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Abstract We introduce a class of analytic positive definite multivariate kernels

which includes infinite dot product kernels as sometimes used in machine learning,

certain new nonlinearly factorizable kernels and a kernel which is closely related

to the Gaussian. Each such kernel reproduces in a certain ‘native‘ Hilbert space

of multivariate analytic functions. If functions from thisspace are interpolated

in scattered locations by translates of the kernel, we provespectral convergence

rates of the interpolants and all derivatives. By truncation of the power series of

the kernel-based interpolants, we constructively generalize the classical Bernstein

theorem concerning polynomial approximation of analytic functions to the multi-

variate case. An application to machine learning algorithms is presented.
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1 Introduction

It is well known [1] that non-stationary multivariate interpolation of certain classes

of analytic functions by certain positive definite analyticradial basis functions

like the Gaussians and inverse Multiquadrics leads to exponential approximation

orders. On the other hand, multivariate polynomial interpolation by the technique

of de Boor and Ron [2] arises as the ‘flat limit‘ of interpolation by Gaussians

[3]. This surprising result was established via an intermediate kernel of the power

series form

K(x, y) =
∑

α∈N
d
0

xαyα

α!
.

Starting from this observation we consider general multivariate positive definite

kernels of the form

K(x, y) =
∑

α∈Nd
0

wα
xαyα

α!2
(1)

for general weightswα and call themPower Series Kernels. It turns out that this

class combines several other interesting cases ofd-variate analytic kernels, e.g. of

the forms

K(x, y) =

∞
∑

j=0

aj < x, y >j or

K(x, y) =

d
∏

k=1

f(xk · yk), f(z) =

∞
∑

j=0

fjz
j .

Kernels of the first type are called ‘infinite dot product‘ kernels or ‘infinite polyno-

mial‘ kernels while the second type seems to be new and can be called ‘nonlinearly

factorizable‘. It turns out that the Gaussian kernelG, which plays a key role in the
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investigation of ‘flat limits‘ [4], is closely related to theclass of power series ker-

nels since

G(x, y) = e−c‖x−y‖2

2 =
(

e−c‖x‖2

2

)

∑

α∈Nd
0

(2c)
|α|

α!
xαyα

(

e−c‖y‖2

2

)

with the power series kernelK(x, y) =
∑

α∈Nd
0

(2c)|α|

α! xαyα.

Based on general theoretic background by Madych and Nelson [1], de Boor and

Ron [2], Schaback [3] and Wendland [5] among others on multivariate interpola-

tion of certain classes of analytic functions, we shall investigate this general class

of power series kernels. Under weak additional conditions on the weights, the next

section of this paper proves existence and positive definiteness of power series ker-

nels and determines the ‘native‘ Hilbert spaces of multivariate functions in which

they are reproducing. The following sections derive spectral error bounds for non-

stationary multivariate scattered data interpolation using power series kernels, if

the data comes from functions of their respective native spaces. The bounds are in

terms of thefill distance

h := hX,Ω := sup
x∈Ω

min
xj∈X

‖x − xj‖2

for discrete data setsX in a fixed bounded domainΩ ⊂ R
d, and have one of the

forms

e−a/h, ea log(bh)/h, e−a/
√

h, ea log(bh)/
√

h

with positive constantsa, b, depending on the behaviour of the weights in (1) and

the presence of derivatives. This generalizes results of [1] to more general analytic
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kernels and to derivatives, and it will be very useful for proving results on the be-

haviour of machine learning with dot product kernels [6], see section 7.

Truncation of the power series of kernel-based interpolants leads to good polyno-

mial approximants. If the truncation is properly related tothe fill distanceh, one

can approximate analytic functions from native spaces of power series kernels by

multivariate polynomials of total degree not exceedingk in theL∞-norm at a geo-

metric rateqk for someq < 1. This generalizes a classical theorem of Bernstein to

the multivariate situation and allows a constructive realization of good multivariate

polynomial approximations.

Section 7 shows how the results of the previous chapters can be used to derive

an error analysis for quite general non-interpolatory kernel-based approximation

algorithms, such as several popular support vector machines [7].

2 Power series kernels

For allα ∈ N
d
0 let wα be a positive real number such that

∑

α∈Nd
0

wα

α!2 < ∞ holds.

Then we call the kernel

K (x, y) =
∑

α∈Nd
0

wα
xα

α!

yα

α!
(2)

a power series kernel(PSK) on(−1, 1)d . We restrict ourselves to the unit cube

(−1, 1)
d since the diameter can be adjusted by rescalingK(x, y) → K(θx, θy),

and similar considerations apply to translation.

Remark 1Power series kernels are positive definite on(−1, 1)d.
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Proof: For arbitraryN ∈ N, x1, . . . , xN ∈ (−1, 1)d andβ ∈ R
N we have

N
∑

j=1

N
∑

k=1

βjβkK(xj , xk) =
∑

α∈Nd
0

wα

α!2





N
∑

j=1

βjx
α
j





2

≥ 0,

and
∑N

j=1

∑N
k=1 βjβkK (xj , xk) = 0 implies

∑N
j=1 βjp(xj) = 0 for all polyno-

mialsp on (−1, 1)
d. Since polynomials separate points, this impliesβj = 0 for all

j = 1, . . . , N . 2

Note that the conditionwα > 0 for all α ∈ N
d
0 is sufficient but not necessary to

ensure that a kernelK of the power series form (2) is positive definite. The com-

plete theory presented here applies also to more general positive definite kernels

of this form.

There are two main classes of kernels of the form (2). First there areinfinite dot

product kernelswhich perform well on certain support vector algorithms [8]. Infi-

nite dot product kernels on(−1, 1)d are kernels of the form

D (x, y) =

∞
∑

j=0

aj 〈x, y〉j =
∑

α∈Nd
0

a|α|
|α|!
α!

xαyα , (3)

whereaj ≥ 0 for j = 0, 1, . . . with
∑∞

j=0 aj2
j < ∞. If there are infinitely many

even integersje ∈ 2N and infinitely many odd integersjo ∈ 2N + 1 such that

aje
> 0 andajo

> 0, then the dot product kernel (3) is positive definite [8].

Dot product kernels can be written in the form

D(x, y) =
∑

α∈Nd
0

w̃α
xα

α!

yα

α!

where the weights̃wα ≥ 0 are specified by (3). All considerations presented here

can be applied to positive definite dot product kernels as well if we simply replace

the index setNd
0 by S :=

{

α ∈ N
d
0|w̃α 6= 0

}

.
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In our examples we mainly deal with a second class of power series kernels,

namelynonlinearly factorizablekernels.

Definition 1 We call a kernelK of the power series form (2)nonlinearly factoriz-

ableif there is an analytic functionf : R → R, f(z) =
∑∞

n=0 fnzn such that

K(x, y) =

d
∏

j=1

f (xjyj) =
∑

α∈Nd
0





d
∏

j=1

fαj



 xαyα .

Special cases of factorizable power series kernels arise for all f with positive ex-

pansion coefficientsfn, e.g.

K(x, y) = exp < x, y >, f(z) = exp(z) ,

K(x, y) =
d
∏

j=1

1

1 − cxjyj
, f(z) =

1

1 − cz
for 0 < c < 1 ,

K(x, y) =

d
∏

j=1

I0

(

2 (xjyj)
1
2

)

, f(z) = I0

(

2z
1
2

)

with the modified Bessel functionI0 [9].

For a power series kernelK we define the associated function space [3]

NK :=







f : (−1, 1)
d → R

∣

∣

∣ f (·) =
∑

α∈Nd
0

aα(·)α with
∑

α∈Nd
0

α!2

wα
a2

α < ∞







equipped with the inner product

(f, g)NK
=
∑

β∈Nd
0

1

wβ
(Dβf(0))(Dβg(0)) .

ThenNK is well-defined and isometrically isomorphic to a weightedℓ2-space,

i.e., it is a Hilbert space. Further, by Taylor expansion allelements ofNK are

reproduced on(−1, 1)d by the kernelK via

f(x) = (f, K(x, ·))NK
.
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Therefore,NK is the uniquely determined reproducing kernel Hilbert space asso-

ciated toK, namely thenative spaceof K [5].

3 Interpolation in the Native Space

In this chapter we shall analyze the following interpolation problem. For given

centersX = {x1, . . . , xN} ⊂ Ω and data(f1, . . . , fN)T ∈ R
N generated by

a (unknown) functionf ∈ NK we consider the uniquely determined interpolant

of the form sf,X(x) =
∑N

j=1 αjK(x, xj) satisfyingsf,X(xk) = fk for k =

1, . . . , N . The error estimates between the unknown functionf and its interpolant

sf,X are usually expressed in terms of thefill distance

h := hX,Ω := sup
x∈Ω

min
xj∈X

‖x − xj‖2 ,

and convergence is studied in the limith → 0. We shall show below that conver-

gence occurs for the function and all derivatives.

For anyα ∈ N
d
0 andx ∈ (−1, 1)

d theα-th power function is defined by

[

P
(α)
K,X(x)

]2

:= Dα
1 Dα

2 K(x, x) − 2

N
∑

j=1

Dαu∗
j(x)Dα

1 K(x, xj)

+

N
∑

i,j=1

Dαu∗
i (x)Dαu∗

j (x)K(xi, xj) ,

whereu∗
j (·) :=

∑N
i=1 α

(j)
i K(·, xi) satisfyu∗

j (xk) = δjk for j, k = 1, . . . , N , and

Dα
ℓ denotes theα-th derivative with respect to theℓ-th argument,ℓ = 1, 2. The

error betweenf and its interpolantsf,X can be bounded by [5, Theorem 11.4]

|Dαf(x) − Dαsf,X(x)| ≤ P
(α)
K,X(x) ‖f‖NK

.
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Consequently, error bounds for interpolation can be derived from upper bounds

of the power function. If we fixX, x andα we can define a quadratic formQα :

R
N → R by

Qα(u) = Dα
1 Dα

2 K(x, x) − 2

N
∑

j=1

ujD
α
1 K(x, xj) +

N
∑

i,j=1

uiujK(xi, xj) .

The vectorDαu∗(x) = Dα (u∗
1(x), . . . , u∗

N(x))
T minimizes this quadratic form

[5, Theorem 11.5], i.e.
[

P
(α)
K,X(x)

]2

:= Qα (Dαu∗(x)) ≤ Qα(u) holds for all

u ∈ R
N . We shall bound the power function by inserting a suitable vectoru(α) into

Qα. For that we use local polynomial reproductions. These comein two variations:

with and without derivatives. We shall treat these two casesseparately in the next

sections.

4 Error Bounds without Derivatives

Here we use the following local polynomial reproduction from [1].

Theorem 1Let Ω := W (x0, R) = {x ∈ R
d| ‖x − x0‖∞ ≤ R} be a cube in

R
d. Then there exist constantsc0, c2 > 0 such that for allℓ ∈ N and all X =

{x1, . . . , xN} ⊂ W (x0, R) satisfyinghX,Ω ≤ c0/ℓ there exist functionsuj :

Ω → R such that

1.
∑N

j=1 p(xj)uj(x) = p(x) for all x ∈ Ω and all polynomialsp ∈ πℓ (Ω) ,

2.
∑N

j=1 |uj(x)| ≤ e2dγd(ℓ+1) for all x ∈ Ω ,

3. uj(x) = 0, if ‖x − xj‖2 > c2ℓhX,Ω andx ∈ Ω .

The constantγd is defined recursively byγ1 = 2 and γn = 2n(1 + γn−1) for

n = 2, 3, . . . .
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Following the proof of [5, Theorem 11.21] the constants can be bounded by

c0 :=
R

6γd
and c2 =

3
√

dγd(ℓ + 1)

ℓ
≤ 6

√
dγd . (4)

The following theorem shows that interpolation with infinitely smooth kernels

leads to arbitrarily high algebraic approximation orders for functions from the as-

sociated native spaces on any compact set contained in(−1, 1)
d. We shall need

this technical refinement of [5, Theorem 11.13] in order to derive exponential con-

vergence orders for interpolation with power series kernels.

Theorem 2Let Ω = (−1, 1)d andk ∈ N be arbitrary. Forf ∈ NK we denote

the interpolant based onX = {x1, . . . , xN} by sf,X . Then there are constants

c0, C > 0, which depend only ond, such that for all data setsX with fill distance

h := hX,Ω ≤ c0/(2k) we have for allf ∈ NK

‖f − sf,X‖L∞((−1,1)d) ≤
(

C̃
(2k)
K

)1/2 (Ch)k

4
√

k
‖f‖NK

. (5)

The number̃C(2k)
K is defined by

C̃
(2k)
K := max

β∈N
d
0

|β|=2k

sup
x,y∈Ω

∣

∣

∣
Dβ

2 K(x, y)
∣

∣

∣
,

whereDβ
2 denotes theβ-th derivative with respect to the second argument.

Proof: For fixedx ∈ (−1, 1)
d we choose a cubeW := W (0, r) ⊂ (−1, 1)d such

that(X ∪ {x}) ⊂
o

W andr ≥ 1/2. If we setu := (u1(x), . . . , uN (x))
T with the

functionsuj from Theorem 1 forℓ = 2k − 1, the power function can be bounded

by [5, Proof of Theorem 11.13]

[

P
(0)
K,X(x)

]2

≤ Q(u) = −
∑

j

uj

(

R(x, xj) + R(xj , x) +
∑

i

uiR(xi, xj)

)
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with the Taylor remainder

R(w, z) :=
∑

|β|=2k

Dβ
2 K(w, ξw,z)

β!
(z − w)β ,

where the pointξw,z belongs to the segment[w, z]. By the choice of the vector

u the inequalities
∑

j |uj | ≤ e2dγd2k, ‖x − xj‖2 < c22kh and‖xi − xj‖2 ≤

4c2kh hold since otherwiseuj = 0. Using Stirling’s formula and the identity

∑

|β|d=k
1
β! = dk

k! the first two terms can be bounded by
∣

∣

∣

∣

∣

∣

∑

j

ujR(x, xj)

∣

∣

∣

∣

∣

∣

≤
∑

j

|uj| C̃(2k)
K ‖x − xj‖2k

2

d2k

(2k)!

≤ e4dγdkC̃
(2k)
K (2c2kh)

2k (de)2k

(2k)2k
√

k
≤ 1√

k
E2k

1 C̃
(2k)
K h2k

and similarly
∣

∣

∣

∣

∣

∣

∑

j

ujR(xj , x)

∣

∣

∣

∣

∣

∣

≤ 1√
k

E2k
1 C̃

(2k)
K h2k

with E1 := 12d3/2γde
2dγd+1. The last term can be bounded using the bound for

theℓ1-norm of the coefficient vector twice. We get
∣

∣

∣

∣

∣

∣

∑

j

uj

∑

i

uiR(xj , xi)

∣

∣

∣

∣

∣

∣

≤ 1√
k
E2k

2 C̃
(2k)
K h2k

with E2 := 2e2dγdE1. This finishes the proof withC := E2. 2

We shall now derive exponential error bounds. The actual bounds depend on the

asymptotic behaviour of the number̃C
(2k)
K for k → ∞. These bounds holds for

any infinitely smooth kernel and provide a direct way to derive exponential con-

vergence orders.

Theorem 3 If there is a constantc ∈ R, such thatC̃(2k)
K ≤ eckkk for all k ∈ N,

then there exist constantsa, b, h̃ > 0, such that for all data setsX with fill distance
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h ≤ h̃ the error between any functionf ∈ NK and its interpolantsf,X can be

bounded by

‖f − sf,X‖L∞((−1,1))d ≤ ea·log(bh)/h ‖f‖NK
.

If there is a constantc ∈ R, such thatC̃(2k)
K ≤ eckk2k for all k ∈ N, then there

exist constantsA, h̃ > 0, such that for all setsX with h ≤ h̃ the error between

any functionf ∈ NK and its interpolantsf,X can be bounded by

‖f − sf,X‖L∞((−1,1)d) ≤ e−A/h ‖f‖NK
.

Proof: If C̃
(2k)
K ≤ eckkk for all k ∈ N, Theorem 2 shows that the power function

can be bounded by

[

P
(0)
K,X

]2

≤ 1√
k

C2kC̃
(2k)
K h2k ≤

(

C3kh2
)k

with C3 := C2ec, provided thath ≤ c0

2k . If we definec̃ := min
{

c0

2 , 1√
C3

}

we

can forh ≤ c̃ =: h̃ choosek ∈ N such that c̃
2k ≤ h ≤ c̃

k holds. Then we find

[

P
(0)
K,X

]2

≤ k−k ≤ ec̃·log(2h/c̃)/(2h) ,

which establishes the claim witha := c̃/4 andb := 2/c̃ .

In the casẽC(2k)
K ≤ eckk2k we setC3 := Cec/2 and defineC4 := min

{

c0

2 , 1
C3e

}

.

If we choosek such thatC4

2k ≤ h ≤ C4

k holds, we get

[

P
(0)
K,X

]2

≤ (C3kh)
2k ≤ e−2k ≤ e−C4/h ,

which finishes the proof withA := C4/2. 2

We now want to analyze the asymptotic behaviour of the constant C̃(2k)
K for some
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typical choices of the weightswα from (1). The estimates we derive here can

also be applied to dot product kernels (3) since the asymptotic behaviour of the

coefficientsaj can be expressed using̃wα = a|α|α!|α|! .

In general we have

C̃
(2k)
K = max

β∈N
d
0

|β|=2k

∑

α≥β

wα

α!(α − β)!
.

Note thatwα ≤ w̃α for (almost) allα ∈ N
d
0 implies C̃

(2k)
K ≤ C̃

(2k)

K̃
for (almost)

all k ∈ N, if K(x, y) =
∑ wα

α!2 xαyα andK̃(x, y) =
∑ w̃α

α!2 xαyα.

Lemma 1 If wα ≤ C|α| · α! for all α ∈ N
d
0 with a constantC > 0, then the

inequalityC̃
(2k)
K ≤ C2kedC holds for allk ∈ N.

If wα = α!2c|α| for all α ∈ N
d
0 with a constantc < 1, then we havẽC(2k)

K =

c2k(2k)!

(1−c)2k+d for all k ∈ N.

Proof: Forwα ≤ C|α| · α! we haveC̃(2k)
K ≤ C2k ·∑α∈Nd

0

C|α|

α! = C2k · edC .

If wα = α!2c|α| for all α ∈ N
d
0 we haveK(x, y) =

∏d
i=1

1
1−cxiyi

. Thus we can

compute the number̃C(2k)
K explicitely by taking the derivatives and find

C̃
(2k)
K = max

β∈N
d
0

|β|=2k

sup
x,y∈(−1,1)d

d
∏

i=1

∣

∣

∣

∣

∣

cβiβi!x
βi

i

(1 − cxiyi)
βi+1

∣

∣

∣

∣

∣

=
c2k(2k)!

(1 − c)2k+d
.

2

Combining Lemma 1 and Theorem 3 yields the following result.

Corollary 1 If there exists a constantC > 0, such thatwα ≤ C|α| · α! for all

α ∈ N
d
0, then there are constantsa, b > 0, such that for all disrete setsX with

sufficiently small fill distanceh ≤ h̃ the error between any functionf ∈ NK and
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its interpolantsf,X can be bounded by

‖f − sf,X‖L∞((−1,1)d) ≤ ea·log(bh)/h ‖f‖NK
.

If there exists a constantc < 1, such thatwα ≤ α!2c|α| for all α ∈ N
d
0, then there

is a constantA > 0, such that for all setsX with h ≤ h̃ the error between any

functionf ∈ NK and its interpolantsf,X can be bounded by

‖f − sf,X‖L∞((−1,1)d) ≤ e−A/h ‖f‖NK
.

We point out that in these cases the derived error estimates hold even on the closure

[−1, 1]d.

We can use the technique described above to derive error bounds for the native

space interpolation problem for Gaussian kernelsG. To bound the number̃C(2k)
G

we use the decomposition

G(x, y) = e−c‖x−y‖2
2 = e−c‖x‖2

2K(x, y)e−c‖y‖2
2

with the power series kernelK(x, y) =
∑

α∈Nd
0

(2c)|α|

α! xαyα. Then we can employ

Leibniz’ rule for higher order derivatives and Lemma 1 whichleads to

C̃
(2k)
G = max

|β|=2k
sup
x,y

∣

∣

∣D
β
2 G (x, y)

∣

∣

∣

= max
|β|=2k

sup
x,y

e(−c‖x‖2)
∑

α≤β

(

β

α

)

∣

∣

∣
Dβ−α

2 K (x, y)
∣

∣

∣
·
∣

∣

∣
Dαe(−c‖y‖2)

∣

∣

∣

≤ Ck max
|β|=2k

∑

α≤β

(

β

α

)

sup
y

∣

∣

∣Dα exp
(

−c ‖y‖2
2

)∣

∣

∣ (6)
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with a constantC > 0, which depends only on the space dimensiond and the

scaling parameterc. To bound the remaining termDα exp
(

−c ‖y‖2
2

)

we use the

identity

dn

dyn
exp

(

−cy2
)

= cn/2Hn

(√
cy
)

(−1)
n

e−cy2

for n ∈ N andy ∈ R with the Hermite polynomialsHn [9]. The Hermite polyno-

mials satisfy the recursion relation








Hn+1(x)

Hn(x)









=

n
∏

j=1

Mx(j)









H1(x)

H0(x)









with the matrices

Mx(j) =









2x −2j

1 0









.

The eigenvalues of the matricesMx(j) are given byx ±
√

x2 − 2j. The absolute

values of the eigenvalues are
√

2j, independent ofx ∈ (−1, 1). An upper bound

for Hn+1(x) is given by the product of the absolute values of the larger eigenval-

ues,

Hn+1(x) ≤ |H1(x)|
n
∏

j=1

√

2j = 2 · 2n/2 (n!)
1/2 ≤ 2 · 2n/2nn/2 . (7)

Inserting this bound into (6) we get

C̃
(2k)
G ≤ Ck max

|β|=2k

∑

α≤β

(

β

α

)

αα/2 ≤ Ck max
|β|=2k

d
∏

j=1

(

β
1/2
j + 1

)βj

≤ Ck2dk max
|β|=2k

(|β| + d)
|β|/2 ≤ Ckkk

whereC denotes a generic positive constant depending only ond and the scaling

parameterc. By Theorem 3 we have the approximation order‖f − sf,X‖L∞((−1,1))d ≤

ea·log(bh)/h ‖f‖NG
for f ∈ NG with positive constantsa andb. Thus, for Gaussian

kernels the procedure described above reproduces the well known results [5].
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5 Error Bounds with Derivatives

Since both the generating function and its interpolant are smooth in the sense of

C∞, we now focus on estimates for the approximation error for the derivatives. To

this end we proceed along the lines of the previous chapter, but here we use the

following local polynomial reproduction from [5, Theorem 11.8].

Theorem 4Suppose thatΩ = (−1, 1)d, ℓ ∈ N0 andα ∈ N
d
0 with |α| ≤ ℓ. Then

there exist constantsc0, c
(α)
1 , c

(α)
2 > 0, such that for allX = {x1, . . . , xN} ⊂ Ω

with hX,Ω ≤ c0/ℓ2 and everyx ∈ Ω there exist numbers̃u(α)
1 (x), . . . , ũ

(α)
N (x)

such that

1.
∑N

j=1 p(xj)ũ
(α)
j (x) = Dαp(x) for x ∈ Ω andp ∈ πℓ (Ω) ,

2.
∑N

j=1 |ũ
(α)
j (x)| ≤ c

(α)
1 h

−|α|
X,Ω for all x ∈ Ω,

3. ũ
(α)
j (x) = 0, if ‖x − xj‖2 > c

(α)
2 hX,Ω andx ∈ Ω.

In this case the constants can be chosen asc
(α)
1 ≤ 2·2−|α| ≤ 2 andc

(α)
2 := M ·ℓ2/4

with a positive constantM [5, Proposition 11.7].

With Theorem 4 we have the following algebraic error estimates for the derivatives

for any infinitely smooth kernel. We shall again need this technical refinement of

[5, Theorem 11.13] to derive explicit exponential orders for interpolation with

power series kernels.

Theorem 5Let Ω := (−1, 1)d, α ∈ N
d
0 be fixed andk ≥ |α|. Then there exist

constantsc0, C > 0, such that for all setsX ⊂ Ω withh := hX,Ω ≤ min
{

c0

2k2 , 1
}

the error between a functionf ∈ NK and its interpolantsf,X can be bounded by

‖Dαf − Dαsf,X‖L∞
≤ 1

4
√

2k − |α|

(

C
(2k)
K

)1/2
(

Ck2

2k − |α|

)k

hk−|α|‖f‖NK
.
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The constantC depends on the space dimensiond, but not onx, f, k andK, and

the numberC(2k)
K is defined by

C
(2k)
K := max

β,ν∈N
d
0

|β|+|ν|=2k

sup
x,y∈Ω

∣

∣

∣D
β
1 Dν

2K(x, y)
∣

∣

∣ ,

whereDγ
j denotes theγ-th derivative with respect to thej-th argument,j = 1, 2.

Proof: We fix x ∈ (−1, 1)d and choose the vector̃u :=
(

ũ
(α)
1 (x), . . . , ũ

(α)
N (x)

)T

with the functions̃u(α)
j from Theorem 4 withℓ+1 = 2k. According to [5, Theorem

11.13] the power function can be bounded by

[

P
(α)
K,X(x)

]2

≤ −
∑

j

ũj

{

R(x, xj , α) + S(xj , x, α) −
∑

i

ũiR(xi, xj , 0)

}

where

R(w, z, ν) :=
∑

|β|=2k−|ν|

Dβ
2 Dν

1K(w, ξν
w,z)

β!
(z − w)β and

S(w, z, ν) :=
∑

|β|=2k−|ν|

Dβ+ν
2 K(w, ην

w,z)

β!
(z − w)β .

Here,ξν
w,z andην

w,z are points on the line segment betweenz andw.

By the choice ofũ we have
∑

j

∣

∣

∣ũ
(α)
j

∣

∣

∣ ≤ c
(α)
1 h−|α| and‖x − xj‖2 ≤ c

(α)
2 h .

Using again Stirling’s formula and the identity
∑

|β|d=k
1
β! = dk

k! we find with

c := 2deM + 1

∣

∣

∣

∣

∣

∣

∑

j

ũjR(x, xj , α)

∣

∣

∣

∣

∣

∣

≤
∑

j

|ũj|C(2k)
K ‖x − xj‖2k−|α|

2

d2k−|α|

(2k − |α|)!

≤ c
(α)
1 h−|α|C(2k)

K

(deMk2)2k−|α| · h2k−|α|

(2k − |α|)2k−|α|
√

2k − |α|

≤ 1
√

2k − |α|
C

(2k)
K ·

(

ck2

2k − |α|

)2k

· h2k−2|α|
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and similarly
∣

∣

∣

∣

∣

∣

∑

j

ũjS (xj , x, α)

∣

∣

∣

∣

∣

∣

≤ 1
√

2k − |α|
C

(2k)
K ·

(

ck2

2k − |α|

)2k

· h2k−2|α| .

Finally, using the bound for theℓ1-norm of the coefficient vector twice we get
∣

∣

∣

∣

∣

∣

∑

j

ũj

∑

i

ũiR(xi, xj , 0)

∣

∣

∣

∣

∣

∣

≤
(

c
(α)
1 h−|α|

)2

C
(2k)
K

(de)2k

√
k(2k)2k

(

2Mk2h
)2k

≤ 1
√

2k − |α|
C

(2k)
K ·

(

c̃k2

2k − |α|

)2k

h2k−2|α|

with c̃ := 4deM . SettingC := max{c, c̃} finishes the proof. 2

Theorem 5 shows that interpolation with infinitely smooth kernels leads to arbi-

trarily high algebraic approximation orders for derivatives of functions from the

associated native spaces on any compact set in(−1, 1)
d. The philosophy of The-

orem 3 applies analogously to derivatives. The following theorem holds for all

infinitely smooth kernels and provides a direct way to deriveexponential conver-

gence orders for all derivatives.

Theorem 6Supposeα ∈ N
d
0 is an arbitrary but fixed multi-index.

If there is a constantF ≥ 0 such thatC(2k)
K ≤ eFkkk holds for allk ∈ N, then

there are constantsA, B, h̃ > 0, which may depend ond and α, such that the

approximation error between any functionf ∈ NK and its interpolantsf,X can

be bounded by

‖Dαf − Dαsf,X‖L∞
≤ eA log(Bh)/

√
h ‖f‖NK

for all data setsX with fill distanceh ≤ h̃.

If there is a constantG > 0 such thatC(2k)
K ≤ eGkk2k holds for allk ∈ N, then
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there are constantsa, h̃ > 0, which may depend ond and α, such that for all

data setsX with fill distanceh ≤ h̃ the approximation error between any function

f ∈ NK and its interpolantsf,X can be bounded by

‖Dαf − Dαsf,X‖L∞
≤ e−a/

√
h ‖f‖NK

.

Proof: Following Theorem 5 forC(2k)
K ≤ eFkkk theα-th power function is for

h ≤ c0

2k2 bounded by

∥

∥

∥P
(α)
K,X

∥

∥

∥

L∞
≤ Ckkk/2hk−|α|kk ≤ h−|α|

(

Chk3/2
)k

for all k ∈ N with appropriate constantsC > 0 which may depend ond and

α but not onk or h. We setc̃ := min
{

c0

2 , 1
C

}

and choosek ∈ N such that

c̃
2k2 ≤ h ≤ c̃

k2 . Here we assume the fill distanceh to be sufficiently small to

ensure thatk ≥ |α|. With this choice we find with suitable constantsA, B > 0

∥

∥

∥P
(α)
K,X

∥

∥

∥

L∞
≤ h−|α|k−k/2 ≤ eA log(Bh)/

√
h .

To prove the second part of the theorem one can proceed as in the proof of Theorem

3. 2

We now have to study the asymptotic behaviour of the numberC
(2k)
K in the limit

k → ∞. By definition we have for power series kernels

C
(2k)
K = max

β,ν∈N
d
0

|β|+|ν|=2k

∑

α≥β,ν

wα

(α − β)!(α − ν)!
.

Note that againwα ≤ w̃α for (almost) allα ∈ N
d
0 implies C

(2k)
K ≤ C

(2k)

K̃
for

(almost) allk ∈ N. Here we will consider only the caseswα = Cα! andwα =

α!2c|α| with c < 1 where the numberC(2k)
K can be computed in a simpler form.



Power Series Kernels 19

Lemma 2 If wα = Cα! holds for all α ∈ N
d
0, the numberC(2k)

K assumes the

‘symmetric‘ form

C
(2k)
K := max

β,ν∈N
d
0

|β|+|ν|=2k

sup
x,y∈Ω

∣

∣

∣D
β
1 Dν

2K(x, y)
∣

∣

∣ = max
β∈N

d
0

|β|=k

∑

γ∈Nd
0

wβ+γ

γ!2
.

Proof: By symmetry of the problem we may assumeβj ≤ νj for all j = 1, . . . , d.

Without loss of generality we may assumeC = 1. We use the factorization

C
(2k)
K = max

β,ν∈N
d
0

|β|+|ν|=2k

d
∏

j=1

∑

αj≥νj

αj !

(αj − βj)!(αj − νj)!
.

Assuming the maximum value is achieved forβ 6= ν, |β|+ |ν| = 2k, there are two

possibilities for the asymmetry. First, if there exists an indexj such thatνj ≥ βj+2

holds, we definẽβ andν̃ by β̃i = βi andν̃i = νi for i 6= j, andν̃j = νj − 1 and

β̃j = βj + 1. Then we have
∣

∣

∣
β̃
∣

∣

∣
+ |ν̃| = 2k and sinceαj − βj ≥ αj − νj + 1 for

all αj ∈ N0 we find

∞
∑

αj=νj

αj !

(αj − νj)!(αj − βj)!
≤

∞
∑

αj=νj−1

αj !

(αj − ν̃j)!(αj − β̃j)!
.

Second, if there are indicesj < ℓ such thatνj = βj +1 andνℓ = βℓ +1 we define

β̃, ν̃ by ν̃i = νi, β̃i = βi for i 6= j, ℓ, andν̃j = β̃j = βj +βℓ +1 andβ̃ℓ = ν̃ℓ = 0.

By induction inβℓ we see that

(αj + βj + 1)!

αj ! (αj + 1)!
· (αℓ + βℓ + 1)!

αℓ! (αℓ + 1)!
≤ (αj + βj + βℓ + 1)!

αj !2αℓ!

holds for allαj , αℓ, βj , βℓ ∈ N. This implies that after an index shift respective

summands can be bounded by

∑

α≥β,ν

α!

(α − β)! (α − ν)!
≤
∑

α≥β̃,ν̃

α!
(

α − β̃
)

! (α − ν̃)!
.
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Applying the described symmetrization operations to a pair(β, ν) we need only

finitely many steps to construct a multi-indexβ̄ with

∑

α≥β,ν

wα

(α − β)! (α − ν)!
≤
∑

α≥β̄

wα
(

α − β̄
)

!2
.

2

Using this representation of the numberC
(2k)
K we can determine its asymptotic

behaviour.

Lemma 3 If wα = α! for all α ∈ N
d
0 there exist positive constantsc1, c2, such that

ec1

√
kk! ≤ C

(2k)
K ≤ ec2

√
kk! .

Proof: In this case Lemma 2 gives

C
(2k)
K = max

β∈N
d
0

|β|=k

d
∏

i=1





∑

γi∈N0

(βi + γi)!

γi!2



 .

Therefore we shall compute the asymptotic behaviour of
∑

n∈N0

(b+n)!
n!2 as a func-

tion of b ∈ N. For that we use the confluent hypergeometric functions and the

Laguerre polynomials [10] to rewrite the sum as

∑

n∈N0

(b + n)!

n!2
= eb!

b
∑

i=0

1

i!

(

b

i

)

= eb!Lb(−1) .

The Laguerre polynomials satisfy the recursion relation









Lb+1(−1)

Lb(−1)









=
b
∏

n=1

M(n)









L1(−1)

L0(−1)








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with the matrices

M(n) =









2 − n
n+1

1 0









.

The eigenvalues of the matricesM(n) are given byλ±(n) = 1± 1√
n+1

. An upper

bound forLb+1(−1) is given by the product of the larger eigenvalues,

Lb(−1) ≤
b−1
∏

n=1

λ+(n)L1(−1) .

If we take the logarithm of this product we find

b−1
∑

n=1

log

(

1 +
1√

n + 1

)

≤
b−1
∑

n=1

1√
n + 1

≤
∫ b

1

dx
1√
x

= 2
√

b − 2 .

Thus we have

Lb(−1) ≤
b−1
∏

n=1

λ+(n)L1(−1) ≤ e2
√

b L1(−1) .

This shows that there is a constantc1 > 0 such thatC(2k)
K ≤ ec1

√
kk! holds for all

k ∈ N. On the other hand side by Stirling’s formula we have for allb ∈ N

b
∑

n=0









b

n









b!

n!
≥









b

[√
b
]









b!
[√

b
]

!
≥

(

b −
[√

b
])[

√
b]−1

[√
b
]

!2
· b!

≥ 1

2
b!

([√
b
]

− 1
)[

√
b]−1

([√
b
]

− 1
)

!
≥ c · b!ec1

√
b

with appropriate constantsc, c1 > 0. Thus, there is a constantc2 > 0 such that

C
(2k)
K ≥ ec2

√
kk! holds for allk ∈ N. 2

We now consider the casewα ≤ c|α|α!2 for all α ∈ N
d
0 with a positive parameter

c < 1.
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Lemma 4 If wα ≤ c|α|α!2 for all α ∈ N
d
0 with a positive parameterc < 1 we

have

C
(2k)
K := max

β,ν∈N
d
0

|β|+|ν|=2k

sup
x,y∈Ω

∣

∣

∣D
β
1 Dν

2K(x, y)
∣

∣

∣ ≤ kd · max
β∈N

d
0

|β|=k

∑

α∈Nd
0

wα+β

α!2
.

Proof: As in the proof of Lemma 2 we may assumeνj ≥ βj for all j = 1, . . . , N .

Again, there are two possibilities for an asymmetry. First,if there is an indexj

such thatνj ≥ βj + 2 we defineβ̃ andν̃ by β̃i = βi andν̃i = νi for i 6= j, and

β̃j = βj + 1 andν̃j = νj − 1. Sinceβj ≤ νj − 2 implies

αj !
2cαj

(αj − νj)! (αj − βj)!
≤ αj !

2cαj

(αj − νj + 1)! (αj − βj − 1)!

for all αj ≥ νj , we find

∑

αj≥νj

αj !
2cαj

(αj − νj)! (αj − βj)!
≤
∑

αj≥ν̃j

αj !
2cαj

(αj − ν̃j)!
(

αj − β̃j

)

!
.

Second, if there are indicesh < j such thatνj = βj + 1 andνh = βh + 1 we use

a different representation ofC
(2k)
K , namely forΩ = (−1, 1)d we have

C
(2k)
K = max

β,ν∈N
d
0

|β|+|ν|=2k

sup
x,y∈Ω

d
∏

i=1

∣

∣

∣

∣

∣

∂βi

∂xβi

i

∂νi

∂yνi

i

1

1 − cxiyi

∣

∣

∣

∣

∣

= max
β,ν∈N

d
0

|β|+|ν|=2k

sup
x,y∈Ω

d
∏

i=1

∣

∣

∣

∣

∣

∂βi

∂xβi

i

cνiνi!x
νi

i

(1 − cxiyi)
νi+1

∣

∣

∣

∣

∣

= max
β,ν∈N

d
0

|β|+|ν|=2k

sup
x,y∈Ω

d
∏

i=1

∣

∣

∣

∣

∣

βi
∑

ℓi=0

(

βi

ℓi

)2
ℓi!νi!

2

(νi − βi + ℓi)!

xνi−βi+ℓi

i cνi+ℓiyℓi

i

(1 − cxiyi)
νi+βi+1

∣

∣

∣

∣

∣

= max
β,ν∈N

d
0

|β|+|ν|=2k

d
∏

i=1

∣

∣

∣

∣

∣

1

(1 − c)νi+βi+1

βi
∑

ℓi=0

(

βi

ℓi

)2
νi!

2 (βi − ℓi)!

(νi − ℓi)!
cνi+βi−ℓi

∣

∣

∣

∣

∣

=
c2k

(1 − c)2k+d
max

β,ν∈N
d
0

|β|+|ν|=2k

d
∏

i=1

∣

∣

∣

∣

∣

βi
∑

ℓi=0

(

βi

ℓi

)2
νi!

2 (βi − ℓi)!

(νi − ℓi)!
c−ℓi

∣

∣

∣

∣

∣

. (8)
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We define the functionQ for b, n ∈ N0 with b ≤ n by

Q(n, b) :=

b
∑

ℓ=0

(

b

ℓ

)2
n!2(b − ℓ)!

(n − ℓ)!
c−ℓ .

Then for allb ∈ N0 we find

Q(b + 1, b) =

b
∑

ℓ=0

(

b

ℓ

)2
(b + 1)!2(b − ℓ)!

(b − ℓ + 1)!
c−ℓ =

b
∑

ℓ=0

(

b

ℓ

)2
(b + 1)2b!2

(b − ℓ + 1)
c−ℓ

≤ (b + 1)2
b
∑

ℓ=0

(

b

ℓ

)2

b!2c−ℓ = (b + 1)2Q(b, b) . (9)

Furthermore, since 1
(b−ℓ)! ≤

(b+1)2

(b+1−ℓ)! holds for allℓ = 0, . . . , b, we have

Q(b + 1, b) =

b
∑

ℓ=0

b!2(b + 1)!2

ℓ!2(b − ℓ + 1)!(b − ℓ)!
c−ℓ

≤
b
∑

ℓ=0

b!2(b + 1)!2

ℓ!2(b − ℓ + 1)!

(b + 1)2

(b + 1 − ℓ)!
c−ℓ

=

b
∑

ℓ=0

(

b + 1

ℓ

)2

(b + 1)!2c−ℓ ≤ Q(b + 1, b + 1) . (10)

If we now setβ̃j = ν̃j = βj andβ̃h = ν̃h = βh + 1 we find using the estimates

(9) and (10)

Q (βj , νj) · Q (βh, νh) ≤ (βj + 1)2 · Q
(

β̃j , ν̃j

)

· Q
(

β̃h, ν̃h

)

.

Sinceβj ≤ 2k− βj − 1 we haveβj + 1 ≤ k. To ‘symmetrize‘ a pair(β, ν) by the

operations described above we have to apply the second step at most
[

d
2

]

times.

Thus, we constructively find a multi-index̄β such that

∑

α≥β,ν

α!2c|α|

(α − β)! (α − ν)!
≤ kd

∑

α≥β̄

α!2c|α|
(

α − β̄
)

!2
.

2

Now we can determine the asymptotic behaviour of the numberC
(2k)
K .
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Lemma 5 If wα ≤ α!2c|α| holds for allα ∈ N
d
0 with a constantc < 1, then there

exists a positive constantF > 0, such that

C
(2k)
K ≤ eFkk!2

holds for allk ∈ N.

Proof: Using Lemma 4 and the identity (8) we find

C
(2k)
K ≤ kdckk!2

(1 − c)k+d
max
|β|=k

d
∏

j=1

Pβj

(

1 + c

1 − c

)

with the Legendre polynomialsPn [9]. The Legendre polynomials satisfy the re-

cursion relation








Pn+1(x)

Pn(x)









=

n
∏

j=1

M(x, j)









P1(x)

P0(x)









,

with the matrices

M(x, j) =









(2j+1)x
j+1 − j

j+1

1 0









.

The larger eigenvalue ofM (x, j) is

x + 2jx +
√

x2 + 4x2j + 4x2j2 − 4j − 4j2

2(1 + j)

≤ 2|x|(1 + j)

2(1 + j)
+

√

(4x2 + 4)(j + 1)2

2(1 + j)
≤ 2|x| + 1 .

Therefore, we havePn

(

1+c
1−c

)

≤
(

2 c+1
1−c + 1

)n

for all n ∈ N which finishes the

proof. 2

Considering Theorem 6 and Lemmata 3 respectively 5 togetherwe find the fol-

lowing approximation orders.
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Corollary 2 Supposeα ∈ N
d
0 is arbitrary but fixed.

If wβ ≤ Cβ! holds for allβ ∈ N
d
0 with a constantC > 0 then there are constants

A, B > 0 such that for all data setsX with sufficiently small fill distanceh the

approximation error between any functionf ∈ NK and its interpolantsf,X is

bounded by

‖Dαf − Dαsf,X‖L∞(−1,1)d ≤ eA log(Bh)/
√

h ‖f‖NK
.

If wβ ≤ β!2c|β| holds for all β ∈ N
d
0 with a constantc < 1 then there is a

constanta > 0 such that for all data setsX with sufficiently small fill distanceh

the approximation error between any functionf ∈ NK and its interpolantsf,X is

bounded by

‖Dαf − Dαsf,X‖L∞(−1,1)d ≤ e−a/
√

h ‖f‖NK
.

For the Gaussian kernel withc = 1 we can proceed along the lines of the previous

chapter. Here we find using Leibniz’ rule for higher order derivatives with the

bounds on the Hermite polynomials (7) and Lemma 3

C
(2k)
G = max

|β|+|γ|=2k
sup
x,y

∣

∣

∣Dβ
xDγ

y

[

exp
(

−‖x‖2
2

)

K(x, y) exp
(

−‖y‖2
2

)]∣

∣

∣

≤ C
(2k)
K max

|β|+|γ|=2k

∑

α≤γ

(

γ

α

)

C|α|αα/2
∑

δ≤β

(

β

δ

)

C|β|βδ/2

≤ CkC
(2k)
K max

|β|+|γ|=2k

d
∏

j=1

(

γ
1/2
j + 1

)γj
(

β
1/2
j + 1

)βj

≤ CkC
(2k)
K max

|β|+|γ|=2k

(

(|β| + d)
|β|/2

(|γ| + d)
|γ|/2

)

≤ CkkkC
(2k)
K ≤ Ckk2k ,

where C always denotes a positive constant. That means, for the Gaussian kernel

for all α ∈ N
d
0 there is a positive constantc, which may depend onα, such that

‖Dαf − Dαsf,X‖L∞((−1,1)d) ≤ e−c/
√

h ‖f‖NK
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holds for allf ∈ NG and all data setsX with sufficiently small fill distanceh.

6 Multivariate Polynomial Approximation

In this section we shall construct and analyze a polynomial approximant for a

function from the native space of a power series kernel by truncating the inter-

polant studied in the previous sections. For that we define for k ∈ N the truncation

operatorT (k) : NK → NK by

T (k)





∑

α∈Nd
0

aα (·)α



 :=
∑

|α|<k

aα (·)α
.

Lemma 6 For all f ∈ NK and allk ∈ N we have

∥

∥

∥f − T (k)f
∥

∥

∥

L∞([−1,1]d)
≤
(

A
(k)
K

)1/2

‖f‖NK
,

where the numberA(k)
K is defined byA(k)

K :=
∑

|α|≥k
wα

α!2 .

Proof: For an arbitrary functionf(x) =
∑

α aαxα in the native space ofK,

Hoelder’s inequality shows

∥

∥

∥f − T (k)f
∥

∥

∥

L∞
≤
∑

|α|≥k

|aα| ≤





∑

|α|≥k

a2
α

α!2

wα





1/2

·





∑

|α|≥k

wα

α!2





1/2

.

2

Now we have to determine the asymptotic behaviour of the numberA(k)
K .

Lemma 7 If wα ≤ α!2c|α| for all α ∈ N
d
0 with a constantc < 1, then for almost

all k ∈ N the numberA(k)
K can be bounded byA(k)

K ≤ e−Qk with a constant

Q > 0 that may depend onc but not onk.
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Proof: In this case we haveA(k)
K =

∑

|α|≥k c|α|. Thus, it suffices to show that

∑

|α|≥k c|α| ≤ ck · Pd−1(k) wherePd−1 is a polynomial of degree less thand.

This can be done by induction ond. Ford = 1 we have
∑

|α|≥k c|α| = ck/(1− c).

Ford > 1 the induction hypothesis gives

∑

α∈N
d
0

|α|d≥k

c|α| =

k−1
∑

α1=0

cα1

∑

|β|d−1≥k−α1

c|β| +

∞
∑

α1=k

cα1

∞
∑

|β|d−1=0

c|β|

≤ ck
k−1
∑

α1=0

Pd−2 (k − α1) +
ck

(1 − c)d
. (11)

SincePd−2 is a polynomial of degree less thand − 1 we can expand it in

Pd−2 (k − α1) =

d−2
∑

j=0

bj (k − α1)
j

=

d−2
∑

j=0

j
∑

ℓ=0

bj,ℓk
j−ℓαℓ

1

with some real coefficientsbj,ℓ. Using this representation, the first term of (11) can

be rewritten as

ck
k−1
∑

α1=0

Pd−2 (k − α1) = ck
d−2
∑

j=0

j
∑

ℓ=0

bj,ℓk
j−ℓ

k−1
∑

α1=0

αℓ
1 .

Since
∑k−1

α1=0 αℓ
1 = P̃ℓ+1(k − 1) = Pℓ+1(k) is a polynomial of degreeℓ + 1 there

is a polynomialPd−1 such that

ck
k−1
∑

α1=0

Pd−2 (k − α1) = ck
d−2
∑

j=0

j
∑

ℓ=0

bj,ℓPj+1(k) = ckPd−1(k) .

2

Suppose a discrete setX = {x1, . . . , xN} and data(f1, . . . , fN )
T generated by

an unknown functionf ∈ NK . The Taylor polynomials of the analytic interpolant

studied in the previous sections are polynomial approximants to the unknown gen-

erating function. By the triangle inequality we have

∥

∥

∥f − T (k) (sf,X)
∥

∥

∥

L∞
≤ ‖f − sf,X‖L∞

+
∥

∥

∥sf,X − T (k) (sf,X)
∥

∥

∥

L∞
.
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Since‖sf,X‖NK
≤ ‖f‖NK

[5] we can use Theorem 3 and Lemma 7 to bound the

approximation error by

∥

∥

∥f − T (k) (sf,X)
∥

∥

∥

L∞([−1,1]d)
≤ C

(

e−A/h + e−Bk
)

‖f‖NK
, (12)

whereA, B andC denote positive constants. If we relate the limit processesh → 0

andk → ∞ we derive the following result.

Theorem 7Suppose weightswα ≤ α!2c|α| with a constant0 < c < 1, f ∈ NK ,

k ∈ N andX = {x1, . . . , xN} ⊂ (−1, 1)
d, such thath := hX ≤ 1/k.

Then there exist constantsL > 0 and0 < q < 1 which may depend onf but not on

k or h, such that for allk ∈ N the approximation error betweenf its polynomial

approximantT (k)sf,X can be bounded by

∥

∥

∥f − T (k) (sf,X)
∥

∥

∥

L∞([−1,1]d)
< Lqk .

Corollary 3 We assume an analytic functionf(x) =
∑

α∈Nd
0
aαxα with conver-

gence radiusr > 1, i.e., there existsǫ > 0 such thatf converges absolutely and

uniformly on(−1 − ǫ, 1 + ǫ)d. Then there are constantsL > 0 and0 < q < 1,

such that there is a sequence of polynomials(pn)n with pn ∈ πn

(

R
d
)

, such that

‖f − pn‖L∞([−1,1]d) < Lqn

holds for alln ∈ N. The polynomials can be constructed explicitly from function

values off on a sufficiently dense discrete set.

Proof: To apply the construction described above it remains to showthat there

is a constantC > 1 such that
∑

α∈Nd
0
C|α|a2

α < ∞ holds, i.e.,f ∈ NK where
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K has the weightswα = α!2C−|α| for α ∈ N
d
0. By the assumption thatf has

convergence radiusr ≥ 1 + ǫ we have

lim
|α|→∞

|α|
√

|aα| ≤
1

1 + ǫ
.

Since the sequence
(

|α|
√

|aα|
)

is bounded and|α|
√

|aα| ≥ 0 holds for allα ∈ N
d
0

we get

lim
|α|→∞

|α|
√

a2
α ≤

(

lim
|α|→∞

|α|
√

|aα|
)2

≤ 1

(1 + ǫ)2
.

Therefore
∑

α∈Nd
0
a2

αxα converges uniformly on
(

−(1 + ǫ)2, (1 + ǫ)2
)d

and if we

chooseC := 1+(1+ǫ)2

2 > 1 we have
∑

α∈Nd
0
c|α|a2

α < ∞. 2

This corollary states that an analytic functionf which converges absolutely and

uniformly on an open setΩ with [−1, 1]d ⊂ Ω can be uniformly approximated

on the cube[−1, 1]d by explicitly constructable polynomials of degree≤ n at a

geometric rate. The rate we derived here is exactly the one that a classical theorem

by S. N. Bernstein [11, ch. IX] and its multivariate generalization [12] relate to the

analyticity of functions on the interval[−1, 1] and the cube[−1, 1]d, respectively.

7 Application to Support Vector Regression

In this section we shall sketch how the polynomial approximation constructed in

the previous section can be used to derive worst-case error estimates for several

popular support vector machines (SVM) [7]. The typical problem considered in SV

machines is not direct interpolation but e.g. regularized least squares (equivalent

to ridge regression in statistics [13]). Suppose the valuesof an unknown function
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f ∈ NK are given on scattered locationsX = {x1, . . . , xN} ⊂ (−1, 1)d =: Ω.

The reconstructionRf is the solution of a minimization problem

min
g∈NK

N
∑

j=1

V (g (xj) , f (xj)) + λ ‖g‖2
NK

,

whereV denotes a nonnegative function withV (t, t) = 0 for all t ∈ R, e.g.

a loss function [14], andλ > 0 is a regularization parameter. Some results for

approximation rates of SVM solutions by a kernel expansion with a limited number

of terms can be found in [15], but we follow a different approach here. Following

[16] good polynomial approximations lead tosampling inequalities. For anyk ∈ N

with hX,Ω =: h ≤ c0

2k2 we can use the polynomial reproduction from Theorem 4

with ũj := ũ
(0)
j to derive the inequality

|f(x)| ≤ |f(x) − p(x)| + |p(x)| ≤ ‖f − p‖L∞(Ω) +

k
∑

j=1

|p (xj)| · |ũj(x)|

≤ ‖f − p‖L∞(Ω) + ‖p|X‖ℓ∞(X) ·
k
∑

j=1

|ũj(x)|

≤ ‖f − p‖L∞(Ω) + 2 ·
(

‖f − p‖L∞(Ω) + ‖f |X‖ℓ∞(X)

)

≤ 3 · ‖f − p‖L∞(Ω) + 2 · ‖f |X‖ℓ∞(X) (13)

for any polynomialp ∈ πk

(

R
d
)

and any pointx ∈ Ω. If we now choosek ∈ N

such that c0

4k2 ≤ h ≤ c0

2k2 , equation (12) yields for all functionsf ∈ NK and the

polynomialT (k)sf,X ∈ πk

(

R
d
)

∥

∥

∥f − T (k)sf,X

∥

∥

∥

L∞(Ω)
≤ Ce

− c√
h ‖f‖NK

with positive constantsC, c. If we insert this bound into estimate (13), we end up

with

‖f‖L∞(Ω) ≤ Ce
− c√

h ‖f‖NK
+ 2 · ‖f |X‖ℓ∞(X) . (14)
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In order to derive error estimates for learning machines we shall apply this sam-

pling inequality to a residual functionf − Rf . For many popular support vector

regression (SVR) algorithms, such as theν- or ǫ-SVR [17], we know that a solu-

tion Rf exists and that it has the stability property [18]

‖f − Rf‖NK
≤ ‖f‖NK

,

which gives

‖f − Rf‖L∞(Ω) ≤ Ce
− c√

h ‖f‖NK
+ 2 · ‖(f − Rf) |X‖ℓ∞(X) (15)

with estimate (14). Usually the reconstruction is quite accurate on the given data,

which implies that also the second term of (15) is small. Explicit bounds for theǫ-

andν-SVR can be found in [18]. Therefore, the estimate (15) supports the good

behaviour of power series kernels in those learning machines.

8 Future Work

Even in the special case of Gaussians, the optimal convergence rate of interpolants

is not known. Inverse theorems are only available for non-analytic kernels [19],

so far. Furthermore, the two polynomial reproduction scenarios used here need

refinement and alignment.

For applications to multivariate polynomial interpolation and approximation, the

connections to power series kernels should be investigatedfurther, e.g. in order to

derive spectral convergence orders for the de Boor/Ron multivariate polynomial

interpolation.
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