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BP 47870 - F-21078 Dijon France,

Alexander O. Smirnov
e-mail: Alsmir@mail.ru, St. Petersburg University of Aerospace Instrumentation,

St. Petersburg, Bolshaya, Morskaya 67, St. Petersburg, 190000 Russia,

January 7, 2007

Abstract

The aim of this article is to summarize results on the cylindrical KP
equation also known as Johnson equation. In particular, we explain the
gauge equivalence of the related Lax pairs. We also describe some im-
portant classes of explicit solutions obtained by the use of the Darboux
transformation approach. Plots of explicit solutions including finite gap
solutions to the CKP equation are presented.
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1 Introduction

The cylindrical KP equation (CKP) is a 2D generalization of the cylindrical
KdV equation. It was introduced in 1978 in an article by Johnson [1] in the
context of the description of surface waves in a shallow incompressible fluid.
Later the same equation was derived by Lipowskij [2] for internal waves in a
stratified medium. The Johnson equation has the following form:

∗The second author thanks the organizers of the workshop Nonlinear Physics IV, where
this work was reported, and the ANR grant ANR-05-BLAN-0029-01 (GIMP) for financial
support.
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∂

∂x

(
ut + 6uux + uxxx +

u

2t

)
= −3α2uyy

t2
. (1)

The same equation was recently derived in [15] for nonlinear acoustic waves. As
for KP we can distinguish two cases depending on the sign of the real parameter
α2: the CKP I equation, corresponding to a positive value of α2, and the CKP
II case where α2 is supposed to be negative. When α = 0 the CKP equation
obviously reduces to the CKdV equation. The Cauchy initial problem for the
CKP equation can be posed correctly for any t = t0 > 0.

Contrary to the widely known KP equation, the CKP equation has dissi-
pative character: there is no soliton-like solution with a linear front localized
along straight lines in the xy-plane. Also, the multi-lump-like solutions preserv-
ing their form during propagation that exist for the CKP II equation [11] are
missing in the CKP I case. It was discovered in [4]1 that nevertheless in the
CKP case, we have as much explicit solutions as in the KP case. The CKP
equation allows to explain the existence of the horseshoe-like solitons and their
multi-versions in quite a natural way. The horseshoe multi-soliton solutions cor-
respond very well to real waves which can be observed in thin films of shallow
water being cooled along the inclined plane. One can compare for instance the
photo 19 on page 38 of the book [3] with some plots of this work. In both cases,
the waves with crossed parabolic profiles are very well visible.

Following [4] each solution of the KP equation generates a solution of the
CKP equation and vice versa. The related mapping was first constructed in [4]
on the base of study of algebro-geometric solutions. The latter point somehow
was never explained in the literature. The use of the aforementioned isomor-
phism between the whole varieties of solutions to the CKP and KP equations
represents one of the most powerful approaches for solving the CKP equation
by fully using the information on the solutions of the KP equation obtained
by various methods. It is necessary to mention that Johnson [1] has gotten
a weaker result allowing to construct from any solution of the KdV equation
some solution of the CKP equation. His result follows from [5] as a natural
reduction. The one to one correspondence between the solutions of the KP
and CKP equations [4] preserves the class of solutions decreasing in all spatial
directions, and the class of rational solutions. The same correspondence some-
how transforms the line-front solitons of the KP equation to the parabolic front
solitons of the CKP equation. It transforms the rational lump solutions of the
KP equation to the dissipative rational solutions of the CKP model. It maps
the bounded almost periodic solutions of the KP model to the class of bounded
solutions periodic only with respect to the x variable. The plots of the related
theta functional solutions of the CKP model also seem to correspond well to
some real waves on shallow water. A different approach to the integration of
the CKP equation which directly uses the Darboux covariance of the related
Lax pair briefly mentioned in [5] will be also explained here. In our opinion the
results of [4, 5] concerning the CKP equation and its link with the KP model

1See also [5] and the explanation below in section 5.
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are underexplored. The appearance of powerful software allowing to visualize
even theta-functional solutions of finite genera opens up new opportunities in
the comparison of the related solutions with experimental data.

Therefore we decided to present an extended version of the results of [4, 5] in-
cluding for the first time graphical material that is important to understand the
qualitative features of the solutions having a complicated analytical structure2.

2 CKP Lax pair

The Lax pair and its adjoint for the CKP equation are given by the formula:

±αf±
y = tf±

xx + (tu − x/12)f±,

f±
t = −4fxxx − 6uf±

x − (3ux ± 3αv/t)f±. (2)

The compatibility conditions of the (+)system (2) and of the (−)system (2)
are both equivalent to the system

vx = uy, ut + 6uux + uxxx +
u

2t
= −3α2 vy

t2
,

which obviously produces the CKP equation after differentiation of the second
equation by x and the use of the formula vyx = vxy = uyy. The (+) Lax pair
was first found by Druma [9] and Salle [6] in 1983, and was rediscovered one
year later by Ovel and Steeb [10].

3 Darboux transformation for the CKP equa-

tion

According to the general covariance theorem (Matveev 1979) [7, 4, 5], the equa-
tions (2) are both covariant with respect to a classical Darboux transformation
(DT)

f → ψ±
1 , u→ u±1 , ψ±

1 := f±
x − σ±f ≡ W (f±

1 , f
±)

f±
1

,

σ± :=
∂xf

±
1

f±
1

, u±1 := u+ 2σ±
x ,

where f±
1 is some fixed solution of (2). The iterations of only (+) or of only (−)

DT leads to formulas absolutely similar to the KP case:

u±n = u+ 2∂2
x lnW (f±

1 , . . . , f
±
n ),

ψ±
n =

W (f±
1 , . . . , f

±
n , f

±)
W (f±

1 , . . . , f
±
n )

,

2In the recent work [14] the results of [4, 5] were used in order to prove the existence of
nondecaying solutions of the CKP equation, vanishing as x → ∞. Some additional results
concerning physical applications of the CKP equation can be found in [13].
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where the f±
j are arbitrary linearly independent solutions of the (+)- or (−)-Lax

system respectively.

For any complex value of p the (+)-system (2) with u = 0 has a solution of
exponential type:

f+(k) := exp
[
− x

12α
(y − p) +

4t
(12α)3

(y − p)3
]

= exp
[
k

(
x− y2t

12α2

)
+ k2α−1yt− 4k3t− xy

12α
+

4ty3

(12α)3)

]
, p ≡ 12kα. (3)

Similarly, for the (−)-system (2) with u = 0, a one parametric family of solutions
is given by the formula

f−(p) := exp
[
x

12α
(y + p) − 4t

(12α)3
(y + p)3

]
.

Since the system (2) is linear, linear combinations of solutions corresponding
to different values of p or k lead to new solutions. Also differentiation of
f±(x, y, t, k) with respect to k to arbitrary order produces solutions to the same
system. Next, taking k = 0 in ∂m

k f
±(x, y, t, k) we obtain an infinite number of

solutions having the form of polynomials of x, y, t times a k independent expo-
nential. Plugging them into a Wronskian we get an infinite family of rational
solutions of the CKP equation. This construction obviously represents the nat-
ural analogue of the rational solutions of the KP equation expressed in terms of
Faa de Bruno polynomials also frequently called Bell polynomials. In the KP
case a similar construction of the rational solutions was first proposed in [4]. In
the latter case, it contains as a very simple special reduction of the formulas of
[4] the rational solutions of “general position” for the KP equation constructed
by Krichever in 1978. In particular, we can construct a large family of solutions
f±

j of the “starting” system (2) with u = 0, as follows:

f+
j =

∫
sj1

f+(k)dµj1(k),

f−
j =

∫
sj2

f−(k)dµj2(k),

where µj1(k), µj2(k) are some measures. It is clear that the related Wronskian
can be written as

W (f+
1 , . . . , f

+
n ) = exp

[
−nxy

12α
+

4nty3

(12α)3)

]
W (f+

01, . . . , f
+
0n),

f+
0j :=

∫
sj1

f+
0 (k)dµj1(k),

where f+
0 (k) denotes the k-dependent part of the exponential (3). The related

Wronskians can also be written as multiple integrals of the following structure:
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W = exp
[
−nxy

12α
+

4nty3

(12α)3)

]∫
s1

. . .

∫
sn

n∏
1

f+
0 (kj)

∏
j>i

(kj − ki)
n∏
1

dµj1(kj)

in the (+) case or

W = exp
[
−nxy

12α
+

4nty3

(12α)3)

]∫
s1

. . .

∫
sn

n∏
1

f−
0 (kj)

∏
j>i

(kj − ki)
n∏
1

dµj2(kj),

in the (−) case. It is clear that the external k independent factors do not con-
tribute to the potential.

So, similarly to the KP I case [7, 5] we have a large number of solutions
depending on an arbitrary number of functional parameters. It is quite obvious
that the obtained solutions to the CKP equation are nonsingular and real valued
provided that the following condition is satisfied:

sj

⋂
sm = ∅, ∀j, d µj(k) = ρj(k)d k, ρj(k) ≥ 0, inf sj > 0

where sj =: suppρj(k).
Therefore, one family of nonsingular N-solitons horseshoe line front solutions

provided by the first nonsingularity condition formulated above can be written
as

u = 2∂2
x lnW (f1, . . . , fn)

with
fj = Aje

ϑ2j−1 + eϑ2j , Aj > 0 ∀j,
with

ϑm =: km

(
x− y2t

12α2
+

)
+ k2

mα
−1yt− 4k3

mt.

This solution is non singular if 0 < km < km+1, ∀m, which corresponds to the
above nonsingularity condition with ρj(k) = δ(k − k2j−1) + δ(k − k2j).

An alternative sufficient non singularity condition, (see also [5]), is

suppρj = [aj , bj ] ∪ [cj , dj ], j = 1, . . . , n;

an ≤ bn . . . < aj ≤ bj . . . < a1 ≤ b1 < c1 ≤ d1 < . . . < cj ≤ dj < . . . < cn ≤ dn

and

ρj(kj) > 0 if kj ∈ [cj , dj ], ∀j, or kj ∈ [aj , bj ], j = 2k − 1,

ρj(kj) < 0 if kj ∈ [aj , bj ], j = 2k.

This condition guarantees that the product
∏n

j=1 ρj(kj) det(km−1
j ) is positive,

and hence the Wronskian W (f+
01, . . . , f

+
0n) is positive, too. In particular, taking

ρj(kj) = Ajδ(kj − aj) + δ(kj − cj), A2J < 0, A2j−1 > 0

5



we we obtain the following nonsingular solutions of the CKP-I equation.
This second nonsingularity condition suggests another family of nonsingular

horse shoe like N-solitons line front solutions which can be obtained by the
following choice of fj:

fj = Aje
θ2j−1 + eθ2j , A2j−1 > 0, A2j < 0, ∀j,

θ2m−1 =: am

(
x− y2t

12α2
+

)
+ a2

mα
−1yt− 4a3

mt,

θ2m =: cm

(
x− y2t

12α2
+

)
+ c2mα

−1yt− 4c3mt,

an < . . . < a1 < c1 < . . . cn

In particular, taking k1 + k2 = k3 + k4, k3 > k2 we can easily check that

u = 2∂2
x lnW

(
cosh

ϑ1 − ϑ2

2
, sinh

ϑ3 − ϑ4

2

)

represents a particular kind of non singular 2-solitons solution.
In the CKP II case, i.e., for 	α = 0 we introduce the following 1-form:

Ω(f, g) = fgdx− α−1t(fgx − fxg)d y + (−4fxxg + 4fxgx − 4fgxx − 6ufg)dt.

The 1-form Ω is closed if f is an arbitrary solution of the (+)-system (2), and g is
an arbitrary solution of the (−)-system (2) corresponding to the same starting
solution u(x, y, t) of the CKP equation. In terms of this form the following
binary Darboux dressing formula for the solutions of the CKP equation
holds:

num = u+ 2∂2
x ln detM, n ≥ m, (4)

M :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1,n+1 Q2,n+1 . . . Qn,n+1

Q1,n+2 Q2,n+2 . . . Qn,n+2

...
...

...
...

Q1,n+m Q2,n+m . . . Qn,n+m

f+
1 f+

2 . . . f+
n

∂xf
+
1 ∂xf

+
2 . . . ∂xf

+
n

...
...

...
...

∂
(n−m−1)
x f+

1 ∂
(n−m−1)
x f+

2 . . . ∂
(n−m−1)
x f+

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Taking m = 0 in (4) we recover the Wronskian formula written above.
In the case n = m the matrix elements of M are given by the formula:

Mjl := Qj,n+l, Qjl := Ajl +Bjl

∫ (x,y,t)

(x0,y0,t0)

Ω(f+
j , f

−
l ), 1 ≤ j, l ≤ n.
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All integrals in the last formulas are independent of the choice of the path of
integration.

A particular smooth rational solution of CKP II equation with α = iγ/12
following from (4) with n = m = 1 is given by the formula:

u = 2∂2
x ln

[
(12t2)

∣∣∣ x
12t

+ y2 − γ2 − 2iγy
∣∣∣2 +

1
4γ2

]
. (5)

4 From CKdV to CKP

Assuming that the solution of the CKP equation satisfies the CKdV equation

ut + 6uux + uxxx +
u

2t
= 0, (6)

i.e., it does not depend on y, we can construct solutions of the system (2) of the
form

f(x, y, t) = eλyp(x, t, λ),

with p solving the Lax system for the CKdV equation first found by Druma [9]:

tpxx + (tu− x

12
)p = λp,

pt = −4pxxx − 6upx − 3uxp.

Particular solutions of this system for u = 0, can be constructed in the form

p(x, t, λ) =
1
3
√
t
w

(
x− λ

3
√
t

)
,

where w(z) is an arbitrary solution of the Airy equation

w′′ = zw.

Therefore in the particular case α = i
12 , a class of solutions T -periodic in y of

(2) with u = 0 is given by the formula

f+ =
1
3
√
t

∑
m∈Z

[
amAi

(
x− 2πm

T
3
√
t

)
+ bmBi

(
x− 2πm

T
3
√
t

)]
e

2iyπm
T . (7)

In this formula am, bm are arbitrary coefficients providing the necessary smooth-
ness of its RHS and Ai(z), Bi(z) are the standard solutions of the Airy equation
defined by the integrals:

Ai(z) =
1
π

∫ ∞

0

cos
(
t3

3
+ tz

)
d t,

Bi(z) =
1
π

∫ ∞

0

[
exp

(
− t

3

3
− zt

)
+ sin

(
t3

3
+ zt

)]
d t.
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5 Gauge equivalence of the CKP equation and
of the KP equation

There exists a remarkable link between the solutions of the widely known KP
equation

∂

∂ξ
(vt + 6vvξ + vξξξ) = −3α2vηη, (8)

and the solutions of the CKP equation discovered in 1986 [5]. Namely the map

v(ξ, η, τ) → u(x, y, t) := v(x− y2t/12α2, yt, t), (9)

transforms any solution of (8) to a solution of the CKP equation. Reciprocally
for any solution u(x, y, t) of the CKP equation, the function v(ξ, η, τ) defined
by the formula

v(ξ, η, τ) = u(ξ + η2/12α2τ, η/τ, τ),

satisfies the KP equation. In fact this correspondence can be detected already
by observing the solutions obtained in section 33.

Moreover, the related Lax linear systems are connected by the following
gauge equivalence also suggested by the formulas of section 3 or by the structure
of the Baker-Akhiezer functions corresponding to the CKP Lax pair:

ψCKP (x, y, t) = ψKP (x− y2t/12α2, yt, t) exp
[
− xy

12α
+

4ty3

(12α)3

]
, (10)

ψKP (ξ, η, τ) = ψCKP (ξ + η2/12α2τ, η/τ, τ) exp
[
ξη

12ατ
+

4η3

(12ατ)2

(
1 − 1

3α

)]
.

This gauge equivalence can also be checked by direct computation.
The related change of variables ξ = x − y2t/12α2, η = yt, τ = t is invertible

and its Jacobian is equal t for t > 0. In particular, it is clear that globally
bounded solutions of the KP equation are mapped to globally bounded solutions
of the CKP equation and vice versa. In order to solve the Cauchy initial problem
posed at t = t0 with initial data u(x, y, t0) = u0(x, y), we have to find the
solution v(ξ, η, τ) of the Cauchy initial problem for the KP equation with initial
data

v(ξ, η) = u(ξ + η2τ/12α2τ0, η/τ0).

The solution of the related Cauchy problem for the CKP equation is given by
the formula

u(x, y, t) = v(x− y2t/12α2, yt, t).

The well known finite gap solutions of the KP equation (see for instance [16])
lead with the above relation to solutions of the CKP equation of the following
form:

u = 2∂2
x ln Θ

[(
x− y2

12αt

)
�p+ yt�v + t�q +�l

]
+ C.

3In fact it was detected by the 3rd author in the process of constructing the finite gap
solutions of the CKP equation and was then confirmed by a direct computation. Somehow,
at the time this remark was not included in the text [4].
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Here Θ is the n-dimensional Riemann theta function. The related solutions are
in general almost periodic in the x and t variables (as in the KP case) but,
contrary to the KP case, they are not periodic or almost periodic with respect
to y. (See Fig. 6 below).

It is also clear that∫
R2

∫
v2(ξ, η, τ)d ξd η = t

∫
R2

∫
u2(x, y, t)d xd y, (11)

u(x, y, t) = v(x− y2t/12α2, yt, t),

where v is some solution of the KP equation rapidly decreasing at infinity. The
LHS of (11) is an integral of motion in the KP case. It is quite clear that the
related solution of the CKP equation has a dissipative nature: the integral of
its square decreases like t−1. Thus the CKP equation has no lump-like localized
solutions propagating without change of shape.

Previously, some changes of variables were discovered by a number of authors
[1, 9] not allowing to solve the Cauchy initial problem for the CKP equation on
the base of the results obtained for the KP case. It is worthwhile to mention that
before the discovery of the aforementioned change of variables, V. D. Lipovskii
[12] developed a direct IST approach for solving the Cauchy initial problem
with rapidly decreasing initial data for the CKP I and CKP II equation using
the same technical tools (i.e., a nonlocal Riemann-Hilbert problem approach or
∂̄-approach as in the KP case).

6 Hamiltonian framework for the CKP II equa-

tion

The auxiliary spectral problem has the form

ϕy = tϕxx + 2t(ik − y/12)ϕx + tuϕ. (12)

By a Jost solution of (12) we shall denote a complex-valued function ϕ(r, k, k),
(where r := (x, y)), bounded for all k ∈ C, fixed by the asymptotic condi-
tion ϕ(r, k, k) → 1 when |r| → ∞. It is possible to prove that the following
asymptotics introducing the “spectral data” always holds when u belongs to
the Schwartz class as a function of r:

ϕ(r, k, k) = 1 +

+i · sgn(k + k)

[
a(k, k)

x− y2t/12 + 2ikyt
− b(k, k)es(r,k,k)

x− y2t/12 + 2ikyt

]
(1 + o(1)), (13)

a(k, k) =
t

2π

∫
u(r)ϕ(r, k, k)d xd y, (14)

b(k, k) =
t

2π

∫
u(r)ϕ(r, k, k)e−s(r,k,k)d xd y, (15)

9



s(r, k, k) := −i(k + k)(x− y2t/12) + (k2 − k
2
)yt. (16)

It is assumed that the initial data u(r, 0) represent some real valued function
belonging to the Schwartz class S(R2). This reality restriction implies that

a(k, k) = a(−k,−k), b(k, k) = b(−k,−k).

For the solution ϕ̃(r, k, k) to the “formal adjoint problem” fixed by the unit
asymptotics at infinity, similar formulas hold modulo a change of the sign of
the square bracket in (13) and a change s → −s. The functions a and b are
connected by the dispersion relation

a(k, k) = a0 −
∫ |b(p, p)|2sgn(p+ p)

p− k

d p
∧
d p

2iπ
. (17)

The spectral data of the direct and the adjoint problem are connected by the
relations

b(k, k) = b̃(k, k), a(k, k) = ã(k, k). (18)

The functions ϕ and ϕ̃ admit, when |k| → ∞, the following asymptotic
expansions:

ϕ = 1 +
∞∑

n=1

ϕn(r)k−n, 1 +
∞∑

n=1

ϕ̃n(r)k−n,

where
2iϕ1,x + u = 0, −2iϕ̃1,x + u = 0,

and the remaining coefficients can be computed from the recursive relations
following from (12) and its formal adjoint. From the later relations we get after
plugging them into (13) the asymptotic expansions for a and ã:

a(k, k) =
∞∑

n=1

ank
−n, ã(k, k)

∞∑
n=1

ãnk
−n.

In addition we can conclude from the “reality condition” (18) that

an = ãn. (19)

Comparison of this asymptotic expansion with the dispersion relation (17) leads
to the infinite series of “trace identities”. The first three of them are listed below.

P x := −4πa2 =
t

2

∫
u2d x

∧
d y

= 4
∫ ∞

0

d kR

∫ ∞

∞
d kI |b(k, k)|2(k + k),

P y := −4πa3 =
1
2

∫ (
u2 yt

6
+ uw

)
d x

∧
d y

10



= 4i
∫ ∞

0

d kR

∫ ∞

∞
d kI |b(k, k)|2(k2 − k

2
),

H := −16πa4 =
t

2

∫ [
u2

x − 2u3 − 3
(yu

6
+
w

t

)2
]
d x

∧
d y

= 16
∫ ∞

0

d kR

∫ ∞

−∞
d kI |b(k, k)|2(k3 + k

3
).

In the derivation of these formulas the second of the relations (18) should be
taken into account. In the formulas above w(x, y) is defined by the formula

w(x, y) :=
∫ x

−∞
uy(x′, y)d x′.

The relations u ∈ S(R2) and (19) define the phase space of the CKP II equation.
The relations (19) impose a couple of constraints on the initial data:∫

udx = 0, and
∫
wdx = 0.

The Hamiltonian form of the CKP II equation is described now by the
following formulas:(

∂

∂t
− y2

12
∂

∂x
− y

t

∂

∂y

)
u =

1
t

∂

∂x

δH

δu
= {u,H},

{u(r), u(r′)} =
1
t
δ(r − r′).

6.1 Poisson brackets of the Spectral data and Action-Angle
variables for the CKP II equation

{a(k, k), a(p, p)} = 0,

{a(k, k), b(p, p)} =
ib(p, p)

4π

(
1

k + p
− 1
k − p

)
,

{b(k, k), b(p, p)} =
i

4
sgn(pR)δ(pR + kR)δ(pI − kI).

The remaining brackets can be obtained from the reality conditions (18). It
follows from the last three relations that a(k, k) is a generating functional for
the integrals of motion an, and b(k, k, t) evolves according to the formula:

b(k, k, t) = b(k, k, t0) exp
[
−4i(k3 + k

3
(t− t0)

]
.

The derivation of this formula is based on the first 3 formulas of this section
and the equation of motion:

bt = {b,H}.
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The action-angle variables are:

J(k, k) = −4|b(k, k)|2,Φ(k, k) = arg b(k, k)

There the time dependence is trivial:

J(k, k, t) = J(k, k, t0), Φ(k, k, t) = Φ(k, k, t0) +
δH

δJ(k, k)
(t− t0).

It turns out that b(k, k) ∈ S(R2). The condensed formulation of the result of
this section is given by the following

Theorem 1. On the class of Schwartz initial data with constraints an = ãn,
the CKP II equation is a completely integrable Hamiltonian system, while the
map u→ b is the canonical transformation to action-angle variables J,Φ. Here

{Φ(k, k),Φ(p, p)} = {J(k, k), J(p, p)} = 0,

{Φ(k, k), J(p, p)} = δ(kR − pR)δ(kI − pI),

H = −4
∫ ∞

0

d kR

∫ ∞

−∞
J(k, k)(k3 + k

3
)d kI .

In this formulation due to the “reality conditions”, the spectral data are
parameterized by the right half plane of the complex variable k.

7 Special solutions

In this section we present a collection of plots for solutions to the CKP equation.
Fig. 1 corresponds to the image of the KP II lump solution,

u(x, y, t) =
4ν(1 − ν(x − 3νt)2 + ν2y2)
(1 + ν(x− 3νt)2 + ν2y2)2

,

under the mapping (9). It is visible that when t → 0, the front of the solution
becomes more and more narrow, and it is concentrated in a small strip with
respect to the variable y.

In Fig. 2 we show the evolution of the rational solution described by the
formula (5). Here the pulse is for small t compressed in the x-direction and
extended in the y-direction. For larger t, the y-extension reduces and the pulse
gets stretched in the x-direction, the direction of propagation.

In Fig. 3 one can see the evolution of the rational solution of the KP equation
obtained as an image of the inverse map applied to (5).

The single line soliton of the CKP equation is given by

u = 2∂2
x ln f1 = 2∂2

x ln cosh
ϑ1 − ϑ2

2
,

12



Figure 1: Solution to the CKP equation obtained as the image of the KP lump
under the action of the map KP → CKP for several values of the time.

where

f1 = eϑ1 + eϑ2 , ϑj := kj

(
x− y2t

12α2

)
+ k2

jα
−1yt− 4k3

j t.

Its evolution from a KP-type line soliton to a horseshoe-type wave can be seen
in Fig. 4.

We study the 2-soliton solution in the form

u = 2∂2
x lnW

(
cosh

ϑ1 − ϑ2

2
, sinh

ϑ3 − ϑ4

2

)
.

It is shown in Fig. 5 where the formation of horseshoe waves can be clearly
recognized.

The last plot corresponds to the genus two hyperelliptic curve with branch
points −1,−2,−3, 0, 1, 2. These solutions are numerically evaluated with the
spectral code by Frauendiener and Klein [17, 18, 19]. The related solutions to
the CKP equation are generated from the corresponding solutions of the KP

13



Figure 2: The rational solution of CKP obtained by the direct application of
the binary Darboux dressing for several values of the time.

equation via the mapping (9). We clearly see the formation of intersecting
families of parabolic fronts.
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Figure 5: 2-soliton solution of the CKP equation with k1 = −1.5, k2 = 0, k3 = 2,
k4 = 0 for several values of the time.
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Figure 6: Genus 2 solution to the CKP equation generated by the curve w2 =∏6
i=1(z−ei), e1 = −3, e2 = −2, e3 = −1, e4 = 0, e5 = 1, e6 = 2 for several values

of t. The formation of intersecting families of parabolic fronts can be clearly
seen.
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