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Exactly 10 of all simple Lie superalgebras of vector fields on 1|N-dimensional
supercircles (superstrings) preserving a structure (either nothing, or a volume
element, or a contact form) have nontrivial central extensions. The values of the
central charges in (projective) spinor-oscillator representations of these stringy
superalgebras associated with the adjoint module can be interpreted as critical
dimensions of respective superstrings. Apart from the well-known values 26, 10,
2 and 0 corresponding to N = 0, 1, 2 and > 2, respectively, for the contact type
stringy superalgebras (Neveu–Schwarz and Ramond types alike), there are two
more non-zero values of critical dimension: For the general and divergence-free
algebras for N = 2. These dimensions, found here, are −1 and −2, respectively.
We also mention related problems.
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1. Introduction

From Ref. 7: “In various papers and books on string theories, a degenerate

(in Dirac’s sense) Lagrangian is considered. The Fourier harmonics of the

constraints of this Lagrangian can be endowed with a Lie algebra structure;

this Lie algebra is isomorphic to the Lie algebra of the group of diffeomor-

phisms of the circle. The complexification of this Lie algebra is a versiona

of the Witt algebra witt: Either der
(

C[x−1, x]
)

or its completion. The fol-

lowing types of witt-modules (or their completions) are mainly studied:

(1) Fλ,µ = C[x−1, x]xµ(dx)λ (the answer to the question which of these

modules are irreducible follows from Ref. 24, where the polynomial case is

considered);

(2) highest (or lowest) weight modules (irreducible ones are completely

aEvery Lie algebra of vector fields on a manifold has several “incarnations”: The coeffi-
cients of the fields can be smooth functions, or polynomials, or power series, or Laurent
polynomials, or (for completion) Laurent series, etc. depending on the problem.
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described in Ref. 6) which are all realized as quotients of the spinor Spin(V )

or oscillator Osc(V ) representations constructed from modules V = Fλ,µ.

Since the representations of type (2) are projective, they give rise to a

nontrivial central extension of witt, the Virasoro algebra vir, and actually

are representations of vir, rather than of witt.

Realization of the elements of witt by quadratic polynomials in creation

and annihilation operators acting in the spaces of spinor and oscillator

representations is interpreted in physics as quantization.

The “critical dimension” CD that appears in physical papers is the

(only) dimension of the Minkowski space (in which the string under study

lives) for which quantization is free of anomalies12. There are several, per-

haps inequivalent in super setting, ways to compute the critical dimensions.

The first ones are related to a study of various action functionals, see, e.g.,

Ref. 22, 12.”

Feigin interpreted the CD as the value of the central charge of vir

in the spinor representation corresponding to the adjoint witt-module.

Feigin used this CD in the computation of semi-infinite cohomology he

introduced3,7,4,5,8.

For the list of super analogues of witt — simple Lie superalgebras that

appear in string theories, see Ref. 10. Among them, there are precisely ten

distinguished ones, which have a nontrivial central extension.

Superization of Polyakov’s action and Nambu’s action leads to interest-

ing supersymmetric integrable systems (see, e.g., Ref. 13, 16, 21, 18, and

refs. therein), super versions of minimal surfaces and constant curvature

surfaces, but we can not describe critical dimensions in these terms.

Our result: We apply Feigin’s picture to consider two, hopefully new,

examples. (The isomorphism, up to parity, Spin(V ) ≃ Osc(V ), as spaces is

referred to as “Fermi–Bose correspondence” in physical papers. The values

of CD in these spaces differ by a sign, and this gives us hope to be able to

interpret negative CDs as reasonable dimensions.)

2. Stringy superalgebras and modules over them

2.1. Vectorial Lie superalgebras with polynomial or formal coeffi-

cients. Let F := C[[y]] be the supercommutative superalgebra of formal

power series in y = (y1, . . . , yn+m) = (x1, . . . , xn, ξ1, . . . , ξm) with parities

p(xi) = 0̄ and p(ξj) = 1 for all i, j. Denote by (y) the maximal ideal in

F generated by the yi. Define the topology on F in which the ideals (y)r,

where r = 0, 1, 2, . . . , are neighborhoods of zero. We see that F is complete

with respect to this topology.
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Let vect(n|m) be the Lie superalgebra of formal vector fields, i.e., of

derivations of C[[y]] continuous with respect to the above topology. In gen-

eral questions we denote vect(n|m) and its infinite dimensional subalgebras

by L. In L, define a descending filtration L = L−1 ⊃ L0 ⊃ L1 ⊃ . . . ,

setting

Lr = {D ∈ vect(n|m) | D(F) ⊂ (y)r+1} (1)

Denote by L = ⊕Lr, where Lr = Lr/Lr+1, the associated graded Lie

superalgebra. Let us identify L0 with gl(n|m) setting Eij ↔ yj∂i.

Remark. For some simple Lie superalgebras, the spaces of the highest and

lowest weight vectors is multidimensional, cf. Ref. 11; there are also various

gradings listed in Ref. 20.

2.2. Tensor fields. Let us consider a given representation ρ of L0 =

L0/L1 in V as a representation of L0. Since Hom(C[∂], C) ∼= F , we may set

T (V ) := HomU(L0)(U(L), V ).

Each vector field D =
∑

Di∂i acts in T (V ) by means of the Lie derivative

LD: For any f ∈ F , v ∈ V and Dij = (−1)p(yi)p(Dj)∂iDj , we set

LD(fv) = D(f)v + (−1)p(D)p(f)f
∑

Dijρ(Eij)(v).

Having fixed coordinates, we define the divergence as the map

D =
∑

i

fi
∂

∂ui
+

∑

j

gj
∂

∂θj
7−→ divD =

∑

i

∂fi

∂ui
+

∑

j

(−1)p(gj)
∂gi

∂θj
.

Set svect(n|m) = {D ∈ vect(n|m) | divD = 0}.

2.3. Modules over stringy superalgebras. Simple stringy superal-

gebras and their nontrivial central extensions are listed in Ref. 10. These

extensions only exist for contact algebras (and the corresponding CDs are

known), and also for vectL(1|2) = derC[x−1, ξ1, ξ2][[x]] and

svectLλ (1|2) = {D ∈ vectL(1|2) | div(xλD) = 0}.

Denote by T (V ) the vect(1|n)-module that differs from T (V ) by allowing

Laurent polynomials as coefficients of its elements instead of polynomials.

Clearly, T (V ) is a vectL(1|n)-module. Set Tµ(V ) := T (V )xµ. Some of such

modules are described in Ref. 14 as an easy corollary of Ref. 1. None of

these modules has a highest or lowest weight vector. The “simplest” such

modules over the Lie superalgebras vectL(1|n) and svectLλ (1|n) are, clearly,

the rank 1 modules over F , the algebra of functions. They are constructed

as follows.
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Let Volµ be the space of tensor fields corresponding to the “µth power”

of the gl-module corresponding to the superdeterminant or Berezinian (in-

finitesimally, Xvol = µstr(X)vol). For µ = 0, this is just the space of

functions, F .

Over kL(N) ⊂ vectL(1|N), the contact superalgebra which preserves the

Pfaff equation with the form

αN = dx+
∑

1≤i≤N

θidθi = dx+
∑

1≤i≤N/2

(ξidηi+ηidξi)+

{

for N even

θNdθN for N odd,

it is more natural to consider the modules defined in terms of αN :

Fλ =

{

Fαλ
N for N = 0

Fα
λ/2
N for N > 0,

Fλ,µ = Fλxµ. (2)

Observe that Volλ = Fλ(2−n) and that the Lie superalgebras of series kL do

not distinguish between ∂
∂x and α−1: their transformation rules are iden-

tical. Over kL(1|2) (and similarly over kM (1|3)), there are also modules

Fλ,ν;µ := Fλ;µ[dξ1]
ν , where [dξ1] = dξ1 mod αN .

Let αM
N = αN−1+xθdθ be the “Möbius” version of the contact form αN

and let kM (N) ⊂ vectL(1|N) be the Lie superalgebra that preserves the Pfaff

equation αM
N (X) = 0 for X ∈ vectL(1|N). We set (clearly, Kf ∈ kL(N))

Kf = (2 − E)(f)
∂

∂x
+ (−1)p(f)Hf +

∂f

∂x
E,

where E =
∑

i

θi
∂

∂θi
, and Hf =

∑

j≤N

∂f
∂θj

∂
∂θj

is the hamiltonian field with

Hamiltonian f that preserves dαN and (clearly, KM
f ∈ kM (N))

KM
f = (2 − E)(f)D + D(f)E + (−1)p(f)HM

f ,

where

D =
∂

∂x
−

θ

2x

∂

∂θ
, HM

f =
1

x

∂f

∂θ

∂

∂θ
+

∑

i≤N−1

∂f

∂θi

∂

∂θi
.

3. The spinor and oscillator representations in super setting

3.1. The Lie superalgebra hei(2n|m). Define the Heisenberg Lie su-

peralgebra hei(2n|m) as follows. Consider a (2n + 1|m)-dimensional super-

space W = V ⊕C1, where p(1) = 0̄, and let (·, ·) be an even nondegenerate

skew-symmetric bilinear form on V . Let W be the superspace of hei(2n|m)

with the bracket

[v, w] = (v, w)1, for v, w ∈ V ; [1, hei] = 0.
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3.1.1. The big and small Weyl superalgebras. Being primarily inter-

ested in irreducible representations of hei, or, equivalently, of its enveloping

algebra, we consider not the whole U(hei(2n|m) (the “big” Weyl superal-

gebra) but its quotient (the “small” Weyl superalgebra)

U~(hei(2n|m) = U(hei(2n|m))/(1− ~) for ~ ∈ C.

The quotient U~(hei(2n|m), called the superalgebra of observables, is, by

definition, an associative superalgebra isomorphic, for k = [m
2 ] and m even,

to the associative superalgebra of differential operators on the supermani-

fold C
n|k with polynomial coefficients diff(n|k) = “Mat”(C[q, ξ]) whereas,

for k = [m
2 ] and m odd, it is isomorphic to (for the definition of the queer

analog QMat of the general matrix superalgebra, see, e.g., Ref. 15, 9)

qdiff(n|k) = Q(“Mat”C[q, ξ])) =

{

x ∈ diff(n|k) | [x, π] = 0 for an odd

π such that π2 = 1.

}

.

(For example, take π = ξm + ∂
∂ξm

.) For n = 0, the algebras diff and qdiff

with super structure ignored are known under the name of Clifford algebras.

3.2. Spinor (Clifford–Weil–wedge–. . . ) and oscillator representa-

tions. Let po(2n|m) be the Poisson Lie superalgebra realized on polynomi-

als. As is easy to see, po(2n|m)0 ∼= osp(m|2n), the superspace of elements of

degree 0 in the Z-graded Lie superalgebra or, which is the same, the super-

space of quadratic elements in the representation by generating functions.

The complete description of deformations of po(2n|m) was recently given

in Ref. 19: There is only one (class of) deformations: quantization Q and

we denote Spin(V ) the module given by the through mapb

g −→ osp(m|2n) ∼= po(2n|m)0
Q
−→

{

diff(n|k) := diff(n|k)L

qdiff(n|k) := qdiff(n|k)L,
(3)

We will denote this representation Spin(V ) and set Osc(V ) := Spin(Π(V )),

where V is the standard representation of osp(m|2n) = osp(V ), and Π is

the change of parity. For n = 0, it is called the spinor representation; for

m = 0 the oscillator representation.

Now, suppose that V is a g-module without any bilinear form. Then,

consider the module W = V ⊕ V ∗ (in the infinite dimensional case, V ∗ is

the restricted dual whose elements are sums of finitely many terms, not

bThe subscript L makes an associative superalgebra a Lie one replacing the dot product
by the supercommutator.
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series) endowed with the form (for any v1, w1 ∈ V , v2, w2 ∈ V ∗)

B((v1, v2), (w1, w2)) = v2(w1) ± (−1)p(v1)p(w2)w2(v1).

This form is symmetric for the plus sign and skew-symmetric otherwise.

In the following tables we give the results of calculations of the highest

weights — the labels (c, h; H1, . . . , Hk) with respect to the central elements

z; Kt and Kξ1η1
, . . . , Kξkηk

of the spinor representations Spin(Fλ;µ) of

the contact superalgebras. For the oscillator representation Osc(Fλ;µ) =

Spin(Π(Fλ;µ)) the values of the highest weight are (−c, h;H1, . . . , Hk).

Problem. For which projective representations of kL(1|N) and kM (1|N),

where N = 3, 4, the values of c are nonzero? (So far there is only a partial

answer23.)

3.3. The values c and h of the highest weight of the kL(1|N)- and
kM(1|N)-module Spin(Fλ;µ). The labels of the highest weight other
than c, h are all 0, except for kL(1|2) and kM (1|3): the highest weight of
Spin(Fλ,ν;µ) is (c, h; ν).

N c h for k
L h for k

M

0 12λ2 − 12λ + 2 (µ + 2λ)(µ + 1) −

1 2

3
(3 − 12λ) µ + 2λ 2µ + 3λ − 1

4

2 2 2µ + 2λ + ν 2µ + 2λ − 1

2

≥ 3 0 2N−1(µ + λ) + 2N−3 2N−1(µ + λ)

Remark. For the contact superalgebras g, our choice of g-modules V =

Fλ;µ from which we constructed Spin(V ⊕ V ∗) is natural provided we are

interested in semi-infinite cohomology of g. Besides, for n small, all modules

of tensor fields are of this form, anyway.

For the superalgebras g of series vect and svect, the situation is the

opposite one: the adjoint representation V = g is of the form V = T (id∗).

3.4. The choice of the cocycle. Now, let us fix the cocycle that de-

termines the nontrivial central extensions of the distinguished stringy su-

peralgebras. One choice comes from the study of semi-infinite cohomology;

it is very interesting and reasonable for vir. Another choice is to directly

calculate the bracket [ei, e−i] in the spinor or oscillator representation. We

get

[ei, e−i] = −i(2e0 +
∑

j≥1

j · z) = −2ie0 −
1

12
z. (4)
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Nowadays such infinite sums seem meaningless (or equal to ∞) to most,

but less than a century ago every student who took Calculus knew a way

to compute (4): evaluate the Riemann ζ-function ζ(s) =
∑

n≥1

1
ns at s = −1.

For other distinguished stringy superalgebras g, physicists traditionally

consider the cocycles whose restriction to the subalgebra witt ⊂ g coincides

with the fixed cocycle that determines vir. The trouble is that there is no

canonical embedding witt ⊂ g for g 6∼= kL(1) or kM (1).

Problems. Which cocycle to choose? In the following Theorem, can one

consider Osc(g) (so CDs are positive) instead of Spin(g)?

3.5. Theorem. For vectL(1|2), CD is equal to −1; for each svectLλ (1|2),

CD is equal to −2.
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