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Abstract

Given a smooth vector field Γ and assuming the knowledge of an infinitesimal sym-
metry X, Hojman [J. Phys. A 29 (1996), no. 3, 667–674] proposed a method for finding
both a Poisson tensor and a function H such that Γ is the corresponding Hamiltonian
system. In this paper we approach the problem from geometrical point of view. The
geometrization leads to the clarification of several concepts and methods used in Ho-
jman’s paper. In particular the relationship between the nonstandard Hamiltonian
structure proposed by Hojman and the degenerate quasi-Hamiltonian structures intro-
duced by Crampin and Sarlet [J.Math.Phys 43 (2002) 2505-2517] is unveiled in this
paper. We also provide some applications of our construction.
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1 Introduction

About a decade ago Hojman [12] proposed a general technique to find a Hamiltonian
structure for a given equation of motion using one infinitesimal symmetry transforma-
tion and one constant of motion. This method to construct Hamiltonian structures
applies for system of both ordinary and partial differential equations.

Afterwards Hojman gave several examples [11, 14] of the construction of such Hamil-
tonian structures for dynamical systems in field theory without using any Lagrangian.
This method includes a procedure for increasing the rank of the resulting (very singular)
Poisson Bracket by using additional symmetries.

The standard way to construct Hamiltonian theories can be found in numerous
textbooks. It starts from a regular Lagrangian and the Legendre transformation is used
to define momenta and a Hamiltonian function. This is not the most general situation
and actually there has been a tremendous interest in studying nonstandard approaches
to produce Hamiltonian structures starting from the equations only, without using a
Lagrangian, and for instance the minimal coupling can be obtained under some locality
assumptions [2, 4, 10].

In the most general construction the knowledge of a Lagrangian is not at all nec-
essary. Hojman’s method works even when the Lagrangian description fails to exist
because the method needs only the knowledge of a constant of motion and a solution
of the infinitesimal symmetry equation. Note that the choice of the symmetry vector
field needed to define the Poisson matrix is determined solely by the requirement of
getting a nonvanishing deformation of the Hamiltonian for a given H.

The main aim of this article is to explore the geometry of Hojman’s construction
and its close relationship with the degenerate quasi-Hamiltonian theory proposed by
Crampin and Sarlet [7]. They demonstrated how to represent a cofactor system as a
Hamiltonian vector field with respect to a Poisson structure defined on an extended
manifold. This method illustrated the generalization of the work on Euclidean spaces of
Lundmark [17] and involves an application of quasi-Hamiltonian systems. A vector field
Z on a manifold M is said to be quasi-Hamiltonian with respect to a Poisson bivector
Π with a corresponding linear map Π̂ = Π♯ :

∧
1(M) → X(M) if FZ = −Π̂(dH) for

some functions F and H on M with F nonvanishing. Then

Π̃ = Π + (Z + zF−1 Π̂(dF )) ∧
∂

∂z

is a Poisson bivector on M × R [7]. We further discuss these structures with an illus-
tration.

This paper is organized as follows: In Section 2 we review Hojman’s construction of a
Poisson structure out of a symmetry and a conservation law of a dynamical system. We
give a geometrical description of Hojman’s construction in Section 3. In other words
we explore a more geometrical approach to Hojman’s problem. The case of partial
differential equations and classical field theory is analysed in Section 4 and the theory
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is illustrated with some examples. Section 5 is devoted to quasi-Hamiltonian structures
and to discussing its connection with degenerate quasi-Hamiltonian structure. The
example of KdV equation is given in Section 6. We finish our paper with a modest
conclusion in Section 7.

2 Hojman’s Construction

In this section we present a rapid introduction to Hojman’s construction. Consider an
autonomous differential equation,

dxa

dt
= fa(xb), a, b = 1, · · · , N. (1)

We seek a Poisson tensor, J , and a smooth function, H, such that

Jab ∂H

∂xb
= fa (2)

(summation on repeated indexes is understood).
We recall that the Poisson tensor is a skew-symmetric tensor satisfying

Jab
,dJ

dc + Jbc
,dJ

da + Jca
,dJ

db = 0 (3)

so that the Poisson Bracket between any two dynamical variables, P (xa) and Q(xb),
defined by

{P,Q} =
∂P

∂xa
Jab ∂Q

∂xb
(4)

satisfies the antisymmetry condition and Jacobi identity

{P, {Q,R}} + {Q, {R,P}} + {R, {P,Q}} = 0

for any three functions.

Note that as a consequence of the skew-symmetry of J the function H is a constant
of the motion because

fa ∂H

∂xa
= Jab ∂H

∂xb

∂H

∂xa
= 0 .

Definition 2.1 An infinitesimal symmetry of the given differential equation (1) is an
infinitesimal transformation

x̃a = xa + ǫ ηa(xb, t), (5)

which maps each solution into a solution of the given differential equation.
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It was shown by Lie (see e.g. [13, 15, 22]) that the condition for such a transformation
to be a symmetry is the existence of a function λ(x, t) such that η satisfies

∂tη
a + ηa

,bf
b − fa

,bη
b = λ(x, t) fa(x) ∀a = 1, . . . , N . (6)

It is to be remarked that given an infinitesimal symmetry we can define new infinites-
imal symmetries just replacing ηa(x, t) by η̄a(x, t) = ηa(x, t) + µ(x, t) fa(x). In fact

∂tη̄
a + η̄a

,bf
b − fa

,bη̄
b = ∂tη

a + ηa
,bf

b − fa
,bη

b + fa∂tµ+µ fa
,bf

b +µ,bf
af b − fa

,bµf
b

and therefore

∂tη̄
a + η̄a

,bf
b − fa

,bη̄
b = (λ+ ∂tµ+ µb f

b)fa ∀a = 1, . . . , N ,

i.e., the infinitesimal transformation defined by η̄a is also a symmetry of the given
autonomous system. In particular, if λ(x, t) in (6) reduces to a real number, we can
choose µ = −λ t and then η̄a = ηa − λ t fa is an infinitesimal symmetry for which the
right hand side of (6) vanishes.

In the framework of autonomous systems in which no time-reparametrization is
allowed the function λ appearing in (6) must be zero.

Moreover, if the function K(xb, t) is a constant of the motion and the infinitesimal
transformation (5) is a symmetry, then

x̃a = xa + ǫK(xb, t) ηa(xb, t), a = 1, . . . , N ,

is also an infinitesimal symmetry. In fact, if η̃a = K ηa, then

∂tη̃
a + η̃a

,bf
b − fa

,bη̃
b = K (∂tη

a + ηa
,bf

b − fa
,bη

b) + ηa (∂tK +K,b f
b) = 0 .

Definition 2.2 The deformation K of a function H(xa) corresponding to the infinites-
imal transformation (5) is given by

K ≡
∂H

∂xa
ηa. (7)

Note that, if the function H(xa) is a constant of the motion given by (1), then the
deformation K of H along an infinitesimal symmetry of the given system of differential
equations is also a constant of the motion because

∂K

∂t
+
∂K

∂xa
fa =

∂H

∂xa

∂ηa

∂t
+

∂2H

∂xa∂xb
f b ηa +

∂H

∂xa

∂ηa

∂xb
f b

and using (6) we find

∂K

∂t
+
∂K

∂xa
fa =

∂H

∂xa
(λ fa+fa

,bη
b)+

∂2H

∂xa∂xb
f b ηa = λ fa ∂H

∂xa
+ηb ∂

∂xb

(
fa ∂H

∂xa

)
= 0 .
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Theorem 2.3 Let (5) be an infinitesimal symmetry of the autonomous system (1) and
H(xb) be a constant of the motion for evolution such that its deformation K does not
vanish. Then

Jab =
1

K
(fa ηb − f b ηa) (8)

is a Poisson structure for such a dynamics and the system is Hamiltonian with Hamil-
tonian H. Here K is the deformation of H along the infinitesimal transformation.

The matrix Jab for a nonvanishing K is a Poisson matrix such that

Jab ∂H

∂xb
=

1

K
(faηb − f bηa)

∂H

∂xb
= fa . (9)

3 Geometrical description of Hojman’s con-

struction

In the geometric approach to ordinary differential equations the autonomous system
(1) is replaced by a vector field Γ in a manifold M with a local coordinate expression

Γ = fa(x)
∂

∂xa
. (10)

Its integral curves are solution of (1). An infinitesimal symmetry of the system is given
by a vector field X ∈ X(M) with a local coordinate expression

X = ηa ∂

∂xa

such that [X,Γ] = 0.

A Poisson structure on a manifold M is a bivector field Π satisfying [Π,Π] = 0,
where [·, ·] is the Schouten Bracket. Such a bivector field provides us with a C∞(M)-
linear map Π̂ :

∧
1(M) → X(M) of the set of 1-forms in M into that of vector fields by

means of 〈β, Π̂(α)〉 = Π(α, β). The Poisson bracket of two functions f1, f2 ∈ C∞(M)
associated to Π is defined as {f1, f2} = Π(df1, df2) and the vanishing of the Schouten
Bracket demonstrates the Jacobi identity of the Poisson Bracket [16, 20, 23, 25].

We recall that the Schouten bracket [·, ·] is the unique extension of the Lie bracket
of vector fields to the exterior algebra of multivector fields, making it into a graded
Lie algebra (the grading in this algebra is given by the ordinary degree as multivectors
minus one). Given a multivector field V on M , the linear operator [V, ·] defined a
derivation on the exterior algebra of multivector fields on M , the degree of which is the
ordinary degree of V . In particular, if V = X ∧ Y is a monomial bivector field, then

[V, V ] = 2X ∧ Y ∧ [X,Y ]. (11)
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Proposition 3.1 i) If the vector fields X and Y generate a two-dimensional integrable
distribution, then V = X ∧ Y is a Poisson bivector.

ii) If the vector field X together with the dynamical vector field Γ generate a two-
dimensional integrable distribution, then Π = Γ ∧X is a Poisson bivector.

iii) If X and Y are two commuting vector fields in M , then V = X∧Y is a Poisson
bivector.

iv) In particular, if X is an infinitesimal symmetry of Γ, then Π = Γ ∧ X is a
Poisson bivector field.

Proof: i) is a consequence of the above-mentioned relation (11). Then ii) and iii)
are particular cases of i) and iv) is a particular case of iii).

2

Note that the bivector field Π = Γ ∧ X is of rank two and therefore degenerate
when dimM is higher than two. Moreover in this case, if f is a constant of the motion
for Γ, f Γ ∧X is a Poisson bivector too because then f X would also be a symmetry
of Γ. Similarly, if the function f is such that Xf = 0, then f Γ ∧X is also a Poisson
bivector.

If H ∈ C∞(M) is a function in a Poisson manifold (M,Π), then Γ = −Π̂(dH) is
said to be the Hamiltonian vector field corresponding to the Hamiltonian function H.
This vector field, Γ, satisfies LΓΠ = 0, which is equivalent to LΓΠ̂ = 0.

When X is an infinitesimal symmetry of Γ, the bivector field Π = Γ∧X is a Poisson
bivector such that

LΓΠ = 0

because
LΓΠ = [Γ,Γ] ∧X + Γ ∧ [Γ,X] = 0 .

Definition 3.2 A vector field Γ on a Poisson manifold is called quasi-Hamiltonian if
there exists a nowhere-vanishing function K such that K Γ, is a Hamiltonian vector
field:

K Γ = −Π̂(dH) H ∈ C∞(M) . (12)

If M is connected, then K must be either everywhere positive or everywhere nega-
tive.

The geometric version of the result of Hojman given in [12] is the following:

Theorem 3.3 Let X ∈ X(M) be an infinitesimal symmetry of the dynamical vector
field Γ and H ∈ C∞(M) a constant of the motion for evolution. Then the vector field Γ
is quasi-Hamiltonian with respect to the Poisson structure Π = Γ∧X. Moreover, if the
deformation of H along X is a nowhere vanishing function, then J = (1/K)Π is also
a Poisson structure and the vector field Γ is the Hamiltonian vector field determined
by H and J .
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Proof: If Π = Γ ∧X, then

−Π̂(dH) = −(ΓH)X + (XH) Γ = K Γ ,

while, as K is a constant of motion, the bivector, J = (1/K)Π, is also a Poisson vector
and then

−Ĵ(dH) = Γ .

One of the most important advantages of this coordinate-free presentation is that
proofs are also valid for infinite-dimensional manifolds and the results of this theorem
are used below in the infinite-dimensional case. As far as the coordinate dependence
is concerned note that the components of J are those of (8). It is also to be remarked
that one can generate constants of motion by recursive applications of the vector field
X on H, i.e., (XnH), because they are also constants of motion. These yield many
quasi-Hamiltonian structures.

We can also construct Poisson bivectors for dynamics of rank higher than two when
not only one infinitesimal symmetry, X1, is known but three of them, X1,X2,X3,
independent and commuting among themselves. In fact, as [X2,X3] = 0, X2 ∧X3 is a
Poisson bivector which is compatible with Γ ∧X1 because

[Γ ∧X1,X2 ∧X3] = [Γ ∧X1,X2] ∧X3 +X2 ∧ [Γ ∧X1,X3] ,

then

[Γ∧X1,X2∧X3] = [Γ,X2]∧X1∧X3+Γ∧[X1,X2]∧X3+X2∧[Γ,X3]∧X1+X2∧Γ∧[X1,X3]

and all terms on the right hand side vanish. The bivector field Γ ∧ X1 + X2 ∧ X3 is
therefore a Poisson bivector field and, as LΓ([X2,X3]) = 0, it is also admissible for Γ.

Consider the geometric theory from the t-dependent approach. The time t plays the
same role as the usual coordinates and curves obtained by reparametrization are to be
considered as equivalent curves. This amounts to considering a new system replacing
(1), 




dxa

dτ
= fa(xb), a, b = 1, · · · , N,

dt

dτ
= 1

or even better the family of systems





dxa

dτ
= λ(xb, t) fa(xb), a, b = 1, · · · , N,

dt

dτ
= λ(xb, t)
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for any nonvanishing arbitrary function λ. In other words the relevant object is not
the vector field in the space M anymore but the one-dimensional distribution in M×R

generated by the vector field

Γ =
∂

∂t
+ fa(x)

∂

∂xa
. (13)

Infinitesimal symmetries of the system are given by vector fields Y preserving the
distribution, i.e., there exists a function λ(xb, t) such that

[Γ, Y ] = λ Γ . (14)

If Y is an infinitesimal symmetry, then for each function µ(xb, t) the vector field
Y + µΓ is also a symmetry because

[Γ, Y + µΓ] = [Γ, Y ] + (Γµ)Γ = (λ+ Γµ) Γ .

In particular, when λ reduces to a real number, it suffices to take µ = −λ t in order to
obtain

[Γ, Y − λ tΓ] = 0 .

4 Partial differential equations and classical field

theory

In the case of an infinite-dimensional system corresponding to a classical field ordinary
differential equations are replaced by partial differential equations. The superscripts i
are replaced by the continuous variable x and the manifold M is replaced by a Banach
space F of functions u(x) (for instance a L2(R, µ)). Functions on M become now
functionals F [u] on such subset of functions and their derivatives and in particular we
are interested in functionals like

G[u] =

∫

R

dx G(u, ux, . . . , uxx···x) .

They constitute an associative and commutative algebra. Vector fields appear now
as derivations of such an algebra.

The functional derivative of a functional G in the η direction is

dG[u](η) =

∫

R

δG

δu(x)
η(x)dx, (15)

where
δG

δu(x)
=
∂G

∂u
−

∂

∂x

(
∂G

∂ux

)
+

∂2

∂x2

(
∂G

∂uxx

)
+ · · · .

8



All the structures appearing in finite-dimensional dynamical systems can be trans-
lated to this new framework and play a similar rôle. For instance vector fields are
written as

Y [u] =

∫

R

dx Y(u, ux, . . . , ux···x)
δ

δu(x)
. (16)

Infinitesimal transformations are described by vector fields like (16) while differen-
tial equations describing time evolution as

ut = F(u, ux, . . . , ux···x) (17)

are described by the vector field

Γ[u] =

∫

R

dx F(u, ux, . . . , ux···x)
δ

δu(x)
. (18)

As in the finite-dimensional case the infinitesimal transformation (16) is said to be
a symmetry of the dynamics given by (18) if there exists a function λ such that [Γ, Y ] =
λΓ and in this case for any function µ the infinitesimal transformation determined by
Y + µΓ is a symmetry too. Moreover, if λ reduces to a real number, then Y − λΓ is
such that [Γ, Y ] = 0.

Similarly bivector fields are given by

Π[u] =

∫

R2

dx dy J(x, y, [u])
δ

δu(x)
∧

δ

δu(y)
(19)

which allow one to define a skew-symmetric bilinear bracket in the space of functionals
by

{P,Q}[u] ≡

∫

R2

δP

δu(x)
J(x, y, [u])

δQ

δu(y)
dx dy (20)

and the bivector field is said to be a Poisson bivector if the Jacobi identity holds for
any three functionals. Given such a Poisson bivector and choosing a Hamiltonian

H[u] =

∫

R

H(u, ux, . . .) dx

one obtains the time evolution which is given by

ut(x) = {u(x),H} =

∫

R

dy J(x, y, [u])
δH

δu(y)
. (21)

The theory developed for finite-dimensional systems generalizes easily to this more
general context by the replacement of partial derivatives by variational derivatives. As
a specific example of the procedure described so far we use the KdV equation (see e.g.
[9]). The equation of motion is

ut + uux + uxxx = 0 (22)
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or written in a different way
ut = −uux − uxxx

which corresponds to (1) with the following choice for the function f (only one com-
ponent) appearing in such equation:

f ≡ −uxxx − uux. (23)

In other words the dynamics is given by the vector field

Γ[u] =

∫

R

dx (−uxxx − uux)
δ

δu(x)
. (24)

It is easy to check that the time-independent infinitesimal transformation defined
by the function

η0 = −2u− xux (25)

is an infinitesimal symmetry of (22). In fact, if X is the vector field

X[u] =

∫

R

dx (−2u− xux(x))
δ

δu(x)

and Γ is given by (24), then, as

δ

δu(x)
(−uxxx − uux) = 0,

δ

δu(x)
(−2u− xux) = −1 ,

we obtain that

[X,Γ][u] =

[∫

R

dx (−2u− xux(x))
δ

δu(x)
,

∫

R

dx (−uxxx − uux)
δ

δu(x)

]
= Γ[u] .

Consequently the transformation given by

η = −2u− xux − t(uxxx + uux), (26)

which only differs in the addition of an appropriate term proportional to f , is a strict
infinitesimal symmetry, i.e., [Γ, Y ] = 0.

Note that, if F [u] is the functional given by

F [u] =

∫

R

xux dx,

then ΓF [u] = −1 and therefore all vector fields of the family

Xk[u] =

∫

R

dx (−2u− kxux(x))
δ

δu(x)
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are also infinitesimal symmetries of the dynamics. This is so because xux = d/dx(xu)−
u and the functional

M [u] =

∫

R

u dx

is a constant of the motion. The corresponding strict infinitesimal symmetry would be
given by

ηk = −2u+ xux − (2 − k) t(uxxx + uux) .

It has been proved in [9] that the functionals H1 and H2 defined by

H1[u] =

∫

R

(
−
u2

x

2
+

1

3!
u3

)
dx , H2[u] =

1

2

∫

R

u2 dx

are constants of the motion. Moreover it has been proved that the KdV equation
admits two different Poisson structures for which the Hamiltonians are H1 and H2.

The deformations K1 and K2 of the above mentioned functionals H1 and and H2

along η0 given by (25) are

K1[u] ≡

∫

R

δH1

δu(x)
η0 dx = −5H1

K2[u] ≡

∫

R

δH2

δu(x)
η0 dx = −3H2 (27)

because
δH1

δu(x)
=

1

2
u2 + uxx ,

δH2

δu(x)
= u

and then

K1[u] ≡

∫

R

(
1

2
u2 + uxx

)
(−2u−xux) dx =

∫

R

(
−u3 − 2uuxx − xux

(
1

2
u2 + uxx

))
dx

and having in mind that

ux

(
1

2
u2 + uxx

)
=

d

dx

(
1

3!
u3 +

1

2
u2

x

)
, u uxx =

d

dx
(uux) − u2

x

an integration by parts shows us that
∫

R

xux

(
1

2
u2 + uxx

)
dx = −

∫

R

(
1

3!
u3 +

1

2
u2

x

)
dx , −2

∫

R

uuxxdx = 2

∫

R

u2

x

and therefore

K1[u] =

∫

R

[
−u3 + 2u2

x +

(
1

3!
u3 +

1

2
u2

x

)]
dx = −5H1[u].

In a similar way

K2[u] ≡

∫

R

δH2

δu(x)
η dx =

∫

R

u (−2u− xux) dx

11



and using integration by parts in the last term having in mind that uux = (1/2)d/dx(u2)
we obtain

K2[u] ≡

∫

R

(
−2 +

1

2

)
u2 = −3H2[u] .

The theory developed above for finite-dimensional systems also applies in this case.
Therefore, given a differential equation like (17) for which an infinitesimal symmetry
(16) and a constant of the motion H such that its deformation K does not vanish are
known, then the bivector field (19), where

J(x, y)[u] = F(u(x))Y(u(y)) −F(u(y))Y(u(x)) , (28)

is a Poisson bivector and the dynamics is quasi-Hamiltonian. Moreover

{P,Q}[u](z) ≡
1

K(z)

∫

R2

δP

δu(x)
[F(u(x))Y(u(y)) −F(u(y))Y(u(x))]

δQ

δu(y)
dx dy,

(29)
where K denotes the deformation of H, is also a Poisson Bracket and the dynamics is
Hamiltonian with respect to this new Poisson structure with Hamiltonian function H.

Theorem 4.1 Consider the infinitesimal transformation determined by η0 = −2u −
xux which is a symmetry of the KdV equation

ut + uux + uxxx = 0

and consider the functional H1[u] =
∫

R
u2 dx which is a constant of the motion. Then

the system is quasi-Hamiltonian with respect to the Poisson bivector field defined by

J(y, z) = (u(y)ux(y)+uxxx(y))(2u(z)−zux(z))−(2u(y)−yux(y))(u(z)ux(z)+uxxx(z))

and, as H1[u] =
∫

R
u2 dx is a constant of the motion,

{P,Q}[u(z)] ≡
1

u(z)

∫

R

∫

R

δP

δu(x)
[(u(y)ux(y) + uxxx(y))(2u(z) − zux(z))

−(2u(y) − yux(y))(u(z)ux(z) + uxxx(z))]
δQ

δu(y)
dx dy

also defines a Poisson structure such that the Hamiltonian flow corresponding to H1 is
given by the KdV equation

ut + uux + uxxx = 0.

The theorem is a straightforward consequence of the theory we have developed and

δH

δu
=

∫

R

u dx .
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5 Hamiltonization of quasi-Hamiltonian dynam-

ics

Let Γ be a vector field on a Poisson manifold (M,Π) which is quasi-Hamiltonian with
respect to a Poisson bivector Π, i.e., there exists a nowhere-vanishing function K ∈
C∞(M) such that K Γ is a Hamiltonian vector field: K Γ = −Π̂(dH). Then, as it has
been shown by Crampin and Sarlet [6], there is a Poisson bivector Π̃ on M × R which
projects onto Π and a vector field X, Hamiltonian with respect to Π̃, the restriction of
which to the zero section of the bundle π : M ×R → R is the given Γ. Such a bivector
field is given by

Π̃ = Π + (Γ + tX) ∧
∂

∂t
, (30)

where t is the coordinate on R and X = K−1Π̂(dK). In fact they proved that the con-
ditions for Π̂ to be Poisson again, i.e., the vanishing of the Schouten bracket, [Π̃, Π̃] = 0,
yields

LΓΠ = Γ ∧X, LXΠ = 0, (31)

and both requirements are satisfied if X = K−1Π̂(dK).
Fortunately in the case we are analysing the fact that Π = Γ∧X with K a constant

of motion is enough to assure that (1/K)Π is also a Poisson bivector and Γ is not only
Hamiltonian with respect to Π but also Hamiltonian with respect to the new Poisson
structure (1/K)Π. Therefore this Hamiltonizing process is unnecessary.

6 Example: KdV equation

We can reproduce the Poisson structure of the KdV equation from our approach. We
define the quasi-Hamiltonian vector field

Γ = −

∫
(uxxx + uux)

δ

δu(x)
(32)

and the symmetry vector field

X =

∫
(−2u(y) − yux(y)

δ

δu(y)
(33)

for the KdV equation.
We start with the variational formulation of the KdV. We introduce the Clebsch

velocity potential u = vx. The potential KdV is defined as

vt +
1

2
v2

x + vxxx = 0. (34)

It can be directly checked that the equations of motion can be obtained from the
variational principle

δI = 0, I =

∫
Ldtdx
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with Lagrangian density

L =
1

2
vtvx +

1

6
v3

x −
1

2
v2

xx. (35)

In fact corresponding to the Lagrangian density (35) we find

H = −
1

6
v3

x +
1

2
v2

xx (36)

for Dirac’s total Hamiltonian density of the KdV equation.
The first symplectic form of the KdV equation is defined as

ω = δv ∧ δvx. (37)

It can be easily checked that ω satisfies Hamilton’s equation in the symplectic form

i
Γ̃
ω = δH, (38)

where the vector field

Γ̃ = −(
1

2
v2

x + vxxx)
δ

δv
(39)

defines the flow for the potential KdV equation.

Proposition 6.1 The quasi-Hamiltonian vector field Γ yields a Poisson bivector given
by

Π(x, y) =

∫
dx dy φ(x)ψ(y)

δ

δu(x)
∧

δ

δu(y)
, (40)

where φ(x) = −(uxxx + uux) and ψ(y) = (−2u + yuy). This exactly coincides with
Hojman’s definition of the Poisson structure of the KdV equation.

Proof: By direct computation.
2

7 Conclusion and Outlook

In this paper we have studied from the geometrical point of view Hojman’s construc-
tion of Hamiltonian structures for dynamical systems in field theory without using
Lagrangians. This geometrization has led to the clarification of several techniques of
Hojman, which otherwise looked mysterious. We have established a close link be-
tween Hojman’s construction and degenerate quasi-Hamiltonian structures studied by
Crampin and Sarlet. A generalization of Hojman’s construction for finding Poisson
tensor to the construction of Nambu-Poisson tensor is given. What is required next is
a careful study of bi-Hamiltonian structures associated to Hojman’s construction and
how they are connected to quasi-bi-Hamiltonian systems.

In future we will study the generalization of degenerate quasi-Hamiltonian struc-
ture. The obvious generalization will be towards the Nambu–Poisson direction [1].
Hopefully we will consider a quasi-Nambu-Hamiltonian structure in our forthcoming
work.
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