Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Adjunctions in Monoids

Vladimir MOLOTKOV*

Let M and N be monoids considered as categories with the only object.
Let

$$
\begin{equation*}
f: M \longrightarrow N, \quad g: N \longrightarrow M \tag{1}
\end{equation*}
$$

be morphisms of monoids, considered as functors. Let the functor f is left adjoint to the functor g.

Is it true then that f (or, what is the same, g) is always an isomorphism?
In [1], p.136, this question was posed as an open question. Here I answer this question and the answer is no. ${ }^{1}$

To prove this, I will construct a Birkhoff variety of algebras, which is naturally equivalent to the category of adjunctions in monoids, and consider its initial object which is a monoid generated by $2 \times \mathbb{N}$ free variables subject to a certain set of relations. An application of M. H. A. Newman's reduction theorem ([4], cited by [3]) permits one to describe the canonical form of elements in the monoid and, in particular, to negatively answer the question posed.

Let

$$
\begin{equation*}
\varphi: N \longrightarrow M \tag{2}
\end{equation*}
$$

be an isomorphism of sets such that the triple $(f, g, \varphi): M \rightharpoonup N$ is an adjunction, which means that the identity

$$
\begin{equation*}
g(n) \varphi\left(n^{\prime}\right) m=\varphi\left(n n^{\prime} f(m)\right) \tag{3}
\end{equation*}
$$

holds for every $n, n^{\prime} \in N$ and $m \in M$ (see, e.g., [2], p.78).
The identity (3) together with the fact that φ is an iso implies, evidently, that

$$
\varphi^{-1}: M \longrightarrow N
$$

satisfies the "dual" identity:

$$
n \varphi^{-1}\left(m^{\prime}\right) f(m)=\varphi^{-1}\left(g(n) m^{\prime} m\right)
$$

2000 Mathematics Subject Classification. 18A40 (Primary), 18B40 (Secondary).
Key words and phrases. Adjoint functors, monoids.
*Financial support of the Ministry of Sciences and Education of Bulgaria under grant F-610/96-97 and MPIMiS, Leipzig, where the final editing was performed, is most gratefully acknowledged.
${ }^{1}$ This result was obtained actually somewhere at beginning of $90^{\text {th }}$; at the end of 1999 I asked Prof. Manes in an e-mail about the status of the question. He answered that "to his knowledge the question is still open".
(to get from some identity its "dual" replace n 's with m 's and vice versa; $f \leftrightarrow g, \varphi \leftrightarrow \varphi^{-1}$ and, finally, invert the order of all compositions).

Let, further, $\eta \in M$ and $\varepsilon \in N$ be defined as

$$
\begin{equation*}
\eta:=\varphi(1), \quad \varepsilon:=\varphi^{-1}(1) \tag{4}
\end{equation*}
$$

Then by setting $n^{\prime}=m=1$ in (3) we get:

$$
\begin{equation*}
\varphi(n)=g(n) \eta \tag{5}
\end{equation*}
$$

and, dually:

$$
\varphi^{-1}(m)=\varepsilon f(m)
$$

i.e., φ and φ^{-1} are factorized as follows:

$$
\begin{align*}
\varphi & =\mathrm{R}_{\eta^{\circ}} g \quad\left(\varphi: N \xrightarrow{g} M \xrightarrow{\mathrm{R}_{\eta}} M\right) \tag{6}\\
\varphi^{-1} & =\mathrm{L}_{\varepsilon} \circ f \quad\left(\varphi^{-1}: M \xrightarrow{f} N \xrightarrow{\mathrm{~L}_{\varepsilon}} N\right),
\end{align*}
$$

where R_{η} (resp. L_{ε}) is the right shift by η (resp. the left shift by ε) in the monoid M (resp. N).

The equalities (6)-(6°) together with the fact that φ and φ^{-1} are iso's imply
Proposition 1 Both f and g are injective morphisms of monoids, whereas R_{η} and L_{ε} are surjective maps of sets.

Setting now $n=n^{\prime}=1$ in (3) one gets

$$
\begin{equation*}
(\varphi \circ f)(m)=\eta m \tag{7}
\end{equation*}
$$

and, dually,

$$
\left(\varphi^{-1} \circ g\right)(n)=n \varepsilon
$$

which, together with Prop.1, implies that both L_{η} and R_{ε} are injective, so that if there exists an adjunction with f (resp. g) non-iso, then M (resp. N) is, at least, noncommutative monoid; it may not be a group as well.

Let us now reinterpret η and ε as natural transformations:

$$
\begin{equation*}
\eta: 1_{M} \longrightarrow g \circ f, \quad \varepsilon: f \circ g \longrightarrow 1_{N} \tag{8}
\end{equation*}
$$

(unit and counit of the adjunction (f, g, φ)).
Indeed, given two morphisms of monoids $f_{1}, f_{2}: M \rightrightarrows M^{\prime}$, a natural transformation $\mu: f_{1} \longrightarrow f_{2}$ is uniquely determined by an element $\mu^{\prime} \in M^{\prime}$ such that the identity

$$
\begin{equation*}
f_{2}(m) \mu^{\prime}=\mu^{\prime} f_{1}(m) \tag{9}
\end{equation*}
$$

holds for every $m \in M$; in this case μ itself can be identified with the triple $\left(f_{1}, \mu^{\prime}, f_{2}\right)$ or, by abuse of notations, with μ^{\prime} itself.

But identities (5)-(5 5° and (7)-(7°) together give:

$$
\begin{equation*}
((g \circ f)(m)) \eta=\eta m \quad \text { for any } m \in M \tag{10}
\end{equation*}
$$

and, dually,

$$
\varepsilon((f \circ g)(n))=n \varepsilon \quad \text { for any } n \in N
$$

which exactly states that η and ε define natural transformations (8).
Moreover, one must have the identities:

$$
\begin{align*}
& 1_{M}=g(\varepsilon) \eta \tag{11}\\
& 1_{N}=\varepsilon f(\eta)
\end{align*}
$$

Finally, the adjunction $(f, g, \varphi): M \rightharpoonup N$ can be described by the data

$$
(f: M \rightarrow N, g: N \rightarrow M, \eta \in M, \varepsilon \in N)
$$

satisfying the identities (10)-(11 $)$ (see [2], p.81); φ and φ^{-1} are then defined by eqs. (5-5 ${ }^{\circ}$).

Define now the category AdMon such that its objects are just all adjunctions $(f, g, \eta, \varepsilon): M \rightharpoonup N$ and, given another adjunction $\left(f^{\prime}, g^{\prime}, \eta^{\prime}, \varepsilon^{\prime}\right): M^{\prime} \rightharpoonup N^{\prime}$, a pair of monoid morphisms $\left(l: M \rightarrow M^{\prime}, r: N \rightarrow N^{\prime}\right)$ is a morphism $(f, g, \eta, \varepsilon) \xrightarrow{(l, r)}\left(f^{\prime}, g^{\prime}, \eta^{\prime}, \varepsilon^{\prime}\right)$ in AdMon if the diagram

$$
\begin{align*}
& M \xrightarrow{f} N \xrightarrow{g} M \tag{12}\\
& l \downarrow \\
& l \downarrow \\
& M^{\prime} \xrightarrow{f^{\prime}} N^{N^{\prime}} \xrightarrow{g^{\prime}}{ }^{l} M^{\prime}
\end{align*}
$$

is commutative and, besides, if

$$
\begin{equation*}
r(\varepsilon)=\varepsilon^{\prime}, \quad l(\eta)=\eta^{\prime} \tag{13}
\end{equation*}
$$

Denote by Mon the category of monoids. One immediately sees that there are two forgetful functors

$$
\begin{equation*}
\text { L, R: AdMon } \longrightarrow \text { Mon } \tag{14}
\end{equation*}
$$

defined as follows:

$$
\begin{equation*}
\mathrm{L}(l, r)=l ; \quad \mathrm{R}(l, r)=r \tag{15}
\end{equation*}
$$

Given now an adjunction $(f, g, \eta, \varepsilon): M \rightharpoonup N$ and considering the commutative diagram

$$
\begin{gather*}
M \xrightarrow{f} N \xrightarrow[I]{N} M \tag{16}\\
1_{M} \downarrow \\
M \rightarrow \operatorname{Im}(g) \xrightarrow{1_{M}} \downarrow
\end{gather*}
$$

where I is an iso due to Prop.1, one can see that $\left(\operatorname{I\circ f,} g^{\prime}=(\operatorname{Im}(g) \subset M), \eta, \varepsilon^{\prime}=g(\varepsilon)\right)$ is an adjunction isomorphic to $(f, g, \eta, \varepsilon)$ as an object of AdMon, where the isomorphism is given by $\left(1_{M}, I\right)$; that all this iso's together generate the natural equivalence of AdMon with its full subcategory consisting of just those adjunctions $(f, g, \eta, \varepsilon): M \rightharpoonup N$ in which N is a submonoid of M and g is the inclusion map $N \subset M$.

Define the category AdMon $_{\mathbf{L}}$ as follows: objects of $\mathbf{A d M o n}_{\mathbf{L}}$ are all data of the type $(N \subset M, f: M \rightarrow M, \eta \in M, \varepsilon \in M)$, where M is a monoid, N its submonoid, f a monoid endomorphism such that $f(M) \subset N$ and, besides, the identities

$$
\begin{array}{rlr}
f(m) \eta & =\eta m \quad(m \in M) \\
\varepsilon f(n) & =n \varepsilon \quad(n \in N) \\
\varepsilon \eta & =1 \\
\varepsilon f(\eta) & =1 \tag{17d}
\end{array}
$$

hold. In other words, objects of $\mathbf{A d M o n}_{\mathbf{L}}$ are just monoids equipped with some additional structure (a submonoid $N \subset M$, an endomorphism $f: M \longrightarrow M$ such that $f(M) \subset N$ and elements $\eta \in M, \varepsilon \in M$ satisfying eqs.(17a)-(17d)); then a morphism in AdMon $_{\mathrm{L}}$ is just a monoid morphism respecting this structure. So we have (see above):
Proposition 2 The category $\mathbf{A d M o n}$ is naturally equivalent to the category $\mathbf{A d M o n}_{\mathbf{L}}$.
Note that though the transition from AdMon to AdMon $_{\mathbf{L}}$ breaks the " $\mathbb{Z} / 2$-symmetry" ($f \leftrightarrow g, \varepsilon \leftrightarrow \eta$) we get simpler objects instead and simpler relations (17a)-(17d) instead of "symmetric" ones (10)-(11 $)$.

Now we will give some conditions on an object ($M \supset N, f, \eta, \varepsilon$) equivalent to the statement that f is an isomorphism.
Proposition 3 Let $(M \supset N, f, \eta, \varepsilon)$ be an object of $\mathbf{A d M o n}_{\mathbf{L}}$. Then the following conditions (a)-(g) are equivalent:
(a) f is surjective;
(b) f is an isomorphism;
(c) $N=M$;
(d) $f(\eta)=\eta$;
(e) $f(\varepsilon)=\varepsilon$;
(f) $\eta \varepsilon=1$ (i.e., η is invertible in M due to eq.(17c));
(g) for every $m \in M$ one has $f(m)=\eta m \varepsilon$ (i.e., f is an inner automorphism of M due to (f)).

Proof. $(\mathrm{a}) \Longleftrightarrow(\mathrm{b})$ due to Prop.1; $(\mathrm{b}) \Longrightarrow(\mathrm{c})$ is evident, because N contains $f(M)=M$;
$(\mathrm{c}) \Longrightarrow(\mathrm{d})$: Multiplying eq.(17a) by ε from the left (resp. multiplying eq.(17b) by $f(\eta))$ from the right) one gets:

$$
\begin{gather*}
m=\varepsilon f(m) \eta \quad(m \in M) \tag{18a}\\
n=\varepsilon f(n \eta) \quad(n \in N) . \tag{18b}
\end{gather*}
$$

If $N=M$, then due to eq.(18b) every $m \in M$ has a representation $m=\varepsilon f\left(m^{\prime}\right)$ for some $m^{\prime} \in M$. In particular,

$$
\begin{equation*}
\eta=\varepsilon f\left(\eta^{2}\right)=(\varepsilon f(\eta)) f(\eta)=f(\eta) ; \tag{19}
\end{equation*}
$$

$(\mathrm{d}) \Longrightarrow(\mathrm{e}): \varepsilon \in N$ implies

$$
\begin{equation*}
\varepsilon=\varepsilon 1=\varepsilon f^{2}(1) \stackrel{(17 c)}{=} \varepsilon f^{2}(\varepsilon \eta)=\varepsilon f^{2}(\varepsilon) f^{2}(\eta) \stackrel{(d)}{=} \varepsilon f^{2}(\varepsilon) \eta \stackrel{(17 a)}{=} \varepsilon \eta f(\varepsilon) \stackrel{(17 c)}{=} f(\varepsilon) ; \tag{20}
\end{equation*}
$$

$(\mathrm{e}) \Longrightarrow(\mathrm{f})$: Indeed:

$$
\begin{equation*}
\eta \varepsilon \stackrel{(17 a)}{=} f(\varepsilon) \eta \stackrel{(e)}{=} \varepsilon \eta=1 ; \tag{21}
\end{equation*}
$$

$(\mathrm{f}) \Longrightarrow(\mathrm{g})$: One has: $f(m) \stackrel{(f)}{=} f(m) \eta \varepsilon \stackrel{(17 a)}{=} \eta m \varepsilon$;
$(\mathrm{g}) \Longrightarrow(\mathrm{b})$, because $1=f(1)=\eta \varepsilon$, i.e., $(\mathrm{g}) \Longrightarrow(\mathrm{f})$ and defining

$$
\begin{equation*}
f^{-1}(m):=\varepsilon m \eta \tag{22}
\end{equation*}
$$

one sees that $f^{-1} f(m)=f f^{-1}(m)=m$
Return now to the definition of $\mathbf{A d M o n}_{\mathbf{L}}$. One sees that $\mathbf{A d M o n}_{\mathbf{L}}$ is "almost" the variety of algebras in the Birkhoff's sense (see, e.g., [3]). In more detail, let

$$
\Omega=\Omega_{0} \cup \Omega_{1} \cup \Omega_{2}, \text { where } \Omega_{0}=\{1, \eta, \varepsilon\}, \Omega_{1}=\{f\} \text { and } \Omega_{2}=\{\cdot\}
$$

i.e, Ω_{0}, Ω_{1} and Ω_{2} are, respectively, the set of 0 -ary, unary and binary operations. The set of "equations" consists of equations stating that • and 1 determine a monoid structure, f is an endomorphism of the corresponding structure, with eqs.(17a)-(17d) added. One sees that eq.(17b) is not an equation in Birkhoff's sense, because n there is restricted to the subset $N \subset M$. This means that, generally speaking, $\mathbf{A d M o n}_{\mathbf{L}}$ is a variety of "sorted" algebras with two sorts of algebras: " N-like" and " M-like". But, noting that due to eq. $\left(5^{\circ}\right)$:

$$
\begin{equation*}
N=\varepsilon f(M) \tag{23}
\end{equation*}
$$

one can derive from eq.(17b) that the equality

$$
\begin{equation*}
\varepsilon f(\varepsilon f(m))=\varepsilon f(m) \varepsilon \quad(m \in M) \tag{24}
\end{equation*}
$$

is valid in which m runs over the whole M.
We will prove now that vice versa, the data ($M, f: M \longrightarrow M, \eta, \varepsilon$) together with equations (17a), (17c)-(17d), equations stating that f is an automorphism of monoids as well as eq.(24) (instead of eq.(17b)), reconstruct the remaining data, namely, the submonoid N and the equation (17b) valid on N.

Indeed, define N by eq.(23) as a set; we have to prove that this set is, in fact, a submonoid (eq.(17b) for $n \in N$ follows immediately from eq.(24)).

We see, first of all, that $1 \in N$ due to eq.(17d). Suppose now that $n_{1}, n_{2} \in N$, i.e., for some $m_{1}, m_{2} \in M$ one has $n_{1}=\varepsilon f\left(m_{1}\right), n_{2}=\varepsilon f\left(m_{2}\right)$. Then:

$$
\begin{equation*}
n_{1} n_{2}=\varepsilon f\left(m_{1}\right) \varepsilon f\left(m_{2}\right) \stackrel{(24)}{=} \varepsilon f\left(\varepsilon f\left(m_{1}\right)\right) f\left(m_{2}\right)=\varepsilon f\left(\varepsilon f\left(m_{1}\right) m_{2}\right) \in N \tag{25}
\end{equation*}
$$

This proves that N is, actually, a submonoid of M.

Proposition 4 The category AdMon is naturally equivalent to the Birkhoff variety of monoids M equipped with the structure ($M, f: M \longrightarrow M, \eta, \varepsilon \in M$), where f is an endomorphism of monoids, satisfying the following conditions:

$$
\begin{align*}
\varepsilon \eta & =1 \tag{26a}\\
\varepsilon f(\eta) & =1, \tag{26b}\\
\varepsilon f(\varepsilon) & =\varepsilon^{2}, \tag{26c}\\
\varepsilon f^{2}(m) & =f(m) \varepsilon \quad(m \in M), \tag{26d}\\
f(m) \eta & =\eta m \quad(m \in M) . \tag{26e}
\end{align*}
$$

Proof. It remains to prove only that eqs.(26c)-(26d) together are equivalent to eq.(24) above. Indeed, eq.(26c) is a particular case of eq.(24) for $m=1$, whereas eq.(26d) is obtained from eq.(24) if one substitutes $m=\eta m^{\prime}$ and takes into account eq.(26a). On the other hand, for $m \in M$ one has:

$$
\begin{equation*}
\varepsilon f(\varepsilon f(m))=\varepsilon f(\varepsilon) f^{2}(m) \stackrel{(26 c)}{=} \varepsilon^{2} f^{2}(m) \stackrel{(26 d)}{=} \varepsilon f(m) \varepsilon \tag{27}
\end{equation*}
$$

Denote AdMonB the Birkhoff variety described by Prop.4. We will prove next that the equality $\eta \varepsilon=1$ is not satisfied in AdMonB. To this end, we will consider in details the "minimal model of the theory AdMonB", in other words, the free AdMonB algebra $\mathcal{F}(\emptyset)$ (which is an initial object in AdMonB).

Define elements $\eta_{k}, \varepsilon_{k} \in \mathcal{F}(\emptyset)(k \in \mathbb{N})$ as follows:

$$
\begin{align*}
\eta_{0}:=\eta, & \eta_{k+1}:=f\left(\eta_{k}\right) \tag{28a}\\
\varepsilon_{0}:=\varepsilon, & \varepsilon_{k+1}:=f\left(\varepsilon_{k}\right) \tag{28b}
\end{align*}
$$

It is clear that, as monoid, $\mathcal{F}(\emptyset)$ is generated by elements $\eta_{k}, \varepsilon_{k}$. In other words, the monoid $\mathcal{F}(\emptyset)$ can be represented as

$$
\begin{equation*}
\mathcal{F}(\emptyset)=\mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right) / \mathrm{R} \tag{29}
\end{equation*}
$$

for some set of relations R , where $\mathcal{F}_{\mathrm{Mon}}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ is the free monoid generated by $2 \times \mathbb{N}$ variables $\left\{\eta_{k}, \varepsilon_{m}\right\}_{k, m \in \mathbb{N}}$. The following proposition describes the corresponding set of relations R .

Proposition 5 The set of relations R in $\mathcal{F}(\emptyset)$ is generated by the following set R_{0} of relations:

$$
\begin{align*}
\varepsilon_{i} \varepsilon_{j} & =\varepsilon_{j-1} \varepsilon_{i}(j>i) \tag{30a}\\
\eta_{j} \eta_{i} & =\eta_{i} \eta_{j-1}(j>i) \tag{30b}\\
\varepsilon_{i} \eta_{j} & = \begin{cases}\eta_{j-1} \varepsilon_{i} & (j>i+1) \\
\eta_{j} \varepsilon_{i-1} & (i>j) \\
\varepsilon_{i-1} \eta_{i} & (i=j>0) \\
\varepsilon_{i} \eta_{i} & (j=i+1) \\
1 & (i=j=0)\end{cases} \tag{30c}
\end{align*}
$$

Proof. One easily checks that eqs.(30a)-(30c) are satisfied, being either particular cases of some of the relations (26a)-(26e), or can be obtained from the latter ones after applying f^{k} to both sides of (26a)-(26e) (for some $k>0$).

Vice versa, define the elements η and ε and an automorphism f of the monoid $\mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ by "inverting" definitions (28) above:

$$
\begin{align*}
\eta & :=\eta_{0}, \quad f\left(\eta_{k}\right):=\eta_{k+1}, \tag{31a}\\
\varepsilon & :=\varepsilon_{0}, \quad f\left(\varepsilon_{k}\right):=\varepsilon_{k+1} . \tag{31b}
\end{align*}
$$

One easily checks, that the automorphism f "survives" the factorization by relations (30) above and induction on the length of words proves that, in the monoid

$$
\begin{equation*}
\mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right) / \mathrm{R}_{0} \tag{32}
\end{equation*}
$$

relations (26d)-(26e) are satisfied.
From now on we will identify $\mathcal{F}(\emptyset)$ with the monoid (32) equipped with η, ε and f defined by eqs.(31).

Returning now to our original problem: one sees that it is exactly equivalent to the question whether or not the identity

$$
\begin{equation*}
\eta \varepsilon=1 \tag{33}
\end{equation*}
$$

holds in the monoid $\mathcal{F}(\emptyset)$.
The following theorem provides us with the canonical form for elements of $\mathcal{F}(\emptyset)$ and simultaneously gives the negative answer to the last question.

Theorem 6 For every element m of $\mathcal{F}(\emptyset)$, there exist the only pair $k, l \in \mathbb{N}$ and the only pair of sequences

$$
\begin{equation*}
0 \leq i_{1} \leq \ldots \leq i_{k}, \quad j_{1} \geq \ldots \geq j_{l} \geq 0 \tag{34a}
\end{equation*}
$$

such that

$$
\begin{equation*}
m=\eta_{i_{1}} \ldots \eta_{i_{k}} \varepsilon_{j_{1}} \ldots \varepsilon_{j_{l}} . \tag{34b}
\end{equation*}
$$

(We asume that if $k=0$ (resp. $l=0$), then the corresponding sequence in (34a) above is empty and the corresponding product in (34b) is replaced with the neutral element 1 of the monoid $\mathcal{F}(\emptyset)$.)

Proof. On $\mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$, define the binary relation \models as follows. First of all, set:

$$
\begin{align*}
\varepsilon_{i} \varepsilon_{j} & \models \varepsilon_{j-1} \varepsilon_{i}(j>i) \tag{35a}\\
\eta_{j} \eta_{i} & \models \eta_{i} \eta_{j-1}(j>i) \tag{35b}\\
\varepsilon_{i} \eta_{j} & \models \begin{cases}\eta_{j-1} \varepsilon_{i} & (j>i+1) \\
\eta_{j} \varepsilon_{i-1} & (i>j) \\
\varepsilon_{i-1} \eta_{i} & (i=j>0) \\
\varepsilon_{i} \eta_{i} & (j=i+1) \\
1 & (i=j=0)\end{cases} \tag{35c}
\end{align*}
$$

Let now \geq be the smallest preorder on $\mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ containing \models and turning $\mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ into a preordered monoid.

One sees that $m \geq m^{\prime}$ if and only if there exists a sequence

$$
\begin{equation*}
m=m_{0}, m_{1}, \ldots, m_{n}=m^{\prime} \tag{36}
\end{equation*}
$$

such that, for any $0 \leq i<n$, there exist

$$
L, R, \mu, \mu^{\prime} \in \mathcal{F}_{\operatorname{Mon}}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)
$$

for which $\mu \models \mu^{\prime}$ and both $m_{i}=L \mu R$ and $m_{i+1}=L \mu^{\prime} R$.
Let now \sim be the equivalence relation on $\mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ generated by the relation \geq (i.e., $m \sim m^{\prime}$ if and only if both m and m^{\prime} belong to the same connected component of the preorder relation \geq).

It is rather clear that the relation \sim coincides with the relation R from eq.(29) defining $\mathcal{F}(\emptyset)$.

It is also clear that the r.h.s. of the canonical representation (34b), considered as an element of $\mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ is a minimal element with respect to the preorder relation \geq. The only thing to prove is that every equivalence class of the relation \sim contains the only minimal element with respect to \geq.

To prove this, it suffices to prove that the relation \geq satisfies conditions of reduction theorem of M. Newman [4], or its weaker version given in [3]. The latter conditions on \geq are the following conditions (A) and (B):
(A) For any $m \in \mathcal{F}_{\operatorname{Mon}}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$, there exists $k \in \mathbb{N}$ such that for any decreasing sequence $m=m_{0}>m_{1}>\ldots>m_{k^{\prime}}$ one has $k \leq k^{\prime}$;
(B) Any pair $m, m^{\prime} \in \mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ with a common parent is bounded from below, i.e., there exists $b \in \mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ such that both $m \geq b$ and $m^{\prime} \geq b$. Here p is said to be a parent of m if it is the smallest element such that $p \geq m, p \neq m$.

To prove (A), consider the morphism of monoids

$$
\begin{equation*}
d: \mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right) \longrightarrow \mathbb{N} \tag{37a}
\end{equation*}
$$

uniquelly determined by the images

$$
\begin{equation*}
d\left(\eta_{i}\right)=i+1, \quad d\left(\varepsilon_{i}\right)=i+1 \tag{37b}
\end{equation*}
$$

One easily sees from relations (35) that d is a morphism of preordered monoids (i.e., respects preorders). Moreover, it is clear now that the relation \geq is, in fact, an order relation (because $d(m)>d\left(m^{\prime}\right)$ for any pair $m, m^{\prime} \in \mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ such that $m \models m^{\prime}$). (A) is obvious now.

To prove (B), observe first that
(C) p is a parent of m if and only if $p=L \mu R, m=L \mu^{\prime} R$ and $\mu \models \mu^{\prime}$.

Indeed, the l.h.s. of any of the particular cases (35) of the relation \models, except, perhaps, the last one, is a parent of its r.h.s. just because d (l.h.s.) $-d$ (r.h.s.) $=1$; as to the last
particular case, $\varepsilon_{0} \eta_{0}=1$, this is the only case such that the length of l.h.s. \neq the length of r.h.s, which implies that in this case as well the l.h.s. is the parent of the r.h.s.

Let $m, m^{\prime} \in \mathcal{F}_{\text {Mon }}\left(\eta_{0}, \eta_{1}, \ldots, \eta_{k}, \ldots \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{k}, \ldots\right)$ have a common parent, p.
Now follows the most boring part of all this mess.
There are five possible cases:
(I) $p=a \mu b \nu c, m=a \mu^{\prime} b \nu c, m^{\prime}=a \mu b \nu^{\prime} c$, where $\mu \models \mu^{\prime}$ and $\nu \models \nu^{\prime}$.

Clearly, in this case $b:=a \mu^{\prime} b \nu^{\prime} c$ is a common lower bound for both m and m^{\prime}.
In all of the cases (II)-(V) below, p is of the form $L \mu_{1} \mu_{2} \mu_{3} R$, where every μ_{i} is of length 1 (i.e., is either η_{j} for some j, or ε_{j}^{\prime} for some j^{\prime}). In what follows, terms L and R will be omitted, because they take no explicit part in the process of finding of the lower bound b.
(II) $p=\varepsilon_{i} \varepsilon_{j} \varepsilon_{k} \quad(i<j<k)$; Applying relation (35a) one gets:

$$
\begin{aligned}
p \models m & :=\varepsilon_{j-1} \varepsilon_{i} \varepsilon_{k} \geq \varepsilon_{j-1} \varepsilon_{k-1} \varepsilon_{i} \geq \varepsilon_{k-2} \varepsilon_{j-1} \varepsilon_{i} \\
p \models m^{\prime} & :=\varepsilon_{i} \varepsilon_{k-1} \varepsilon_{j} \geq \varepsilon_{k-2} \varepsilon_{i} \varepsilon_{j} \geq \varepsilon_{k-2} \varepsilon_{j-1} \varepsilon_{i}
\end{aligned}
$$

So in this case $b=\varepsilon_{k-2} \varepsilon_{j-1} \varepsilon_{i}$ is the lower bound of both m and m^{\prime}.
(III) $p=\eta_{i} \eta_{j} \eta_{k} \quad(i>j>k)$;

This case is "dual" in an obvious sense to case (II).
(IV) $p=\varepsilon_{i} \varepsilon_{j} \eta_{k} \quad(i<j)$;

This case is subdivided into following 7 subcases below:
a) $k>j+1$

$$
\begin{aligned}
p \models m & :=\varepsilon_{j-1} \varepsilon_{i} \eta_{k} \geq \varepsilon_{j-1} \eta_{k-1} \varepsilon_{i} \geq \eta_{k-2} \varepsilon_{j-1} \varepsilon_{i} \\
p \models m^{\prime} & :=\varepsilon_{i} \eta_{k-1} \varepsilon_{j} \geq \eta_{k-2} \varepsilon_{i} \varepsilon_{j} \geq \eta_{k-2} \varepsilon_{j-1} \varepsilon_{i}
\end{aligned}
$$

i.e., $b=\eta_{k-2} \varepsilon_{j-1} \varepsilon_{i}$ is a common lower bound of both m and m^{\prime}.
b) $k=j+1$

$$
\begin{aligned}
p=\varepsilon_{i} \varepsilon_{j} \varepsilon_{j+1} \models m & :=\varepsilon_{j-1} \varepsilon_{i} \eta_{j+1} \geq \varepsilon_{j-1} \eta_{j} \varepsilon_{i} \geq \ldots \geq \varepsilon_{i} \\
p \models m^{\prime} & :=\varepsilon_{i} \varepsilon_{j} \eta_{j} \geq \ldots \geq \varepsilon_{i}
\end{aligned}
$$

i.e., $b=\varepsilon_{i}$ is a common lower bound of both m and m^{\prime}.
c) $k=j$

$$
\begin{aligned}
p=\varepsilon_{i} \varepsilon_{j} \eta_{j} \models m & :=\varepsilon_{j-1} \varepsilon_{i} \eta_{j} \geq \begin{cases}\varepsilon_{j-1}=\varepsilon_{i} & (i=j-1) \\
\varepsilon_{j-1} \eta_{j-1} \varepsilon_{i} \geq \ldots \geq \varepsilon_{i} & (i<j-1)\end{cases} \\
p \models m^{\prime} & :=\varepsilon_{i} \varepsilon_{j-1} \eta_{j} \geq \ldots \geq \varepsilon_{i}
\end{aligned}
$$

i.e., $b=\varepsilon_{i}$ is a common lower bound of both m and m^{\prime}.
d) $i+1<k<j$

$$
\begin{aligned}
p \models m & :=\varepsilon_{j-1} \varepsilon_{i} \eta_{k} \geq \varepsilon_{j-1} \eta_{k-1} \varepsilon_{i} \geq \eta_{k-1} \varepsilon_{j-2} \varepsilon_{i} \\
p \models m^{\prime} & :=\varepsilon_{i} \eta_{k} \varepsilon_{j-1} \geq \eta_{k-1} \varepsilon_{j-2} \varepsilon_{i}
\end{aligned}
$$

i.e., $b=\eta_{k-1} \varepsilon_{j-2} \varepsilon_{i}$ is a common lower bound of both m and m^{\prime}.
e) $k=i+1<j$

$$
\begin{aligned}
p=\varepsilon_{i} \varepsilon_{j} \eta_{i+1} \models m & :=\varepsilon_{j-1} \varepsilon_{i} \eta_{i+1} \geq \ldots \geq \varepsilon_{j-1} \\
p \models m^{\prime} & :=\varepsilon_{i} \eta_{i+1} \varepsilon_{j-1} \geq \ldots \geq \varepsilon_{j-1}
\end{aligned}
$$

i.e., $b=\varepsilon_{j-1}$ is a common lower bound of both m and m^{\prime}.
f) $k=i$

$$
\begin{aligned}
p \models m & :=\varepsilon_{j-1} \varepsilon_{i} \eta_{i} \geq \ldots \geq \varepsilon_{j-1} \\
p \models m^{\prime} & :=\varepsilon_{i} \eta_{i} \varepsilon_{j-1} \geq \ldots \geq \varepsilon_{j-1}
\end{aligned}
$$

i.e., $b=\varepsilon_{j-1}$ is a common lower bound of both m and m^{\prime}.
g) $k<i$

$$
\begin{aligned}
p \models m & :=\varepsilon_{j-1} \varepsilon_{i} \eta_{k} \geq \varepsilon_{j-1} \eta_{k} \varepsilon_{i-1} \geq \eta_{k} \varepsilon_{j-2} \varepsilon_{i-1} \\
p \models m^{\prime} & :=\varepsilon_{i} \eta_{k} \varepsilon_{j-1} \geq \eta_{k} \varepsilon_{j-2} \varepsilon_{i-1}
\end{aligned}
$$

i.e., $\eta_{k} \varepsilon_{j-2} \varepsilon_{i-1}$ is a common lower bound of both m and m^{\prime}.
(V) $p=\varepsilon_{i} \eta_{j} \eta_{k} \quad(j>k)$;

This case is in a sense dual to case (IV) and is subdivided into following 7 subcases below:
a) $i>j$

$$
\begin{aligned}
p \models m & :=\varepsilon_{i} \eta_{k} \eta_{j-1} \geq \eta_{k} \varepsilon_{i-1} \eta_{j-1} \geq \eta_{k} \eta_{j-1} \varepsilon_{i-2} \\
p \models m^{\prime} & :=\eta_{j} \varepsilon_{i-1} \eta_{k} \geq \eta_{j} \eta_{k} \varepsilon_{i-2} \geq \eta_{k} \eta_{j-1} \varepsilon_{i-2}
\end{aligned}
$$

i.e., $b=\eta_{k} \eta_{j-1} \varepsilon_{i-2}$ is a common lower bound of both m and m^{\prime}.
b) $i=j$

$$
\begin{aligned}
p=\eta_{j} \eta_{j} \varepsilon_{k} \models m & :=\varepsilon_{j-1} \eta_{j} \eta_{k} \geq \ldots \geq \eta_{k} \\
p \models m^{\prime} & :=\varepsilon_{j} \eta_{k} \eta_{j-1} \geq \eta_{k} \varepsilon_{j-1} \eta_{j-1} \geq \ldots \geq \eta_{k}
\end{aligned}
$$

i.e., $b=\eta_{k}$ is a common lower bound of both m and m^{\prime}.
c) $i=j-1$

$$
\begin{aligned}
p=\varepsilon_{j-1} \eta_{j} \eta_{k} \models m & :=\varepsilon_{j-1} \eta_{j-1} \eta_{k} \geq \ldots \geq \eta_{k} \\
p \models m^{\prime} & :=\varepsilon_{j-1} \eta_{k} \eta_{j-1} \geq \begin{cases}\eta_{j-1}=\eta_{k} & (k=j-1) \\
\eta_{k} \varepsilon_{j-2} \eta_{j-1} \geq \ldots \geq \eta_{k} & (k<j-1)\end{cases}
\end{aligned}
$$

i.e., $b=\eta_{k}$ is a common lower bound of both m and m^{\prime}.
d) $k<i<j-1$

$$
\begin{aligned}
p \models m & :=\varepsilon_{i} \eta_{k} \eta_{j-1} \geq \eta_{k} \varepsilon_{i-1} \eta_{j-1} \geq \eta_{k} \eta_{j-2} \varepsilon_{i-1} \\
p \models m^{\prime} & :=\eta_{j-1} \varepsilon_{i} \eta_{k} \geq \eta_{j-1} \eta_{k} \varepsilon_{i-1} \geq \eta_{k} \eta_{j-2} \varepsilon_{i-1}
\end{aligned}
$$

i.e., $b=\eta_{k} \eta_{j-2} \varepsilon_{i-1}$ is a common lower bound of both m and m^{\prime}.
e) $k=i<j-1$

$$
\begin{aligned}
p=\varepsilon_{i} \eta_{j} \eta_{i} \models m & :=\varepsilon_{i} \eta_{i} \eta_{j-1} \geq \ldots \geq \eta_{j-1} \\
p \models m^{\prime} & :=\eta_{j-1} \varepsilon_{i} \eta_{i} \geq \ldots \geq \eta_{j-1}
\end{aligned}
$$

i.e., $b=\eta_{j-1}$ is a common lower bound of both m and m^{\prime}.
f) $k=i+1$

$$
\begin{aligned}
p=\varepsilon_{i} \eta_{j} \eta_{i+1} \models m & :=\varepsilon_{i} \eta_{i+1} \eta_{j-1} \geq \ldots \geq \eta_{j-1} \\
p \models m^{\prime} & :=\eta_{j-1} \varepsilon_{i} \eta_{i+1} \geq \ldots \geq \eta_{j-1}
\end{aligned}
$$

i.e., $b=\eta_{j-1}$ is a common lower bound of both m and m^{\prime}.
g) $k>i+1$

$$
\begin{aligned}
p \models m & :=\varepsilon_{i} \eta_{k} \eta_{j-1} \geq \eta_{k-1} \varepsilon_{i} \eta_{j-1} \geq \eta_{k-1} \eta_{j-2} \varepsilon_{i} \\
p \models m^{\prime} & :=\eta_{j-1} \varepsilon_{i} \eta_{k} \geq \eta_{j-1} \eta_{k-1} \varepsilon_{i} \geq \eta_{k-1} \eta_{j-2} \varepsilon_{i}
\end{aligned}
$$

i.e., $\varepsilon_{k} \eta_{j-2} \eta_{i-1}$ is a common lower bound of both m and m^{\prime}.

References

[1] Ernest G. Manes Algebraic Theories, Springer, (1976)
[2] S. Mac Lain Categories for the Working Mathematicians, Springer (1971);
[3] P. M. Cohn Universal Algebra, Harper's series in Modern Math., Harper \& Row (1965);
[4] M. H. A.Newman On Theories with a Combinatorial Definition of "Equivalence", Ann. of Math., 43, p.223-243 (1942).

Institute for Nuclear Research and Nuclear Energy, Tsarigradsko chosse blvd. 72 , BG-1784 Sofia, Bulgaria.
E-MAIL: vmolot@inrne.bas.bg

