansion (3.52) and the
definition of ω yield

|LH(h) :H(h) − F (h) :H(h)| ≤ ω(h‖H(h)‖L∞)|H(h)|2.
Together with (3.51), we obtain for every ϕ ∈ C∞([0, L])∫

Ω
ϕLH(h) :H(h) dx−

∫
Ω
ϕF (h) :H(h) dx→ 0. (3.53)

We now claim that∫
Ω
ϕF (h) :H(h) dx−

∫
Ω
ϕE(h) :G(h) dx→ 0. (3.54)

Combining together the convergence of energy (3.42), the weak convergence (3.49),
and (3.53), this would imply that

lim
h→0

∫
Ω
ϕL(H(h) −G) : (H(h) −G) dx = 0 (3.55)

for every ϕ ∈ C∞([0, L]) with ϕ(0) = 0. From the assumptions on W we infer that
there exists a constant C > 0 such that

LA :A ≥ C|symA|2
for every A ∈ M

3×3 . This inequality, together with (3.55), implies

sym (H(h) −G) → 0 strongly in L2((a,L)×S; M3×3) (3.56)

for every a > 0. Using again the Taylor expansion (3.52), we easily deduce that

F (h) → E strongly in L2((a,L)×S; M3×3). (3.57)
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In order to prove (3.54) we write the difference as∫
Ω
ϕE(h) : (H(h) −G(h)) dx+

∫
Ω
ϕ(F (h) − E(h)) :H(h) dx. (3.58)

The first term can be controlled by the div-curl lemma; indeed, equalities (3.48) and
(3.9) yield

R(h)(H(h) −G(h)) = ∇h(w(h) − z(h)),
so that, by the Euler-Lagrange equation (3.18), we have∫

Ω
ϕE(h) : (H(h) −G(h)) dx =

∫
Ω
ϕR(h)E(h) :∇h(w(h) − z(h)) dx

= h

∫
Ω
ϕg · (w(h) − z(h)) dx−

∫
Ω
ϕ′R(h)E(h)e1 · (w(h) − z(h)) dx.

Since the sequence w(h) − z(h) converges to 0 strongly in L2(Ω; R3) and R(h)E(h)

is bounded in L2(Ω; M3×3), we conclude that

lim
h→0

∫
Ω
ϕE(h) : (H(h) −G(h)) dx = 0.

To estimate the second integral in (3.58) we recall that F (h) and E(h) are bounded
in L2(Ω; M3×3). Therefore, by Hölder inequality and by (3.51) we have∫

Ω
|ϕ(F (h) − E(h)) :H(h)| dx ≤ C

(∫
Nh

|H(h)|2 dx
)1/2 ≤ C[(λ2

h + h−1)L3(Nh)]1/2.

As the right-hand side converges to zero by (3.46), this concludes the proof of the
claim (3.54).

Step 9. Passage to the limit in the Euler-Lagrange equations.
Let us fix φ ∈ C∞([0, L]) vanishing on an interval (0, a). In order to pass to the limit
in the Euler-Lagrange equations, we need to prove some preliminary convergence
results. First of all we claim that

lim
h→0

∫
Ω
φxkE

(h)e1 ·A(h)ej dx =
∫

Ω
φxkEe1 ·Aej dx (3.59)

for every k = 2, 3 and every j = 1, 2, 3. Indeed,∫
Ω
φxkE

(h)e1 ·A(h)ej dx =
∫

Ω
φxkF

(h)e1 ·A(h)ej dx

+
∫

Nh

φxk(E(h) − F (h))e1 ·A(h)ej dx. (3.60)

By the strong convergence (3.57) we have∫
Ω
φxkF

(h)e1 ·A(h)ej dx→
∫

Ω
φxkEe1 ·Aej dx.

As for the last term in (3.60), using Hölder’s inequality we obtain∫
Nh

|φxk(E(h) − F (h))e1 ·A(h)ej | dx ≤ C
(∫

Nh

|A(h)|2 dx
)1/2

.

Since |A(h)| ≤ Ch−1/2 and h−1L3(Nh) → 0 by (3.46), the previous estimate implies
that the second integral on the right-hand side of (3.60) converges to 0. This
concludes the proof of the claim (3.59).
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Integrating first with respect to the variables of the cross-section in (3.59), we
obtain for k = 2, 3 and j = 1

lim
h→0

∫ L

0
φ Ẽ(h)e1 ·A(h)e1 dx1 =

∫ L

0
φ Ẽe1 ·Ae1 dx1, (3.61)

lim
h→0

∫ L

0
φ Ê(h)e1 ·A(h)e1 dx1 =

∫ L

0
φ Êe1 ·Ae1 dx1. (3.62)

Arguing as in the proof of (3.59), it is easy to show that

lim
h→0

∫ L

0
φxk skew (E(h)e1 ⊗A(h)ek) dx =

∫
Ω
φxk skew (Ee1 ⊗Aek) dx (3.63)

for every k = 2, 3 and every φ ∈ C∞([0, L]) vanishing on (0, a).
In order to pass to the limit in the Euler-Lagrange equations (3.28) and (3.31), it

remains to study the convergence of the terms∫ L

0
φ 1

h Ē
(h)
1k dx1

for k = 2, 3. We first decompose the integral as∫ L

0
φ 1

hĒ
(h)
1k dx1 =

∫ L

0
φ 1

h Ē
(h)
k1 dx1 + 2

∫
Ω
φ 1

hskew (E(h))1k dx. (3.64)

By (3.24) we immediately deduce that

lim
h→0

∫ L

0
φ 1

h Ē
(h)
k1 dx1 = −

∫ L

0
φRT g̃ · ek dx1. (3.65)

As for the second integral on the right-hand side of (3.64), it follows from (3.22)
that 1

hskewE(h) = −skew (E(h)(G(h))T ), so that equality (3.9) yields

1
hskew (E(h)) = −skew (E(h)(∇hz

(h))TR(h)) − x2 skew (E(h)e1 ⊗A(h)e2)

−x3 skew (E(h)e1 ⊗A(h)e3).

Since skewA = skew (RART ) for every A ∈ M
3×3 and every R ∈ SO(3), we have

that
skew (E(h)(∇hz

(h))TR(h)) = skew (R(h)E(h)(∇hz
(h))T ).

This identity, together with the Euler-Lagrange equation (3.18) and the strong con-
vergence of z(h) , implies that

lim
h→0

∫
Ω

skew (E(h)(∇hz
(h))TR(h))φdx

=
∫

Ω
skew (REe1 ⊗ z)φ′ dx =

∫ L

0
skew (RĒe1 ⊗ z)φ′ dx = 0,

where we have used the fact that z and R are independent of x2, x3 and that
Ēe1 = 0 by (3.25). Combining this equality with (3.63), we conclude that

lim
h→0

∫ L

0
φ 1

hskew Ē(h) dx1 = −
∫ L

0
φ skew (Ẽe1 ⊗Ae2 + Êe1 ⊗Ae3) dx1 (3.66)

for every φ ∈ C∞([0, L]) vanishing on (0, a).
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By (3.65) and (3.66) we finally obtain that

lim
h→0

∫ L

0
φ 1

hĒ
(h)
1k dx1

= −2
∫ L

0
φ skew (Ẽe1 ⊗Ae2 + Êe1 ⊗Ae3)1k dx1 −

∫ L

0
φRT g̃ · ek dx1.

Together with (3.61) and (3.62), this shows that we can pass to the limit in (3.28)
and (3.31). Thus, we obtain the equations∫ L

0
(φ′ Ẽ11 + φA13(Ê21 − Ẽ31) − φA23Ê11 − φRT g̃ · e2) dx1 = 0 (3.67)

and ∫ L

0
(φ′ Ê11 − φA12(Ê21 − Ẽ31) + φA23Ẽ11 − φRT g̃ · e3) dx1 = 0 (3.68)

for every φ ∈ C∞([0, L]) vanishing on (0, a).
Analogously, by (3.59) we deduce

lim
h→0

∫ L

0
φ (Ê(h)e1 ·A(h)e2 − Ẽ(h)e1 ·A(h)e3) dx1

=
∫ L

0
φ (Êe1 ·Ae2 − Ẽe1 ·Ae3) dx1,

while by (3.66) we have

lim
h→0

∫ L

0
φ 1

h(Ē(h)
23 − Ē

(h)
32 ) dx1 = −

∫ L

0
φ (A32Ẽ21 −A23Ê31) dx1.

Combining these two properties, we can pass to the limit also in the equation (3.33)
and we obtain ∫ L

0
(φ′ (Ê21 − Ẽ31) + φA12Ê11 − φA13Ẽ11) dx1 = 0 (3.69)

for every φ ∈ C∞([0, L]) vanishing on (0, a).
By approximation it is easy to see that the limiting equations (3.67), (3.68), and

(3.69) hold for every φ ∈ C∞([0, L]) with φ(0) = 0.
Finally, taking into account (3.26) and integrating by parts, one can check that

conditions (3.67)–(3.69) coincide with the Euler-Lagrange equations (2.4) for J2 . �

4. Truncation and compactness

In this section we collect some auxiliary results which were used in the proof of
Theorem 1.1.

The first proposition contains an approximation result by means of smooth rota-
tions for sequences of deformations with elastic energy of order h2 . This is the point
where the rigidity lemma by Friesecke, James, and Müller (see [4, Theorem 3.1]) is
used in a crucial way.
Proposition 4.1. Let (u(h)) ⊂W 1,2(Ω; R3) be a sequence such that

F (h)(u(h)) :=
∫

Ω
dist2(∇hu

(h), SO(3)) dx ≤ Ch2
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for every h > 0. Then there exists an associated sequence (R(h)) ⊂ C∞((0, L); M3×3)
such that

R(h)(x1) ∈ SO(3) for every x1 ∈ (0, L), (4.1)

‖∇hu
(h) −R(h)‖L2 ≤ Ch, (4.2)

‖(R(h))′‖L2 + h ‖(R(h))′′‖L2 ≤ C (4.3)

for every h > 0. If, in addition, u(h)(0, x2, x3) = (0, hx2, hx3), then

|R(h)(0) − Id| ≤ C
√
h. (4.4)

Proof. The argument follows closely the proof of [10, Proposition 4.1]. For every
h > 0 the set Ωh can be partitioned in cylinders of the form Ih×hS , where Ih is an
interval of length comparable to h . Applying the rigidity estimate [4, Theorem 3.1]
in each such cylinder, one first construct a sequence (Q(h)) of piecewise constant
rotations satisfying (4.2) and a difference quotient variant of (4.3). As the mollifi-
cations Q̃(h) of Q(h) at scale h are uniformly close to Q(h) , it is possible to project
Q̃(h) back on SO(3); this provides the sequence (R(h)). For the details we refer
to [10]. �

The next proposition allows to identify the weak limit of the sequence of stresses
(E(h)), once the weak limit of the strains (G(h)) is known. For the proof, which is
based on Taylor expansion, we refer to [10, Proposition 4.2].
Proposition 4.2. Assume that the energy density W is differentiable and its de-
rivative DW is Lipschitz continuous. Assume moreover that DW is differentiable
at the identity. Suppose that

G(h) ⇀ G weakly in L2(Ω; M3×3)

and define the rescaled stresses as in (3.16) by

E(h) :=
1
h
DW (Id+ hG(h)).

Then
E(h) ⇀ E := LG weakly in L2(Ω; M3×3), (4.5)

where L := D2W (Id).
We conclude this section with the truncation lemma used in the proof of Theo-

rem 1.1. This a variant for thin domains of the standard results on the truncations
of gradients (see, e.g., [3]).
Lemma 4.3. There exists a constant C > 0 with the following property: for every
h > 0, every b > a > 0 and every u ∈ W 1,2(Ωh; R3) there exist λ ∈ [a, b] and a
function v ∈W 1,∞(Ωh; R3) such that

‖∇v‖L∞ ≤ λ, (4.6)

λ2L3({x ∈ Ωh : u(x) �= v(x)}) ≤ C

ln(b/a)

∫
{x∈Ωh: |∇u(x)|>λ}

|∇u|2 dx, (4.7)

‖∇u−∇v‖2
L2 ≤ C

ln(b/a)

∫
{x∈Ωh: |∇u(x)|>λ}

|∇u|2 dx. (4.8)
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Proof. Let Q be a square containing S . Without loss of generality we can assume
that Q = (0,M)2 . Let

V :=
{
v ∈ L2(S; R3) : v̄ :=

∫
S
v dx2dx3 = 0

}
.

Then there exists a linear extension operator Ẽ : V → {v ∈ L2(Q; R3) : supp v ⊂⊂
Q} such that Ẽ(v) ∈ W 1,2(Q; R3) for every v ∈ V ∩ W 1,2(S; R3) and for some
constant C > 0 there holds

‖Ẽ(v)‖L2(Q) ≤ C‖v‖L2(S) for every v ∈ V, (4.9)

‖∇x2,x3 Ẽ(v)‖L2(Q) ≤ C‖∇x2,x3v‖L2(S) for every v ∈ V ∩W 1,2(S; R3) (4.10)

(see, e.g., [13]). We can extend Ẽ to the whole space L2(S; R3) by considering the
operator E : L2(S; R3) → L2(Q; R3) defined by

E(v) := Ẽ(v − v̄) + v̄ for every v ∈ L2(S; R3).

It is easy to see that, if v ∈W 1,2(S; R3), then E(v)− v̄ ∈W 1,2
0 (Q; R3). Moreover, it

follows immediately from (4.9) and (4.10) that there exists a constant C such that

‖E(v)‖L2(Q) ≤ C‖v‖L2(S) for every v ∈ L2(S; R3), (4.11)

‖∇x2,x3E(v)‖L2(Q) ≤ C‖∇x2,x3v‖L2(S) for every v ∈W 1,2(S; R3). (4.12)

Let h > 0 and let Eh : L2(hS; R3) → L2(hQ; R3) be the extension operator
obtained by scaling E . Then, inequalities (4.11) and (4.12) imply that

‖Eh(v)‖L2(hQ) ≤ C‖v‖L2(hS) for every v ∈ L2(hS; R3), (4.13)

‖∇x2,x3Eh(v)‖L2(hQ) ≤ C‖∇x2,x3v‖L2(hS) for every v ∈W 1,2(hS; R3), (4.14)

where the constant C is independent of h .
Now, let u ∈ W 1,2(Ωh; R3). First of all we can extend u to the set Uh :=

(0, L)×hQ by defining
ũ(x1, ·) := Eh(u(x1, ·))

for a.e. x1 ∈ (0, L). By (4.13) and (4.14) we deduce that

‖ũ‖L2(Uh) ≤ C‖u‖L2(Ωh), (4.15)

‖∇x2,x3ũ‖L2(Uh) ≤ C‖∇x2,x3u‖L2(Ωh). (4.16)

As Eh is a linear operator, we have that ∂1ũ(x1, ·) = Eh(∂1u(x1, ·)) for a.e. x1 ∈
(0, L), and thus, by (4.13)

‖∂1ũ‖L2(Uh) ≤ C‖∂1u‖L2(Ωh). (4.17)

As ũ is constant on (0, L)×h∂Q , we can extend ũ by successive reflection to the
set U := (0, L)×Q . By [10, Lemma 4.3] there exist λ ∈ [a, b] and w ∈W 1,∞(U ; R3)
such that

‖∇w‖L∞(U) ≤ λ (4.18)

and

λ2L3({x ∈ U : ũ(x) �= w(x)}) ≤ C

ln(b/a)

∫
U
|∇ũ|2 dx. (4.19)
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Let Nh be the largest integer such that h(Nh + 1) ≤ 1. For i, j = 0, . . . , Nh let
Qh,ij be the square (ihM, jhM) + hQ , let Sh,ij := (0, L)×Qh,ij , and let

Rh := U \
⋃

0≤i,j≤Nh

Sh,ij.

Since ∑
0≤i,j≤Nh

L3({ũ �= w} ∩ Sh,ij) ≤ L3({ũ �= w}),

there exists some indeces i0, j0 such that

λ2L3({ũ �= w} ∩ Sh,i0j0) ≤ 1
(Nh + 1)2

λ2L3({ũ �= w})

≤ C

(Nh + 1)2
1

ln(b/a)

∫
U
|∇ũ|2 dx. (4.20)

Let v : Ωh → R
3 be the function defined by

v(x) := w(x1, i0hM + (−1)i0x2, j0hM + (−1)j0x3) for every x ∈ Ωh.

It is clear that v ∈ W 1,∞(Ωh; R3) and that it satisfies (4.6) by (4.18). Moreover,
since ũ coincides with u in Ωh and it has been extended to U by reflection, we have

{x ∈ Ωh : u(x) �= v(x)} ⊂ {x ∈ Sh,i0j0 : u(x) �= w(x)} (4.21)

and ∫
U
|∇ũ|2 dx ≤ (Nh + 2)2

∫
Uh

|∇ũ|2 dx ≤ C(Nh + 2)2
∫

Ωh

|∇u|2 dx, (4.22)

where the last inequality follows from (4.16) and (4.17). Now assertion (4.7) follows
from (4.20)–(4.22).

Finally, inequality (4.8) is a standard consequence of (4.7). This concludes the
proof of Lemma 4.3. �
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