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Abstract

This paper introduces a new technique for the analysis ofekdrased re-
gression problems. The basic tools are sampling inegeslitinich apply

to all machine learning problems involving penalty termguiced by ker-

nels related to Sobolev spaces. They lead to explicit détéstic results

concerning the worst case behavioureefand v-SVRs. Using these, we
show how to adjust regularization parameters to get besilesapproxi-

mation orders for regression. The results are illustrajeddme numerical
examples.

Keywords: Sampling inequality, radial basis functions, approximatiheory,
reproducing kernel Hilbert space, Sobolev space

1 Introduction

Support Vector (SV) machines and related kernel-basedidigts are modern
learning systems motivated by results of statistical le@theory [9]. The con-
cept of SV machines is to provide a prediction function whichccurate on the
given training data and which is sparse in the sense than ibeavritten in terms
of a typically small subset [6] of all examples, called thesort vectors. There-
fore, SV regression and classification algorithms are tyastated to regularized
problems from classical approximation theory [3], and teghes from functional
analysis were applied to derive probabilistic error boulod$SV regression [2].
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The purpose of this paper is to provide a theoretical franmkwm derive deter-

ministic error bounds for some popular SV machines. We show ¢ sampling

inequality by [11] can be used to bound the worst-case génatian error for the

v- and thee-regression without making any statistical assumptiongennaccu-

racy of the training data. In contrast to the literature, euwor bounds explicitly
depend on the pointwise noise in the data. Thus they can lokfoisany subse-
quent probabilistic analysis modelling certain assunmgtion the noise distribu-
tion.

The paper is organized as follows. In section 2 we review sfacis about reg-
ularized approximation problems in Hilbert spaces withroepicing kernels and
outline the connection to classical SV regression (SVRplemms. We provide
a deterministic error analysis for the and thee-SVR for both exact and inex-
act training data. Our analytical results showing optin@ivergence order in
Sobolev spaces are confirmed by numerical experiments.

2 Regularized Problems

We supposeX to be a positive definite kernel on some dom&nc R¢ and
denote the native space, which is the unique associateatheging kernel Hilbert
space, with\Vx := Nk () [10]. In the following we always think of native
Hilbert spaces as Sobolev spaces with the usual inner protle consider the
following learning or recovery problem. We assume that wegven (possibly
only approximate) function values, ..., yy € R of an unknown functiory’ €
Nk on some scattered points, ..., zx € Q,i.e., f (z;) = y;forj=1,...,N.
To control accuracy and complexity of the reconstructionudianeously, we use
the optimization problem

1

N
1
i 2V (F ) = ul + 55 Ml @)

(ceh)

whereC > 0 is a positive parameter and aliddenotes a positive function which
Is parametrized by a positive real numleerWe point out that’/, need not be a
classical loss function. Therefore we shall give some gobfesults which are
well-known [7] in the case of. being a loss function. Bfk) we denote that there
might be a primal variableincluded in (1) or not.

Theorem 2.1 (Representer theorem) If (f*, (¢*)) is a solution of the optimiza-
tion problem (1), then there exists a vectore R such that

)= Z%‘K(%‘f) 7
ie., f*espan{K (z1,-),..., K (zn,")}
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Proof: Every f € Nx can be decomposed into two parts

f:fH_'_fJ_?

wheref is contained in the linear span &f (z1,-), ..., K (zn,-) andf, is con-
tained in the orthogonal complement, i.6f, fJ_>NK = 0. By the reproducing
property of the kernek in the native space we have

fas) = (it fo K (25,)) v = Gt K (@5,)) 0,

Using this identity (1) can be rewritten as

1 1
(fis K (25)) = y5]) + 20 HfHH/z\/K To0 1l -

1 N
min — V.
f:ful—{-lfL N Zl (
(eER*) 7=

Therefore a solutiofif*, (¢*)) of the optimization problem (1) satisfig$ = 0,
ie. f* espan{ K (z1,-),..., K (zn,-)}. O

We shall use the representer theorem to reformulate infthitensional opti-
mization problems of the form (1) in a finite-dimensionaliset.

3 Support Vector Regression

As a first optimization problem of the form (1) we will considéie »-SVR in
Hilbert space formulation. The function

Ve(z) = |a|, + ev
is related to Vapnik's-intensive loss function

0 if |x] <e
ol = { W

x| —€ if|z] >€

but has an additional term with a positive parameteirhe associated optimiza-
tion problem takes the form

N
o1 1 )
i 7 2 ) il v+ 5 W 2)
eeR =

Theorem 3.1 The optimization problem (2) possesses a solutjone*).



Proof: The problem (2) is equivalent to the optimization problem

2
f%ﬁjzlw 23) = il + %+ 5 1l (3)
€

If we setH := Nx x R we can define an inner product dhby

(h1yha)y, = (f1, fa) e +2CV (11, 7m2)g

for h; = (f;,r;), j = 1,2. SinceR can be identified canonically with the space
of all constant function® — R, the Hilbert spacé{ has the reproducing kernel
K = (K, 500 ) wherel denotes the constant function which maps everything
to 1, i.e. K((z,7),(y,s)) = K(z,y) + 1/(2Cv). With this notation (3) can be
rewritten as

Y 2
Pain, QV(Ix(f,0)) + C I1CF, )5, @)
where
Ix(f,0) = (f(z1),- .-, f(xN),é)T c RN+!
and

N
1
QY RN SR, QY((x,0)) _NZ — Yjl s -

SinceY is continuous oRYN*! for all y € RY, the problem (4) possesses a so-
lution [4, Lemma 1]. O

If we introduce the slack variablés<¢*, the representer theorem gives us an equiv-
alent well known [8] finite-dimensional problem.

N
.1 1
min inKw—l— C- ( N; &+ & )

weRN
£ LeRN
e€ERT
subjectto (Kw), —y; < e+§;,
(—KW)]+yj < €+§; )
5;75]207 6207 (5)

where

K= (K(xi,xj))

denotes the Gram matrix of the kerrrél We will use this equivalent problem for
implementation and our numerical tests.

j=1..N



A particularly interesting problem arises if we skip thegraeterr and lete be
fixed. Then (5) takes the form

N

: 1 T 1 *
min SwKw+C - 5 (& +)
£ EeRN =t

subjectto (Kw), —y; < e+¢;,
(—Kw); +y; < e+§;,
§:&=20. (6)
This problem is well known as-SVR [8]. Similarily to ther-SVR this problem

can be formulated as a regularized minimization problem Hhillaert space [2],
namely

N
1 Lo
L 2 1 () ~wle 5 M ”

Like the-SVR, this optimization problem possesses a solution [#mea 1].

4 A Sampling inequality

We shall employ a special case asampling inequalityrom [11]. It requires the
following assumptions which we need from now on. Ket- R¢ be a bounded
domain with Lipschitz boundary that satisfies an interiare&eoondition. Suppose
further thatK is a radial basis function such that the native Hilbert spsc&

is a Sobolev space, i.eNx = W3 (). Here we assume that — 1] > d/2.
Furthermore, leX = {x1,...,zx} C £ be a discrete set with sufficiently small
fill distance

hxq = i —zj|l2 -
X.0 iggi?é%”f” |2

We shall use the following result from [11].

Theorem 4.1 Let be a positive real number withr — 1| > ¢ and1 < ¢ < oo.
Then there exists a positive constaht- 0 such that for all discrete set§ C ()
with sufficiently small fill distancgx , the inequality

Jull ) < C - (B892 gy ) + ulx ) )
holds for allu € W3 (£2).

We shall apply this theorem to the differente- f* of the functionf € WJ(Q)

to be recovered and a solutigii € WJ () of the regression problem. In our
applications we shall focus on the two main cages oo andg = 2. It will
turn out that we get optimal convergence rates in the n@salase. In presence
of noise the resulting error will explicitly be bounded imrtes of the noise in the
data.



5 v-SVR with exact data
In this section we assume that our given data is exact, i.e.,
flz;) =y; forj=1,...,N, (8)
wheref € W7 ().
Lemma 5.1 Under the assumptions (8) we get
1 e < 1l

* N *
1 1x = Yllewx) < %Hf”/?\/KﬂLG (1= Nv).

Proof: We denote the objective function of (2) by
1 & 1
HE,(F,€) = Z [F(3) = il +ve+ 55l 1R (9)

and the interpolant t¢g with respect taX and K with Iy, that is/y|x = y. With
this notation we have

Sl I, < AP €) < HE(5,0) < sl < 501

since||Z¢||xx < || flln [10] which implies the first claim. Furthermore we have

fori =1, N

N
) =l < Y1) — yle + € < NHE(f7¢") + €1 = Nv)
j=1

N
< NH¢,(I7,0) +€(1 = Nv)y < %Hffoz\/K +e'(1—-Nv)
N *
< a1 e (1= M)

which finishes the proof. O

With Theorem 4.1 we find immediately the following result.

Theorem 5.2 We suppos¢ € Wy () with f(z;) = y;. Let(f*,€*) be a solution
of (2) . Then there is a constaat > 0 such that the approximation error can be
bounded by

* ~ T— — N *
=7 Ny < & (2070 | gy + 35 g + (1= N9) € ).



Proof: Combining Lemma 5.1 and Theorem 4.1 leads to

1 = Fllzae) < C (2020 £ = £z + Dy = Flx lewi)
C (== (| Fllwg o+ lwg@) + 1y = £ xllew)

_ N .
< € (2020 | oy + o g + (1= )€

O

IN I/\

At first glance the term containing seems to be odd because it could be uncon-
trollable. But according to [1] we can at least assuin® be bounded by

@ <5 (g v min v
If this inequality is not satisfied, the problem (5) possess#y the trivial solution
s = 0 which is notinteresting. Furthermore, the fadtbr Nv) controls this term.
If we chooser > % the additional term vanishes or is negative. In case of a non
trivial solution this condition is no restriction at all s@v is a lower bound on the
fraction of support vectors [7] and = 1/N means to have at least one support
vector. But we can use the results from Lemma 5.1 to derivera eaplicit upper
bound ore* = €*(C, v, f).

0 < /"[x = yllewerx) ||f||NK +e(Cw, f)(1 = Nv)

- 2(]
If we assumes > 1/N, this leads to

* N 2
e(Cov, f) < m”f”/\/x

Note that these bounds can not be used for a better paranheteecsince we
would need to rearrange this inequality and solvefar v. This is only possible
if there were lower bounds ati as well.

Moreover, the parametér appears in our error bound as afac%nwhich implies
that we expect convergence only in the case- oc. In this case* will be small,
as can be deduced from (5).

Corollary 5.3 In case of quasi-uniform exact data we can choose the poblem
parameters as

N[ fllwz @)

C=—5

1
~ h_(T—i_d)HfHWJ(Q) andv > N ,
to get ~
1f = e < CH || fllwgz e (10)
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or as

NHfHWT(Q) —(r 1
to get
1f = £l < CH 2| fllws @ . (11)

Therefore the solution of the-SVR leads to the optimal approximation order
in the Sobolev space [5] with respect to the fill distanceThese optimal rates
are also attained by classical interpolation in the natiitbetit Space [10]. But
the v-SVR allows for much more flexibility and less complicatedusions. Our
numerical results will confirm these convergence rates.

6 1v-SVR with inexact data

In this section we allow the given data to be corrupted by sanitive error
r=(ry,...,rn), i.€.,

f(xj):yj+rj forjzl,...,N, (12)
where isf € WJ(Q2). There are no assumptions concerning the error distributio

Lemma 6.1 Under the assumption (12) we have foralt 0

N
. 20
£ <y T 2 Ik + 2Cve + |1, and
j=1

N

1" = yllewco < D Irle+vNe+ (1= Nv)e' +—||f||NK
j=1

Proof: Again, we denote the interpolant fowith respect toX and K by I, and
useH¢, , as defined in (9). Then we have

N
1 . 1 1
_CHf 13, < HE,(fF, ) < HE (I €) N; |7l + ve+ %HfH/z\fK

which implies

N
) 20!
1 e <\ S D0 Irsle + 2Cve + 1 £11, -
j=1



Moreover we have forall=1, ;N

|f*(z:) —yi| < Z|f (z;) « + €

< NH%}V(f,e) (1 — Nv)e*

N
. N
< Y Irle+vNet (1= Nv)e + 5517 e

J=1

O

Again we can use the results from Lemma 6.1 to derive a morkcéxypper
bound one* = ¢*(C, v, f, €). Note that* depends now also on the free parameter
€.

N
NI+ € (Cor, £ = No) + 3 Iyl + N

J=1

01l = ylewen < 55

If we assumes > 1/N, this leads to

N
1 N
* < — 2 E )
E(C’V’f’E)_NV—l<2C||f||NK+ |T]|E+VNE>

J=1

Using the sampling inequality as in the case of exact datisleathe following
result onL,-norms.

Theorem 6.2 Under the assumption (12) we have foratk 0

20 &
W= .o < ( ~(d/2=d/q)+ £ llwg WZIrj|e+20ue+||f||2 @
=1
N
+ Z|7’J| +vNe+€(1— Nv)+ 20||fH%V27(Q)> )

7j=1

O
We now want to assume that the data errors do not exceed thé@skdt. For this
we suppose

17l ecex) <0 < fllwg o) (13)
forad > 0.



Corollary 6.3 If we choose

Nl gy h

= D & ) s
1
€ = 0, I/—N
we get i
1f = Fllza@) < C (W7 fllwg ) +90) - (14)
or
1f = £ lleeie) < C (B flwg @ +6) - (15)

for any non-trivial solution.

7 e-SVR with exact data

Since our arguments for the SVR apply similarily to the=-SVR, we skip over
details and just state the results. Note that in this casedhenegative parameter
e is fixed in contrast to the free variable in theSVR.

Lemma 7.1 Under the assumption (8) we get
1 e < (1 v
* N 2
1F*x = yllewey < 5ElF I e
Again this leads to the following result on continuasnorms.

Theorem 7.2 Under the assumption (8) we get

e N
I = Fller < € (200 gy + 25 g +€) - 26

Applying the same arguments as in ihR&VR case we obtain the following corol-
lary.

Corollary 7.3 If we choose

N[ fllwz @ . N[ fllwg@
C= —onr respectivelyC' = =
the inequality (16) turns into
If = Fllzae) < C (BRI f lws o) + ) (17)
or
1f = i) < C G2 fllwg@) +€) - (18)
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The role of the parameté¥ is similar to the one in case of theSVR. Unlike the
v-SVR we are free to choose the parametéie see that exact data implies that
we should choose= 0. The cas&’ — oo ande — 0 leads to exact interpolation,
and the well known error bounds from [10] are attained.

8 e-SVR with inexact data

For inaccurate data we can proceed as above.

Lemma 8.1 Under the assumption (12) we have

20 &
1 e < Hf||/2vK+WZ|n\e
=1

N
. N
17 1x = vllewy < 5alFflRs + D lrile+e.
i=1

These bounds shall now be plugged into the sampling ingguali

Theorem 8.2 Under the assumption (12) we have

N
« ~ r—d(1/2— 2C
If = FHllogey < C | 207270 L Flwg ) + 4| 111 st Wzmk
=1

N N
+ %Hf”%/V{(Q) + Z |rile + 6) :

i=1
Finally, we get these convergence orders, for our specibelof the parameters.

Corollary 8.3 Again we assume that the error satisfies (12). If we then @oos
e = 0 andC = h~"~%/2 we find for quasi-uniform data

15 = F ey < € (1 lhwgie +9) (19)
If=flliwe < C (W2 || fllwg o) +9) - (20)

9 Numerical results

In this section we present some numerical examples to comfinnanalytic re-

sults. To be able to determine convergence rates with goadacy, we consider
only univariate examples. Our first example deals with th@@xamation orders
for thev- and thee-SVR, respectively. To test the approximation order we igplpl
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the v-machine to a specidV}([0, 1]) function, namelyf(z) = (z — 0.5)
whereeps denotes the relative machine precision in the sense of MALWe
used the radial kernel functiofA” (z) = (1 — ||x||)f’r (3llz|| + 1) (a Wendland
function) which hasiv}(]0,1]) as its associated native space [10]. In case of
the e-SVR we employed another radial kernel function (also a Wl func-
tion) K (x) = (1 — ||:cH)fr (8]|z]|? + 5||z|| + 1) which leads to the Hilbert space
WZ2([0,1]). As a test function we usefiz) = (x — 0.5)25TP5. We chose the
parameters according to corollaries 5.3 and 7.3, res@igtiihe double loga-
rithmic plots show the expected approximation orders irfithdistancenh.

1.5+eps
+

10" T 10"

107
107
10°
2 10°
5

10"

10"
10°

10°5 . ) 10°5
10 10 10

10" 10" 10°
fill distance fill distance

(@) W# function withv-SVR show order 2.3 (b) W3 function withe-SVR show order 3.3

107 10°

10"
fill distance

(c) W3 function withe-SVR show order 3.3

Figure 1: The double logarithmic plots confirm the analytcBbund approxima-
tion orders.

In Figure 9 we present some numerical experiments for eousdata. The ex-
amples show that the approximation error converges to tioe kevel in the limit

h — 0 which confirms our analytic results.

The right hand side in figure 9 shows the approximation ertogre the data was
randomly corrupted by-0.01. For the left hand side plot we used data that was
corrupted by a positive-0.1 error. In both cases we employed th&VR where
the free parameters were chosen according to corollaryfB&last figure shows
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the behaviour of the-SVR in the case of an normal distributed error with mean
zero and variance = 0.0001. In this case the standard deviation is the error level.
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