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1 Introduction

Itis well known [1] that non-stationary multivariate inpeation of certain classes
of analytic functions by certain positive definite analytadial basis functions
like the Gaussians and inverse Multiquadrics leads to espital approximation

orders. On the other hand, multivariate polynomial intéafion by the technique
of de Boor and Ron [2] arises as the ‘flat limit' of interpotati by Gaussians
[3]. This surprising result was established via an interisteckernel of the power

series form

(o' 07

%y
a!

K(z,y) =
aeNg

Starting from this observation we consider general mulitita positive definite

kernels of the form

th yOt

K(z,y) = Z Wy 1)

aeNg

al?

for general weightsu,, and call thenPower Series Kerneldt turns out that this
class combines several other interesting casésvafriate analytic kernels, e.g. of

the forms
K(z,y) = Zaj <z,y>l or
j=0
d [e%S) .
K(zy) =[] flar-w), f2)=>_ fz.
k=1 =0

Kernels of the first type are called ‘infinite dot product’ Rels or ‘infinite polyno-
mial‘ kernels while the second type seems to be new and caalleel honlinearly

factorizable'. It turns out that the Gaussian kerfelvhich plays a key role in the
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investigation of ‘flat limits* [4], is closely related to theass of power series ker-

nels since

Gl y) = e~levlE = (e=elel) 37 (22)!°"xaya (ee1v12)

aeNg

with the power series kernél (z,y) = ZaeNg @iT)JMxO‘yO‘.

Based on general theoretic background by Madych and Neldpnd¢ Boor and
Ron [2], Schaback [3] and Wendland [5] among others on naritie interpola-
tion of certain classes of analytic functions, we shall stigate this general class
of power series kernels. Under weak additional conditianthe weights, the next
section of this paper proves existence and positive defieigof power series ker-
nels and determines the ‘native’ Hilbert spaces of multatarfunctions in which
they are reproducing. The following sections derive sggetror bounds for non-
stationary multivariate scattered data interpolatiomggiower series kernels, if

the data comes from functions of their respective nativeepalhe bounds are in

terms of thfill distance

h:=hx o :=sup min ||z — ;|2
er%GXH j”

for discrete data set¥ in a fixed bounded domaif? ¢ R¢, and have one of the

forms

e—a/h’ ealog(bh)/h’ e—a/ﬁ’ ealog(bh)/\/ﬁ

with positive constants, b, depending on the behaviour of the weights in (1) and

the presence of derivatives. This generalizes results| o6 hore general analytic
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kernels and to derivatives, and it will be very useful foryng results on the be-
haviour of machine learning with dot product kernels [6F section 7.
Truncation of the power series of kernel-based interpslaz#ds to good polyno-
mial approximants. If the truncation is properly relatedtte fill distanceh, one
can approximate analytic functions from native spaces wfguseries kernels by
multivariate polynomials of total degree not exceeding the L..,-norm at a geo-
metric rateg” for someg < 1. This generalizes a classical theorem of Bernstein to
the multivariate situation and allows a constructive mlon of good multivariate
polynomial approximations.

Section 7 shows how the results of the previous chapters earséd to derive
an error analysis for quite general non-interpolatory kktrased approximation

algorithms, such as several popular support vector maslitie

2 Power series kernels

d iti I
Foralla € Nj letw,, be a positive real number such that, . y. 7% < oo holds.

Then we call the kernel
xr
K(z,y) =Y way’s 2)

a power series kerndPSK) on(—1, 1)d . We restrict ourselves to the unit cube
(-1, 1)d since the diameter can be adjusted by rescaliig, y) — K (6, 0y),

and similar considerations apply to translation.

Remark 1Power series kernels are positive definite{ef, 1)d.
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Proof: For arbitraryN € N, z1,...,zy € (—1,1)? and3 € R™ we have

2

N N N
ZZﬁ BrK (2, x1) = Z % Zﬁjx;" >0,
et

j=1k=1 a€eNg
N N . . N
and) ., > p—y BBk K (2, z,) = 0implies_;_, 3;p(z;) = 0 for all polyno-
mialsp on (—1, 1)d. Since polynomials separate points, this implies= 0 for all

j=1,...,N. ]

Note that the conditiom,, > 0 for all « € N¢ is sufficient but not necessary to
ensure that a kernét of the power series form (2) is positive definite. The com-
plete theory presented here applies also to more generngivpatefinite kernels
of this form.

There are two main classes of kernels of the form (2). Fisstettarenfinite dot
product kernelsvhich perform well on certain support vector algorithms J8fi-
nite dot product kernels ofr-1, 1)? are kernels of the form

Zag z,y)’ Z Aol 1 a“ ) Q)

aeNd

wherea; > 0forj =0,1,... with Z;’;O a;j27 < oco. If there are infinitely many
even integerg. € 2N and infinitely many odd integers, € 2N + 1 such that
a;, > 0anda;, > 0, then the dot product kernel (3) is positive definite [8].
Dot product kernels can be written in the form

Zwall
Q. ol

aeNg

where the weights®, > 0 are specified by (3). All considerations presented here
can be applied to positive definite dot product kernels asifwee simply replace

the index seNg by S := {a € Ni|w, # 0}.
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In our examples we mainly deal with a second class of powdesdernels,

namelynonlinearly factorizabléernels.

Definition 1 We call a kernelK of the power series form (2)onlinearly factoriz-

ableif there is an analytic functiorf : R — R, f(z) = Y., fnz"™ such that

d d
K(z,y) = Hf(l‘jyj) = (H faj) z%y".

aeNg \j=1

Special cases of factorizable power series kernels arisglf¢ with positive ex-

pansion coefficientg,,, e.qg.

K(x,y) =exp < z,y >, f(z) =exp(z),
d

I((xvy):: I]

j=1

1

1
— fl2) = for0<e<1,
1—cxj;y;

1—cz

d
K(zy) =[] o (2 (xjyj)i) , f(z)=1Io (22%)
j=1
with the modified Bessel functioh [9].

For a power series kerné&l we define the associated function space [3]

Ng = {f:(—l,l)d—ﬂR‘f(.): Z aa(-)o‘ with Z Z—!Qai <OO}

aENg aeNg

equipped with the inner product

(o = 3 —(DP£(0))(DPg(0)) -

w
BeNd s

Then Nk is well-defined and isometrically isomorphic to a weighteespace,
i.e., it is a Hilbert space. Further, by Taylor expansioneddiments of\Vx are

reproduced ori—1, 1)¢ by the kernelk via

f@) = (f, K(@,)) pre -
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Therefore N is the uniquely determined reproducing kernel Hilbert spagso-

ciated toK, namely thenative spacef K [5].

3 Interpolation in the Native Space

In this chapter we shall analyze the following interpolatjgroblem. For given
centersX = {z1,...,zx} C 2 and data(f1,..., fnv)r € RY generated by
a (unknown) functionf € N we consider the uniquely determined interpolant
of the formsy x(z) = Ejyzl a; K(x,x;) satisfyingsy x (vx) = fi for k =
1,..., N. The error estimates between the unknown funcfi@amd its interpolant

sy, x are usually expressed in terms of filedistance

h:=nh =8 i — T
X0 zggwglelr;{l\x zjll2

and convergence is studied in the lirhit— 0. We shall show below that conver-

gence occurs for the function and all derivatives.

For anya € N¢ andz € (-1, 1)d the a-th power function is defined by

(@) (] S
(Pik(@)] = DY DS K (2.2) — 23 D (0) DY K (3, )
=1

N
+ Y D () D} (2) K (zi,25)

i,j=1
whereu (1) := 32 | oV K (-, 2;) satisfyu (z),) = d;i for j,k = 1,..., N, and
D¢ denotes thex-th derivative with respect to théth argument/ = 1,2. The

error betweery and its interpolant x can be bounded by [5, Theorem 11.4]

D f(x) — Ds¢.x(2)] < Py (@) |l -
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Consequently, error bounds for interpolation can be ddrfvem upper bounds
of the power function. If we fixX, z anda we can define a quadratic for@,, :

RY — R by

N N
Qu(u) = DYDSK (x,2) — 2Zuij‘K(a:,a:j) + Z wiu K (s, ;)
j=1

ij=1

The vectorD*u*(z) = D* (uj(x),. .. ,u}‘v(x))T minimizes this quadratic form
[5, Theorem 11.5], i.e[Pfgg((x)r = Q4 (D*u*(z)) < Qu(u) holds for all
u € RY. We shall bound the power function by inserting a suitabtgae:(*) into
Q.. For that we use local polynomial reproductions. These dortveo variations:
with and without derivatives. We shall treat these two casg@rately in the next

sections.

4 Error Bounds without Derivatives

Here we use the following local polynomial reproductiomir{d].

Theorem 1Let 2 := W(zo, R) = {z € RY|||z — x|, < R} be a cube in
R¢. Then there exist constants, co > 0 such that for alll ¢ N and all X =
{z1,...,28} C W(xo, R) satisfyinghx o < co/¢ there exist functions,; :

2 — R such that

1. Zj.vzlp(xj)uj(x) =p(z) forall z € £2and all polynomial® € m, ({2),
2. 500 uj(@)] < 2D forallz e 2,

3.uj(x) =0, if|lz—xjll2 > colhx,pandz € 2.

The constanty, is defined recursively by; = 2 and~,, = 2n(1 + ~,_1) for

n=23,....
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Following the proof of [5, Theorem 11.21] the constants catbbunded by

R _ 3Vdya(¢+1)

co:=— and ¢ 7 < 6Vdya . (4)

The following theorem shows that interpolation with infetit smooth kernels
leads to arbitrarily high algebraic approximation ordensféinctions from the as-
sociated native spaces on any compact set contain(ad]inl)d. We shall need
this technical refinement of [5, Theorem 11.13] in order towdeexponential con-

vergence orders for interpolation with power series kexnel

Theorem 2Let 2 = (—1,1)? andk € N be arbitrary. For f € Nx we denote
the interpolant based oX = {z1,...,znx} by sf x. Then there are constants
co, C' > 0, which depend only odg, such that for all data setX with fill distance

h:=hx.q < co/(2k) we have for allf € Nk

~ 1/2 (Ch)F
1 = st < (€29) " G e ©

The numbet{?* is defined by

C’gk) ‘= max sup ‘DgK(x,y)’ ,
BENg z,yen
|Bl=2k

whereDg denotes thg-th derivative with respect to the second argument.

Proof: For fixedz € (—1,1)" we choose a cubd” := W(0,r) C (—1,1)? such
that(X U {z}) C W andr > 1/2. If we setu := (uy(z),...,uy(z))” with the
functionsu; from Theorem 1 fo¥ = 2k — 1, the power function can be bounded

by [5, Proof of Theorem 11.13]

[P;(Q)X(x)r <Q(u) =— Z_Uj <R(xv$j) + R(zj, ) + ZWR(%%')>
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with the Taylor remainder

B8
R(w,z) := Z 7D2K(§’£w’z) (z — w)ﬂ ,
|81=2k '

where the point,, , belongs to the segmeht, z]. By the choice of the vector
u the inequalitieszj |Uj| < 62d7d2k, ||33 — xjHQ < ¢22kh and Hxl — xj||2 <
4cakh hold since otherwise,; = 0. Using Stirling’s formula and the identity

2 1Blak % = ”,i—': the first two terms can be bounded by

~ (2 d2k
SowiR,z;)| <3 | O o — a2 o
- - (2k)!
- de)?F 1 -
< e4dwdk0§<2k) (202]€h)2k ( 6) < E%kc}?k)hmc

2k VE ~ VE

and similarly
1 ~(2Kk) 7 2k
E uiR(zj,7)| < —=E*Ci"h
r Vk

with By := 12d3/2q4e2?4+1, The last term can be bounded using the bound for

the/;-norm of the coefficient vector twice. We get

1 k A(2k) 1 2k
U uiR(xj,xi) S —E; CK h
Zj Zi NG

with Ey := 2¢2¢ [, This finishes the proof witlh' := E». m|

We shall now derive exponential error bounds. The actuahtisulepend on the
asymptotic behaviour of the numbé'l(KQk) for k — oo. These bounds holds for
any infinitely smooth kernel and provide a direct way to demxponential con-

vergence orders.

Theorem 3If there is a constant € R, such thatC'?*) < e“*k* for all k € N,

then there exist constanisb, > 0, such that for all data set¥ with fill distance
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h < h the error between any functiofi € Nk and its interpolantsy x can be
bounded by

”f _ Sf,XHLOO((fl,l))d < ea»log(bh)/h ”f”NK )

If there is a constant € R, such tha@gk) < e*k?* for all k € N, then there

exist constantsi, 2 > 0, such that for all sets¥ with h < h the error between

any functionf € Nk and its interpolant; x can be bounded by

Hf - Sf7X||Lm((7171)d) < eiA/h HfHNK .

Proof: If C'2¥) < ek k* for all k € N, Theorem 2 shows that the power function

can be bounded by

2 ~
[P0]" < Tomone < gy’

with C5 := C?¢¢, provided that < £2. If we definec := min{%’, j@} we

can forh < & =: h choosek € N such thatZ < h < £ holds. Then we find
ORE —k &log(2h/&)/(2h)
(PRO]" < et < eten :

which establishes the claim with:= ¢/4 andb := 2/¢.

Inthe case”'\2") < ¥ k2 we setCy := Ce®/2 and defing’, := min { i e }

If we choosek such thats: < h < £ holds, we get
2
[Pz(?,)x} < (C3kh)?* < e72F < emCu/h
which finishes the proof witil := Cy /2. O

We now want to analyze the asymptotic behaviour of the comét%k) for some
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typical choices of the weights), from (1). The estimates we derive here can
also be applied to dot product kernels (3) since the asymeptehaviour of the
coefficientsa; can be expressed using, = a |, a!|af! .

In general we have

~ w
ﬂENd a!(a — ﬂ)'
1B1=2k *>7

Note thatw, < b, for (almost) alla € N¢ implies 2" < C*}?k) for (almost)

allk €N, if K(z,y) =Y “s2°y® andK (z,y) = Y. Loaoy”,

al

Lemma 11If w, < Cl°l - ol for all @ € N¢ with a constantC' > 0, then the
inequalityC'{2* < €% ¢4C holds for allk € N.
If w, = a!?clel for all @ € N¢ with a constant < 1, then we havei'é?k) =

%forallkew

Proof: Forw, < Clol - ol we haveC'2" < ¢ . D oend Ol = 2k dC

al

d L_ Thus we can

i=1 1—cz,;y;

If w, = al?clel for all @ € N¢ we haveK (z,y) = []
compute the numbe’f’ﬁ?k) explicitely by taking the derivatives and find

d Aip; !xf’i

Bi+1

2k (2k)!
(1— )2k

~(2k

C§< ) = max sup =
d

BeENy z,ye(~1,1)4 ;4

|B|=2k

(1 — cxiy:)

Combining Lemma 1 and Theorem 3 yields the following result.

Corollary 1 If there exists a constarf > 0, such thatw, < Cl°l . a! for all
a € N¢, then there are constants b > 0, such that for all disrete setX with

sufficiently small fill distancé < £ the error between any functioh € Ak and
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its interpolants ¢ x can be bounded by

Hf - Sf’XHLm((fl,l)d) S ea-log(bh)/h ||f||j\/K )

If there exists a constamt< 1, such thatw, < a!?cl*! for all « € N¢, then there
is a constant4d > 0, such that for all setsX with h < h the error between any

functionf € Nk and its interpolant ¢ x can be bounded by

Hf - Sf7X||Lm((7171)d) < eiA/h HfHNK .

We point out that in these cases the derived error estimatdshen on the closure
[—1,1]%

We can use the technique described above to derive errodsdonthe native
space interpolation problem for Gaussian kerdel§o bound the numb(ﬁ“gk)

we use the decomposition

G(z,y) = e—cllz—ylz _ e_C“z”gK(x,y)@—C”yH%

. . o)l
with the power series kernéf (z, y) = ZaeNg (2(1)! x%y®. Then we can employ

Leibniz’ rule for higher order derivatives and Lemma 1 whiehds to

~(2k
Oé ) = ‘gllimgkszul}l)‘DgG (xay)}

= max supe(_c||””||2) Z (g) ’D?‘“K (x,y)‘ . ‘Dae(—CHyHQ)

‘ﬁ|:2k x,y a<p

8 .
< " max (a sup [ D exp (e o) (6)
|8l= a<B y
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with a constantC' > 0, which depends only on the space dimensioand the
scaling parameter. To bound the remaining ter®< exp (—c ||y|\§) we use the

identity
jy—n exp (—cy®) = ?H, (Vey) (-1)" e~

forn € N andy € R with the Hermite polynomial#f,, [9]. The Hermite polyno-

mials satisfy the recursion relation

Hyp1(2) " | Hi(z)
= H MX(J)
H, () =1 Ho ()
with the matrices
2z —2j
MX(J) =
1 0

The eigenvalues of the matrich4, (j) are given byr + /22 — 25. The absolute
values of the eigenvalues a{€7, independent of € (—1,1). An upper bound
for H,+1(x) is given by the product of the absolute values of the larggemial-

ues,
Hyi(2) < [Hy(2) [ V25 =2- 22 )2 <2272 0 (7)
j=1
Inserting this bound into (6) we get

d

~ ﬁ

C’gk) < C* max <ﬂ> a®? < C*F max (6;-/2 + 1) ’
IBl=2k % \& IBl=2k 55

< C*2% max (18] + d)\ﬁl/Z < CFEF
|B|=2k
whereC' denotes a generic positive constant depending only and the scaling
parametet. By Theorem 3 we have the approximation orflgr— s x HLOO((_LD)(J <
ealog®m)/h|| £l for f € N with positive constants andb. Thus, for Gaussian

kernels the procedure described above reproduces the neglirkresults [5].
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5 Error Bounds with Derivatives

Since both the generating function and its interpolant areath in the sense of
C*, we now focus on estimates for the approximation error ferdérivatives. To
this end we proceed along the lines of the previous chapi¢ihére we use the

following local polynomial reproduction from [5, Theorert.8].

Theorem 4 Suppose tha® = (—1,1)%, ¢ € Ny anda € NZ with |a| < £. Then

there exist constantsg,cgo‘),cgo‘) > 0, such that for allX = {z1,...,2x} C 2
with hx o < co/f? and everyr € 2 there exist numbera!™ (z), ..., a{® ()
such that

1. Ejvzl p(xj)ﬂ§a) (x) = D%*p(x) forx € 2 andp € m, (2) ,
2. 5N @l (@) < iy forall « € 0,

)

3.4 () = 0,if & — a2 > ¢ hx.o andz € 2.

In this case the constants can be chosej‘fésg 2.2-lal < 9 andcga) = M-1?/4
with a positive constant/ [5, Proposition 11.7].

With Theorem 4 we have the following algebraic error estasdor the derivatives
for any infinitely smooth kernel. We shall again need thisitécal refinement of
[5, Theorem 11.13] to derive explicit exponential orders ifterpolation with

power series kernels.

Theorem 5Let 2 := (—1,1)¢, a € N¢ be fixed and: > |a|. Then there exist
constants,, C > 0, such thatfor all set&( ¢ 2withh := hx o < min {5%,1}

the error between a functiofi € Nk and its interpolant x can be bounded by

K

1 @02 ([ Ck? e
D*f — D¢ <——==(C R led .
ID71 spxllo. <5 2k—|a|< K ) 2k — |a] Il
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The constan€ depends on the space dimensihout not onz, f, k and K, and

the numbeC2" is defined by

Cgk) ‘= max sup ‘DfD’Q’K(x,y)‘ ,
@uGNS z,ye
|81 +|v|=2k

whereDJV denotes the-th derivative with respect to thgth argument;j = 1, 2.

T
Proof: We fix » € (—1,1)¢ and choose the vectar:= (ﬂg"‘)(x), e 71153‘) (;v))
with thefunctlonm ) from Theorem 4 with{+1 = 2k. Accordingto [5, Theorem

11.13] the power function can be bounded by

{P;(f‘}( ] ZUJ{ (,2j,0) + S(zj,2, @) Zul (zi, 25,0 }

5 14 v
R(w, z,v) := Z Do Dy Kﬂ(!w’fw’Z) (z—w)? and

|Bl=2k—v|

DS E (w, )

Bl (z—w)’.

S(w, z,v) =
|81=2k—]v|

Here,&,, . andny, . are points on the line segment betweesnduw.
By the choice ofi we have}_; ‘ﬂga)‘ < d®p=lel and ||z — zill, < S
Using again Stirling’s formula and the ident@jmld:k % = dk—T we find with

c:=2deM + 1

2k—
2k—| | d lod

5 - k
iR 0)| < 31l CRY e — 2l G
j J .

(@)} —|a| ~(2k) (deMK2)2k—lol . p2k=lal
¢ h™'Ck
(2k — |af)2e=lal\/2k — Jaf

2k
1 C(Qk) . < ck? ) . h2k—2|a\

S e
2k — |af = |al
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and similarly

1 (2K) ck? 2k
;S (z;,1,a)| < ——=C\2" . < - > - p2R=2lal
; I 2k — |af 2k — |af

Finally, using the bound for th& -norm of the coefficient vector twice we get

~ ~ o a)y —|a| 2 (2k) (de)% 2,2k
> ;> aiR(i,w,0) < (Vn CZH =L (2Mk>h)
PR ( ) Vk(2k)?

~ 2k
1 (2k) < ck? ) 2k—2|al
< —CF"- h «
T V2k—]a] K 2k — |a|

with ¢ := 4deM . SettingC' := max{c, ¢} finishes the proof. O

Theorem 5 shows that interpolation with infinitely smoothneds leads to arbi-
trarily high algebraic approximation orders for derivagvof functions from the
associated native spaces on any compact s(etlr,ll)d. The philosophy of The-
orem 3 applies analogously to derivatives. The followingaofem holds for all
infinitely smooth kernels and provides a direct way to deeixponential conver-

gence orders for all derivatives.

Theorem 6 Supposer € N¢ is an arbitrary but fixed multi-index.

If there is a constanf” > 0 such thatC'?") < eF¥k* holds for allk € N, then
there are constantsl, B, > 0, which may depend od and «, such that the
approximation error between any functighe N and its interpolants; x can

be bounded by
1D f — Dsp x|, < eAlosENVE g

for all data setsX with fill distanceh < h.

If there is a constan€ > 0 such thatC' ") < e%#k2 holds for allk € N, then
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there are constants, 2 > 0, which may depend od and «, such that for all
data setsX with fill distanceh < h the approximation error between any function

[ € Nk and its interpolants;, x can be bounded by

1D f — D xll,_ < e Y| flln -

Proof: Following Theorem 5 foCﬁk) < ef’*k* the a-th power function is for

h < 5% bounded by

k
1P| = ettt < el (onie2)

L
for all k& € N with appropriate constants§ > 0 which may depend od and
o but not onk or h. We seté := min{<, L} and choose: € N such that
75 < h < 5. Here we assume the fill distangeto be sufficiently small to

ensure thak > |«|. With this choice we find with suitable constantsB > 0

pr((ag( < pledp—h/2 < oAlog(Bh)/Vh

L
To prove the second part of the theorem one can proceed aspnabf of Theorem

3. O

We now have to study the asymptotic behaviour of the nurdéé’i‘) in the limit

k — oo. By definition we have for power series kernels

We

B,veNE > . .
18]+ || =2k *ZPY

Note that againv, < 1, for (almost) alla € N¢ implies Cgk) < C}fk} for
(almost) allk € N. Here we will consider only the casas, = Ca! andw, =

a!?clel with ¢ < 1 where the numbe@}?k) can be computed in a simpler form.
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Lemma 2If w, = Ca! holds for alla € N¢, the numbercgk) assumes the

‘symmetric' form

Cgk) ‘= max  sup DfD’Q’K(:r,y)’ = max wﬁ;w .
B,VGNS T,yEeNn ﬁENg 4 7'
18] +|v|=2k 18]=k YEND
Proof: By symmetry of the problem we may assupie< v; forallj =1,...,d.

Without loss of generality we may assuifie= 1. We use the factorization

d
(2k) a;!
O = max, 1] 2 (aj—ﬂj)!j(aj—%‘)"

B,veENE - !
=1a;>v;
|8l +|v|=2k 7= =Y

Assuming the maximum value is achieved fb# v, |5+ |v| = 2k, there are two
possibilities for the asymmetry. First, if there existsiaséx; such thai; > 3;+2
holds, we defingg and? by 3; = 3; andi; = v; fori # j, andi7; = v; — 1 and
B; = B; + 1. Then we hav%ﬁ‘ + |7| = 2k and sincex; — 3; > a; —v; + 1 for

all o; € Ny we find

o0 o0

Ozj! Oéj!
< — .
a;j (aj —vj)l ey = B! — aj_;l (aj = 73)H ey = Bj)!
Second, if there are indicgs< ¢ such that; = 8; +1 andv, = 3, + 1 we define
B, by = v, Bi = Bifori # j, ¢, andv; = B; = B;+fe+1andf, = i = 0.

By induction ing, we see that

(aj + 8+ 1! (o + B +1)!
a;l (o + 1)1 agl (g +1)!

(aj + Bj + Be + 1)!

<
- a;2ay!

holds for allaj, o, 85, B¢ € N. This implies that after an index shift respective

summands can be bounded by
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Applying the described symmetrization operations to a paji) we need only
finitely many steps to construct a multi-ind@xwith

DD P ey R DY ey 1o

a>fB,v a>p

O

Using this representation of the numb@ *) we can determine its asymptotic

behaviour.
Lemma 3 If w, = a! for all o € N¢ there exist positive constants cz, such that

eVER < OBP < g2V

Proof: In this case Lemma 2 gives

d

. A

Cgk) = max E s +2%)'
BeNg - \ 74!

|Bl=k = \TET0

(b+

n!

") as a func-

Therefore we shall compute the asymptotic behaviogrof
tion of b € N. For that we use the confluent hypergeometric functions had t

Laguerre polynomials [10] to rewrite the sum as

b
3 (b:!;‘)! =ebly % (2)) = eblLy(—1).

neNy i=0

The Laguerre polynomials satisfy the recursion relation

_ b
Lyy1(—1) _ H M(n)
Lb(—l) n=1
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with the matrices

The eigenvalues of the matrich$(n) are given by\y (n) = 1+

\/W . An upper

bound forL;1(—1) is given by the product of the larger eigenvalues,

b—1
1) < [] Av(n) La(—
n=1

If we take the logarithm of this product we find

Zlog(l—i— ) 3 /1b %_2\f—2

Thus we have

—1) < [T A+(m) La(=1) < VP Ly (-1) .

n=1
This shows that there is a constant> 0 such thaC}?k) < ec1VEE! holds for all

k € N. On the other hand side by Stirling’s formula we have fobatl N

SH
(=
=
f=py
=
~~
S
|
[ —
=
[
~—
3
|
—

I
—_

lb!([\/ﬂ_l)m > ¢ plectVe
(R

with appropriate constantsc; > 0. Thus, there is a constaa > 0 such that

>

Cﬁfk) > ec2Vk ! holds for allk € N. O

We now consider the case, < c/*la!? for all o € NZ with a positive parameter

c<1.
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Lemma4lf w, < c®lal? forall a N¢ with a positive parameter < 1 we

have
w
C’gk) = max sup |DVDYK(z,y)| < k% max 0‘——;5
BEN!  zyen pend <~ al
|81+ v|=2k |81=k >N
Proof: As in the proof of Lemma 2 we may assume> (3, forall j =1,..., N.

Again, there are two possibilities for an asymmetry. Fiifsthere is an index
such thaw; > f3; + 2 we defines and by 3; = §; andy; = v; fori # j, and
B; = B; + landi; = v; — 1. Sincep; < v; — 2 implies

;e e

(o — ) ( 51)' (o v+ D ey = 8 = 1)!

for all o;; > v;, we find

e

wizy, (@3 TV ag = Bt = ajzzaj(aj—vj)( -6;)

Second, if there are indicés< j such that; = §; + 1 andv, = 5, + 1 we use

a'2aJ a|20‘j

a different representation 6]‘}?’“), namely for2 = (—1,1)? we have

P ovi 1
oz 0y 1 — cayy;

2k
C’é( )= max sup H
d
B,veNy LyEQ

|Bl+|vI=2k

b iyl
i i+1
A (1 — cxyys)”

Z ( >2 &‘!I/i!2 {E;jiiﬁwrzicl’ﬂrfiyfi
li) (vi—Bi+4)! (1-— Cxiyi)yi+5i+l

Li=

= max sup
5,uENg r,yeﬂizl
|B]+Iv|=2k

= max  sup H

B,VGNS T,yef2;

|81 +v|=2k
d Bi
1 Bi\ il (Bi — ) yvpi-es
= a - - R N YA 73 i
SN Ul (1 —c)rthitt Z (41‘) ( vi— )l ¢
18]+vl=2k "~ fi=0
ch

= max
(1—¢)?+d 5 end
|8l+v|=2k"

d | Bi 2 12
B\ vil® (B — ) _,
11> (F) it @

i=110,=0
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We define the functio) for b, n € Ny with b < n by
b 2
b\“n?(b-0)! _,

£=0

Then for allb € Ny we find

b b
(b+1)12(b - 0)! 24122,
Qb +1,b) (Gl LGl o+ 170"
+ ;() b +1) ;0 b—i+D°

b 2
SRRV (b) et = (b +1)%Q(b,0). 9)
14
£=0
Furthermore, sincet7; < (bfgl)/), holds for all¢ = 0, ..., b, we have
b12(b+ 1)1 .
Qb+1,b) B
* Zeﬂb S

PB4+ )2 (b4 1)? Lt

S L2 —(+ 1) (b+1-0)!

b 2
:Z<b+l> b+ 12 <Qb+1,b+1). (10)

£=0 ¢
If we now set3; = i7; = 3; and, = vj, = B, + 1 we find using the estimates

(9) and (10)
QBr.v5) - Q(Brwn) < (8 + 17+ Q (8;.7) - Q (B ) -

Sincef; < 2k — B; — 1 we haveB; + 1 < k. To ‘symmetrize* a pai3, v) by the
operations described above we have to apply the secondtsmpsa[g} times.
Thus, we constructively find a multi-indgksuch that

al2clel a|2 lal

d
S e =S

azfB,v

Now we can determine the asymptotic behaviour of the nurﬁlﬁﬁ).
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Lemma 51f w, < a!?cl®l holds for alla € N¢ with a constant < 1, then there

exists a positive constaiit > 0, such that
C;?k) < P2
holds for allk € N.

Proof: Using Lemma 4 and the identity (8) we find

d k1.2 d
(%) k%crk! 1+c¢
O (1_ck+d |ﬂ‘ kH ﬂ7 < —

with the Legendre polynomialB, [9]. The Legendre polynomials satisfy the re-

cursion relation

Pn+1 ($) n . P ($)
= [[M(x,J) :
Py () =1 FPo(z)
with the matrices
(2j+Dz _ j
M(x j) _ j+1 j+1
1 0

The larger eigenvalue &1 (x, j) is

T+ 2jx + /22 + da2j + 4x2j2 — 45 — 452

21+ 4)
20a|(1+4) | (@22 +4)(j +1)
21+ ) 21+ ) < Zal +1.

Therefore, we havé’, ( C) < (2% + 1)n for all n € N which finishes the

proof. m]

Considering Theorem 6 and Lemmata 3 respectively 5 togetkeiind the fol-

lowing approximation orders.
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Corollary 2 Supposer € N¢ is arbitrary but fixed.

If wg < Cp! holds for all 3 € NZ with a constanC' > 0 then there are constants
A, B > 0 such that for all data setX with sufficiently small fill distancé the
approximation error between any functighe Nk and its interpolants; x is

bounded by
1D f — Dasf,XHLoo(fl,l)d < e s BV HfHNK )

If ws < BI2cPl holds for all 3 € N¢ with a constant: < 1 then there is a
constantz > 0 such that for all data setX with sufficiently small fill distancé
the approximation error between any functipre N and its interpolants ;s x is

bounded by
1D f = D% s xlly crmye <€Vl -

For the Gaussian kernel with= 1 we can proceed along the lines of the previous
chapter. Here we find using Leibniz’ rule for higher orderigegives with the

bounds on the Hermite polynomials (7) and Lemma 3

C(Qk): max  su ‘DﬁD’Y [ex (_ r 2)Kx, ox (_ 2)”
G T ity [Py [P z]l3) K (z,y) exp (= [lyll5

<0 <7>O|a /2 <5>O|5 5/2
- |B\I+r|le:2kZ o) O 2 {5

a<y 0<p
(2k) (o V(1) Fi
< ckot? max (124—1)](1'24—1)]
- K m|+m:2kj1;[1 7 fi
e

where C always denotes a positive constant. That meand)dddaussian kernel

for all o € N¢ there is a positive constaatwhich may depend oa, such that

1D = Dsrxlly(Camyey < € Il
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holds for all f € N and all data set& with sufficiently small fill distancé.

6 Multivariate Polynomial Approximation

In this section we shall construct and analyze a polynonpareximant for a
function from the native space of a power series kernel bycating the inter-
polant studied in the previous sections. For that we defing o N the truncation
operatotrl'*) : Nx — Nk by
TS aa ()| =D aa ().
aENG ler| <k

Lemma 6 For all f € Nk and allk € N we have

1/2
_ (k) H < (a®
lr=1®r, e =< (AR) T

where the numbed () is defined bydy) = 37, -, % .

Proof: For an arbitrary functiorf(z) = > _ a.x® in the native space oi,

Hoelder’s inequality shows

1/2 1/2

12
porol, < Seas (£a2) (52

lo| >k || =k || =k

Now we have to determine the asymptotic behaviour of the rmmf;f).

Lemma 7 If w, < a!?cl®l for all « € N¢ with a constant < 1, then for almost
all k € N the numberd®) can be bounded by¥) < =@ with a constant

Q@ > 0 that may depend onbut not onk.
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Proof: In this case we havel%“) = 2 |al>k clel. Thus, it suffices to show that
> alk clel < ¢k . Py (k) whereP,;_; is a polynomial of degree less than
This can be done by induction @hFord = 1 we have)_ cdol =k /(1—e¢).

Ford > 1 the induction hypothesis gives

k—1 0o oo
d o= e 3 ey e

acNg a1=0 [Bla—1>k—a1 ar=k [Bla—1=0
lala>Fk
k—1 Ck
< P Py (k—ay)+ : 11
< QZO a—2 ( 1) 1= o (11)
=

SinceP;_, is a polynomial of degree less thdn- 1 we can expand it in

d—2 d—2 Jj
Pig(k—a1) =) bj(k—ar) =YY bk ‘af
=0 =0 ¢=0

with some real coefficients; ,. Using this representation, the first term of (11) can

be rewritten as

d—2

k—1 — 7 k—1
c* Z Pyo(k—aq) ckZij,gkj_e Z 0/1g .

a1:0 JZO £=0 011:0

SIHCEZ _0 of = Ppy(k—1) = Py (k) is a polynomial of degreé+ 1 there

is a polynomialP;_; such that

k E Pd 2 —Oél Ck

O[l_O

T
[

M-

bj.cPjs1(k) = F Py (k) .

<
Il
o
~
Il
o

Suppose a discrete s& = {x1,...,zy} and data(f1, .. ., fN)T generated by
an unknown functiorf € N. The Taylor polynomials of the analytic interpolant
studied in the previous sections are polynomial approxtswarthe unknown gen-

erating function. By the triangle inequality we have

[ =7 0, <0 =spxlly +]fsex —T® (s

oo
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Since||sf,x ||y, < IIfllx, [5] we can use Theorem 3 and Lemma 7 to bound the

approximation error by

| =7® (310, <O(eM e ) fle . (12)

oo ([=1,1]%)
whereA, B andC denote positive constants. If we relate the limit processes0

andk — oo we derive the following result.

Theorem 7 Suppose weights, < a!?cl®l with a constand < ¢ < 1, f € Nk,
keNandX = {z1,...,zx} C (—1,1)%, such thath := hy < 1/k.

Then there exist constants> 0 and0 < ¢ < 1 which may depend ofibut not on
k or h, such that for allk € N the approximation error betweehits polynomial

approximantl’(®)s;  can be bounded by

— k) H < Lq*.
I 1) e <

Corollary 3 We assume an analytic functigitz) = ZaeNg a,x® with conver-
gence radius- > 1, i.e., there exists > 0 such thatf converges absolutely and
uniformly on(—1 — ¢, 1 + ¢)%. Then there are constanfs > 0 and0 < ¢ < 1,

such that there is a sequence of polynomials),, with p,, € m, (R%), such that

If _anLoo([—l,l]d) < Lg"

holds for alln € N. The polynomials can be constructed explicitly from fuorcti

values off on a sufficiently dense discrete set.

Proof: To apply the construction described above it remains to sthatthere

is a constanC' > 1 such thaty_, Clola? < oo holds, i.e.,f € Nx where
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K has the weightss, = o!?C~1°l for o € N¢. By the assumption that has

convergence radius> 1 + ¢ we have

- 1
lim 'Y/]aq| <

|a] =00 1+e€’

Since the sequenc(e“%‘/|aa|) is bounded and%/|a,| > 0 holds for alla € Nd

we get

2
_ N 1
lim 'Y/a2 < < lim “\/|aa|) <

|| — o0 |at] — o0 - (1 + 6)2 '
Therefore}_ s azz® converges uniformly ofi—(1 + €)%, (1 + e)Q)d and if we

2
chooseC := U > 1 we havey, . ¢/la2 < oo, O

This corollary states that an analytic functigrwhich converges absolutely and
uniformly on an open se® with [~1,1]¢ c §2 can be uniformly approximated
on the cubd—1, 1]¢ by explicitly constructable polynomials of degreen at a
geometric rate. The rate we derived here is exactly the atatblassical theorem
by S. N. Bernstein [11, ch. IX] and its multivariate genezation [12] relate to the

analyticity of functions on the intervah1, 1] and the cubé-1, 1]¢, respectively.

7 Application to Support Vector Regression

In this section we shall sketch how the polynomial approxiomaconstructed in
the previous section can be used to derive worst-case estionates for several
popular support vector machines (SVM) [7]. The typical peobbconsidered in SV
machines is not direct interpolation but e.g. regularizas$t squares (equivalent

to ridge regression in statistics [13]). Suppose the vatdies unknown function
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f € N are given on scattered locatiods = {zy,...,zx} C (=1,1)% =: .

The reconstructio f is the solution of a minimization problem

N

Jmin 3V (9(@5), £ (23)) + Molks, -

j=1
whereV denotes a nonnegative function with(t,t) = 0 for all t € R, e.g.
a loss function [14], and > 0 is a regularization parameter. Some results for
approximation rates of SVM solutions by a kernel expansiith &limited number
of terms can be found in [15], but we follow a different apmiodere. Following
[16] good polynomial approximations leaddampling inequalitiedor anyk € N

with hx o =: h < 5% we can use the polynomial reproduction from Theorem 4

with @; := ﬂﬁo) to derive the inequality

[f(@)] < [f(2) —p(@)] + |p(@)] < |[f =Pl 0 +le )| - ()|

k
S = pllo oy + IPlx e x) - D las(x)

j=1

< =l + 2 (1F = plly ey + 1 1x o))
<3-\f =Pl o) +2- 1flxlle (13)
for any polynomialp € 7, (R¢) and any point: € £2. If we now choosé: € N

such that < h < $&, equation (12) yields for all functiong € N and the

polynomiaIT(’%f,X € m (RY)
— k) H <Ce Vi
Hf X\ S £l

with positive constant€’, c. If we insert this bound into estimate (13), we end up

with

[l < Ce™ 77| flla +2- 11 lle (x) - (14)
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In order to derive error estimates for learning machines kel sipply this sam-
pling inequality to a residual functiofi — Rf. For many popular support vector
regression (SVR) algorithms, such as theor e-SVR [17], we know that a solu-

tion Rf exists and that it has the stability property [18]

If = Bfllne < M1 lne

which gives

If = Rfllzco) < Ce Vil fllne +2- 1(f =B Ixll, ) (15)

with estimate (14). Usually the reconstruction is quiteusate on the given data,
which implies that also the second term of (15) is small. EEXdbounds for the-
andv-SVR can be found in [18]. Therefore, the estimate (15) sugpbe good

behaviour of power series kernels in those learning mashine

8 Future Work

Even in the special case of Gaussians, the optimal conveegate of interpolants
is not known. Inverse theorems are only available for noahydit kernels [19],
so far. Furthermore, the two polynomial reproduction scesaused here need
refinement and alignment.

For applications to multivariate polynomial interpolatiand approximation, the
connections to power series kernels should be investidatéter, e.g. in order to
derive spectral convergence orders for the de Boor/Ronivatitite polynomial

interpolation.
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