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ANALYSIS OF MULTIPLE SCATTERING ITERATIONS FOR HIGH-FREQUENCY

SCATTERING PROBLEMS. I: THE TWO-DIMENSIONAL CASE

FATIH ECEVIT AND FERNANDO REITICH

Abstract. We present an analysis of a recently proposed integral-equation method for the solution of
high-frequency electromagnetic and acoustic scattering problems that delivers error-controllable solutions in
frequency-independent computational times. Within single scattering configurations the method is based on
the use of an appropriate ansatz for the unknown surface densities and on suitable extensions of the method
of stationary phase. The extension to multiple-scattering configurations, in turn, is attained through consid-
eration of an iterative (Neumann) series that successively accounts for further geometrical wave reflections.
As we show, for a collection of two-dimensional (cylindrical) convex obstacles, this series can be rearranged
into a sum of periodic orbits (of increasing period), each corresponding to contributions arising from waves

that reflect off a fixed subset of scatterers when these are transversed sequentially in a periodic manner.
Here, we analyze the properties of these periodic orbits in the high-frequency regime, by deriving precise
asymptotic expansions for the “currents” (i.e. the normal derivative of the fields) that they induce on the
surface of the obstacles. As we demonstrate these expansions can be used to provide accurate estimates of
the rate at which their magnitude decreases with increasing number of reflections, which defines the over-
all rate of convergence of the multiple-scattering series. Moreover, we show that the detailed asymptotic
knowledge of these currents can be used to accelerate this convergence and, thus, to reduce the number of
iterations necessary to attain a prescribed accuracy.

1. Introduction

The problem of simulating the behavior of wave-like processes has provided a particularly sustained,
demanding and motivating challenge for the development of efficient and accurate numerical methods since
the advent of computers. The classical issues present in most other applications, such as those related to
the environmental and/or geometrical intricacies of the media in which quantities of interest are defined, are
augmented in the context of wave propagation by the intrinsic complexities (i.e. oscillations) of the quantities
themselves. In the realm of acoustic or electromagnetic waves, which concerns the present paper, very efficient
methodologies have been devised, particularly in the last twenty years, to simulate their propagation in rather
complicated settings. These techniques can be based, for instance, on finite elements (see e.g. [17, 16, 28]
and the references therein), finite differences [25, 29] or boundary integral equations [8, 3, 10, 4], and they
can, today, effectively address these problems, with a high degree of accuracy, in domains that can span
tens or perhaps even a few hundred wavelengths. The very nature of these classical approaches, however,
limits their applicability at higher frequencies since the numerical resolution of field oscillations translates
in a commensurately higher number of degrees of freedom and this, in turn, can easily lead to impractical
computational times. Recently, a new approach that bypasses these limitations was proposed in [6] to deal
with single-scattering configurations, which was shown to deliver error-controllable solutions with a number
of operations that is frequency independent. The method was extended in [7] to iteratively include multiple
scattering effects and, again, each iteration (corresponding to a geometrical reflection in the limit of infinite
frequency) was shown to be attainable to within any prescribed accuracy with a computational cost that
does not increase with increasing frequency. Although every numerical experiment in [7] suggests that the
iterative procedure does converge spectrally (with varying rates), this issue was not explicitly addressed
and, perhaps more importantly, the dependence of the rate of convergence on the specific configuration
remains unknown. Here, we take on this very question as we develop a framework for the analysis of the
multiple-scattering iterations in the context of a set of smooth (convex) interacting scatterers.
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As we mentioned, our work is based on the recent developments of [6] which rely on a combination of a few
ideas to efficiently resolve the integral equation formulation of the scattering problem. First, as in previous
attempts (see e.g. [21, 20, 2, 13, 26]), the method resorts to high-frequency asymptotics (geometrical optics)
to pre-determine the phase of the unknown field variables, which reduces the problem to one of evaluating
slowly varying modulations. In contrast with prior work, however, the scheme rigorously accounts for the
sharp transitions that may be present in these slow envelopes (e.g. across shadow boundaries) and it further
uses novel quadrature formulas that result in frequency independent evaluations. More precisely, a second
element in the procedure consists of the use of appropriately refined grids to capture boundary layers, with
increasing densities in their vicinity but with a fixed, frequncy-independent overall number of nodes. The
integration scheme, finally, is based on the realization that the extraction of the phase from the unknown
fields has the additional implication of allowing for a complete determination of the phase of the integrands.
Indeed, as shown in [6], this characteristic enables the design of a method of “localized integration” around
critical points (i.e. singular and stationary points) which provides a mechanism for the evauation of the
integrals to any desired accuracy using a number of quadrature points that remians constant for arbitrarily
high wavenumbers k. Within single-scattering configurations (i.e. those wherein reflected rays do not return
to the scatterer) the results in [6] show that these prescriptions lead to a most efficient scattering solver.
An actual proof that provides a rigorous upper bound for the operation count (of O

(

k1/9
)

) to maintain
a prescribed accuracy with increasing frequency in the case of circular/spherical boundaries was recently
established in [14] for a p-version of a boundary element implementation of this approach. Also, the design
and implementation of a related methodology (also based on an appropriate “ansatz” and on suitably refined
discretizations) that is applicable to the treatment of convex polygons has been presented in [9]; in this
case, the main theoretical result guarantees that, within the framework proposed therein, the error in best
approximation of the surface current grows at most logarithmically in k.

Work on the rigorous incorporation of multiple-scattering effects, on the other hand, reduces to that in [7].
A basic observation that is exploited in this work concerns a relation between an iterative solution procedure
for the integral equation and successive geometrical wave reflections in the limit of infinite frequency. More
precisely, the m-th term in the Neumann series solution of a suitable re-formulation of the integral equation
(cf. Sect. 2.3 below) can be shown to correspond to the contributions to the overall solution that arise from
waves that have, in the infinite-frequency limit, reflected precisely m times. As demonstrated in [7], the
relevance of this interpretation lies in the fact that it allows for the reduction of the full problem to the
iterated solution of single-scattering problems, to which the methods described above can be readily applied.
These guarantee that each successive reflection can be accounted for to any desired accuracy in times that do
not increase with increasing wavenumber, but they do not elucidate the relative size of these contributions
or their dependence on the geometrical configuration. Here we shed some light on precisely these issues. To
this end, we begin by showing that the aforementioned series can be rearranged into a sum of periodic orbits
(of increasing period), each corresponding to contributions arising from waves that reflect off a fixed subset
of scatterers when these are transversed sequentially in a periodic manner. Thus, these orbits constitute a
fundamental building block for the multiple-scattering effects, and we proceed to analyze their properties in
the high-frequency regime. Our approach is based on a derivation of precise asymptotic expansions for the
“currents” (i.e. the normal derivative of the total fields) that they induce on the surface of the obstacles.
As we demonstrate these expansions can be used to provide accurate estimates of the rate at which their
magnitude decreases with increasing number of reflections, which impacts the overall rate of convergence of
the multiple-scattering series. Moreover, we show that the detailed asymptotic knowledge of these currents
can be used to accelerate this convergence and, thus, to reduce the number of iterations necessary to attain
a prescribed accuracy. Finally, our theoretical developments are complemented by a variety of numerical
results that confirm the accuracy of the high-frequency expansions as well as the benefits of the proposed
acceleration strategies.

The rest of the paper is organized as follows. In Sect. 2 we introduce the scattering problem and its integral
equation formulations (Sect. 2.1), and we review the basic ideas behind the methods of [6, 7] to resolve these in
the high-frequency regime (Sects. 2.2 and 2.3, respectively). Further, in Sect. 2.4, we derive a reformulation
of the multiple scattering series in the form of a sum of contributions arising from periodic orbits which
highlights the relevance of these paths. Periodic orbits are analyzed in Sects. 3 and 4, where we derive
asymptotic expansions for the currents induced on the surface of the obstacles and for the rate of decrease
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of their amplitude as the number of reflections increases. The results of these analyses are exemplified in
Sect. 5. Sample evaluations of convergence rates and comparisons with the derived asymptotic formulas are
presented in Sect. 5.1. Finally, in Sect. 5.2 we introduce and illustrate a strategy to accelerate the evaluation
of the contribution of periodic orbits by incorporating the knowledge garnered from the considerations in
Sects. 3 and 4. These numerical results demonstrate the sharp characteristics of the analytical derivations,
and the practical consequences that they may have in evaluating high-frequency scattering returns.

2. Preliminaries

In this section we collect some preliminary results that will provide the framework for the developments
that follow. We begin with a statement of the scattering problem and recall its integral equation formulation.
We then review some recently introduced methods for its solution at high frequencies that incorporate
multiple scattering effects; finally, we show that these effects can be fully accounted for through consideration
of periodic orbits.

2.1. The scattering problem and integral equations. We consider the problem of evaluating the scat-
tering of an incident (acoustic / electromagnetic) plane wave uinc(x) = eikα·x, |α| = 1, from a smooth
impenetrable obstacle K. Throughout this paper we concentrate on two-dimensional configurations for
which the relevant (frequency-domain) problem is modeled by the scalar Helmholtz equation

(2.1) ∆u(x) + k2u(x) = 0, x ∈ Ω = R2\K,

where the scattered field u is required to satisfy the Sommerfeld radiation condition

(2.2) lim
|x|→∞

|x|1/2

[(

x

|x| ,∇u(x)

)

− iku(x)

]

= 0.

For definiteness, we assume Dirichlet conditions on the boundary of the scatterer K (TE polarization in
electromagnetics)

(2.3) u(x) = −uinc(x) = −eikα·x, x ∈ ∂K.

As will be clear from the derivations that follow, extensions to other boundary conditions are rather straight-
forward. The treatment of fully three-dimensional geometries and vector scattering models (e.g. Maxwell’s
equations) can be carried over with a similar strategy. For these latter cases, however, the actual derivations
are significantly more involved and the results display some distinct characteristics; their detailed discussion
is therefore left for future work.

The problem (2.1)–(2.3) can be recast in the form of an integral equation in a variety of ways (see e.g. [11]).
For our purposes, a most convenient form is that derived from the Green identities

(2.4) −u(x) =

∫

∂K

(

∂u(y)

∂ν(y)
Φ(x, y) − u(y)

∂Φ(x, y)

∂ν(y)

)

ds(y)

and

(2.5) 0 =

∫

∂K

(

∂uinc(y)

∂ν(y)
Φ(x, y) − uinc(y)

∂Φ(x, y)

∂ν(y)

)

ds(y)

valid for all x ∈ Ω, where ν(y) denotes the vector normal to ∂K and exterior to K, and

Φ(x, y) =
i

4
H

(1)
0 (k|x − y|)

is the outgoing Green function. Adding (2.4) and (2.5), and using (2.3), it follows that

(2.6) u(x) = −
∫

∂K

Φ(x, y)η(y) ds(y), x ∈ Ω,

where

(2.7) η(y) =
∂
(

u(y) + uinc(y)
)

∂ν(y)
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Figure 1. A single-scattering configuration: the incidence is a plane wave aligned with the
x axis and with wavenumber k = 400. Top row: real and imaginary parts of the solution η
to (2.8); bottom row: real and imaginary parts of ηslow as defined in (2.9).

represents the total induced current in the electromagnetic case. Using (2.6), (2.7) and the jump relations
for the derivatives of single-layer potentials [11] we obtain the second-kind integral equation

(2.8) η(x) −
∫

∂K

∂G(x, y)

∂ν(x)
η(y) ds(y) = 2

∂uinc(x)

∂ν(x)
, x ∈ ∂K

for the unknown current η, where we have set G = −2Φ. The solution of the integral equation (2.8) is not
unique when the wavenumber k is an internal resonance and thus, in practical implementations, a “combined
field” integral equation (CFIE) formulation is traditionally used [11]. However, the ideas that follow clearly
extend to the CFIE formulation and thus, for the sake of simplicity in presentation, we shall assume that
the wave number k is not an internal resonance and work with the integral equation (2.8).

2.2. High-frequency integral-equation method: single scattering [6]. As recognized in [6, 7], the
advantages of (2.8) over alternative formulations (e.g. such as those based on the “indirect approach” [11])
in the numerical simulation of high-frequency applications stem from the physical nature of the unknown
density η. Indeed, in the absence of multiple scattering, physical considerations suggest that the actual
current should oscillate in-sync with the incident radiation, which allows for the pre-determination of its
phase. More precisely, in this case, the current admits a factorization

(2.9) η(x) = ηslow(x) eikα·x,

where ηslow is “slowly oscillatory”, that is, its variations do not accentuate with increasing frequency and,
therefore, its numerical approximation demands a significantly reduced number of degrees of freedom (see
Figure 1). In fact, in case K is convex, a very precise form of (2.9) has been shown to hold [23], which
provides accurate descriptions for the behavior of the slow envelope in the illuminated and shadow regions

∂KIL = {x ∈ ∂K : α · ν(x) < 0}(2.10)

∂KSR = {x ∈ ∂K : α · ν(x) > 0}(2.11)

(see Figure 2), and for the transition between these through the shadow boundaries

∂KSB = {x ∈ ∂K : α · ν(x) = 0}.
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Figure 2. The regions outside a convex object determined by an incident field.

Theorem 2.1 ([23]). If K is convex then, for all P, Q ≥ 0, the current ηslow admits the representation

(2.12) ηslow(x) = ηslow(x, k, α) =

P
∑

p=0

Q
∑

q=0

k2/3−2p/3−qbp,q(α, x)Ψ(p)(k1/3Z(α, x)) + RP,Q(k, α, x)

where the complex-valued functions bp,q and the real-valued function Z are smooth, and Ψ is entire in the
complex plane. Moreover, Z is positive in the illuminated region, negative in the shadow region, and vanishes
precisely to first order at the shadow boundary (see Figure 2). The function Ψ behaves asymptotically as

(2.13) Ψ(τ) =

{

∑n
p=0 apτ

1−3p + O(τ1−3(n+1)) as τ → ∞,

c0e
−iτ3/3−iτβ(1 + O(eτc1)) as τ → −∞,

for some constants c0 and c1 > 0, where β = e−2πi/3β1 and β1 is the right-most root of Ai. And the
remainder RP,Q satisfies

|Dγ
xRP,Q(k, α, x)| ≤ CP,Q,γ (1 + k)−min{2P/3,Q+1/3}+1/3|γ|

for some constants CP,Q,γ.

As was shown in [6], the representations (2.9), (2.12) can be used as the basis for an efficient (spectral)
numerical scheme for the solution of the scattering problem, which can deliver answers within any prescribed
accuracy in frequency-independent computational times. The procedure is based on the determination of
the slow envelope ηslow which, from (2.8) and (2.9) clearly solves

(2.14) ηslow(x) −
∫

∂K

∂G(x, y)

∂ν(x)
eikα·(y−x)ηslow(y) ds(y) = 2ik α · ν(x), x ∈ ∂K.

The method of [6] relies on the iterative solution of a discretized version of (2.14), which reduces the problem
to 1) the determination of an appropriate finite-dimensional representation of the unknown ηslow and 2)
the design of an effective quadrature formula for the integral in the left-hand side. The expansion (2.12)
provides the theoretical grounds to resolve the first problem: the discretization is chosen to be equispaced,
and frequency-independent, in the illuminated region and it is refined in a neighborhood of the shadow
boundaries to capture the corresponding boundary layers. In accordance with (2.12), this neighborhood
covers a region of size proportional to k−1/3, where the constant of proportionality is chosen so as to allow
for the neglect, to within a desired accuracy, of the (exponentially small) contributions arising from the
remaining, deep shadow region (cf. τ → −∞ in (2.13)). Moreover, equation (2.13) guarantees that a
fixed , frequency-independent number of points can be placed in these transition regions to obtain uniformly
accurate solutions.
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Figure 3. A multiple-scattering configuration: the incidence is a plane wave aligned with
the x axis and with wavenumber k = 400. Top row: real and imaginary parts of the solution
η to (2.8); bottom row: real and imaginary parts of η(x)e−ikα·x (cf. (2.9)).

The integration scheme, on the other hand, is based on an error controllable extension of the Method of
Stationary Phase [5]. More precisely, the non-oscillatory nature of ηslow and the asymptotic behavior [15]

(2.15) G(x, y) = −2Φ(x, y) = − i

2
H

(1)
0 (k|x − y|) ∼ − i

2

√

2

πk|x − y|e
ik|x−y|−iπ/4 as k → ∞, x 6= y,

allows for the complete determination of the phase of the integrand in (2.14) for each fixed value of the “target
point” x. And, as shown in [6], this can be used to suitably localize the integral around critical points (i.e.
singular points of the integrand, and stationary points of the phase), thereby enabling its evaluation in a
fixed number of operations independently of k.

2.3. High-frequency integral-equation method: multiple scattering [7]. As is clear from the pre-
ceding discussion, a factorization of the form (2.9) is crucial in allowing for an efficient numerical solution
of the integral equation (2.8) in the high-frequency regime. Evidently, in the presence of multiple-scattering
the relation (2.9) is no longer valid (see Figure 3). However, as suggested in [7], this relation possesses a
natural extension to this case in the form

(2.16) η(x) = ηslow(x) eikϕ(x),

where ϕ corresponds to the solution of the asymptotic geometrical optics (GO) model, that is, to the solution
of the eikonal equation.

Still, an additional problem arises in this case, as the solution ϕ(x) will generally be multi-valued. On
the other hand, these multiple values correspond precisely to successive wave reflections which suggests that
they may be amenable to a sequential treatment. As was shown in [7], this is indeed possible if the integral
equation (2.8) is suitably reformulated. To review this (with a view to our analysis of the iterations in
Sects. 3 and 4), let us assume that the scatterer K is decomposed into a collection of finitely many disjoint
sets K =

⋃

σ∈I Kσ. Then, the integral equation (2.8) can be written as

(2.17) (I − R)η = f
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where η(x) = (ησ1
(x), . . . , ησ|I|

(x))t and f(x) = (fσ1
(x), . . . , fσ|I|

(x))t with ησ and fσ defined on ∂Kσ and

fσ(x) = 2ikeikα·xα · νσ(x) σ ∈ I ,

and the operator R is defined as

(2.18) (Rστ ητ )(x) =

∫

∂Kτ

∂G(x, y)

∂νσ(x)
ητ (y) ds(y) for x ∈ ∂Kσ.

Inverting the diagonal part of (2.17) yields the equivalent relation

(2.19) (I − T )η = g

with

(2.20) gσ = (I − Rσσ)−1fσ, σ ∈ I

and

(2.21) Tστ =

{

(I − Rσσ)−1Rστ if σ 6= τ
0 otherwise.

As described in [7], the formulation (2.19) provides a convenient mechanism to account for multiple scattering
since the m-th term in its Neumann series solution

(2.22) η =

∞
∑

m=0

ηm =

∞
∑

m=0

T mg

corresponds exactly to contributions arising as a result of waves that (in the high-frequency regime) have
undergone m geometrical reflections. More precisely, we have

(2.23) ηm
∣

∣

∂Kσ
=

∑

τ0,···τm−1∈I
σ 6=τm−1,τj 6=τj−1

Tστm−1
Tτm−1τm−2

· · ·Tτ1τ0
gτ0

,

where each application of a Tστ entails an evaluation on ∂Kσ of a field generated by a current on ∂Kτ

(cf. (2.18)), and its use as an incidence for a subsequent solution of a (single-)scattering problem on ∂Kσ

(corresponding to the inversion of I − Rσσ in (2.21)). In particular, this interpretation guarantees that for
every path (τ0, · · · , τm−1, τm) with τm = σ in (2.23) the geometrical phase is uniquely defined as

(2.24) ϕ(x) = ϕm(x) =







α · x if m = 0

α · xm
0 (x) +

m−1
∑

j=0

|xm
j+1(x) − xm

j (x)| if m ≥ 1

for x ∈ ∂Kσ, where the points

(2.25) (xm
0 (x), . . . , xm

m(x)) ∈ ∂Kτ0
× · · · × ∂Kτm

satisfy

(2.26)







































xm
m(x) = x

α · ν(xm
0 (x)) < 0

(xm
j+1(x) − xm

j (x)) · ν(xm
j (x)) > 0, 0 < j < m

xm
1 (x) − xm

0 (x)

|xm
1 (x) − xm

0 (x)| = α − 2α · ν(xm
0 (x)) ν(xm

0 (x))

xm
j+1(x) − xm

j (x)

|xm
j+1(x) − xm

j (x)| =
xm

j (x) − xm
j−1(x)

|xm
j (x) − xm

j−1(x)| − 2
xm

j (x) − xm
j−1(x)

|xm
j (x) − xm

j−1(x)| · ν(xm
j (x)) ν(xm

j (x)), 0 < j < m

and ν(xm
j (x)) = ντj (x

m
j (x)). Thus, using (2.24) in (2.16), the numerical approximation of each term in

(2.23) can be effected following the single-scattering prescriptions described in Sect. 2.2.
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2.4. Primitive periodic orbits and multiple scattering reformulation. While, as we mentioned, the
formulation (2.22), (2.23) of the multiple-scattering effects can be used to reduce the problem of their
numerical evaluation to that of solving a sequence of single-scattering problems, it is not the one that is
best suited to analyze their asymptotic properties. To this end, it is more convenient to re-arrange the sum
(2.22) in a manner that makes it explicit that the multiple-scattering contributions to the induced currents
can be viewed as arising from a superposition of fields corresponding to infinite, periodic ray paths since, as
we shall see, these are amenable to an analysis that can determine their asymptotic behavior.

The precise definition of these paths, which we shall refer to as “primitive periodic orbits”, is as follows:

Definition 2.2 (Primitive Periodic Orbits). For n ≥ 2, we call an infinite sequence {σm}m≥0 ∈ IN a
“primitive n−periodic orbit” if



















σn−1 6= σ0

σm 6= σm−1 for m = 1, . . . , n − 1

∄m < n with l =
n

m
∈ N and (σ0, . . . , σm−1)

l = (σ0, . . . , σn−1)

σm+jn = σm for m = 0, . . . , n − 1 and j ≥ 0;

and denote by Pn the collection of all primitive n−periodic orbits. For each σn = {σn
m}m≥0 ∈ Pn, we define

the corresponding “primitive n−periodic orbit correction”

ησn =
{

ησn
m

}

m≥0

by

(2.27) ησn
m

=

{

gσn
0

if m = 0,
Tσn

mσn
m−1

ησn
m−1

if m > 0,

and we let

(2.28) ησn = {ησn
m
}m≥n−1 = {ησn

m
}m≥n−1.

With this definition, the next result is now immediate.

Lemma 2.3 (Rearrangement into Primitive Periodic Orbits). If the Neumann series (2.22) converges ab-
solutely, then

(2.29) η = g +

∞
∑

n=2

∑

σn∈Pn

ησn .

Note that explicitly, from (2.20) and (2.21), the components of g = (gσ1
, . . . , gσI )t in (2.29) are the

solutions of the integral equations

(2.30) gσ(x) −
∫

∂Kσ

∂G(x, y)

∂ν(x)
gσ(y) ds(y) = 2

∂uinc(x)

∂ν(x)
, x ∈ ∂Kσ

while the functions ησn
m

in (2.28) that contribute to ησn solve

(2.31) ησn
m

(x) −
∫

∂Kσn
m

∂G(x, y)

∂ν(x)
ησn

m
(y) ds(y) =

∫

∂Kσn
m−1

∂G(x, y)

∂ν(x)
ησn

m−1
(y) ds(y), x ∈ ∂Kσn

m
.

Equivalently, the equations for the slow envelopes read

(2.32) gslow
σ (x) −

∫

∂Kσ

∂G(x, y)

∂ν(x)
eik(ϕ0(y)−ϕ0(x)) gslow

σ (y) ds(y) = e−ikϕ0(x)

(

2
∂uinc(x)

∂ν(x)

)

, x ∈ ∂Kσ

and

(2.33) ηslow
σn

m
(x) −

∫

∂Kσn
m

∂G(x, y)

∂ν(x)
eik(ϕσn

m
(y)−ϕσn

m
(x)) ηslow

σn
m

(y) ds(y)

= e−ikϕσn
m

(x)

∫

∂Kσn
m−1

∂G(x, y)

∂ν(x)
e

ikϕσn
m−1

(y)
ηslow

σn
m−1

(y) ds(y),
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for x ∈ ∂Kσn
m

, where the phase ϕσn
m

(x) is defined as in (2.24) on the path (xm
0 (x), . . . , xm

m(x)) ∈ ∂Kσn
0
×

. . . × ∂Kσn
m

given by (2.26).

3. Asymptotic expansions of currents on periodic orbits

In this section we derive expressions for the asymptotic behavior of the currents ησn
m

(x) in (2.31) with
arbitrary period n. As we shall show in the following sections these formulas can be used to derive asymptotic
convergence rates as the number of reflections increases and, moreover, they can also serve as the basis for
acceleration strategies that allow for the attainment of accurate solutions with a reduced number of iterations.

For the derivations that follow we shall assume that the obstacles {Kσ : σ ∈ I} are convex, that they
possess regular parameterizations

(3.1) xσ(tσ) = (x1
σ(tσ), x2

σ(tσ)), 0 ≤ t ≤ 2π

(in counterclockwise orientation), and that they satisfy

(a) the visibility condition

∀σ, τ, ρ ∈ I : Kρ ∩ co(Kσ, Kτ ) 6= ∅ ⇒ ρ ∈ {σ, τ}
and

(b) the no-occlusion condition

∀σ, τ ∈ I : {x + tα : x ∈ Kσ, t ∈ R} ∩ Kτ 6= ∅ ⇒ σ = τ.

These conditions guarantee that, for any given x ∈ ∂Kσn
m

, the ray path (xm
0 (x), . . . , xm

m(x)) ∈ ∂Kσn
0
× . . . ×

∂Kσn
m

determined by the conditions (2.26) is well-defined. For brevity, we shall henceforth refer to this path
as the “broken (m + 1)-ray terminating at x ∈ ∂Kσn

m
”. Further, the calculations below on the asymptotic

behavior of the induced currents are independent of the periodicity of the path σn and we shall therefore
simply write Km, ηm, xm, tm, . . ., for Kσn

m
, ησn

m
, xσn

m
, tσn

m
, . . ., to simplify the notation.

The main result in this section is summarized in the following theorem.

Theorem 3.1. For any m ≥ 0, the iterated current ηm satisfies

(3.2) ηslow
m (x) =

(

1 + O
(

k−1
))

×







2ik α · ν(x) if m = 0

Qm(x) [Rm
m(x)]

−1/2
ηslow

m−1(x
m
m−1(x)) if m ≥ 1

as k → ∞, on any compact subset of the illuminated region ∂KIL
m (cf. (2.10)). Here

Qm(x) =
x − xm

m−1(x)

|x − xm
m−1(x)| · ν(x)

(

x − xm
m−1(x)

|x − xm
m−1(x)| · ν(xm

m−1(x))

)−1

and Rm
j (x) is defined recursively as

(3.3) Rm
j (x) =











bm
1 (x) if j = 1

bm
j (x) + cm

j (x)

(

1 − 1

Rm
j−1(x)

)

if 2 ≤ j ≤ m

where

(3.4) bm
j (x) = 1 +

2κ(xm
j−1(x)) |xm

j (x) − xm
j−1(x)|

xm
j (x) − xm

j−1(x)

|xm
j (x) − xm

j−1(x)| · ν(xm
j−1(x))

1 ≤ j ≤ m

(3.5) cm
j (x) =

|xm
j (x) − xm

j−1(x)|
|xm

j−1(x) − xm
j−2(x)| 2 ≤ j ≤ m

and κ(z) denotes the curvature at the point z.

Remark 3.2. Note that the definition of the sequence {Rm
j (x)}1≤j≤m coincides precisely with that of

{Sj−1}1≤j≤m in equations (A.9)-(A.10) of Appendix A and it is therefore related to the second derivatives

of the phase through the corresponding version of (A.8).
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As a simple consequence of Theorem 3.1, we have the following corollary which will constitute the starting
point of our derivation of a rate of convergence formula on periodic orbits in §4.

Corollary 3.3. For any m ≥ 1, the iterated current ηm satisfies

(3.6) ηm(x) = (1 + O(k−1)) 2ik ηA
m(x)

on any compact subset Sm of the m-th illuminated region ∂KIL
m as k → ∞. Here, ηA

m is defined over the
entire boundary ∂Km by

(3.7) ηA
m(x) = (−1)m eikϕm(x)βm(x) γm(x)

where

(3.8) βm(x) =

m
∏

j=1

1
√

Rm
j (x)

and γm(x) =
x − xm

m−1(x)

|x − xm
m−1(x)| · ν(x)

and where Rm
j (x) are as given in Theorem 3.1.

Proof. Given x ∈ ∂Km, let (x0, . . . , xm) be the broken (m + 1)-ray terminating at x. As ηm(x) =
exp(ikϕm(x))ηslow

m (x), and

α · v0 = − x1 − x0

|x1 − x0|
· ν0 and

xj+1 − xj

|xj+1 − xj |
· νj = − xj − xj−1

|xj − xj−1|
· νj

(1 ≤ j ≤ m − 1), repeated application of Theorem 3.1 yields

ηm(x) = (1 + O(k−1)) 2ik(−1)meikϕm(x) γm(x)
m
∏

j=1

1
√

Rj
j(xj)

.

Since, for 1 ≤ j ≤ m, Rm
j (x) = Rj

j(xj), the result follows. �

The proof of Theorem 3.1 is based on an asymptotic analysis of the integrals in (2.32)-(2.33). The first
result below determines the asymptotic value of the right-hand side of (2.33), which correspond to the
(normal derivative of) the field

(3.9) uscat
m−1(x) ≡

∫

∂Km−1

G(x, y) ηslow
m−1(y)eikϕm−1(y) ds(y) x ∈ R2\Km−1

scattered by a current generated on the m − 1st obstacle in the path and evaluated on the mth obstacle.

Lemma 3.4 (Asymptotic Expansions of Right-hand Sides). For m ≥ 1, the asymptotic expansion, as
k → ∞, of the right-hand side of (2.33) coincides with the right-hand side of (3.2) on any compact subset of
∂Km\∂KSB

m .

Proof. Given x = xm(tm) = xm
m ∈ ∂Km, let (xm

0 , . . . , xm
m) ∈ ∂K0 × · · · × ∂Km be the broken (m + 1)-ray

terminating at x. We write the right-hand side integral in (2.33) as
∫

∂Km−1

∂G(x, y)

∂ν(x)
ηslow

m−1(y)eik ϕm−1(y) ds(y) =

2
∑

j=1

∫

∂Km−1

Λj(y)
∂G(x, y)

∂ν(x)
ηslow

m−1(y)eik ϕm−1(y) ds(y)

where {Λj}j=1,2 is a smooth partition of unity defined on the curve ∂Km−1, and the support of Λ1 is chosen

to be a small neighborhood of xm
m−1 whose size is independent of k. Then, the convexity, visibility and

no-occlusion conditions combined with Lemma A.2 in Appendix A, imply that [24]
∫

∂Km−1

Λ2(y)
∂G(x, y)

∂ν(x)
ηslow

m−1(y)eik ϕm−1(y) ds(y) = O(k−∞)

since the integrand is regular and its phase is never stationary on the support of Λ2. Concerning the integral

on the support of Λ1, since dH
(1)
0 (z)/dz = −H

(1)
1 (z) [15], we have

∂G(x, y)

∂ν(x)
= − i

2

∂H
(1)
0 (k|x − y|)

∂ν(x)
=

ik

2
H

(1)
1 (k|x − y|) x − y

|x − y| · ν(x)
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so that
∂G(x, y)

∂ν(x)
=

√

k

2π

ei(k|x−y|−π/4)

√

|x − y|
x − y

|x − y| · ν(x)

(

1 + O
(

1

k|x − y|

))

;

accordingly
∫

∂Km−1

Λ1(y)
∂G(x, y)

∂ν(x)
ηslow

m−1(y) eik ϕm−1(y) ds(y) = I + O(I/k)

where

(3.10) I = e−iπ/4

√

k

2π

∫

∂Km−1

eik{|x−y|+ϕm−1(y)} h(y) ηslow
m−1(y) ds(y)

and

h(y) =
Λ1(y)
√

|x − y|
x − y

|x − y| · ν(x) .

To estimate I, first let

(3.11) ϕtm(tm−1) ≡ |x − xm−1(tm−1)| + ϕm−1(xm−1(tm−1))

= |x − xm−1(tm−1)| + α · xm−1
0 +

m−2
∑

j=0

|xm−1
j+1 − xm−1

j |

where xm−1
m−1 = xm−1(tm−1) and (xm−1

0 , · · · , xm−1
m−1) is the broken m-ray terminating at xm−1(tm−1), denote

the phase of the integrand in (3.10), so that the integral in (3.10) has the parametric representation

(3.12)

∫ 2π

0

eik ϕtm (tm−1) h(xm−1(tm−1)) |
·
xm−1(tm−1)| dtm−1.

Lemma A.2 states that the phase in (3.11) is stationary at tm−1 only when

(3.13) xm−1(tm−1) = xm
m−1 .

Second, recall that on any compact set S ⊂ ∂KIL
m−1, we have [23, 24]

ηslow
m−1(x) ∼

∞
∑

j=0

k1−jaj(x)

in the sense that
∣

∣

∣

∣

∣

∣

Dr
x



ηslow
m−1(x) −

M
∑

j=0

k1−jaj(x)





∣

∣

∣

∣

∣

∣

≤ C(M, r, S) (1 + k)
−M

for all M ≥ 0 and r ≥ 0. Therefore
∣

∣

∣

∣

∣

∫

∂Km−1

eik{|x−y|+ϕm−1(y)}h(y)
[

ηslow
m−1(y) − ηslow

m−1(x
m
m−1)

]

ds(y)

∣

∣

∣

∣

∣

≤ 2C(M, S)(1 + k)−M

∫

∂Km−1

|h(y)| ds(y)

+

M
∑

j=0

k1−j

∣

∣

∣

∣

∣

∫

∂Km−1

eik{|x−y|+ϕm−1(y)}h(y)
[

aj(y) − aj(x
m
m−1)

]

ds(y)

∣

∣

∣

∣

∣

(3.14)

for all M ≥ 0. Since φ
′

tm
(tm−1) = 0 only when (3.13) is satisfied and, in this case, φ

′′

tm
(tm−1) > 0 (cf.

equation (A.8) and Theorem A.3 in Appendix A), an appeal to stationary phase lemma [18] yields
∫

∂Km−1

eik{|x−y|+ϕm−1(y)} h(y)
[

aj(y) − aj(x
m
m−1)

]

ds(y) = O(k−3/2)

where we have used that aj(y) − aj(x
m
m−1) vanishes at y = xm

m−1. By (3.14), we therefore get that
∣

∣

∣

∣

∣

∫

∂Km−1

eik{|x−y|+ϕm−1(y)}h(y)
[

ηslow
m−1(y) − ηslow

m−1(x
m
m−1)

]

ds(y)

∣

∣

∣

∣

∣
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is bounded by O(k−M ) + O(k−1/2) for all M ≥ 0. This implies, in particular, that

(3.15)

∣

∣

∣

∣

∣

I − e−iπ/4

√

k

2π
ηslow

m−1(x
m
m−1)J

∣

∣

∣

∣

∣

≤ O(1)

where we have set

J =

∫

∂Km−1

eik{|x−y|+ϕm−1(y)}h(y) ds(y) .

Applying the stationary phase lemma once more, we obtain

(3.16) J = eiπ/4

√

2π

kφ
′′

tm
(tm−1)

h(xm
m−1)|

·
x

m

m−1|eikϕm(x) + O(k−3/2)

where we have used that, under the condition (3.13),

ϕtm(tm−1) = |x − xm
m−1| + α · xm

0 +
m−2
∑

j=0

|xm
j+1 − xm

j | = ϕm(x).

It therefore follows from (3.15) and (3.16) that

I =





h(xm
m−1)|

·
x

m

m−1|
√

φ
′′

tm
(tm−1)

eikϕm(x) + O(k−1)



 ηslow
m−1(x

m
m−1)+O(1) =

h(xm
m−1)|

·
x

m

m−1|
√

φ
′′

tm
(tm−1)

eikϕm(x)ηslow
m−1(x

m
m−1)+O(1) .

Accordingly the right-hand side of (2.33) satisfies

e−ik ϕm(x)

∫

∂Km−1

∂G(x, y)

∂ν(x)
ηslow

m−1(y)eikϕm−1(y) ds(y) =
h(xm

m−1)|
·
x

m

m−1|
√

ϕ′′
tm

(tm−1)
ηslow

m−1(x
m
m−1) + O(1)

=
| ·x

m

m−1|
√

|x − xm
m−1|ϕ′′

tm
(tm−1)

x − xm
m−1

|x − xm
m−1|

· ν(x) ηm−1(x
m
m−1) + O(1)

=
| ·x

m

m−1|Qm(x)
√

|x − xm
m−1|ϕ′′

tm
(tm−1)

x − xm
m−1

|x − xm
m−1|

· ν(xm
m−1) ηm−1(x

m
m−1) + O(1)

= [Rm
m(x)]

−1/2
Qm(x) ηm−1(x

m
m−1) + O(1)

where the last equality follows from Remark 3.2 and the definition (A.8). �

To complete the proof of Theorem 3.1 we need only show that, for a target point in the m-th illuminated
region, the integrals on the left-hand sides of (2.32)–(2.33) are negligible. To this end, we will make use of
the following identities.

Lemma 3.5. Let m ≥ 0 and xm = xm(tm) ∈ ∂Km be fixed. Then, letting

f(τm) = ϕm(xm(τm)) − ϕm(xm(tm)) and g(τm) = |xm(τm) − xm(tm)|
we have

(3.17)
df(τm)

dτm
=















α · ·
xm(τm) if m = 0

xm(τm) − xm−1(τm)

|xm(τm) − xm−1(τm)| ·
·
xm(τm) if m ≥ 1

and

(3.18)
dg(τm)

dτm
=























xm(τm) − xm(tm)

|xm(τm) − xm(tm)| ·
·
xm(τm) if τm 6= tm,

·
xm(tm)

| ·xm(tm)|
· ·
xm(tm) if τm = tm .
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where, for m ≥ 1 and xm(τm) ∈ ∂Km, we denote by (x0, . . . , xm) ∈ ∂K0 × · · ·× ∂Km the broken (m+1)-ray
terminating at xm(τm).

Proof. A direct calculation yields

df(τm)

dτm
=

(

α − x1 − x0

|x1 − x0|

)

· ·
x0

dτ0

dτm
+

m−1
∑

i=1

(

xi − xi−1

|xi − xi−1|
− xi+1 − xi

|xi+1 − xi|

)

· ·
xi

dτi

dτm
+

xm − xm−1

|xm − xm−1|
· ·
xm

which reduces to (3.17) since the tuple (x0, . . . , xm) is the broken (m + 1)-ray terminating at xm(τm). The
proof of (3.18) is straighforward. �

With the identities (3.17) and (3.18), we are now in a position to prove the following lemma.

Lemma 3.6 (Asymptotic Expansions of Left-hand Sides). For any m ≥ 0, the left-hand side integral in
(2.32)–(2.33) satisfies

∫

∂Km

∂G(x, y)

∂ν(x)
eik{ϕm(y)−ϕm(x)}ηslow

m (y)ds(y) = O(k−1)ηslow
m (x) + O(k−1)

on any compact subset of ∂KIL
m as k → ∞.

Proof. Let S be a compact subset of ∂KIL
m , and x ∈ S. Denoting the parametrization of the curve ∂Km by

y(τ) = (y1(τ), y2(τ)) and assuming that x = y(t), we have
∫

∂Km

∂G(x, y)

∂ν(x)
eik{ϕm(y)−ϕm(x)}ηslow

m (y)ds(y) =

∫ 2π

0

F (τ)ηslow
m (y(τ))dτ

where we have set

(3.19) F (τ) =
ik

2
eik(ϕm(y(τ))−ϕm(y(t))+|y(τ)−y(t)|) × H(k|y(τ) − y(t)|) y(τ) − y(t)

|y(τ) − y(t)| · ν(y(t)) | ·y(τ)|

with H(z) = e−izH
(1)
1 (z). Parallel with the treatment of the right-hand side integrals, we write

(3.20)

∫ 2π

0

F (τ) ηslow
m (y(τ)) dτ =

2
∑

j=1

∫ 2π

0

Λj(τ)F (τ) ηslow
m (y(τ)) dτ

where Λ1 and Λ2 form a smooth partition of unity of the curve ∂Km but, in this case, the support of Λ1 is
a small neighborhood of x whose size will be chosen below, independently of k. As with the right-hand-side
integrals [24], the integral involving Λ2 is of order O(k−∞) so that

(3.21)

∫ 2π

0

F (τ)ηslow
m (y(τ))dτ =

∫ 2π

0

Λ1(τ)F (τ)ηslow
m (y(τ))dτ + O(k−∞)

Since the estimation of the integral on the right-hand side of (3.21) is the same on the intervals [t, t + π] and
[t − π, t], we shall only consider the one on [t, t + π]. To this end, we introduce the change of variables

u = h(τ) := ϕm(y(τ)) − ϕm(y(t)) + |y(τ) − y(t)| = f(τ) + g(τ)

where the functions f and g are as given in Lemma 3.5. From this lemma it follows that we can choose
ε so that the functions f, g and h are invertible in [t, t + ε] and we let the support of Λ1 be contained in
[t − ε, t + ε]. Note that, as we anticipated, ε is independent of k and, moreover, it can be chosen to depend
only on S. Therefore, setting ǫ = h−1(t + ε), we have

(3.22)

∫ t+π

t

Λ1(τ)F (τ)ηslow
m (y(τ))dτ =

ik

2

∫ ǫ

0

eikuF1(k, u)ρ(k, u)du

where

(3.23) F1(k, u) = Λ1(h
−1(u))H(kg(h−1(u)))| ·y(h−1(u))|[h−1(u)]

′ y(h−1(u)) − y(t)

|y(h−1(u)) − y(t)| · ν(y(t))

and

(3.24) ρ(k, u) = ηslow
m (y(h−1(u))) .
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To estimate the integral in the right-hand-side of (3.22) we first recall that on any compact set S ⊂ ∂KIL
m ,

we have [23, 24]

(3.25) ηslow
m (x) ∼

∞
∑

j=0

k1−jaj(x)

in the sense that

(3.26)

∣

∣

∣

∣

∣

∣

Dr
x



ηslow
m (x) −

M
∑

j=0

k1−jaj(x)





∣

∣

∣

∣

∣

∣

≤ C(M, r, S) (1 + k)
−M

for all M ≥ 0 and r ≥ 0. Then, setting bj(u) = aj(y(h−1(u))), we obtain

∣

∣

∣

∣

∫ ǫ

0

eikuF1(k, u) [ρ(k, u) − ρ(k, 0)] du

∣

∣

∣

∣

≤ C(M, S) (1 + k)−M
∫ ǫ

0

|F1(k, u)| du

+
M
∑

j=0

k1−j

∣

∣

∣

∣

∫ ǫ

0

eiku [bj(u) − bj(0)] F1(k, u)du

∣

∣

∣

∣

for all M ≥ 0. Since ρ(k, 0) = ηslow
m (x) the result will follow provided that

(3.27)

∫ ǫ

0

eikuF1(k, u)du = O(k−2)

and

(3.28)

∫ ǫ

0

eiku [bj(u) − bj(0)] F1(k, u)du = O(k−3) .

These equalities, on the other hand, follow from the first order vanishing of F1(k, u) at u = 0. Indeed, if b(u)
vanishes at 0, an integration by parts yields

(3.29) k3

∫ ǫ

0

eikub(u)F1(k, u)du = ik2

∫ ǫ

0

eiku [b(u)F1(k, u)]
′

du

and the expression on the right-hand side of (3.29) can be treated similar to (3.27) by expanding b into a
Taylor series. We shall therefore verify only (3.27). To this end, expanding F1 in a Taylor series around 0,
we see that the left-hand side of (3.27) has the same asymptotic order in k (as k → ∞) with that of

k

∫ ǫ

0

eiku H

(

ku

β

)

ku

β
Λ1

(

t +
u

β| ·x|

)

du

for some non-zero constant β. To complete the proof, it therefore suffices to show that, as k → ∞, we have

k

∫ ǫ1

0

eikβv H(kv) kv Λ(v) dv = O(1)

where ǫ1 = ǫ/β and Λ(v) = Λ1(t + v/| ·x|). Equivalently, with β1 = β − 1, it suffices to show that

(3.30) k

∫ a+b

0

eiβ1kv H
(1)
1 (kv) kv Γa,b(v) dv = O(1)

where Γa,b = Λ, a + b = ǫ1, Γa,b ≡ 1 on [−a, a] and reduces smoothly to zero on [−ǫ1, ǫ1]\[−a, a].
Now, let Γǫ2,ǫ2 be a smooth cut-off function that is identically 1 on [−ǫ2, ǫ2] and that reduces smoothly

to zero on [−2ǫ2, 2ǫ2]− [−ǫ2, ǫ2]; here we have chosen ǫ2 so that ǫ2 ≫ k−1 but ǫ2k = O(1) is independent of
k. Therefore

∣

∣

∣

∣

k

∫ 2ǫ2

0

eiβ1kvH
(1)
1 (kv)kvΓǫ2,ǫ2(v)dv

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ 2ǫ2k

0

eiβ1vΓǫ2,ǫ2(v/k)H
(1)
1 (v)vdv

∣

∣

∣

∣

∣

≤
∫ 2ǫ2k

0

∣

∣

∣H
(1)
1 (v)

∣

∣

∣ v dv = O(1)
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since ǫ2k = O(1). On the other hand, on account of the asymptotic expansion (2.15) and our choice that
ǫ2k ≫ 1, the integral

k

∫ a+b

ǫ2

eiβ1kv H
(1)
1 (kv) kv (Γa,b(v) − Γǫ2,ǫ2(v)) dv

have the same order in k (as k → ∞) with that of

(3.31) k3/2

∫ a+b

ǫ2

eiβkv v1/2 (Γa,b(v) − Γǫ2,ǫ2(v)) dv ;

and integrating by parts, we see that (3.31) have the same order in k as

(3.32) k1/2

∫ a+b

ǫ2

eiβkv
[

(Γa,b(v) − Γǫ2,ǫ2(v)) v1/2
]′

dv

= k1/2

{

∫ a+b

a

eiβkv v1/2 Γ′
a,b(v) dv −

∫ 2ǫ2

ǫ2

eiβkv v1/2 Γ′
ǫ2,ǫ2(v) dv +

1

2

∫ a

2ǫ2

eiβkv v−1/2dv

+
1

2

∫ 2ǫ2

ǫ2

eiβkv v−1/2 (1 − Γǫ2,ǫ2(v)) dv +
1

2

∫ a+b

a

eiβkv Γa,b(v) v−1/2dv

}

.

Now, by repeated integration by parts, we see that the first integral on the right-hand side of (3.32) is of
order O(k−n) for all n ≥ 1; using the relation ǫ2k = O(1), the second and fourth integrals are easily shown to
be of order O(k−1/2); and an integration by parts shows that the last integral is of order O(k−1/2). Finally,
concerning the second integral on the right-hand side of (3.32), we recall that [15]

∫ 1

0

eiγw−1/2dw = 2 1F1(1/2, 3/2, iγ) , γ > 0

where 1F1 is a hypergeometric function. Therefore, a straightforward computation yields

(3.33)

∫ a

2ǫ2

eiβkvv−1/2dv = 2a1/2
1F1(1/2, 3/2, iβak)− 2(2ǫ2)

1/2
1F1(1/2, 3/2, 2iβǫ2k) .

Since a is independent of k, the asymptotic expansion [15]

1F1(1/2, 3/2, iβak) = O(1/
√

ak)

implies that the first term on the right-hand side of (3.33) is of O(k−1/2). On the other hand, since

ǫ2k = O(1), the second term on the right-hand side of (3.33) is of order ǫ
1/2
2 = O(k−1/2). This completes

the proof. �

4. Rate of convergence on periodic orbits

In this section we analyze the asymptotic expansions in Corollary 3.3 to derive high-frequency rate-of-
convergence formulas for periodic orbits. Throughout this section, we shall assume that {σm}m≥0 ∈ I∞

is a fixed n−periodic multiple-scattering sequence (i.e. σm+1 6= σm for all m ≥ 0, and σr+qn = σr for
0 ≤ r ≤ n − 1 and q ≥ 0); as before, we will write Km, ηm, . . . instead of Kσm , ησm , etc.

As is apparent from Corollary 3.3, the analysis of the currents ηm on an n−periodic orbit requires the
analysis of the ratios ηA

m+n/ηA
m and of the jointly illuminated regions ∂KIL

m+n ∩ ∂KIL
m . Our main results

in this direction are summarized in the next two theorems. The first result identifies a rate-of-convergence
Rn,k for the “approximate currents” ηA

m defined in (3.7).

Theorem 4.1. There exist uniquely determined constants

(4.1) Φn ∈ R+ and {Lr : r = 0, . . . , n − 1} ⊂ (1,∞)

with the property that, for any m > 2n and x ∈ ∂Km,

∣

∣ηA
m+n(x) −Rn,kηA

m(x)
∣

∣ ≤
∣

∣

∣

∣

ηA
m(x)

γm(x)

∣

∣

∣

∣

F ≤ δm/2F
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where

Rn,k = (−1)neikΦn

n−1
∏

r=0

1√
Lr

,

F = F(C, k, δ, m, n) = min
{

2, eCkδm/2− 1
}

δn/2 + Cδ(m−n)/2

and the constants C = C(K, α) and δ = δ(K, α) ∈ (0, 1) are independent of the given periodic orbit.

The next result, in turn, guarantees the existence of jointly illuminated regions for large values of the
index m in a periodic orbit {σm}m≥0.

Theorem 4.2. For 0 ≤ r ≤ n−1, there exist compact connected subsets Sr and Tr of ∂Kr with the property
that

∃m0 ≥ 1 : ∀m ≥ m0 [m ≡ r mod n] ⇒ Jm+1(∂Km+1) ⊂ Tr ⊂ int(Sr) ⊂ Sr ⊂ ∂KIL
m

where, for m ≥ 1, Jm : ∂Km → ∂Km−1 : x 7→ xm
m−1(x).

We have separated the proof of Theorem 4.1 into four parts. First, we begin in §4.1 by recalling some
classical estimates from the “theory of dispersing billiard flows” [19, 27] that we use throughout the rest of
this section. In §4.2, we characterize the constant Φn appearing in Theorem 4.1, and explain its relationship
with the phase differences ϕm+n − ϕm. The connection between the ratios βm+n/βm (cf. (3.8)) and the
constants Lr as well as an algorithm for the efficient determination of these latter quantities are discussed
in §4.3. Finally, in §4.4, we study the ratios γm+n/γm and complete the proof of Theorem 4.1.

The proof of Theorem 4.2, on the other hand, is presented in §4.5, where we further characterize the
limiting behavior of the jointly illuminated regions ∂KIL

m+n∩∂KIL
m . Finally, in §4.6, we combine Theorems 4.1

and 4.2 to obtain an asymptotic rate of convergence formula for the actual currents ηm (cf. (3.6)) that are
valid throughout the entire boundary ∂Km.

4.1. Properties of broken rays. In this section, we recall two classical results from the theory of dispersing
billiard flows [19, 27]. The first one depends only on the convexity and the visibility conditions and is given
in the next lemma.

Lemma 4.3. There exist constants C1 = C1(K) and δ1 = δ1(K) < 1 with the property that, given any
sequence {Kσj}j=0,...,m of obstacles with σj−1 6= σj (j = 1, . . . , m), and any two sequences {ξj}j=0,...,m and
{ζj}j=0,...,m in ∂Kσ0

× . . . × ∂Kσm satisfying the conditions

(a) the segments [ξj−1, ξj ] and [ξj , ξj+1] (resp. [ζj−1, ζj ] and [ζj , ζj+1]) satisfy the law of reflection at ξj

(resp. ζj) (j = 1, . . . , m − 1), and
(b) neither of the segments [ξj−1, ξj ] nor [ζj−1, ζj ] have a point in common with the interior of K

(j = 2, . . . , m − 1)

we have

|ξj − ζj | ≤ C1(δ
j
1 + δm−j

1 ) (0 ≤ j ≤ m).

In addition, we have

ξ0 = ζ0 ⇒ |ξj − ζj | ≤ C1δ
m−j
1 (0 ≤ j ≤ m),

and

ξm = ζm ⇒ |ξj − ζj | ≤ C1δ
j
1 (0 ≤ j ≤ m).

The second result, given in the next lemma, makes use of the no-occlusion condition in addition to
convexity and visibility.

Lemma 4.4. If α ∈ S1 = {α ∈ R2 : |α| = 1} is such that the no-occlusion condition is satisfied, then
there exist constants C2 = C2(K, α) and δ2 = δ2(K, α) < 1 with the property that, for any two sequences
{ξj}j=0,...,m and {ζj}j=0,...,m satisfying the conditions in Lemma 4.3, the additional condition that these
sequences correspond to broken rays with initial direction α implies

|ξj − ζj | ≤ C2δ
m−j
2 (0 ≤ j ≤ m) .
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4.2. Analysis of phase the differences ϕm+n − ϕm on n−periodic orbits. To characterize the phase
constant Φn appearing in Theorem 4.1, we consider the “n-periodic distance function”

(4.2) Φn(x0, . . . , xn−1) = |xn−1 − x0| +
n−2
∑

r=0

|xr+1 − xr|

defined on ∂K0 × . . . × ∂Kn−1. As the next lemma shows, the minimum of Φn has a simple geometric
characterization. Its proof is immediate from the convexity and visibility conditions.

Lemma 4.5. Φn attains its minimum at a uniquely determined point (a0, . . . , an−1) ∈ ∂K0 × . . .× ∂Kn−1.
Moreover, with the extended definition

ar+qn := ar for [0 ≤ r ≤ n − 1 and q ∈ Z] ,

the points {aj}j∈Z satisy

aj+1 − aj

|aj+1 − aj |
=

aj − aj−1

|aj − aj−1|
− 2

(

aj − aj−1

|aj − aj−1|
· ν(aj)

)

ν(aj) .

That is, a ray starting from aj and arriving at aj+1 transverses the path formed by the points {aj}j∈Z

indefinitely.

The next result provides a relationship between Φn(a0, . . . , an−1) and the phase differences ϕm+n − ϕm.

Lemma 4.6. For any m > 2n and any x ∈ ∂Km, we have

(4.3) |ϕm+n(x) − ϕm(x) − Φn(a0, . . . , an−1)| ≤ C δm/2

where the constants C = C(K, α) and δ = δ(K, α) ∈ (0, 1) are independent of the given periodic orbit.

Proof. Repeated application of triangle inequality yields

|ϕm+n(x) − ϕm(x) − Φn(a0, . . . , an−1)|

≤ |α| |xm+n
0 (x) − xm

0 (x)| +
p−1
∑

j=0

[

|xm+n
j+1 (x) − xm

j+1(x)| + |xm+n
j (x) − xm

j (x)|
]

+

m−1
∑

j=p

[

|xm+n
j+n+1(x) − xm

j+1(x)| + |xm+n
j+n (x) − xm

j (x)|
]

+

n−1
∑

r=0

[

|xm+n
p+r+1(x) − ap+r+1| + |xm+n

p+r (x) − ap+r|
]

where we have set p = [m/2]. Letting C and δ be the maxima of the corresponding constants from Lemmas 4.3
and 4.4, we obtain

C−1|ϕm+n(x) − ϕm(x) − Φn(a0, . . . , an−1)|

≤ δm +

p−1
∑

j=0

[

δm−(j+1) + δm−j
]

+

m−1
∑

j=p

[

δj+1 + δj
]

+

n−1
∑

r=0

[

δp+r+1 + δ(m+n)−(p+r+1) + δp+r + δ(m+n)−(p+r)
]

so that

C−1|ϕm+n(x) − ϕm(x) − Φn(a0, . . . , an−1)|

≤ δm +
1 + δ

1 − δ

[

(1 − δp)δm−p + (1 − δm−p)δp + (1 − δn)
(

δp + δm−p
)]

≤ 2
1 + δ

1 − δ

(

δp + δm−p
)

completing the proof. �
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4.3. Analysis of the ratios βm+n(x)/βm(x) on n-periodic orbits. In this section we analyze the ratios
of the quantities βm(x) defined in (3.8) as the product of the inverse of the square roots of the “continued
fractions” Rm

j (x) in (3.3).

Theorem 4.7. There exist uniquely determined constants

(4.4) {Lr : r = 0, . . . , n − 1} ⊂ (1,∞)

with the property that, for any m > 2n and x ∈ ∂Km, we have
∣

∣

∣

∣

∣

βm+n(x)

βm(x)
−

n−1
∏

r=0

1√
Lr

∣

∣

∣

∣

∣

≤ Cδ(m−n)/2

where the constants C = C(K, α) and δ = δ(K, α) ∈ (0, 1) are independent of the given periodic orbit.

We need two technical lemmas for the proof of Theorem 4.7. First we introduce a sequence {Lj} defined
by the geometry of the periodic orbit ∂K0 × . . . × ∂Kn−1 at the points (a0, . . . , an−1).

Definition 4.8. The sequence {Lj}j≥1 is defined by

(4.5) Lj =







b1 if j = 1

bj + cj

(

1 − 1

Lj−1

)

if j ≥ 2

where

(4.6) bj = 1 +
2κ(aj−1) |aj − aj−1|
aj − aj−1

|aj − aj−1|
· ν(aj−1)

for j ∈ Z

(4.7) cj =
|aj − aj−1|

|aj−1 − aj−2|
for j ∈ Z .

The connection between the ratios βm+n(x)/βm(x), and the sequence {Lj} is given in the next lemma.

Lemma 4.9. For any m > 2n and x ∈ ∂Km, we have

(4.8)

∣

∣

∣

∣

∣

∣

βm+n(x)

βm(x)
−

p−1
∏

j=p−n

1
√

Lj

∣

∣

∣

∣

∣

∣

≤ Cδ(m−n)/2

where p = [m/2] and the constants C = C(K, α) and δ = δ(K, α) ∈ (0, 1) are independent of the given
periodic orbit.

Remark 4.10. As we show in Lemma B.10 in Appendix B, each one of the first two products on the right-hand
side of the equation

βm+n(x)

βm(x)
=





p−1
∏

j=1

Rm
j (x)

Rm+n
j (x)

m
∏

j=p

Rm
j (x)

Rm+n
j+n (x)

p+n−1
∏

j=p

1

Rm+n
j (x)





1/2

can be approximated by 1, and the last one behaves like
∏p−1

j=p−n 1/Lj.

Proof of Lemma 4.9 Since for any A, B, C ∈ R the identity

ABC − 1 = [(A − 1)(B − 1) + (A − 1) + (B − 1) + 1] (C − 1) + [(A − 1)(B − 1) + (A − 1) + (B − 1)]

holds, an appeal to triangle inequality yields

|ABC − 1| ≤ [|A − 1||B − 1| + |A − 1| + |B − 1| + 1] |C − 1| + [|A − 1||B − 1| + |A − 1| + |B − 1|] .

Therefore, a simple manipulation using Lemma B.10 shows that, with the choice of the constant C =
2(C6 + 1)2 max{C6, 1}, we have

∣

∣

∣

∣

∣

∣

p−1
∏

j=1

Rm
j (x)

Rm+n
j (x)

m
∏

j=p

Rm
j (x)

Rm+n
j+n (x)

p+n−1
∏

j=p

Lj−n

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

∣

≤ Cδm/2−n



MULTIPLE SCATTERING ITERATIONS FOR HIGH-FREQUENCY 19

Therefore, it follows from Remark B.11 that
∣

∣

∣

∣

∣

∣

βm+n(x)

βm(x)
−

p−1
∏

j=p−n

1
√

Lj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣





p−1
∏

j=1

Rm
j (x)

Rm+n
j (x)

m
∏

j=p

Rm
j (x)

Rm+n
j+n (x)

p+n−1
∏

j=p

Lj−n

Rm+n
j (x)





1/2

− 1

∣

∣

∣

∣

∣

∣

∣

p−1
∏

j=p−n

1
√

Lj

≤ Cδm/2−n

p−1
∏

j=p−n

1
√

Lj

and accordingly, (4.8) follows from Lemma B.2 and Remark B.6. �

Combined with the next one, Lemma 4.9 completes the proof of Theorem 4.7.

Lemma 4.11. The limits

(4.9) Lr := lim
q→∞

Lr+qn for 0 ≤ r ≤ n − 1

exist and are all in (1,∞). Moreover, for any m > 2n

(4.10)

∣

∣

∣

∣

∣

∣

p−1
∏

j=p−n

1
√

Lj

−
n−1
∏

r=0

1√
Lr

∣

∣

∣

∣

∣

∣

≤ Cδ(m−n)/2

where p = [m/2] and the constants C = C(K) and δ = δ(K) ∈ (0, 1) are independent of the given periodic
orbit.

Proof. First note that (B.15) holds with Rm
1 (x) and Rm+n

1+n (x) replaced respectively by L1 and L1+n; on the
other hand

Lj

Lj+n
− 1 =

cj

Lj+nLj−1

(

Lj−1

Lj+n−1
− 1

)

for j ≥ 2

(since, in this case, bj+n − bj = cj+n − cj = 0) so that by Lemma B.2
∣

∣

∣

∣

Lj

Lj+n
− 1

∣

∣

∣

∣

≤ cj

θ2

∣

∣

∣

∣

Lj−1

Lj+n−1
− 1

∣

∣

∣

∣

for j ≥ 2 .

Therefore, by Remark B.4,

(4.11)

∣

∣

∣

∣

Lj

Lj+n
− 1

∣

∣

∣

∣

≤ 2ϑθdmax

dmin

1

θ2j
:=

C

θ2j
for j ≥ 1 .

For j ≥ 1 and p ≥ 1, writing

Lj

Lj+pn
=

p−1
∏

s=0

Lj+sn

Lj+(s+1)n

and applying (B.19) yields on account of (4.11)

∣

∣

∣

∣

Lj

Lj+pn
− 1

∣

∣

∣

∣

≤ C exp

(

C

p−1
∑

s=0

1

θ2(j+sn)

)

p−1
∑

s=0

1

θ2(j+sn)

≤ Cθ2

θ2 − 1
exp

(

Cθ2

θ2 − 1

)

1

θ2j
:=

C
′

θ2j
.(4.12)

The first implication of (4.12) is that, by Lemma B.2, it gives

|Lj+pn − Lj| ≤
C

′

Lj+pn

θ2j
≤ C

′

ϑ

θ2j
:=

C
′′

θ2j

and this, in turn, implies that, for 0 ≤ r ≤ n − 1 and p, q ≥ 1,

∣

∣Lr+(p+q)n − Lr+qn

∣

∣ ≤ C
′′

θ2(r+qn)
.
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Therefore the sequences {Lr+qn}q≥1 converge. That their limits Lr belong to (1,∞) is immediate from
Lemma B.2. On the other hand, applying (B.19) yields on account of (4.12)

∣

∣

∣

∣

∣

∣

q+n−1
∏

j=q

Lj

Lj+pn
− 1

∣

∣

∣

∣

∣

∣

≤ C
′

exp



C
′

q+n−1
∑

j=q

1

θ2j





q+n−1
∑

j=q

1

θ2j
≤ C

′

θ2

θ2 − 1
exp

(

C
′

θ2

θ2 − 1

)

1

θ2q
:=

C
′′′

θ2q

for q ≥ 1. Since

q+n−1
∏

j=q

1
√

Lj+pn

−
q+n−1
∏

j=q

1
√

Lj

=











q+n−1
∏

j=q

Lj

Lj+pn





1/2

− 1







q+n−1
∏

j=q

1
√

Lj

we therefore obtain by Remark B.11 and Lemma B.2

∣

∣

∣

∣

∣

∣

q+n−1
∏

j=q

1
√

Lj+pn

−
q+n−1
∏

j=q

1
√

Lj

∣

∣

∣

∣

∣

∣

≤ C
′′′

θ2q

q+n−1
∏

j=q

1
√

Lj

≤ C
′′′

θ2q+n/2

Letting p → ∞, we get
∣

∣

∣

∣

∣

∣

n−1
∏

r=0

1√
Lr

−
q+n−1
∏

j=q

1
√

Lj

∣

∣

∣

∣

∣

∣

≤ C
′′′

θ2q+n/2

and this gives (4.10) upon choosing q = [m/2] − n. �

To derive an explicit formula for the product
∏n−1

r=0

√
Lr, we extend the definition of Lr by setting

Lr+pn = Lr for [0 ≤ r ≤ n − 1 and p ∈ Z]

and define

dj = bj + cj for j ∈ Z .

It follows from equations (4.5) and (4.9) that

(4.13) Lr = dr −
cr

Lr−1
for r ∈ Z .

As is apparent then, L0 determines {Lr}r=0,...,n−1 (and thereby their product) uniquely through (4.13), and
it also satisfies the equation

(4.14) x = dn − cn

dn−1 −
cn−1

. . .

d1 −
c1

x

;

equation (4.14), in turn, can be used to obtain a quadratic equation in x whose solutions x1, x2 must be real
since L0 ∈ {x1, x2}. Once these roots are computed, Lemma 4.11 provides an efficient way to recover the

product
∏n−1

r=0

√
Lr.

Moreover, in the special case that the period is n = 2, it can be readily verified that, with d = |a1 − a0|
and κj = κ(aj),

L0L1 = (1 + dκ0)(1 + dκ1)

(

1 +

√

1 − 1

(1 + dκ0)(1 + dκ1)

)

.
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4.4. Analysis of the differences γm+n(x)− γm(x) on n−periodic orbits and proof of Theorem 4.1.

Lemma 4.12. For any m ≥ 1 and x ∈ ∂Km, we have

|γm+n(x) − γm(x)| ≤ Cδm

where the constants C = C(K, α) and δ = δ(K, α) ∈ (0, 1) are independent of the given periodic orbit.

Proof. Using the notation Jm(x) = xm
m−1(x) for m ≥ 1, we have

γm+n(x) − γm(x) =
Jm(x) − Jm+n(x)

|Jm+n(x) − x| · ν(x) +
|Jm+n(x) − x| − |Jm(x) − x|

|Jm+n(x) − x|
Jm(x) − x

|Jm(x) − x| · ν(x)

so that by triangle inequality

|γm+n(x) − γm(x)| ≤ 2
|Jm+n(x) − Jm(x)|

|Jm+n(x) − x| ≤ 2

dmin
|Jm+n(x) − Jm(x)| ;

applying Lemma 4.3 completes the proof with the choice of the constants C = 2C1/δ1dmin and δ = δ1. �

Proof of Theorem 4.1 Setting β =
∏n−1

r=0 1/
√
Lr, we have

(−1)m+n
(

ηA
m+n −Rn,kηA

m

)

= eikϕm+n (βm+n − ββm) γm+n + eikϕm+nββm(γm+n − γm)

+
(

eikϕm+n − eik{ϕm+Φn(a0,...,an−1)}
)

ββmγm.

Taking absolute values, and using triangle inequality, we obtain on account of Theorem 4.7 and Lemmas 4.6
and 4.12 (choosing C and δ to be the maximums of the corresponding constants)
∣

∣ηA
m+n(x) −Rn,kηA

m(x)
∣

∣ ≤ C
(

δ(m−n)/2|γm+n(x)| + δmβ
)

βm(x) + min{2, eCkδm/2 − 1}ββm(x)|γm(x)|

where we made use of the inequality
∣

∣

∣eikϕm+n − eik{ϕm+Φn(a0,...,an−1)}
∣

∣

∣ ≤ min{2, ek|ϕm+n(x)−ϕm(x)−Φn(a0,...,an−1)| − 1}.

By Lemma B.2 and Remark B.6, we have β ≤ δn/2; also γm and γm+n are bounded above by 1. Therefore,
replacing C by 2C, we obtain

∣

∣ηA
m+n(x) −Rn,kηA

m(x)
∣

∣ ≤ Fβm(x) .

Since βm(x) = |ηA
m(x)|/|γm(x)|, an appeal to Lemma B.2 and Remark B.6 completes the proof. �

4.5. Analysis of illuminated regions ∂KIL
m on n−periodic orbits and proof of Theorem 4.2. Our

main result in this section, summarized in the next lemma, provides a quantitative analysis of the illuminated
regions ∂KIL

m on n−periodic orbits. In particular, Theorem 4.2 is an immediate consequence of (4.19).

Lemma 4.13. Given 0 ≤ r ≤ n − 1 and x ∈ ∂Kr, there exists a unique direction αr(x) ∈ S1 = {α ∈
R2 : |α| = 1} with the property that the broken ray with direction αr(x) passes through x and transverses the
backwards infinite path {Kr−m}m≥1 where Kj1 = Kj2 provided j1 ≡ j2 mod n. The function

(4.15) ∂Kr → R : x 7→ αr(x) · ν(x)

is continuous; the limiting illuminated and shadow regions

(4.16) ∂KIL
r,∞ := {x ∈ ∂Kr : αr(x) · ν(x) > 0}

(4.17) ∂KSR
r,∞ := {x ∈ ∂Kr : αr(x) · ν(x) < 0}

are non-empty and connected, and the limiting shadow boundary

(4.18) ∂KSB
r,∞ := {x ∈ ∂Kr : αr(x) · ν(x) = 0}

consists precisely of two distinct points. Moreover, for all m ≥ 1,

(4.19) ∂KSB
m ⊂ {x ∈ ∂Kr : |αr(x) · ν(x)| ≤ Cδm}

(cf. Figure 4) provided m ≡ r mod n where the constants C = C(K, α) and δ = δ(K, α) ∈ (0, 1) are
independent of the given periodic orbit.
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(a) First reflection
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(c) Third reflection

Figure 4. Geometrical Optics solutions for a two-periodic configuration.

Proof. For a fixed 0 ≤ r ≤ n − 1 and x ∈ ∂Kr, let

(xm
r (x), . . . , xm

r−m(x)) ∈ ∂Kr × . . . × ∂Kr−m (m ≥ 1)

be the unique broken ray with

xm
r (x) = x and xm

m(x) = am−r

and define the sequence of functions {Fm}m≥1 by

(4.20) Fm : ∂Kr −→ ∂Kr−1 : x 7−→ xm
r−1(x) .

Since the functions Fm are continuous, and Lemma 4.3 implies that

|Fm1
(x) − Fm2

(x)| =
∣

∣xm1

r−1(x) − xm2

r−1(x)
∣

∣ ≤ Cδmin{m1,m2}−1

for all m1, m2 ≥ 1, we conclude that there exists a continuous function Fr : ∂Kr → ∂Kr−1 such that
Fm → Fr uniformly on ∂Kr. As is apparent from the construction, the broken ray with direction

(4.21) αr(x) :=
Fr(x) − x

|Fr(x) − x|
passes through x and transverses the infinite path {∂Kr−m}m≥1; if α ∈ S1 is another direction possessing
the same properties with αr(x), then we choose y ∈ ∂Kr−1 with

y − x

|y − x| = α

and note that Lemma 4.3 implies

|y −Fr(x)| ≤ Cδm−1

for all m ≥ 1; and this, in turn, implies that y = Fr(x) and thus α = αr(x). Since Fr is continuous and
dist(∂Kr, ∂Kr−1) > 0, the function αr : ∂Kr → S1 is continuous, and therefore, so is the function (4.15).

Now, consider the m−th illuminated regions

∂KIL
r,m :=

{

x ∈ ∂Kr :
Fm(x) − x

|Fm(x) − x| · ν(x) > 0

}

and the m−th shadow regions

∂KSR
r,m :=

{

x ∈ ∂Kr :
Fm(x) − x

|Fm(x) − x| · ν(x) < 0

}

determined by the sequence {Fm}m≥1. Clearly each one of the sets ∂KIL
r,m and ∂KSR

r,m are open and connected;
writing

Fr(x) − x

|Fr(x) − x| · ν(x) − Fm(x) − x

|Fm(x) − x| · ν(x) =

( Fr(x) − x

|Fr(x) − x| −
Fm(x) − x

|Fm(x) − x|

)

· ν(x)
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and letting m → ∞ one obtains using the convergence Fm → Fr

∂KIL
r,∞ =

∞
⋃

m=1

∞
⋂

p=m

∂KIL
r,p and ∂KSR

r,∞ =

∞
⋃

m=1

∞
⋂

p=m

∂KSR
r,p .

Accordingly, to conclude that the sets ∂KIL
r,∞ and ∂KSR

r,∞ are connected, it suffices to show that

∞
⋂

m=1

∂KIL
r,m 6= ∅ and

∞
⋂

m=1

∂KSR
r,m 6= ∅ .

In fact, Lemma 4.5 implies that ar ∈ ∂KIL
r,m for all m ≥ 1; and, on the other hand, convexity implies that

there exists a (unique) xr ∈ ∂Kr such that

ar − xr

|ar − xr |
= αr(ar) = αr(xr)

and therefore xr ∈ ∂KSR
r,m for all m ≥ 1. Therefore, the sets ∂KIL

r,∞ and ∂KSR
r,∞ are non-empty and connected.

This implies, in particular, that the set ∂KSB
r,∞ consists precisely of two closed connected components; and a

simple (purely geometric) argument shows that these components must both be singletons.
Finally, to prove (4.19), suppose that m ≥ 1 and m ≡ r mod n; given x ∈ ∂Km, let (xm

0 (x), . . . , xm
m(x)) ∈

∂K0 × . . . × ∂Km be the unique broken ray as defined by (2.25). Defining the function

Jm : ∂Km → ∂Km−1 : x 7→ xm
m−1(x) ,

we get exactly as in the proof of Lemma 4.12
∣

∣

∣

∣

Fr(x) − x

|Fr(x) − x| · ν(x) − Jm(x) − x

|Jm(x) − x| · ν(x)

∣

∣

∣

∣

≤ 2

dmin
|Fr(x) − Jm(x)|

so that an appeal to Lemma 4.3 gives
∣

∣

∣

∣

Fr(x) − x

|Fr(x) − x| · ν(x) − Jm(x) − x

|Jm(x) − x| · ν(x)

∣

∣

∣

∣

≤ Cδm

with the choice of the constants C = 2C1/δ1dmin and δ = δ1. Accordingly, we have the inclusion

∂KSB
m ⊂

{

x ∈ ∂Kr : |αr(x) · ν(x)| =

∣

∣

∣

∣

Fr(x) − x

|Fr(x) − x| · ν(x)

∣

∣

∣

∣

≤ Cδm

}

completing the proof. �

4.6. Asymptotic behavior of the actual currents ηm on n−periodic orbits. Appealing to Corol-
lary 3.3, we have

ηm(x) = (1 + k−1Pm(x, k)) 2ik ηA
m(x) as k → ∞

on any compact subset of ∂KIL
m where Pm(k, x) = O(k0). Accordingly

ηm+n(x) −Rn,kηm(x) =
Pm+n(x, k) − Pm(x, k)

k + Pm(x, k)
Rn,k ηm(x)

+
k + Pm+n(x, k)

k + Pm(x, k)
2ik

(

1 +
Pm(x, k)

k

)

(

ηA
m+n(x) −Rn,kηA

m(x)
)

holds, as k → ∞, on any compact subset of the jointly illuminated regions ∂KIL
m+n ∩ ∂KIL

m ; Theorem 4.1, in
turn, yields

|ηm+n(x) −Rn,kηm(x)| ≤
∣

∣

∣

∣

Pm+n(x, k) − Pm(x, k)

k + Pm(x, k)

∣

∣

∣

∣

|Rn,k| |ηm(x)|

+

∣

∣

∣

∣

k + Pm+n(x, k)

k + Pm(x, k)

∣

∣

∣

∣

∣

∣

∣

∣

2ik

(

1 +
Pm(x, k)

k

)

ηA
m(x)

∣

∣

∣

∣

F
|γm(x)|
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so that, since |γm(x)| ≤ 1, we get

|ηm+n(x) −Rn,kηm(x)| ≤
(∣

∣

∣

∣

Pm+n(x, k) − Pm(x, k)

k + Pm(x, k)

∣

∣

∣

∣

|Rn,k| +
∣

∣

∣

∣

k + Pm+n(x, k)

k + Pm(x, k)

∣

∣

∣

∣

F
) ∣

∣

∣

∣

ηm(x)

γm(x)

∣

∣

∣

∣

:= (Sm,n(x, k) |Rn,k| + Tm,n(x, k)F)

∣

∣

∣

∣

ηm(x)

γm(x)

∣

∣

∣

∣

on any compact subset of ∂KIL
m+n ∩ ∂KIL

m as k → ∞. As |Rn,k| ≤ δn/2, and |γm| is bounded away from zero

on any compact subset of ∂KIL
m , replacing δ in Theorem 4.1 with δ1/2, we obtain the following result.

Corollary 4.14. On any compact subset of the jointly illuminated regions ∂KIL
m+n ∩ ∂KIL

m , if Sm,n(x, k) =

O(k−1) and Tm,n(x, k) = O(k0) as k → ∞ independently of m, then

(4.22) |ηm+n(x) −Rn,kηm(x)| =
(

O(k−1δn) + O(k0F)
)

|ηm(x)|
=
(

O(k−1δn) + O(kδm+n) + O(k0δm−n)
)

|ηm(x)|
provided m > 2n where all the order terms depend only on the compact subset in consideration.

To see that the relation given in Corollary 4.14 must hold uniformly on ∂Kr for 0 ≤ r ≤ n − 1 (not only
on the jointly illuminated regions), we argue as follows.

Theorem 4.2 implies that the relation given in Corollary 4.14 holds for the right-hand side integrals (2.33)
on any compact subset of ∂Km\∂KSB

m . For k ≫ 1 and m = m(k) ≫ 1, the factor modulating ηm on the
right-hand side of (4.22) being essentially zero, this means that ηm+n+1 and ηm+1 are the solutions of the
same linear integral equation with the right-hand sides modulated by the constant Rn,k. Therefore, they
must satisfy the relation

|ηm+n+1(x) −Rn,kηm+1(x)| ≤
(

O(k−1δn) + O(kδm+n+1) + O(k0δm−n+1)
)

|ηm+1(x)|
over the whole boundary ∂Km+1.

5. Numerical results

5.1. Examples of asymptotic convergence rates. In this section, we present numerical examples testing
our rate of convergence formula (4.22) on two– and three–periodic orbits.

In Figures 5−8, the left pane provides the corresponding geometrical configuration; middle pane displays

(5.1) log10

∥

∥

∥

∥

ηm+n(x)

ηm(x)
−Rn,k

∥

∥

∥

∥

L∞(∂Km)

for m = 0, n, . . . , 25n on ∂K0; the right pane, on the other hand, displays (5.1) against log10 k for the
particular value m = 25n.

As is apparent in these Figures, the error involved in any finite number of reflections is, as implied by our
rate of convergence formula (4.22), of order O(k−1) (right panes); and this error is uniformly bounded as the
number of reflections m tends to infinity (middle panes).

Moreover, as is clear from these Figures, our rate of convergence formula (4.22) does not depend on
the direction of incidence even when the obstacles are occluded (cf. Figures 6–8); it applies to non-convex
geometries in the case that an observer walking on the boundary of any particular obstacle in the period
would think that all the other obstacles are convex (cf. Figures 7–8); and it also applies without any
modification when illumination by a point source is considered (see the second rows of Figures 7–8).

5.2. Acceleration of convergence. Here we present two algorithms, based on our analysis, accelerating
the convergence of multiple-scattering iterates.

The first one, which we shall call “geometrical optics correction (GOC),” utilizes the rate of convergence
formula (4.22) to obtain O(k−1) corrections at each reflection. The underlying idea is, as is apparent from
(4.22), the tail of the multiple-scattering iterates on an n−periodic orbit are at a uniform distance of O(k−1)
from a geometric series. The resultant sum of the iterates on this orbit must therefore lie in an O(k−1)
neighborhood of the sum of the first m iterates plus the terms ηm−n+1, . . . , ηm multiplied by 1/(1 −Rn,k).
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Figure 5. Two-periodic configurations without occlusion; plane-wave illumination from the left.
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Figure 6. Two-periodic configurations with occlusion; plane-wave illumination from the left.
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Figure 7. Two-periodic configurations with occlusion and non-convex scatterers; top:
plane-wave illumination from left; bottom: point-source illumination (at [1,−0.5]).
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Figure 8. Three-periodic configurations with occlusion and non-convex scatterers; top:
plane-wave illumination from the left; bottom: point-source illumination (at [1,−1]).
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Figure 9. Left: two-periodic configuration illuminated by a plane-wave from the left; Right:
number of reflections versus the maximum error on ∂K0 (k = 400).

More precisely, assuming that the first M currents ηm on an n–periodic are computed, the GOC algorithm
reads

(5.2)

∞
∑

m=0

ηm ≈
M
∑

m=0

ηm +
1

1 −Rn,k

n−1
∑

r=0

ηM−r .

Our second algorithm, which we shall call “exact geomerical optics corrections (EGOC),” takes into
account of the the numerical experiments in Sect. 5.1 that display the fact that the tail of the multiple-
scattering iterates on an n−periodic orbit are themselves (perturbations) of a geometric series. Therefore,
instead of using (5.2), one computes

∞
∑

m=0

ηm ≈
M
∑

m=0

ηm +

n−1
∑

r=0

1

1 − γr
ηM−r

where, for 0 ≤ r ≤ n − 1,

γr = average

{

ηM−r(x)

ηM−r−n(x)
: x ∈ ∂KM−r

}

.

Figure 9 depicts the improvements provided by these two algorithms on a 2–periodic orbit where we compare
the exact solution with the solutions obtained by summing the first M−terms of the series, and by using
the GOC and EGOC algorithms. As we claimed, GOC provides an O(k−1) improvement once the series
stabilizes, while EGOC, taking direct account of the geometric nature of the series, provides a significant
improment on the rate of convergence.
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Appendix A. Derivatives of phase functions

In this appendix we collect some detailed properties of the phase functions (2.24), particularly on their
derivatives, that are used in Sect. 3 to derive the asymptotic expression (3.2). More precisely, these deriva-
tions necessitate expressions for the first and second derivatives of the phase function (cf. (3.11))

(A.1) ϕtm+1
(tm) = |xm+1 − xm| + ϕm(xm) = α · x0 +

m
∑

j=0

|xj+1 − xj | , xm = xm(tm) ∈ ∂Km,

where xm+1 = xm+1(tm+1) is an arbitrary but fixed point on ∂Km+1, ϕm is given by (2.24), and (x0, . . . , xm) ∈
∂K0 × · · · × ∂Km denotes the broken (m + 1)-ray terminating at xm ∈ ∂Km. The first lemma provides an
explicit representation for the first derivatives.

Lemma A.1 (First Derivatives). The derivatives of the phase functions (A.1) are given by

(A.2)
d

dt0
ϕt1(t0) =

(

α − x1 − x0

|x1 − x0|

)

· ·
x0 ,

and

(A.3)
d

dtm
ϕtm+1

(tm) =

(

xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)

· ·
xm , m ≥ 1.

Proof. The proof of (A.2) is straightforward. To obtain (A.3), we differentiate (A.1) with respect to tm to
obtain

d

dtm
ϕtm+1

(tm) =

(

α − x1 − x0

|x1 − x0|

)

· ·
x0

dt0
dtm

+

m−2
∑

i=0

(

xi+1 − xi

|xi+1 − xi|
− xi+2 − xi+1

|xi+2 − xi+1|

)

· ·
xi+1

dti+1

dtm

+

(

xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)

· ·
xm .

Since the tuple (x0, . . . , xm) is the broken (m + 1)-ray terminating at xm, this reduces to (A.3). �

The next result states that ϕtm+1
(tm) is stationary at a point tm if, and only if, the tuple (x0, . . . , xm, xm+1)

is the broken (m + 2)-ray terminating at xm+1.

Lemma A.2 ((i) Stationary Points in First Reflections). For m = 0, the phase (A.1) is stationary at a
point x0 if and only if

(A.4)
x1 − x0

|x1 − x0|
= α + 2

x1 − x0

|x1 − x0|
· ν0 ν0

or

(A.5)
x1 − x0

|x1 − x0|
= α.

((ii) Stationary Points in Further Reflections). For m ≥ 1, the phase (A.1) is stationary at a point xm if
and only if

(A.6)
xm+1 − xm

|xm+1 − xm| =
xm − xm−1

|xm − xm−1|
+ 2

xm+1 − xm

|xm+1 − xm| · νm νm

or

(A.7)
xm+1 − xm

|xm+1 − xm| =
xm − xm−1

|xm − xm−1|
.
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Proof. Equation (A.2) implies

d

dt0
ϕt1(t0) = 0 ⇔ α = λ0ν0 +

x1 − x0

|x1 − x0|
for some λ0. Also, since |α| = 1, we have

1 = α · α = λ2
0 + 2λ0

x1 − x0

|x1 − x0|
· ν0 + 1

so that

λ0 = −2
x1 − x0

|x1 − x0|
· ν0 or λ0 = 0.

Similarly, for m ≥ 1, equation (A.3) gives

d

dtm
ϕtm+1

(tm) = 0 ⇔ xm − xm−1

|xm − xm−1|
= λmνm +

xm+1 − xm

|xm+1 − xm|
for some λm. Since

1 =
xm − xm−1

|xm − xm−1|
· xm − xm−1

|xm − xm−1|
= λ2

m + 2λm
xm+1 − xm

|xm+1 − xm| · νm + 1

we get

λm = −2
xm+1 − xm

|xm+1 − xm| · νm or λm = 0

completing the proof. �

The derivations in Sect. 3 further demand the evaluation of the second derivatives of the phase (A.1)
at the stationary points as derived in Lemma A.2. We note, however, that the conditions (A.5) and (A.7)
cannot hold under the no-occlusion and visibility assumptions. Our next result then provides and expression
for the second derivatives at the points characterized by (A.4) and (A.6). To simplify the notation in what
follows, we introduce the quantities Sm defined by the identities

(A.8)
d2

dt2m
ϕtm+1

(tm) =
| ·xm|2

|xm+1 − xm|

(

xm+1 − xm

|xm+1 − xm| · νm

)2

Sm

for m ≥ 0.

Theorem A.3 ((i) Second Derivatives in First Reflections). For m = 0, if (A.4) holds, then

(A.9) S0 = 1 + 2κ0|x1 − x0|
(

x1 − x0

|x1 − x0|
· ν0

)−1

.

((ii) Second Derivatives in Further Reflections). For m ≥ 1, if (A.6) holds, then

(A.10) Sm = 2κm|xm+1 − xm|
(

xm+1 − xm

|xm+1 − xm| · νm

)−1

+ Tm

where

(A.11) Tm = 1 +
|xm+1 − xm|
|xm − xm−1|

(

1 − 1

Sm−1

)

.

Proof. Differentiating (A.2) yields

d2

dt20
ϕt1(t0) =

(

α − x1 − x0

|x1 − x0|

)

· ··x0 +
| ·x0|2

|x1 − x0|



1 −
(

x1 − x0

|x1 − x0|
·

·
x0

| ·x0|

)2




=

(

α − x1 − x0

|x1 − x0|

)

· ··x0 +
| ·x0|2

|x1 − x0|

(

x1 − x0

|x1 − x0|
· ν0

)2

.

Substituting the condition (A.4) in the first term on the right hand side, equation (A.9) readily follows. �

To prove the result for further reflections we need several additional lemmas. For future reference we first
record a simple geometrical identity.
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Lemma A.4. Let u, v and w be three unit vectors, and let Θ be the matrix of rotation by π/2 in the
counterclockwise direction. Then

(A.12) Θu · Θv − (w · Θu) (w · Θv) = (w · u) (w · v) .

Proof. Let α1 = cos−1(w ·u) and α2 = cos−1(w ·v). Then, (A.12) is equivalent to the trigonometric difference
formula cos(α1 − α2) − sin α1 sin α2 = cosα1 cosα2. �

The next lemma provides a preliminary representation for the second derivatives in terms of the relative
coordinate derivatives dtm−1/dtm. Again here, to simplify notation we define the quantities Vm as

(A.13)
dtm−1

dtm
=

| ·xm|
| ·xm−1|

xm − xm−1

|xm − xm−1|
· νm

(

xm − xm−1

|xm − xm−1|
· νm−1

)−1

Vm.

Lemma A.5 (Second Derivatives in terms of Coordinate Derivatives). For m ≥ 1, if (A.6) holds, then

(A.14) Sm = 2κm|xm+1 − xm|
(

xm+1 − xm

|xm+1 − xm| · νm

)−1

+ Um

where

(A.15) Um = 1 +
|xm+1 − xm|
|xm − xm−1|

(1 − Vm) .

Proof. Differentiating (A.3) and using Lemma A.4 we obtain

d2

dt2m
ϕtm+1

(tm) =

(

xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)

· ··xm

+
| ·xm|2

|xm − xm−1|

(

xm − xm−1

|xm − xm−1|
· νm

)2

+
| ·xm|2

|xm+1 − xm|

(

xm+1 − xm

|xm+1 − xm| · νm

)2

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm

dtm−1

dtm
.

Now, if (A.6) holds, then

d2

dt2m
ϕtm+1

(tm) = 2
xm+1 − xm

|xm+1 − xm| ·νm κm | ·xm|2+| ·xm|2
(

1

|xm − xm−1|
+

1

|xm+1 − xm|

)(

xm+1 − xm

|xm+1 − xm| · νm

)2

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm

dtm−1

dtm

completing the proof. �

Finally, comparing (A.10) and (A.11) with (A.14) and (A.15) we see that, to establish (A.10) and thus
complete the proof of Theorem A.3, there only remains to show that

(A.16) Vm = S−1
m−1 , m ≥ 1.

This next lemma establishes this identity.

Lemma A.6 ((i) Relative Coordinate Derivatives in First Reflections). For m = 1, if (A.4) holds, then

(A.17) V1 =

(

1 + 2κ0|x1 − x0|
(

x1 − x0

|x1 − x0|
· ν0

)−1
)−1

.

((ii) Relative Coordinate Derivatives in Further Reflections). For m > 1, if (A.6) holds, then

(A.18) Vm =

(

2κm−1|xm − xm−1|
(

xm − xm−1

|xm − xm−1|
· νm−1

)−1

+ Um−1

)−1

where Um is as given by (A.15).
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Proof. Differentiating the identity
(

α − x1 − x0

|x1 − x0|

)

· ·
x0 = 0

with respect to t1, and using Lemma A.4, we obtain

dt0
dt1

=
| ·x0||

·
x1|

|x1 − x0|
x1 − x0

|x1 − x0|
· ν0

x1 − x0

|x1 − x0|
· ν1

(

(

α − x1 − x0

|x1 − x0|

)

· ··x0 +
| ·x0|2

|x1 − x0|

(

x1 − x0

|x1 − x0|
· ν0

)2
)−1

from which (A.17) follows upon straightforward computations. To obtain (A.18), we differentiate the identity
(

xm−1 − xm−2

|xm−1 − xm−2|
− xm − xm−1

|xm − xm−1|

)

· ·
xm−1 = 0

with respect to tm

0 =

(

xm−1 − xm−2

|xm−1 − xm−2|
− xm − xm−1

|xm − xm−1|

)

· ··xm−1
dtm−1

dtm

+
1

|xm−1 − xm−2|

(

| ·xm−1|2 −
(

xm−1 − xm−2

|xm−1 − xm−2|
· ·
xm−1

)2
)

dtm−1

dtm

+
1

|xm − xm−1|

(

| ·xm−1|2 −
(

xm − xm−1

|xm − xm−1|
· ·
xm−1

)2
)

dtm−1

dtm

− 1

|xm−1 − xm−2|
dtm−2

dtm−1

dtm−1

dtm

×
(

·
xm−2 ·

·
xm−1 −

xm−1 − xm−2

|xm−1 − xm−2|
· ·
xm−2

xm−1 − xm−2

|xm−1 − xm−2|
· ·
xm−1

)

− 1

|xm − xm−1|

(

·
xm−1 ·

·
xm − xm − xm−1

|xm − xm−1|
· ·
xm−1

xm − xm−1

|xm − xm−1|
· ·
xm

)

,

so that if (A.6) holds, an appeal to Lemma A.4 yields

0 =

(

xm−1 − xm−2

|xm−1 − xm−2|
− xm − xm−1

|xm − xm−1|

)

· ··xm−1
dtm−1

dtm

+ | ·xm−1|2
(

1

|xm−1 − xm−2|
+

1

|xm − xm−1|

)(

xm − xm−1

|xm − xm−1|
· νm−1

)2
dtm−1

dtm

− | ·xm−2||
·
xm−1|

|xm−1 − xm−2|
xm−1 − xm−2

|xm−1 − xm−2|
· νm−2

xm−1 − xm−2

|xm−1 − xm−2|
· νm−1

dtm−2

dtm−1

dtm−1

dtm

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm

from which (A.18) follows, thus completing the proof of the lemma and of Therorem A.3. �

Appendix B. Analysis of β ratios

Here we present the proof of Lemmas 4.9 and 4.11. To begin with, we note two simple geometrical facts.

Remark B.1. The visibility condition holds if and anly if there exists an angle φv ∈ (0, π/2) with the property
that given any three points ξ1, ξ2, ξ3 ∈ ∂K such that the segments [ξ1, ξ2] and [ξ2, ξ3] (a) have no point in
common with the interior of the connected component of K containing ξ2, and (b) satisfy the law of reflection
at ξ2, we have

ξ1 − ξ2

|ξ1 − ξ2|
· ν(ξ2) =

ξ3 − ξ2

|ξ3 − ξ2|
· ν(ξ2) ≥ cosϑv .
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Similarly, the no-occlusion condition holds if and only if there exists an angle φno ∈ (0, π/2) with the
property that given any two points ξ1, ξ2 ∈ ∂K such that the segment [ξ1, ξ2] have no point in common with
the interior of the connected component of K containing ξ1, we have

α · ν(ξ1) =
ξ1 − ξ2

|ξ1 − ξ2|
· ν(ξ1) ⇒

ξ2 − ξ1

|ξ2 − ξ1|
· ν(ξ1) ≥ cosφno .

Lemma B.2. There exist constants θ = θ(K), ϑv = ϑv(K) and ϑv,no = ϑv,no(K, α) such that, for 1 ≤ j ≤
m, we have

(B.1) 1 < θ ≤ Rm
j (x) ≤ ϑv,no

and, for j ≥ 1, we have

(B.2) 1 < θ ≤ Lj ≤ ϑv

In particular, the functions βm(x) are non-vanishing on ∂Km.

Proof. Set φ0 = max{φno, φv} and define the quantities θj and ϑj by

θ1 = 1 + 2dminκmin ϑ1 = 1 +
2dmaxκmax

cosφ0

and, for j ≥ 2,

θj = θ1 +
dmin

dmax

(

1 − 1

θj−1

)

ϑj = ϑ1 +
dmax

dmin

(

1 − 1

ϑj−1

)

.

It follows from definition (3.3) that, for 1 ≤ j ≤ m, we have

1 < θ1 ≤ θj ≤ Rm
j (x) ≤ ϑj ≤ ϑ1 +

dmax

dmin
.

Setting θ = θ1 and ϑv,no = ϑ1 + dmax/dmin yields (B.1) Similarly, using φ0 = φv in the definition of ϑ1 one
obtains (B.2). �

In what follows, we shall simply write ϑ instead of ϑv,oc and ϑv.

Lemma B.3. There exists a constant C3 = C3(K, α) such that

(B.3)

∣

∣

∣

∣

Rm
1 (x)

Rm+n
1 (x)

− 1

∣

∣

∣

∣

≤ C3

θ

1
∑

l=0

|xm+n
l (x) − xm

l (x)|

and, for 2 ≤ j ≤ m, we have

(B.4)

∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

≤ C3

θ

2
∑

l=0

|xm+n
j−l (x) − xm

j−l(x)| +
cm
j (x)

θ2

∣

∣

∣

∣

∣

Rm
j−1(x)

Rm+n
j−1 (x)

− 1

∣

∣

∣

∣

∣

and

(B.5)

∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j+n (x)

− 1

∣

∣

∣

∣

∣

≤ C3

θ

2
∑

l=0

|xm+n
j+n−l(x) − xm

j−l(x)| +
cm
j (x)

θ2

∣

∣

∣

∣

∣

Rm
j−1(x)

Rm+n
j+n−1(x)

− 1

∣

∣

∣

∣

∣

and

(B.6)

∣

∣

∣

∣

∣

Lj

Rm+n
j+n (x)

− 1

∣

∣

∣

∣

∣

≤ C3

θ

2
∑

l=0

|xm+n
j+n−l(x) − aj−l| +

cj

θ2

∣

∣

∣

∣

∣

Lj−1

Rm+n
j+n−1(x)

− 1

∣

∣

∣

∣

∣

Proof. We note that the identity

(B.7) Rm+n
j (x)

(

Rm
j (x)

Rm+n
j (x)

− 1

)

=
(

bm
j (x) − bm+n

j (x)
)

+ (1 − δ1j)

(

cm
j (x)

(

1 − 1

Rm
j−1(x)

)

− cm+n
j (x)

(

1 − 1

Rm+n
j−1 (x)

))
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(where δ1j is the Kronecker symbol) holds for 1 ≤ j ≤ m. Setting

dm
j (x) = |xm

j+1(x) − xm
j (x)|

and

cosαm
j (x) =

xm
j+1(x) − xm

j (x)

|xm
j+1(x) − xm

j (x)| · ν(xm
j (x))

we see that the identities

(B.8) bm
j (x) − bm+n

j (x) =
2dm+n

j−1 (x)

cosαm+n
j−1 (x)

(

κ(xm
j−1(x)) − κ(xm+n

j−1 (x))
)

+
2κ(xm

j−1(x))

cosαm+n
j−1 (x)

dm
j−1(x)

cosαm
j−1(x)

(

cosαm+n
j−1 (x) − cosαm

j−1(x)
)

+
2κ(xm

j−1(x))

cosαm+n
j−1 (x)

(

dm
j−1(x) − dm+n

j−1 (x))
)

and

(B.9) cosαm+n
j−1 (x) − cosαm

j−1(x) =
[xm+n

j (x) − xm+n
j−1 (x)] − [xm

j (x) − xm
j−1(x)]

dm
j−1(x)

· ν(xm
j−1(x))

+
dm

j−1(x) − dm+n
j−1 (x)

dm
j−1(x)

xm+n
j (x) − xm+n

j−1 (x)

|xm+n
j (x) − xm+n

j−1 (x)| ·ν(xm
j−1(x))+

xm+n
j (x) − xm+n

j−1 (x)

|xm+n
j (x) − xm+n

j−1 (x)| ·
(

ν(xm+n
j−1 (x)) − ν(xm

j−1(x))
)

hold for 1 ≤ j ≤ m, and the identity

(B.10)

cm
j (x)

(

1 − 1

Rm
j−1(x)

)

− cm+n
j (x)

(

1 − 1

Rm+n
j−1 (x)

)

=
1

dm+n
j−2 (x)

(

dm
j−1(x) − dm+n

j−1 (x)
)

(

1 − 1

Rm+n
j−1 (x)

)

+
dm

j−1(x)

dm+n
j−2 (x)dm

j−2(x)

(

dm+n
j−2 (x) − dm

j−2(x)
)

(

1 − 1

Rm+n
j−1 (x)

)

−
cm
j (x)

Rm+n
j−1 (x)

(

Rm+n
j−1 (x)

Rm
j−1(x)

− 1

)

holds for 2 ≤ j ≤ m. Now, since the curvature is a smooth function of the (compact) boundary curve, an
appeal to the mean value theorem implies that

∣

∣κ(xm+n
j−1 (x)) − κ(xm

j−1(x))
∣

∣ ≤ Cκ|xm+n
j−1 (x) − xm

j−1(x)|
for some constant Cκ = Cκ(K). We also note that

∣

∣dm+n
j−1 (x) − dm

j−1(x)
∣

∣ ≤ |xm+n
j (x) − xm

j (x)| + |xm+n
j−1 (x) − xm

j−1(x)|
and

∣

∣dm+n
j−2 (x) − dm

j−2(x)
∣

∣ ≤ |xm+n
j−1 (x) − xm

j−1(x)| + |xm+n
j−2 (x) − xm

j−2(x)|
and

∣

∣[xm
j (x) − xm

j−1(x)] − [xm+n
j (x) − xm+n

j−1 (x)]
∣

∣ ≤ |xm+n
j (x) − xm

j−1(x)| + |xm+n
j−1 (x) − xm

j−1(x)| ;

and using a simple geometric argument, we obtain
∣

∣

∣

∣

∣

xm+n
j (x) − xm+n

j−1 (x)

|xm+n
j (x) − xm+n

j−1 (x)| ·
(

ν(xm
j−1(x)) − ν(xm+n

j−1 (x))
)

∣

∣

∣

∣

∣

≤
∣

∣ν(xm
j−1(x)) − ν(xm+n

j−1 (x))
∣

∣ ≤ κmax|xm+n
j−1 (x) − xm

j−1(x)|
Finally, we note that 0 < 1/Rm

j (x) < 1/θ and |1− 1/Rm
j (x)| < 1− 1/ϑ < 1. In light of these estimates using

triangle inequality in equations (B.8), (B.9) and (B.10) yields the estimates (B.3) and (B.4) for the choice
of the constant

C3 =
2κmax

cosφ0
+

4κmax

cos2 φ0
+

2κ2
maxdmax

cos2 φ0
+

2Cκdmax

cosφ0
+

1

dmin
+

dmax

d2
min

.

Similarly (B.5) and (B.6) hold with the same constant. �

Equation (3.5) and Definition 4.8 yield the following estimates.



34 F. ECEVIT AND F. REITICH

Lemma B.4. For any 2 ≤ j1 ≤ j2 ≤ m, we have

(B.11)

j2
∏

q=j1

cm
q (x) ≤ dmax

dmin
and

j2
∏

q=j1

cq ≤ dmax

dmin

Remark B.5. In what follows, we utilize the conventions that an empty sum is 0 and an empty product is 1.

Remark B.6. From now on, we set δ = max{δ1, δ2, 1/θ}.

Lemma B.7. There exists a constant C4 = C4(K, α) such that, for 1 ≤ j ≤ m, we have

(B.12)

∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

≤ C4δ
m−j

and, for 2 ≤ j ≤ m, we have

(B.13)

∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j+n (x)

− 1

∣

∣

∣

∣

∣

≤ C4

(

δj + δm−j
)

and

(B.14)

∣

∣

∣

∣

∣

Lj

Rm+n
j+n (x)

− 1

∣

∣

∣

∣

∣

≤ C4

(

δj + δm−j
)

Proof. Using Lemma 4.4 in (B.3) and (B.4) yields with C = C2C3

C−1

∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

≤ δm−(j−1)+3(j−1) (1 + δ)

j
∏

q=2

cm
q (x) +

j−2
∑

l=0

δm−(j−1)+3l
(

1 + δ + δ2
)

j
∏

q=j−l+1

cm
q (x)

On account of Lemma B.4, we therefore obtain
∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

≤ Cδ

1 − δ

dmax

dmin
δm−j

which proves (B.12). To prove (B.13), first we note that

(B.15)

∣

∣

∣

∣

∣

Rm
1 (x)

Rm+n
1+n (x)

− 1

∣

∣

∣

∣

∣

≤ 2ϑ

θ
≤ 2ϑδ .

Using (B.15) and Lemma 4.3 in (B.5) yields with C = max{C1C3, 2ϑ}

C−1

∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j+n (x)

− 1

∣

∣

∣

∣

∣

≤ δ2j−1

j
∏

q=2

cm
q (x) +

(

1 + δ + δ2
)

j−1
∑

l=0

(

δj−1+l + δm−(j−1)+3l
)

j
∏

q=j−l+1

cm
q (x)

so that, using Lemma B.4, we obtain
∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j+n (x)

− 1

∣

∣

∣

∣

∣

≤ C
dmax

dmin
max

{

δ,
1

δ

}

1 + δ + δ2

1 − δ

(

δj + δm−j
)

proving (B.13). The proof of (B.14) is similar to that of (B.13); first one notes that (B.15) holds with Rm
1 (x)

replaced by L1, and uses this inequality together with Lemma 4.3 in (B.6) to obtain (B.14). �

Lemma B.8. There exists a constant C5 = C5(K, α) such that, for [m/2] ≤ j ≤ m, we have

(B.16)

∣

∣

∣

∣

∣

Rm
j (x)

Rm+n
j+n (x)

− 1

∣

∣

∣

∣

∣

≤ C5δ
j
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Proof. It follows from (B.13) that with p = [m/2]

(B.17)

∣

∣

∣

∣

∣

Rm
p (x)

Rm+n
p+n (x)

− 1

∣

∣

∣

∣

∣

≤ C4

(

δp + δm−p
)

Using (B.17) and Lemma 4.3 in (B.5) yields, for 0 ≤ j ≤ m − p,

C−1

∣

∣

∣

∣

∣

Rm
p+j(x)

Rm+n
p+j+n(x)

− 1

∣

∣

∣

∣

∣

≤
(

δp+2j + δm−p+2j
)

j
∏

q=1

cm
p+q(x) +

(

1 + δ + δ2
)

j−1
∑

l=0

δp−1+j+l

j
∏

q=j−l+1

cm
p+q(x)

where C = max{C2C3, C4}. Therefore, Lemma B.4 yields
∣

∣

∣

∣

∣

Rm
p+j(x)

Rm+n
p+j+n(x)

− 1

∣

∣

∣

∣

∣

≤ 4C

δ(1 − δ)

dmax

dmin
δp+j

for 0 ≤ j ≤ m − p. �

Lemma B.9. Let {Aj}j∈Z and {Bj}j∈Z be two sets of complex numbers. Then, for any m1 ≤ m2, we have

(B.18)

∣

∣

∣

∣

∣

∣

m2
∏

j=m1

Aj −
m2
∏

j=m1

Bj

∣

∣

∣

∣

∣

∣

≤
m2
∑

j=m1

|Aj − Bj |
j−1
∏

p=m1

|Ap|
m2
∏

q=j+1

|Bq|

and

(B.19)

∣

∣

∣

∣

∣

∣

m2
∏

j=m1

Aj − 1

∣

∣

∣

∣

∣

∣

≤ exp





m2
∑

j=m1

|Aj − 1|





m2
∑

j=m1

|Aj − 1|

Proof. A straightforward induction yields (B.18). Applying (B.18) with Bj = 1, and noting that |Aj | ≤
1 + |Aj − 1|, we obtain

∣

∣

∣

∣

∣

∣

m2
∏

j=m1

Aj − 1

∣

∣

∣

∣

∣

∣

≤
m2
∏

j=m1

(1 + |Aj − 1|)
m2
∑

j=m1

|Aj − 1| .

Since the function f(x) = ln(1 + x) − x is decreasing on [0,∞) and f(0) = 0, (B.19) follows. �

Lemma B.10. There exists a constant C6 = C6(K, α) such that with p = [m/2]

(B.20)

∣

∣

∣

∣

∣

∣

p−1
∏

j=1

Rm
j (x)

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

∣

≤ C6δ
m/2

and

(B.21)

∣

∣

∣

∣

∣

∣

m
∏

j=p

Rm
j (x)

Rm+n
j+n (x)

− 1

∣

∣

∣

∣

∣

∣

≤ C6δ
m/2

and

(B.22)

∣

∣

∣

∣

∣

∣

p+n−1
∏

j=p

Lj−n

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

∣

≤ C6δ
m/2−n

provided n < m/2.

Proof. Applying (B.19) with Aj = Rm
j (x)/Rm+n

j (x) yields via (B.12)
∣

∣

∣

∣

∣

∣

p−1
∏

j=1

Rm
j (x)

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

∣

≤ C4 exp



C4

p−1
∑

j=1

δm−j





p−1
∑

j=1

δm−j
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so that
∣

∣

∣

∣

∣

∣

p−1
∏

j=1

Rm
j (x)

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

∣

≤ C4

1 − δ
exp

(

C4

1 − δ

)

δm/2

which proves (B.20). The proof of (B.21) making use of (B.19) and Lemma B.8 is similar. Finally, to prove
(B.22), applying (B.19) with Aj = Lj−n/Rm+n

j (x) yields on account of (B.14)
∣

∣

∣

∣

∣

∣

p+n−1
∏

j=p

Lj−n

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

∣

≤ C4 exp



C4

p+n−1
∑

j=p

(δj−n + δm−(j−n))





p+n−1
∑

j=p

(δj−n + δm−(j−n))

so that
∣

∣

∣

∣

∣

∣

p+n−1
∏

j=p

Lj−n

Rm+n
j (x)

− 1

∣

∣

∣

∣

∣

∣

≤ 2C4

1 − δ
exp

(

2C4

1 − δ
δp−n

)

δp−n

from which (B.22) follows at once. �

Remark B.11. For a positive real number A, we have
∣

∣

∣

√
A − 1

∣

∣

∣ =
|A − 1|√

A + 1
≤ |A − 1| .
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