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Abstract

There are many papers studying polynomial tractability for mul-
tivariate problems. Polynomial tractability means that the minimal
number n(ε, d) of information evaluations needed to reduce the initial
error by a factor of ε for a multivariate problem defined on a space
of d-variate functions may be bounded by a polynomial in ε−1 and d
and this holds for all (ε−1, d) ∈ [1,∞) × N.

We propose to study generalized tractability by verifying when
n(ε, d) can be bounded by a power of T (ε−1, d) for all (ε−1, d) ∈ Ω,
where Ω can be a proper subset of [1,∞)×N. Here T is a tractability
function which is non-decreasing in both variables and grows slower
than exponentially to infinity. In this paper we study the set Ω =
[1,∞) × {1, 2, . . . , d∗ } ∪ [1, ε−1

0 ) × N for some d∗ ≥ 1 and ε0 ∈ (0, 1).
We study linear tensor product problems for which we can compute ar-
bitrary linear functionals as information evaluations. We present nec-
essary and sufficient conditions on T such that generalized tractability
holds for linear tensor product problems. We show a number of exam-
ples for which polynomial tractability does not hold but generalized
tractability does hold.

1 Introduction

Tractability of multivariate problems has become a popular research prob-
lem in information-based complexity, see [9] where this concept was defined,
and [3] and papers cited there for a survey of results. Tractability studies
approximation of operators defined on spaces of d-variate functions and the
emphasis is on large d. Problems with d in the hundreds and thousands oc-
cur in numerous applications such as in financial mathematics, physics and
chemistry, see [6] for the discussion of this point. Tractability can be studied
in various settings. In this paper we study the worst case setting in which
the error of an algorithm is defined by its worst performance over a given
class of functions.

Let n(ε, d) denote the minimal number of information evaluations needed
to reduce the initial error by a factor of ε ∈ (0, 1]. By one information
evaluation we mean the evaluation of one linear functional or one function
value at some point. The initial error is defined as the minimal error which
can be achieved without sampling the function. For linear operators, the
initial error is just the norm of the linear operator.
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The essence of tractability is to find necessary and sufficient conditions
on spaces of functions and operators for which n(ε, d) does not depend ex-
ponentially on ε−1 and on d. There are various ways of measuring the lack
of exponential dependence. So far, the tractability study was done for the
polynomial case in which we insist that n(ε, d) can be bounded by a poly-
nomial in ε−1 and d for all ε ∈ (0, 1] and all d ∈ N. Many results were
obtained for polynomial tractability. A typical result is that for classical
spaces in which all variables play the same role, we do not have tractability
since n(ε, d) grows faster than any polynomial in ε−1 or d. This holds, in
particular, for linear tensor product problems. We note in passing that these
negative results motivated the study of weighted spaces in which variables or
groups of variables play different roles and are moderated by weights. For
weighted spaces, a typical result is that polynomial tractability holds for suf-
ficiently small weights. Furthermore, we may even have strong tractability,
i.e., n(ε, d) is bounded by a polynomial in ε−1 independently of d, see [4],
which was probably the first paper on tractability of weighted spaces, and
[3] for a survey of results.

This is the first paper in a series where we study generalized tractability
for multivariate problems. Generalized tractability may differ from polyno-
mial tractability in two points. The first point is the domain of (ε, d). For
polynomial tractability, ε and d are independent, and (ε−1, d) ∈ [1,∞) × N.
For some applications, like in mathematical finance, when d is huge, we may
be interested only in a rough approximation and then ε is not too small.
There may be also problems for which d is never too large although for a
relatively small d we may be interested in a very accurate approximation
which corresponds to a very small ε. For generalized tractability, we assume
that (ε−1, d) ∈ Ω, where

[1,∞) × {1, 2, . . . , d∗} ∪ [1, ε−1
0 ) × N ⊂ Ω ⊂ [1,∞) × N (1)

for some non-negative integer d∗ and ε0 ∈ (0, 1] such that d∗ + (1 − ε0) > 0.
The essence of (1) is that for all such Ω we know that at least one of

the parameters (ε−1, d) may go to infinity but not necessarily two of them.
Hence, for generalized tractability we assume that (ε−1, d) ∈ Ω and we may
choose an arbitrary Ω satisfying (1) for some d∗ and ε0.

The second point in which generalized tractability may differ from poly-
nomial tractability is the way we measure the lack of exponential dependence.
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We define a tractability function

T : [1,∞) × [1,∞) → [1,∞)

which is non-decreasing in both variables and which grows to infinity slower
than any exponential function ax for x tending to infinity with a > 1. More
precisely, for a given Ω satisfying (1) we assume that T (x, y)/ax+y tends
to zero as (x, y) ∈ Ω and x + y approaches infinity. This is equivalent to
assuming that

lim
(x,y)∈Ω, x+y→∞

ln T (x, y)

x + y
= 0. (2)

With Ω satisfying (1) and T satisfying (2), we study generalized tractabil-
ity by insisting that that there are positive numbers C and t such that

n(ε, d) ≤ C T (ε−1, d)t for all (ε−1, d) ∈ Ω.

We also have generalized strong tractability if we replace T (ε−1, d) above by
T (ε−1, 1). In both cases, we are interested in the smallest exponents t which
are called the exponents of (generalized) tractability and strong tractabil-
ity. The precise definitions are given in Section 2. Note that generalized
tractability coincides with polynomial tractability if we take Ω = [1,∞)×N

and T (x, y) = xy.
We are mainly interested in how the choice of Ω and T affects the class

of tractable problems. Some promising results were already obtained in [10]
with Ω = [1,∞) × N and T (x, y) = f1(x)f2(y) for fi(t) = exp(ln1+αi t) and
non-negative αi. Namely, it was proved that linear tensor product problems
with polynomially decaying eigenvalues are tractable iff α1α2 ≥ 1. Hence,
these problems are not polynomial tractable since this corresponds to α1 =
α2 = 0 but are tractable if, for example, α1 = α2 = 1.

In this first paper on generalized tractability, we study linear tensor prod-
uct problems for which we can use arbitrary bounded linear functionals. This
type of information is called linear information which explains the subtitle
of our paper. Linear tensor product problems are fully characterized by
eigenvalues λ = {λj} for d = 1 which are ordered and normalized so that
1 = λ1 ≥ λ2 ≥ · · · ≥ λj ≥ 0 and limj→∞ λj = 0. In particular, we study
eigenvalues with exponential, polynomial and logarithmic rates of conver-
gence.

4



We also choose the “smallest” set Ω, called the restricted tractability
domain,

Ω = Ωres = [1,∞) × {1, 2, . . . , d∗ } ∪ [1, ε−1
0 ) × N.

We provide necessary and sufficient conditions on the tractability function
T for which generalized tractability holds. These conditions depend on the
parameters d∗, ε0 and the sequence λ. In particular, the following results
hold. Assume that d∗ ≥ 1 and ε0 < 1. Then if the largest eigenvalue has
multiplicity at least two, i.e., when λ2 = 1, then generalized tractability does
not hold no matter how we choose the tractability function T .

Assume then that λ2 < 1 and that we have a polynomial rate of conver-
gence, λj = Θ(j−β) for a positive β. This case is typical and corresponds to
many classical Sobolev or Korobov tensor product spaces of smooth functions
whose smoothness is measured by the parameter β.

Assume first that ε2
0 < λ2. Then generalized strong tractability does

not hold no matter how we choose T . Generalized tractability holds iff
lim infx→∞(ln T (x, 1))/ ln x ∈ (0,∞] and

lim inf
d→∞

inf
ε∈[ε0,

√
λ2)

ln T (ε−1, d)

α(ε) ln d
∈ (0,∞] ,

where α(ε) = �2 ln(1/ε)/ ln(1/λ2)	−1. In particular, if we take T (x, y) = xy
then generalized tractability holds with the exponent

ttra = max

{
2

β
, α(ε0)

}
.

Note that ttra goes to max{2/β, 1} as λ2 − ε2
0 tends to zero, and ttra goes to

infinity as ε0 tends to zero.
Assume now that λ2 ≤ ε2

0. Then generalized strong tractability holds iff
lim infx→∞(ln T (x, 1))/ ln x ∈ (0,∞]. For T (x, y) = xy, this holds and the
exponent of generalized strong tractability is tstr = 2/β.

We end this introduction by a note on future research. We plan to study
linear tensor product problems still with linear information for more general
Ω including Ω = [1,∞) × N. Next we want to study a standard class of
information for which we can only compute function values. We want to
verify which results on generalized tractability for linear information also hold
for standard information. Finally we plan to study weighted spaces and to
verify how conditions on weights may be relaxed for generalized tractability.
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2 Preliminaries

In this section we define a multivariate problem and generalized tractability.
Let m be a given positive integer. The multivariate problem will be given
as a sequence of (d m)-variate problems defined on spaces of functions f
of d m variables. Here d = 1, 2, . . . , and our main emphasis will be on
large d. Usually, m = 1 but there are natural multivariate problems for which
m ≥ 2, see [1, 2, 7]. We wish to compute an ε-approximation for each d,
and measure the difficulty of the computation by the minimal number of
information evaluations needed for such an approximation. One information
evaluation may be given by one function value of f or, more generally, by
one linear functional value of f . The essence of tractability is to assure
that the minimal number of information evaluations is not exponentially
dependent either on d or on ε−1. In the tractability study it has been so far
assumed that we want to guarantee that the minimal number of information
evaluations is polynomial in d and ε−1, see [9]. The concept of generalized
tractability is to study more general non-exponential functions, and to verify
how tractability of a multivariate problem depends on the choice of this non-
exponential function.

2.1 Multivariate Problems

For m, d ∈ N, let Fd be a normed linear space of functions

f : Dd ⊆ R
d m → R

and let Gd be a normed linear space. We consider a sequence S = {Sd} of
operators Sd : Fd → Gd. We stress that Sd can be a non-linear operator,
although technical results in this paper will be obtained for bounded linear
operators. We call S a multivariate problem.

Let Λd ⊆ F ∗
d be a class of admissible continuous linear functionals. Two

examples of Λd are mainly studied. The first one is denoted by Λall
d and

is called linear information. It is equal to Λall
d = F ∗

d and is the set of all
continuous linear functionals defined on Fd. The second class is denoted by
Λstd

d and is called standard information. It is equal to the set of specific
continuous linear functionals given by function values. More precisely, for
this class, we assume that Lx(f) = f(x), for all f ∈ Fd, is a continuous linear
functional for all x ∈ Dd. Then Λstd

d = {Lx | x ∈ Dd}.
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We consider algorithms which use finitely many admissible information
evaluations. An algorithm An,d has the form

An,d(f) = φ(L1(f), L2(f), . . . , Ln(f)) (3)

for some Li ∈ Λd and some mapping φ : R
n → Gd. Adaptive choice of the

functionals Li is also allowed as explained in e.g., [5].
In this paper we restrict ourselves to the worst case setting although

settings such as the average case, randomized and probabilistic may be also
studied. The worst case error of the algorithm An,d is defined as

ewor(An,d) = sup
f∈Fd,‖f‖Fd

≤1

‖Sd(f) − An,d(f)‖Gd
. (4)

For n = 0 we do not sample the function f , and A0,d(f) = g is a constant
mapping with g ∈ Gd. By the initial error we mean the minimal error of
constant algorithms,

einit(Sd) = inf
g∈Gd

sup
f∈Fd,‖f‖Fd

≤1

‖Sd(f) − g‖Gd
.

It is clear that if Sd is a bounded linear operator then the initial error is
achieved for g = 0, and thus

einit(Sd) = ‖Sd‖ = ewor(A∗
0,d) ,

where A∗
0,d = 0 is the zero algorithm. Let

n(ε, Sd, Λd) = min{n | ∃An,d : ewor(An,d) ≤ ε einit(Sd) } (5)

denote the minimal number of admissible information evaluations from Λd

needed to reduce the initial error by a factor ε. Without loss of generality we
may assume that ε ∈ (0, 1] since for ε > 1, we obviously have n(ε, Sd, Λd) = 0.

We say that the algorithm An,d computes an ε-approximation of Sd if
its worst case error is at most ε einit(Sd). This can only happen if n ≥
n(ε, Sd, Λd).

The number n(ε, Sd, Λd) is the so-called information complexity of the
problem Sd. It is also of interest to study the total complexity of the problem
Sd which is defined as the minimal cost of computing an ε-approximation.
For linear problems, it follows from general results that the total complexity
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is roughly proportional to the information complexity n(ε, Sd, Λd). For non-
linear problems, it is also true if there exits an algorithm which computes an
ε-approximation and whose combinatory cost is of order of the information
complexity, see [5] for more details. For simplicity, we restrict ourselves in
this paper only to the information complexity. More specifically, we study
when n(ε, Sd, Λd) does not depend exponentially on ε−1 and d. Obviously,
this will lead to necessary conditions that the total complexity is also not
exponentially dependent on ε−1 and d.

2.2 Generalized Tractability

The essence of tractability is to guarantee that n(ε, Sd, Λd) does not depend
exponentially on ε−1 and d. There are various ways to measure the lack of
exponential dependence. First of all, we must agree how the parameters ε
and d vary. In the tractability study, it has been so far assumed that ε and
d are independent, and ε ∈ (0, 1], d ∈ N. In particular, it was assumed that
both ε−1 and d may go to infinity. For some applications, e.g., in finance,
we are interested in huge d and relatively small ε−1. For instance, d may be
in the hundreds or thousands, and ε ≥ 0.01 since it is enough to know the
solution within at most one percent. In such cases, the assumption that both
ε−1 and d may go to infinity is too demanding.

That is why we assume that (ε−1, d) belongs to Ω, where the domain Ω
is, in general, a proper subset of [1,∞)×N. Obviously, the domain Ω cannot
be “too small” to model properly the essence of multivariate problems.

Let us use the notation [n] := {1, . . . , n} for any integer n. In particular,
[n] = ∅ if n ≤ 0. We assume that

[1,∞) × [d ∗] ∪ [1, ε−1
0 ) × N ⊆ Ω (6)

for some d ∗ ∈ N0 and some ε0 ∈ (0, 1] such that d∗ + (1 − ε0) > 0. Condi-
tion (6) is the only restriction we impose on Ω. The constraint d∗+(1−ε0) > 0
excludes the case d∗ = 0 and ε0 = 1 corresponding to no restriction on Ω.

Tractability for multivariate problems has been so far defined by demand-
ing that n(ε, Sd, Λd) can be bounded by a multiple of powers of ε−1 and d.
Obviously there are different ways of guaranteeing that n(ε, Sd, Λd) does not
depend exponentially on ε−1 and d.

For instance, in theoretical computer science, tractability for discrete
problems is usually understood by demanding that the cost bound of an
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algorithm is a multiple of a power of k = �log2(1 + ε−1)	 . That is, we can
compute k correct bits of the solution in a polynomial time in k. We note
in passing that if one adopts this definition of tractability for multivariate
problems then most of them become intractable since even for the univariate
case, d = 1, a typical behavior of n(ε, S1, Λ1) is a polynomial in ε−1.

One may also take an opposite point of view to the theoretical computer
science approach presented above, and study tractability when n(ε, Sd, Λd)
can be bounded by a multiple of powers of functions depending on ε−1 and
d which grow faster than polynomials. This has been partially done in [10]
by demanding that n(ε, Sd, Λd) can be bounded by a multiple of powers
of f1(ε

−1) and f2(d) with functions fi such as fi(x) = exp(ln1+αi(x)) with
αi > 0. Indeed, such functions grow faster than any polynomial as x tends
to infinity, but slower than any exponential function ax with a > 1. It was
shown in [10] that the class of tractable multivariate problems is larger for
such functions fi than the tractability class studied before.

The approach of [10] is not fully general since it studies tractability with
the separate dependence on the parameters ε−1 and d. Indeed, this is so since
functions fi depend only on one of these parameters. For some multivariate
problems, such as tensor product problems studied also here, this restriction
is essential. It is therefore better not to insist on separate dependence on ε−1

and d, and study tractability without assuming this property.
That is why we study tractability in this paper in terms of a function

T of two variables and use a multiple of a power of T (ε−1, d) in the defini-
tion of generalized tractability. Obviously, we need to assume a couple of
natural properties of T . First of all, if ε decreases the problem of comput-
ing an ε-approximation usually becomes harder. Furthermore, with a proper
definition of the operators Sd, the increase of d should also make the prob-
lem harder. That is why we assume that the function T is non-decreasing
in both arguments. To rule out the exponential behavior of T , we assume
that T (x, y)/ax+y tends to zero as x + y tends to infinity for any a > 1.
This is equivalent to assuming that ln T (x, y)/(x + y) tends to zero as x + y
approaches infinity. As we shall see in a moment, it will be convenient to
define the domain of T as the set [1,∞)× [1,∞). In particular, this domain
allows us to say that T is non-decreasing, and will be useful for the concept
of generalized strong tractability. This discussion motivates the following
definitions.

A function T : [1,∞) × [1,∞) → [1,∞) is a tractability function if T is
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non-decreasing in x and y and

lim
(x,y)∈Ω, x+y→∞

ln T (x, y)

x + y
= 0 . (7)

The multivariate problem S = {Sd} is (T, Ω)-tractable in the class Λ = {Λd}
if there exist non-negative numbers C and t such that

n(ε, Sd, Λd) ≤ C T (ε−1, d)t for all (ε−1, d) ∈ Ω. (8)

The exponent ttra of (T, Ω)-tractability in the class Λ is defined as the infimum
of all non-negative t for which there exists a C = C(t) such that (8) holds.

Let ε0 < 1. Then it is easy to see that if

n(ε0, Sd, Λd) ≥ κd for almost all d ∈ N with κ > 1, (9)

then S is not (T, Ω)-tractable in the class Λ for an arbitrary tractability
function T and an arbitrary domain Ω satisfying (6). Indeed, suppose on the
contrary that S is (T, Ω)-tractable in the class Λ. Then

ln C + t ln T (ε−1
0 , d)

ε−1
0 + d

≥ d ln κ

ε−1
0 + d

implies lim infd→∞ lnT (ε−1
0 , d)/(ε−1

0 +d) ≥ t−1 ln κ > 0 which contradicts (7).
Similarly, if d∗ ≥ 1 and there exist d ∈ [d∗] and κ > 1 such that

n(ε, Sd, Λd) ≥ κ1/ε for sufficiently small ε, (10)

then S is not (T, Ω)-tractable in the class Λ for an arbitrary tractability
function T and an arbitrary domain Ω satisfying (6). As before, this follows
from the fact that lim infε→0 ln T (ε−1, d)/(ε−1

0 + d) ≥ t−1 ln κ > 0 which
contradicts (7).

For some multivariate problems, it has been shown that n(ε, Sd, Λd) is
bounded by a multiple of some power of ε−1 which does not depend on d. This
property is called strong tractability. In our case, we can define generalized
strong tractability by insisting that the bound in (8) is independent of d.
Formally, we replace T (ε−1, d) by T (ε−1, 1). We stress that (ε−1, d) from Ω
does not necessarily imply that (ε−1, 1) is in Ω. Nevertheless, due to the
more general domain of T , the value T (ε−1, 1) is well defined, and due to
monotonicity of T we have T (ε−1, 1) ≤ T (ε−1, d).
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The multivariate problem S is strongly (T, Ω)-tractable in the class Λ =
{Λd} if there exist non-negative numbers C and t such that

n(ε, Sd, Λd) ≤ C T (ε−1, 1)t for all (ε−1, d) ∈ Ω. (11)

The exponent tstr of strong (T, Ω)-tractability in the class Λ is defined as the
infimum of all non-negative t for which there exists a C = C(t) such that
(11) holds.

Clearly, strong (T, Ω)-tractability in the class Λ implies (T, Ω)-tractability
in the class Λ, Furthermore, ttra ≤ tstr. For some multivariate problems the
exponents ttra and tstr are the same, and for some they are different. We shall
see such examples also in this paper.

We will be also using simplified notations. If Ω and Λ are clear from the
context, we say that S is T -tractable or strongly T -tractable. If also T is clear
from the context, we say that S is tractable or strongly tractable. Finally,
we talk about generalized tractability or generalized strong tractability if we
consider various T , Ω and Λ.

Suppose we have two tractability functions T1 and T2 such that T1 = T α
2

for some positive α. It is clear that the concepts of Ti-tractability are then
essentially the same with the obvious changes of their exponents. Therefore
we can obtain substantially different tractability results for T1 and T2 only if
they are not polynomially related.

We now introduce a couple of specific cases of generalized tractability
depending on the domain Ω and the form of the function T . We begin with
two examples of Ω which seem especially interesting.

• Restricted tractability domain. Let

Ωres = [1,∞) × [d∗] ∪ [1, ε−1
0 ) × N

for some some d∗ ∈ N0 and ε0 ∈ (0, 1] with d∗ + (1 − ε0) > 0. This
corresponds to the smallest set Ω used for tractability study. This
case is called the restricted tractability domain independently of the
function T .

We may consider the special subcases where d∗ = 0 or ε0 = 1. If d∗ = 0
then ε0 < 1 and we have Ωres = [1, ε−1

0 ) × N. Hence, we now want to
compute an ε-approximation for only ε ∈ (ε0, 1] and for all d. We call
this subcase restricted tractability in ε.
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If ε0 = 1 then d∗ ≥ 1 and we have Ωres = [1,∞) × [d∗]. Hence, we
now want to compute an ε-approximation for all ε ∈ (0, 1] and only for
d ≤ d∗. We call this subcase restricted tractability in d.

• Unrestricted tractability domain. Let

Ωunr = [1,∞) × N.

This corresponds to the largest set Ω used for tractability study. This
case is called the unrestricted tractability domain independently of the
function T .

We now present a couple of examples of generalized tractability in terms of
specific functions T which we think are of a particular interest.

• Polynomial tractability. Let

T (x, y) = xy.

In this case (T, Ωunr)-tractability coincides with the previously studied
tractability. For this T , independently of Ω, tractability means that
n(ε, Sd, Λd) is bounded by a polynomial in ε−1 and d; hence the name.

• Separable tractability. Let

T (x, y) = f1(x)f2(y)

with non-decreasing functions fi : [1,∞) → [1,∞) for i = 1, 2. To
guarantee (7) we assume that

lim
x→∞

ln fi(x)

x
= 0 for i = 1, 2.

In this case (T, Ωunr)-tractability coincides with the notion of (f1, f2)-
tractability studied in [10]. For this T , independently of Ω, the roles
of ε−1 and d are separated; hence the name. Observe that polynomial
tractability is a special case of separable tractability for fi(x) = x.

For separable tractability, we can modify the condition (8) by taking
possibly different exponents of ε−1 and d. That is, the problem S is
(T, Ω)-tractable in the class Λ if there are non-negative numbers C, p
and q such that

n(ε, Sd, Λd) ≤ C f1(ε
−1)p f2(d)q for all (ε−1, d) ∈ Ω. (12)
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The exponents p and q are called the ε-exponent and the d-exponent.
We stress that, in general, they do not need to be uniquely defined.
Note that we obtain (8) from (12) by taking t = max{p, q}. Similarly,
the notion of strong (T, Ω)-tractability in the class Λ is obtained if q = 0
in the bound above, and the exponent tstr is the infimum of p satisfying
the bound above with q = 0. Again for fi(x) = x these notions coincide
with the already studied notions for polynomial tractability.

• Separable restricted tractability. Let

T (x, y) :=

⎧⎪⎨
⎪⎩

f1(x) if (x, y) ∈ [1,∞) × [1, d∗],

f2(y) if (x, y) ∈ [1, ε−1
0 ) × N \ [1, d∗],

max{f1(x), f2(y)} otherwise,

where f1, f2 are as above with f2(d
∗) ≥ f1(ε

−1
0 ).

It is easy to check that T is indeed a generalized tractability function.
Suppose that the function T is considered on the restricted tractability
domain Ωres. Then (T, Ωres)-tractability corresponds to the smallest set
Ω and we have a separate dependence on ε and d; hence the name. As
already discussed, such generalized tractability seems especially rele-
vant for the case when for huge d we are only interested in a rough
approximation to the solution.

• Non-separable symmetric tractability. Let

T (x, y) = exp (f(x)f(y)) (13)

with a non-decreasing function f : [1,∞) → R+. To guarantee (7)
we need to assume that limx+y→∞ f(x)f(y)/(x + y) = 0. This holds,
for example, if f(x) = xα with α < 1/2 or if f(x) = ln1+α(x + 1)
with a positive α. This choice of the tractability function with f(x) =
ln1+α(x+1) will be useful in the study of linear tensor product problems.

It is easy to see that this tractability function is not separable if f
is not a constant function. Indeed, assume by contrary that T (x, y) =
f1(x)f2(y) for some fi. For x = 1 we get f2(y) = f1(1)−1 exp(f(1)f(y)),
and similarly by taking y = 1, we obtain f1(x) = f2(1)−1 exp(f(1)f(x)).
Hence, exp(f(x)f(y)) = [f1(1)f2(1)]−1 exp(f(1)(f(x) + f(y))). From
f1(1)f2(1) = exp(f 2(1)), and by taking x = y we obtain f 2(x) =
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2f(1)f(x)−f 2(1) which leads to f(x) = f(1) for all x. This contradicts
that f is not a constant function. Thus, T is not separable and since
the roles of ε−1 and d are the same, this motivates the name of this
generalized tractability.

We finish this subsection by an example of a function T that is not a
tractability function. Consider T (x, y) = exp(y1−1/x). This function is
bounded in x for fixed y and increases sub-exponentially in y for fixed x.
Nevertheless,

lim sup
x+y→∞

ln T (x, y)

x + y
≥ lim

x=y→∞
x1−1/x

2x
=

1

2
,

proving that T is not a tractability function. This example shows that the
notion of tractability functions does not admit functions that increase asymp-
totically as fast as an exponential function in some direction.

3 Linear Tensor Product Problems

In this section we consider multivariate problems defined as linear tensor
product problems and study generalized tractability.

Let F1 be a separable Hilbert space of real valued functions defined on
D1 ⊂ R

m, and let G1 be an arbitrary separable Hilbert space. Let S1 : F1 →
G1 be a compact linear operator. Then the non-negative self-adjoint operator

W1 := S∗
1S1 : F1 → F1

is also compact. Let {λi} denote the sequence of non-increasing eigenvalues
of W1, or equivalently, the sequence of squares of singular values of S1. If
k = dim(F1) is finite then W1 has just finitely many eigenvalues λ1, λ2, . . . , λk.
Then we formally put λj = 0 for j > k. In any case, the eigenvalues λj

converge to zero.
There exist orthonormal bases {ζi}, {ηi} of F1 and G1 respectively such

that
S1f =

∑
i∈N

√
λi〈f, ζi〉F1ηi for all f ∈ F1.

Without loss of generality, we assume that S1 is not a zero operator, and
normalize the problem by assuming that λ1 = 1. Hence,

1 = λ1 ≥ λ2 ≥ · · · ≥ 0 .

14



This implies that ‖S1‖ = 1 and the initial error is also one.
For d ≥ 2, let

Fd = F1 ⊗ · · · ⊗ F1

be the complete d-fold tensor product Hilbert space of F1 of real valued
functions defined on Dd = D1 × · · · × D1 ⊆ R

d m. Similarly, let Gd =
G1 ⊗ · · · ⊗ G1, d times.

The linear operator Sd is defined as tensor product operator

Sd = S1 ⊗ · · · ⊗ S1 : Fd → Gd.

We have ‖Sd‖ = ‖S1‖d = 1, thus the initial error is one for all d. We call the
multivariate problem S = {Sd} a linear tensor product problem.

In this paper we analyze the problem S for the class of linear information
Λall = {Λall

d } leaving out the case of standard information for future study.
For linear information, we can compute arbitrary inner products. In partic-
ular, we can compute 〈f, ζi1 ⊗ ζi2 ⊗· · ·⊗ ζid〉Fd

. It is known, see e.g., [5], that
the algorithm∑

(i1,i2,...,id): λi1
λi2

···λid
>ε2

√
λi1 . . . λid〈f, ζi1 ⊗ · · · ⊗ ζid〉Fd

ηi1 ⊗ · · · ⊗ ηid

computes an ε-approximation of Sd and

n(ε, Sd, Λ
all
d ) = |{(i1, . . . , id) ∈ N

d | λi1 . . . λid > ε2}|, (14)

with the convention that the cardinality of the empty set is zero. Note that
n(ε, Sd, Λ

all
d ) is finite for all ε ∈ (0, 1] and all d since limj→∞ λj = 0. For

d ≥ 2, we have

n(ε, Sd, Λ
all
d ) =

max{i: λi>ε2}∑
j=1

n(ε/
√

λj, Sd−1, Λ
all
d−1)

=

n(ε,S1,Λall
1 )∑

j=1

n(ε/
√

λj , Sd−1, Λ
all
d−1) .

Since n(ε/
√

λj, Sd−1, Λ
all
d−1) ≤ n(ε, Sd−1, Λ

all
d−1) we obtain for all d ≥ 2,

n(ε, S1, Λ
all
1 ) ≤ n(ε, Sd−1, Λ

all
d−1) ≤ n(ε, Sd, Λ

all
d ) ≤ n(ε, S1, Λ

all
1 )d. (15)

We now show a simple lemma relating generalized tractability to the
eigenvalues λi.
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Lemma 3.1. Let T be an arbitrary tractability function, Ω a domain satis-
fying (6) with ε0 < 1, S = {Sd} a linear tensor product problem defined as
above, and Λ = {Λd} an arbitrary class of information evaluations.

• Let λ2 = 1. Then S is not (T, Ω)-tractable in the class Λ.

• Let ε2
0 < λ2 < 1. Then S is not strongly (T, Ω)-tractable in the class Λ.

• Let λ2 = 0. Then S is strongly (T, Ω)-tractable in the class Λall since
n(ε, Sd, Λ

all
d ) = 1 for all (ε−1, d) ∈ Ω with ε < 1, and tstr = 0.

Proof. Since Λd ⊂ Λall
d we have n(ε, Sd, Λd) ≥ n(ε, Sd, Λ

all
d ). If λ2 = 1, then

we can take ij ∈ {1, 2} to conclude from (14) that

n(ε0, Sd, Λ
all
d ) ≥ 2d for all d.

Hence (9) holds with κ = 2 and S is not (T, Ω)-tractable in the class Λ.
If ε2

0 < λ2 < 1, then we take d−1 values of ij = 1 and one value of ij = 2.
Since we have at least d products of eigenvalues λij equal to λ2, we get

n(ε0, Sd, Λ
all
d ) ≥ d for all d.

This contradicts strong (T, Ω)-tractability in the class Λ since n(ε0, Sd, Λ
all
d )

cannot be bounded by C T (ε−1
0 , 1)t for all d.

Finally, if λ2 = 0 then S1 as well as Sd is a bounded linear functional
which can be computed exactly using only one information evaluation. This
completes the proof.

In what follows we will need a simple bound for n(ε, Sd, Λ
all
d ) which was

proved in [8, Remark 3.1]. For the sake of completeness we restate here the
short argument.

Lemma 3.2.

• For ε ∈ (0, 1) and λ2 ∈ (0, 1) let

α(ε) := �2 ln(1/ε)/ ln(1/λ2)	 − 1,

β(ε) := n(ε, S1, Λ
all
1 ), and a := min{α(ε), d}. Then(

d

a

)
≤ n(ε, Sd, Λ

all
d ) ≤

(
d

a

)
β(ε)a . (16)
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• If λ2 ≤ ε2
0 < 1 then

n(ε, Sd, Λ
all
d ) = 1 for all ε ∈ [ε0, 1) and for all d ∈ N. (17)

Proof. Let us consider a product λi1 . . . λid of eigenvalues of W1 such that
λi1 . . . λid > ε2. Let k denote the number of indices ij , j ∈ [d], with ij ≥ 2.
Then necessarily λk

2 > ε2, which implies k ≤ α(ε). Consequently we have at
most a indices that are not one. From (14), it follows that β(ε) = |{j | λj >
ε2}|, which implies that ij ≤ β(ε) for all j ∈ [d]. This leads to (16). For
λ2 ≤ ε2

0, we may assume without loss of generality that λ2 > 0, and we have
α(ε) = a = 0 for all ε ∈ [ε0, 1) and for all d. Then (16) implies (17).

4 Restricted Tractability Domain

In this section we study generalized tractability for the linear tensor product
problem S and the restricted tractability domain

Ωres = [1,∞) × [d∗] ∪ [1, ε−1
0 ) × N

for d∗ ∈ N0 and ε0 ∈ (0, 1] with d∗ + (1 − ε0) > 0.
As before, λ = {λj} denotes the sequence of non-increasing eigenvalues

of the compact operator W1 with λ1 = 1. We first treat the two subcases of
restricted tractability in ε and in d. We will see that in the first case, when
d∗ = 0, the second largest eigenvalue λ2 is the only eigenvalue which effects
tractability, while in the second case, when ε0 = 1, the convergence rate of
the sequence λ is the important criterion for tractability. Then we consider
the case of restricted tractability domain with d∗ ≥ 1 and ε0 < 1.

4.1 Restricted Tractability in ε

We now provide necessary and sufficient conditions for restricted tractability
in ε, and then illustrate them for a couple of tractability functions. In this
subsection ε0 < 1, and due to Lemma 3.1 we restrict our attention to the
case when λ2 < 1.

Theorem 4.1. Let ε0 < 1 and d∗ = 0, so that

Ωres = [1, ε−1
0 ) × N.

Let S be a linear tensor product problem with λ2 < λ1 = 1.
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• S is strongly (T, Ωres)-tractable in the class of linear information iff
λ2 ≤ ε2

0. If this holds then n(ε, Sd, Λ
all
d ) = 1 for all (ε, d) ∈ [ε0, 1) × N,

and the exponent of strong restricted tractability is tstr = 0.

• Let λ2 > ε2
0. Then S is (T, Ωres)-tractable in the class of linear infor-

mation iff

B := lim inf
d→∞

inf
ε∈[ε0,

√
λ2 )

ln T (ε−1, d)

α(ε) ln d
∈ (0,∞] ,

where, as in Lemma 3.2, α(ε) = �2 ln(1/ε)/ ln(1/λ2)	− 1. If this holds
then the exponent of restricted tractability is ttra = 1/B.

Proof. The first part of the lemma follows directly from Lemma 3.1 and 3.2.
Before we verify the second part, we present an estimate of n(ε, Sd, Λ

all
d ). Let

ε ∈ [ε0, 1). For d ≥ α(ε), we get from (16) of Lemma 3.2,

n(ε, Sd, Λ
all
d ) ≤ β( ε)α(ε)

α(ε)!
d(d − 1) . . . (d − α(ε) + 1) ≤ C1 dα(ε) , (18)

where C1 depends only on ε0 and S1.
Let now B ∈ (0,∞]. We want to show the existence of some positive C

and t such that

n(ε, Sd, Λ
all
d ) ≤ C T (ε−1, d)t for all (ε, d) ∈ [ε0, 1) × N. (19)

Let {Bn} be a sequence in (0, B) that converges to B. Then we find for each
n ∈ N a number dn ∈ N such that

inf
ε∈[ε0,

√
λ2 )

ln T (ε−1, d)

α(ε) ln d
≥ Bn for all d ≥ dn.

Due to (18), to prove (19) it is sufficient to show C1d
α(ε) ≤ CT (ε−1, d)t,

which is equivalent to

ln(C1/C)

t ln d
+

α(ε)

t
≤ ln T (ε−1, d)

ln d
.

If C ≥ C1 and 1/t = Bn, then for all d ≥ dn and all ε ∈ [ε0, 1]

n(ε, Sd, Λ
all
d ) ≤ C T (ε−1, d)t .
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To make the last estimate hold for every (ε, d) ∈ [ε0, 1] × N, we only have
to increase the number C if necessary. Taking n to infinity, we see that
ttra ≤ 1/B.

Now let (19) hold for some positive C and t. To prove that B ∈ (0,∞],
we apply (16) of Lemma 3.2 for ε ∈ [ε0,

√
λ2 ) and d ≥ α(ε0). Then

n(ε, Sd, Λ
all
d ) ≥

(
d

α(ε)

)
≥
(

d

α(ε)

)α(ε)

≥ C2 dα(ε)

with1 C2 = α(ε0)
−α(ε0). Thus for ε ∈ [ε0,

√
λ2 ) we have

C2 dα(ε) ≤ C T (ε−1, d)t ∀ d ≥ α(ε0) ,

which is equivalent to

ln T (ε−1, d)

ln d
≥ α(ε)

t
+

ln(C2/C)

t ln d
.

The condition ε2 < λ2 implies α(ε) ≥ 1, and we get

lim inf
d→∞

inf
ε∈[ε0,

√
λ2 )

ln T (ε−1, d)

α(ε) ln d
≥ 1

t
.

This proves that B > 0 and ttra ≥ 1/B, and completes the proof.

We illustrate Theorem 4.1 for a number of tractability functions T assum-
ing that λ2 ∈ (ε2

0, 1). In this case we do not have strong tractability whereas
tractability depends on T .

• Polynomial tractability, T (x, y) = xy. Then (T, Ωres)-tractability in
the class of linear information holds with the exponent ttra = 1/B with

B =
1

α(ε0)
=

1

�2 ln(1/ε0)/ ln(1/λ2)	 − 1
.

• Separable restrictive tractability, T (x, y) = f2(y) for x, y ∈ [1, ε−1
0 ]×N,

and with a non-decreasing function f2 : [1,∞) → [1,∞) such that

1Here we use the inequality
(

d
k

) ≥ (d/k)k for d ≥ k which can be easily checked by
induction on d.
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limy→∞(ln f2(y))/y = 0. Then (T, Ωres)-tractability in the class of lin-
ear information holds iff

B1 := lim inf
d→∞

ln f2(d)

ln d
∈ (0,∞] ;

in this case we get ttra = 1/B, where

B =
B1

α(ε0)
=

B1

�2 ln(1/ε0)/ ln(1/λ2)	 − 1
.

Note that B1 > 0 iff f2(d) is at least of order dβ for some positive β.
Hence, if we take f2(d) = �ln(d + 1)	 then we do not have tractability.
On the other hand, if f2(d) = dβ for a positive β then B1 = β. For
f2(d) = exp(ln1+β(d)) with β > 0 we obtain B1 = ∞ and ttra = 0. This
means that in this case for an arbitrarily small positive t we have

n(ε, Sd, Λ
all
d ) = o

(
T (ε−1, d)t

)
for all ε ∈ [ε0, 1], d ∈ N.

• Non-separable symmetric tractability, T (x, y) = exp(f(x)f(y)) with f
as in (13). Then (T, Ωres)-tractability in the class of linear information
holds iff

B2 = lim inf
d→∞

f(d)

ln d
∈ (0,∞],

and the exponent exponent ttra = 1/B with

B = B2 inf
ε∈[ε0,

√
λ2)

f(x)

α(x)
.

Note that B2 > 0 iff f(d) is at least of order ln(d). For example, if
f(x) = β ln d for a positive β then B2 = β, whereas f(d) = dα with
α > 0 yields B2 = ∞ and ttra = 0.

4.2 Restricted Tractability in d.

We now assume that d∗ ≥ 1 and ε0 = 1 such that

Ωres = [1,∞) × [d∗].

We provide necessary and sufficient conditions for restricted tractability in d
in terms of the sequence of eigenvalues λ = {λj} of the compact operator
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W1 = S∗
1S1. Assume first that W1 has a finite number of positive eigenvalues

λj. Then
lim
ε→0

n(ε, S1, Λ
all
1 ) < ∞

and (15) yields for all d,

lim
ε→0

n(ε, Sd, Λ
all
d ) ≤

(
lim
ε→0

n(ε, S1, Λ
all
1 )
)d

< ∞.

In our case, d ≤ d∗, and we have strong (T, Ωres)-tractability for all tractabil-
ity functions T with tstr = 0 since

n(ε, Sd, Λ
all
d ) ≤ C :=

(
lim
ε→0

n(ε, S1, Λ
all
1 )
)d∗

for all (ε, d) ∈ Ωres.

Assume then that W1 has infinitely many positive eigenvalues λj which
is equivalent to assuming that limε→0 n(ε, S1, Λ

all
1 ) = ∞. In this case we have

the following theorem.

Theorem 4.2. Let

Ωres = [1,∞) × [d∗] with d∗ ≥ 1, and lim
ε→0

n(ε, S1, Λ
all
1 ) = ∞.

Then the following three statements are equivalent:

(i)

A := lim inf
ε→0

lnT (ε−1, 1)

ln n(ε, S1, Λall
1 )

∈ (0,∞] ,

(ii) S is (T, Ωres)-tractable in the class of linear information,

(iii) S is strongly (T, Ωres)-tractable in the class of linear information.

If (i) holds then the exponent of strong (T, Ωres)-tractability and the exponent
of (T, Ωres)-tractability satisfy

1

A
≤ ttra ≤ tstr ≤ d∗

A
.

Proof. It is enough to show that (iii)⇒(ii)⇒(i)⇒(iii).
(iii)⇒(ii) is obvious.
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(ii)⇒(i). For d = 1 we now know that

C T (ε−1, 1)t ≥ n(ε, S1, Λ
all
1 )

for some positive C and t with t ≥ ttra. Taking logarithms we obtain

ln T (ε−1, 1)

ln n(ε, S1, Λ
all
1 )

≥ 1

t
+

ln C−1

t ln n(ε, S1, Λ
all
1 )

.

Since n(ε, S1, Λ
all
1 ) goes to infinity, we conclude that A ≥ 1/t > 0, as claimed.

Furthermore, t ≥ 1/A and since t can be arbitrarily close to ttra we have
ttra ≥ 1/A.

(i)⇒(iii). We now know that for any δ ∈ (0, A) there exists a positive εδ

such that for all ε ∈ (0, εδ] we have

n(ε, S1, Λ
all
1 ) ≤ T (ε−1, 1)1/(A−δ) .

Hence, there is a constant Cδ ≥ 1 such that

n(ε, S1, Λ
all
1 ) ≤ Cδ T (ε−1, 1)1/(A−δ) for all ε ∈ (0, 1].

From (15) we obtain for all d ∈ [d∗],

n(ε, Sd, Λ
all
d ) ≤ C d∗

δ T (ε−1, 1)d∗/(A−δ) for all ε ∈ (0, 1].

This proves strong tractability with the exponent at most d∗/(A − δ). Since
δ can be arbitrarily small, ttra ≤ tstr ≤ d∗/A, which completes the proof.

Theorem 4.2 states that (T, Ωres)-tractability is equivalent to A > 0,
where A depends only on the behavior of the eigenvalues for d = 1. The
condition A > 0 means that ln T (ε−1, 1) goes to infinity at least as fast as
ln n(ε, S1, Λ

all
1 ). Note that for a finite positive A and d∗ > 1, we do not

have sharp bounds on the exponents. We shall see later that both bounds in
Theorem 4.2 may be attained for some multivariate problems and tractability
functions T . It may also happen that A = ∞. In this case ttra = tstr = 0
which means that for all d ∈ [d∗], and all positive t we have

n(ε, Sd, Λ
all
d ) = o(T (ε−1, d)t) as ε → 0.

To verify the condition A > 0 and find better bounds on the exponents
of tractability, we study the different rates of convergence of the sequence
λ = {λj}. We consider exponential, polynomial and logarithmic rates of λ.
That is, we assume:
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• exponential rate: λj is of order exp(−βj) for some positive β, or a little
more generally, λj is of order exp(−βjα) for some positive α and β.

• polynomial rate: λj is of order j−β = exp(−β ln j), or a little more
generally, λj is of order exp(−β(ln j)α) for some positive α and β.

• logarithmic rate: λj is of order (ln j)−β = exp(−β ln ln j) for some
positive β.

Note that for α < 1, we have sub-exponential or sub-polynomial behavior
of the eigenvalues, whereas for α > 1, we have super-exponential or super-
polynomial behavior of the eigenvalues. For the sake of simplicity we omit
the prefixes sub and super and talk only about exponential or polynomial
rates.

As we shall see, tractability will depend on some limits. We will de-
note these limits using the subscripts indicating the rate of convergence of
λ. Hence, the subscript e indicates an exponential rate, the subscript p a
polynomial rate, and the subscript l a logarithmic one.

4.2.1 Exponential Rate

Theorem 4.3. Let Ωres = [1,∞)× [d∗] with d∗ ≥ 1. Let S be a linear tensor
product problem with λ1 = 1 and with exponentially decaying eigenvalues λj,

K1 exp
(− β1j

α1
) ≤ λj ≤ K2 exp

(− β2j
α2
)

for all j ∈ N

for some positive numbers α1, α2, β1, β2, K1 and K2.
Then S is strongly (T, Ωres)-tractable (as well as (T, Ωres)-tractable due to

Theorem 4.2) in the class of linear information iff

Ae := lim inf
x→∞

ln T (x, 1)

ln ln x
∈ (0,∞] .

If Ae > 0 then the exponent of (T, Ωres)-tractability satisfies

1

α1
max
d∈[d∗]

d

Ae,d
≤ ttra ≤ 1

α2
max
d∈[d∗]

d

Ae,d

where

Ae,d = lim inf
x→∞

ln T (x, d)

ln ln x
,
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(clearly, Ae,d ≥ Ae,1 = Ae > 0), and the exponent of strong (T, Ωres)-
tractability satisfies

d∗

α1Ae
≤ tstr ≤ d∗

α2Ae
.

Proof. We have
n(ε, S1, Λ

all
1 ) = min{ j | λj+1 ≤ ε2 }.

Using the estimates on λj we obtain

min{ j | g1(j) ≤ ε2} ≤ n(ε, S1, Λ
all
1 ) ≤ min{ j | g2(j) ≤ ε2},

where gi(j) = Ki exp
(− βi(j + 1)αi

)
. This yields

( 1

β1
ln
(
K1ε

−2
))1/α1 − 1 ≤ n(ε, S1, Λ

all
1 ) ≤

( 1

β2
ln
(
K2ε

−2
))1/α2

.

For small ε this leads to

ln ln ε−1

α1
(1 + o(1)) ≤ ln n(ε, S1, Λ

all
1 ) ≤ ln ln ε−1

α2
(1 + o(1)) .

Therefore A from (i) of Theorem 4.2 satisfies α2 Ae ≤ A ≤ α1 Ae. Hence,
A > 0 iff Ae > 0, and (i) of Theorem 4.2 yields the first part of Theorem 4.3.

We now find bounds on the exponents assuming that Ae > 0. First we
estimate n(ε, Sd, Λ

all
d ). With x := ln((Kd

2ε
−2)1/β2) we obtain from (14),

n(ε, Sd, Λ
all
d ) ≤ me(x, d) :=

∣∣∣∣
{

(i1, . . . , id)

∣∣∣∣
d∑

j=1

iα2
j < x

}∣∣∣∣ .
We now prove that

κd,x

((x

d

)1/α2 − 1
)d

≤ me(x, d) ≤ xd/α2 . (20)

where κd,x = 1 for x ≥ d, and κd,x = 0 for x < d. We prove (20) by
induction on d. Let α = α2. For d = 1 we have m(x, 1) = |{i | i < x1/α}|,
i.e., x1/α − 1 ≤ m(x, 1) < x1/α. For d > 1, we have

me(x, d) =
∑

k<x1/α

me(x − kα, d − 1) .

24



From our induction hypothesis we get

me(x, d) ≤
∑

k<x1/α

(x − kα)(d−1)/α ≤
∑

k<x1/α

x(d−1)/α ≤ xd/α.

To prove a lower bound, we can assume that x > d, and then

me(x, d) ≥
∑

k: kα+d−1≤x

((
x − ξα

d − 1

)1/α

− 1

)d−1

≥
∫ (x+1−d)1/α

1

((x − ξα

d − 1

)1/α

− 1
)d−1

dξ.

Since x + 1 − d ≥ x/d and (x − ξα)/(d − 1) ≥ x/d for ξ ∈ [1, (x/d)1/α], we
have

me(x, d) ≥
∫ (x/d)1/α

1

((x

d

)1/α

− 1
)d−1

dξ =
((x

d

)1/α

− 1
)d

,

as claimed.
Consequently, we have for all ε ∈ (0, 1] and d ∈ [d∗],

n(ε, Sd, Λ
all
d ) ≤

( ln
(
Kd

2ε
−2)

β2

)d/α2

. (21)

Take C∗ := sup{(1/β2)
d/α2 | d ∈ [d∗]}. It is easy to see that K2 ≥ 1. We want

to show the existence of some positive C, t such that

n(ε, Sd, Λ
all
d ) ≤ C∗ ln

(
Kd∗

2 ε−2
)d∗/α2 ≤ C T (ε−1, 1)t (22)

for all ε ∈ (0, 1]. The right-hand inequality is equivalent to

ln(C∗/C)

t ln ln ε−1
+

d∗

α2 t

ln ln
(
Kd∗

2 ε−2
)

ln ln ε−1
≤ ln T (ε−1, 1)

ln ln ε−1
. (23)

Let {An} be a sequence in (0, Ae) converging to Ae. Hence for every n there
exists a positive εn such that

ln T (ε−1, 1)

ln ln ε−1
≥ An for all ε ∈ (0, εn].
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Therefore, decreasing εn if necessary, we obtain (23) for all ε ∈ (0, εn] as
long as we choose C ≥ C∗ and t > d∗/(α2An). To establish (22) for all
ε ∈ (εn, 1], we can keep the same t and, if necessary, increase C. Hence,
we have strong tractability with the exponent tstr ≤ d∗/(α2An), and with n
tending to infinity, we conclude that tstr ≤ d∗/(α2Ae).

We know that the problem is also tractable. To obtain an upper bound
on the exponent of tractability we use (21) and we find positive C and t for
which

n(ε, Sd, Λ
all
d ) ≤

(
ln(Kd∗

2 ε−2)

β2

)d/α2

≤ C T (ε−1, d)t ∀ d ∈ [d∗].

Proceeding as before, we conclude that ttra ≤ maxd∈[d∗] d/(α2Ae,d).
To obtain lower bounds on the exponents, we use the estimate

n(ε, Sd, Λ
all
d ) ≥ m̃e(z, d) :=

∣∣∣∣
{

(i1, . . . , id)

∣∣∣∣
d∑

j=1

iα1
j < z

}∣∣∣∣ ,
where z = z(ε, d) := ln((Kd

1ε−2)1/β1). For sufficiently small ε, we can use the
left-hand side of (20) with α2 replaced by α1 which yields

n(ε, Sd, Λ
all
d ) ≥ c zd/α1 = c

(
ln
((

Kd
1ε

−2
)1/β1

))d/α1

for all d ∈ [d∗], where c is independent of ε and d. Thus, for all t > tstr there
exists a C > 0 such that for small ε we have the inequality

CT (ε−1, 1)t ≥ c
(
ln
((

Kd∗
1 ε−2

)1/β1
))d∗/α1

,

which is equivalent to

ln T (ε−1, 1)

ln ln ε−1
≥ ln(c/C)

t ln ln ε−1
+

d∗

α1 t

ln
(
β−1

1 ln
(
Kd∗

1 ε−2
))

ln ln ε−1
.

This implies Ae ≥ d∗/(α1 t), and tstr ≥ d∗/(α1Ae).
For tractability, we know that there are positive C and t such that

CT (ε−1, d)t ≥ c
(
ln
((

Kd
1ε

−2
)1/β1

))d/α1 ∀ d ∈ [d∗].

Proceeding as before, we conclude that ttra ≥ maxd∈[d∗] d/(α1Ae,d). This
concludes the proof.
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For exponentially decaying eigenvalues, Theorem 4.3 states that strong
tractability (and tractability) are equivalent to the condition Ae > 0. If we
know the precise order of convergence of λ, i.e., when α1 = α2 = α > 0, then
we know the exponents of tractability,

ttra =
1

α
max
d∈[d∗]

d

Ae,d
,

tstr =
1

α

d∗

Ae
.

As we shall see it may happen that tstr > ttra.
We now illustrate Theorem 4.3 for a number of tractability functions T .

• Polynomial tractability, T (x, y) = xy. Then Ae,d = Ae = ∞, and we
have strong tractability with ttra = tstr = 0.

• Separable restrictive tractability, T (x, y) = f1(x) for (x, y) ∈ Ωres and
a non-decreasing function

f1 : [1,∞) → [1,∞) with lim
x→∞

ln f1(x)

x
= 0.

Then strong (T, Ωres)-tractability holds iff

Ae,d = Ae = lim inf
x→∞

ln f1(x)

ln ln x
∈ (0,∞].

Note that Ae > 0 iff f1(x) is at least of order (ln x)β for some positive
β. If we take f(x) = �ln(x + 1)	 then we have strong tractability with
Ae = 1. For α1 = α2 = α > 0, the exponents are tstr = ttra = d∗/α.

• Non-separable symmetric tractability, T (x, y) = exp(f(x)f(y)) with f
as in (13). Then (T, Ωres)-tractability holds iff

Ae,d = f(d) lim inf
x→∞

f(x)

ln ln x
∈ (0,∞].

Hence, Ae = Ae,1 > 0 iff f(x) is at least of order β ln ln x for some
positive β. For example, if we take f(x) = ln1+α(x + 1) for α > −1
then Ae,d = ∞ and tstr = ttra = 0. For f(x) = β ln ln(x + c) with
c > exp(1) − 1 and a positive β we have f(1) > 0 and

Ae,d = f(d) β = β2 ln ln (d + c).
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For α1 = α2 = α > 0, we now have

tstr =
d∗

α β2 ln ln (1 + c)
.

Assume for simplicity that d∗ = 2 and take c close to exp(1)− 1. Then
the maximum of the function d/ ln ln (d + c) is attained for d = 1, and
we have

ttra =
1

α β2 ln ln (1 + c)
=

tstr

d∗ .

4.2.2 Polynomial Rate

Theorem 4.4. Let Ωres = [1,∞) × [d∗] with d∗ ≥ 1. Let S be a linear tensor
product problem with λ1 = 1 and with polynomially decaying eigenvalues λj,

K1 exp
(− β1(ln j)α

) ≤ λj ≤ K2 exp
(− β2(ln j)α

)
for all j ∈ N

for some positive numbers α, β1, β2, K1 and K2.
Then S is strongly (T, Ωres)-tractable (as well (T, Ω)-tractable due to The-

orem 4.2) in the class of linear information iff

Ap := lim inf
x→∞

ln T (x, 1)

(ln x)1/α
∈ (0,∞] .

If α ∈ (0, 1] and Ap > 0 then the exponents of (T, Ωres)-tractability satisfy(
2

β1

)1/α

A−1
p ≤ ttra ≤ tstr ≤

(
2

β2

)1/α

A−1
p .

If α ∈ (1,∞) and Ap > 0 then the exponent of (T, Ωres)-tractability satisfies(
2

β1

)1/α

max
d∈[d∗]

d1−1/α

Ap,d

≤ ttra ≤
(

2

β2

)1/α

max
d∈[d∗]

d1−1/α

Ap,d

,

where

Ap,d = lim inf
x→∞

ln T (x, d)

(ln x)1/α
,

(clearly, Ap,d ≥ Ap,1 = Ap > 0), and the exponent of strong (T, Ωres)-
tractability satisfies

(d∗)1−1/α

(
2

β1

)1/α

A−1
p ≤ tstr ≤ (d∗)1−1/α

(
2

β2

)1/α

A−1
p .
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Proof. We now have

min{ j | g1(j) ≤ ε2} ≤ n(ε, S1, Λ
all
1 ) ≤ min{ j | g2(j) ≤ ε2}

with gi(j) = Ki exp
(− βi(ln(j + 1))α

)
. This yields

exp
(
(β−1

1 ln
(
K1ε

−2
)
)1/α

)
− 1 ≤ n(ε, S1, Λ

all
1 ) ≤ exp

(
(β−1

2 ln
(
K2ε

−2
)
)1/α

)
.

For small ε this leads to(
2 ln ε−1

β1

)1/α

(1 + o(1)) ≤ ln n(ε, S1, Λ
all
1 ) ≤

(
2 ln ε−1

β2

)1/α

(1 + o(1)) .

Hence, A from (i) of Theorem 4.2 satisfies (β2/2)1/α Ap ≤ A ≤ (β1/2)1/α Ap.
Hence, A > 0 iff Ap > 0, and (i) of Theorem 4.2 yields the first part of
Theorem 4.4, and that ttra ≥ (2/β1)

1/αA−1
p .

We now find bounds on the exponents assuming that Ap > 0. First we
estimate n(ε, Sd, Λ

all
d ). With x = x(ε, d) := ln((Kd

2ε
−2)1/β2) we have

n(ε, Sd, Λ
all
d ) ≤ mp(x, d) :=

∣∣∣∣
{

(i1, . . . , id)

∣∣∣∣
d∑

j=1

(ln ij)
α < x

}∣∣∣∣ .
We now prove the following estimates on mp(x, d). Let s > 1. If α ∈ (0, 1]

then there exists a positive number C(s, d) such that

exp
(
x1/α

)− 1 ≤ mp(x, d) ≤ C(s, d) exp
(
s x1/α

)
. (24)

If α ∈ [1,∞) then there exists a positive number C(s, d) such that

(
exp

((x

d

)1/α)
− 1
)d

≤ mp(x, d) ≤ C(s, d) exp
(
s d1−1/αx1/α

)
. (25)

For d = 1 we have mp(x, 1) = |{j | j < exp(x1/α)}| and exp
(
x1/α

) − 1 ≤
mp(x, 1) < exp

(
x1/α

)
.

We start with α ∈ (0, 1]. The lower bound is already proved since
mp(x, d) ≥ mp(x, 1). To obtain an upper bound on mp(x, d), we modify
an argument from the proof of Theorem 3.1(ii) in [8]. Let ζ(s) =

∑∞
k=1 k−s

denote the Riemann zeta function. We show by induction on d that

mp(x, d) ≤ ζ(s)d−1 exp
(
sx1/α

)
.
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For d = 1 this holds. Assume that our claim holds for d. Then

mp(x, d + 1) =
∑

k<exp(x1/α)

mp

(
x − (ln k)α, d

)

≤ ζ(s)d−1
∑

k<exp(x1/α)

exp
(
s (x − (ln k)α)1/α

)
.

Since (a − b)1/α ≤ a1/α − b1/α for all a ≥ b ≥ 0 and α ∈ (0, 1], we obtain

mp(x, d + 1) ≤ ζ(s)d−1
∑

k<exp(x1/α)

exp
(
s x1/α

)
exp

(− s ln k
)

= ζ(s)d−1 exp
(
s x1/α

) ∑
k<exp(x1/α)

k−s ≤ ζ(s)d exp
(
sx1/α

)
.

Let now α ∈ [1,∞). Again we proceed with induction on d. For d = 1,
the estimate (25) holds. Assume that our claim holds for d. Again we have

mp(x, d + 1) =
∑

k<exp(x1/α)

mp

(
x − (ln k)α, d

)
.

To get a lower bound on mp(x, d + 1), we obtain

mp(x, d + 1) ≥
∫ exp(x1/α)

1

(
exp

((x − (ln ξ)α

d

)1/α)
− 1
)d

dξ

≥
∫ exp((x/(d+1))1/α)

1

(
exp

(( x

d + 1

)1/α)
− 1
)d

dξ

≥
(

exp
(( x

d + 1

)1/α)
− 1
)d+1

.

We now obtain an upper bound on mp(x, d + 1). Let r = (1 + s)/2. Since
r > 1, we can use the upper bound on mp(x, d) and obtain

mp(x, d + 1) ≤C(r, d)

{
exp

(
r d1−1/αx1/α

)

+

∫ exp(x1/α)

1

exp
(
r d1−1/α

(
x − (ln ξ)α

)1/α)
dξ

}
.

The substitution z = ln ξ leads to∫ exp(x1/α)

1

exp
(
r d1−1/α

(
x − (ln ξ)α

)1/α)
dξ ≤

∫ x1/α

0

exp(rh(z)) dz ,
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where h(z) = d1−1/α(x − zα)1/α + z. Since

h′(z) = 1 − d1−1/α
( x

zα
− 1
)1/α−1

,

the function h takes its maximum at z = (x/(d + 1))1/α, and we get

mp(x, d + 1) ≤ C(r, d)
{

exp
(
r d1−1/αx1/α) + x1/α exp

(
r(d + 1)1−1/αx1/α

)}
≤ C(r, d) (1 + x1/α) exp

(
r(d + 1)1−1/αx1/α

)
.

Since

a := sup
x>0

(1 + x1/α) exp
(− (s − r)(d + 1)1−1/αx1/α

)
= sup

x>0
(1 + x1/α) exp

(− (s − 1)(d + 1)1−1/αx1/α/2
)

< ∞

we take C(s, d + 1) = a C(r, d) and conclude that

mp(x, d + 1) ≤ C(s, d + 1) exp
(
s(d + 1)1−1/αx1/α

)
,

as claimed.
Let γ := max{0, 1− 1/α}. Then (24) and (25) yield that for every s > 1

there exists a positive Cs such that for all ε ∈ (0, 1] and d ∈ [d∗],

n(ε, Sd, Λ
all
d ) ≤ Cs exp

(
s dγ

(
ln ε−2/β2

)1/α)
. (26)

Knowing that Ap > 0, we want to show that

Cs exp
(
s (d∗)γ(ln ε−2/β2)1/α

) ≤ C T (ε−1, 1)t (27)

for some positive C and t. Let {An} be a sequence in (0, Ap) converging to
Ap. Then for every n there exists a positive εn such that

ln T (ε−1, 1)(
ln ε−1

)1/α
≥ An for all ε ∈ (0, εn].

Observe that (27) is equivalent to

s (d∗)γ

t

( 2

β2

)1/α

+
ln(Cs/C)

t
(
ln ε−1

)1/α
≤ ln T (ε−1, 1)(

ln ε−1
)1/α

.
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This holds for all ε ∈ (0, εn] if t ≥ s(d∗)γ(2/β2)
1/αA−1

n and C ≥ Cs. For ε > εn

we can keep the same t and, if necessary, increase C. Hence (27) holds with
t = s (d∗)γ(2/β2)

1/αA−1
n . Thus, S is strongly (T, Ωres)-tractable. Taking s

arbitrarily close to 1 and n to infinity, we conclude tstr ≤ (d∗)γ(2/β2)
1/αA−1

p .
We now show that in the case α ∈ (1,∞) the exponent of strong tractabil-

ity fulfills tstr ≥ (d∗)1−1/α(2/β1)
1/αA−1

p . Here we use the estimate

n(ε, Sd, Λ
all
d ) ≥ mp(z, d) ,

where z = z(ε, d) := ln((Kd
1ε

−2)1/β1). For small ε, the left-hand side of (25)
implies that there is a positive c(d) such that

n(ε, Sd, Λ
all
d ) ≥ c(d) exp

(
d1−1/α

( 1

β1

ln
(
Kd

1 ε−2
))1/α)

. (28)

Thus for all t > tstr there exists a C > 0 such that for small ε we have

CT (ε−1, 1)t ≥ c(d∗) exp
(
(d∗)1−1/α

( 1

β1
ln
(
Kd

1 ε−2
))1/α)

,

which is equivalent to

ln T (ε−1, 1)

(ln ε−1)1/α
≥ ln(c(d∗)/C)

t (ln ε−1)1/α
+

(d∗)1−1/α

t

(
1

β1

ln
(
Kd

1 ε−2
)

ln ε−1

)1/α

.

Taking the limit inferior for ε → 0, we obtain Ap ≥ (d∗)1−1/α(2/β1)
1/αt−1,

and tstr ≥ (d∗)1−1/α(2/β1)
1/αA−1

p .
We finally find estimates on the exponent of tractability for α ∈ (1,∞).

We proceed similarly as before and obtain that

C T (ε−1, d)t ≥ n(ε, Sd, Λ
all
d ) ∀ d ∈ [d∗]

implies due to (28) that for small ε,

t ln T (ε−1, d)

(ln ε−1)1/α
≥ d1−1/α

(
2

β1

)1/α

(1 + o(1)) .

This yields that ttra ≥ (2/β1)
1/α maxd∈[d∗] d

1−1/α/Ap,d.
To get an upper bound on ttra, we use (26), and conclude that it is enough

to find positive C and t such that

Cs exp
(
s d1−1/α

(
ln ε−2/β2

)1/α
)

≤ C T (ε−1, d)t ∀ d ∈ [d∗].
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This holds for t ≥ s maxd∈[d∗] d
1−1/α(2/β2)

1/αA−1
p,d. Since s can be arbitrarily

close to one, we get that ttra ≤ maxd∈[d∗] d
1−1/α(2/β2)

1/αA−1
p,d, which completes

the proof.

For polynomially decaying eigenvalues, Theorem 4.4 states that strong
tractability (and tractability) are equivalent to the condition Ap > 0. If we
know the precise order of convergence of λ, i.e., when β1 = β2 = β > 0, then
we know the exponents of tractability. For α ∈ (0, 1] we have

ttra = tstr =

(
2

β

)1/α

A−1
p ,

whereas for α ∈ (1,∞) we have

ttra =

(
2

β

)1/α

max
d∈[d∗]

d1−1/α

Ap,d

,

tstr = (d∗)1−1/α

(
2

β

)1/α

A−1
p .

As before, it may happen that tstr > ttra.
We now illustrate Theorem 4.4 for a number of tractability functions T .

• Polynomial tractability, T (x, y) = xy. Then Ap,d = Ap and its value
depends on α. We have Ap = 0 for α < 1, and Ap = 1 for α = 1, and
Ap = ∞ for α > 1. Hence, we have strong tractability (and tractability)
iff α ≥ 1. For α > 1, we have ttra = tstr = 0, whereas for α = 1 and
β1 = β2 = β > 0, we have ttra = tstr = 2/β.

• Separable restrictive tractability, T (x, y) = f1(x) with f1 as for expo-
nential decaying eigenvalues. Then strong (T, Ωres)-tractability holds
iff

Ap,d = Ap = lim inf
x→∞

ln f1(x)

(ln x)1/α
∈ (0,∞].

Note that Ap > 0 iff f1(x) is at least of order exp
(
η (ln x)1/α

)
for some

positive η. If we take f1(x) = exp
(
η (ln x)1/α

)
then we have strong

tractability with Ap = η. For β1 = β2 = β > 0, the exponents are
tstr = ttra = (d∗)(1−1/α)+(2/β)1/αη−1.
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• Non-separable symmetric tractability, T (x, y) = exp(f(x)f(y)) with f
as in (13). Then (T, Ωres)-tractability holds iff

Ap,d = f(d) lim inf
x→∞

f(x)

(ln x)1/α
∈ (0,∞].

Hence, Ap = Ap,1 > 0 iff f(x) is at least of order η (ln x)1/α for some
positive η. For example, if we take f(x) = η (ln(x + c))1/α with a
positive c, then Ap,d = f(d)η. For a given α ∈ [1,∞), β1 = β2 = β > 0,
and sufficiently small c, the maximum of the function d1−1/α/Ap,d is
attained for d = 1, and we have

ttra =
21/α

η2 (β ln(1 + c))1/α
=

tstr

(d∗)1−1/α
.

4.2.3 Logarithmic Rate

Theorem 4.5. Let Ωres = [1,∞) × [d∗] with d∗ ≥ 1. Let S be a linear tensor
product problem with λ1 = 1 and with logarithmically decaying eigenvalues λj,

K1 exp
(− β ln(ln(j) + 1)

) ≤ λj ≤ K2 exp
(− β ln(ln(j) + 1)

)
for all j ∈ N

for some positive numbers β, K1 and K2.
Let β ≤ 2. Then S is not (T, Ωres)-tractable in the class of linear infor-

mation.
Let β > 2. Then S is strongly (T, Ωres)-tractable (as well (T, Ωres)-

tractable due to Theorem 4.2) in the class of linear information iff

Al := lim inf
x→∞

ln T (x, 1)

x2/β
∈ (0,∞] .

If β > 2 and Al > 0 then the exponent of (T, Ωres)-tractability satisfies

max
d∈[d∗]

K
d/β
1

Al,d
≤ ttra ≤ max

d∈[d∗]

K
d/β
2

Al,d
,

where

Al,d := lim inf
x→∞

ln T (x, d)

x2/β
,

(clearly, Al,d ≥ Al,1 = Al > 0), and the exponent of strong (T, Ωres)-
tractability satisfies

K
1/β
1

Al
≤ tstr ≤ K

d∗/β
2

Al
.
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(Note that the numbers K1 and K2 must satisfy K1 ≤ 1 ≤ K2. Thus, if

K1 = K2 = 1, we have also K
1/β
1 = K

d∗/β
2 .)

Proof. We now have

min{ j | g1(j) ≤ ε2} ≤ n(ε, S1, Λ
all
1 ) ≤ min{ j | g2(j) ≤ ε2}

with gi(j) = Ki exp
(− β ln( ln(j + 1) + 1)

)
. This yields

exp
(
K

1/β
1 ε−2/β − 1

)− 1 ≤ n(ε, S1, Λ
all
1 ) ≤ exp

(
K

1/β
2 ε−2/β − 1

)
.

For small ε this leads to

K
1/β
1 ε−2/β (1 + o(1)) ≤ ln n(ε, S1, Λ

all
1 ) ≤ K

1/β
2 ε−2/β (1 + o(1)) .

Assume first that β ≤ 2. Then

lim inf
ε→0

ln T (ε−1, 1)

ln n(ε, S1, Λall
1 )

≤ K
−1/β
1 lim inf

ε→0

ln T (ε−1, 1)

ε−1 + 1

ε−1 + 1

ε−2/β
= 0

due to (7). Therefore A from (i) of Theorem 4.2 is zero, and we do not have
tractability, as claimed.

Assume then that β > 2. Then K
−1/β
2 Al ≤ A ≤ K

−1/β
1 Al. Hence,

A > 0 iff Al > 0, and (i) of Theorem 4.2 yields the first part of Theorem 4.4,

and that tstr ≥ K
1/β
1 A−1

l .
We now find bounds on the exponents assuming that Al > 0. First we

estimate n(ε, Sd, Λ
all
d ). With x = x(ε, d) := ln((Kd

2/ε
2)1/β) we get

n(ε, Sd, Λ
all
d ) ≤ ml(x, d) :=

∣∣∣∣
{

(i1, . . . , id)

∣∣∣∣
d∑

j=1

ln(ln(ij) + 1) < x

}∣∣∣∣ .
We prove that for every s > 1 there exists a positive number C(s, d) such
that

exp
(
exp

(
x
) − 1

)− 1 ≤ ml(x, d) ≤ C(s, d) exp
(
s
(
exp

(
x
)− 1

))
. (29)

Let η := exp(x). Clearly we have ml(x, 1) = |{j | j < exp(η − 1)}|, which
implies

exp(η − 1) − 1 ≤ ml(x, 1) ≤ exp(η − 1) .
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Let now d ≥ 1 and assume that (29) holds for d. Then

ml(x, d + 1) =
∑

k<exp(η−1)

ml

(
x − ln(ln(k) + 1), d

)
.

Thus, we get the trivial lower bound estimate

ml(x, d + 1) ≥ ml(x, d) ≥ exp(η − 1) − 1 .

We now obtain an upper bound on ml(x, d + 1). Let r = (1 + s)/2. Then

ml(x, d + 1) ≤C(r, d)

{
exp(r (η − 1))

+

∫ exp(η−1)

1

exp
(
r
(
exp

(
x − ln(ln(ξ) + 1)

)− 1
))

dξ

}
.

The last integral is of the form

∫ exp(η−1)

1

exp
(
r
( η

ln(ξ) + 1
− 1
))

dξ =

∫ η

1

exp(r h(z)) dz ,

where z = ln(ξ)+ 1, and h : [1, η] → R with h(z) = η/z + z/r− (1 + 1/r). It
is easy to check that h takes its maximum η − 1 at the point z = 1. So we
have ∫ η

1

exp(r h(z)) dz ≤ (η − 1) exp(r (η − 1)) .

This results in

ml(x, d + 1) ≤ C(r, d) η exp(r (η − 1))

= C(r, d) η exp
(
(r − s)(η − 1)

)
exp

(
s(η − 1)

)
≤ C(r, d)

(
sup
ξ≥1

ξ exp
(− (s − 1)(ξ − 1)/2

))
exp

(
s(η − 1)

)
≤ C(s, d + 1) exp(s (η − 1))

for suitably large C(s, d + 1), as claimed.
Due to (29), we conclude that

n(ε, Sd, Λ
all
d ) ≤ C(s, d) exp(s (K

d/β
2 ε−2/β − 1)).
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For Al ∈ (0,∞], ε ∈ (0, 1] and d ∈ [d∗], we want to show that

C(s, d) exp
(
s
(
K

d/β
2 ε−2/β − 1

)) ≤ C T (ε−1, 1)t (30)

for some positive C, t. Let therefore {An} be a sequence in (0, Al) converging
to Al. Thus for every n there exists a positive εn such that

ln T (ε−1, 1)

ε−2/β
≥ An for all ε ∈ (0, εn].

Then (30) is equivalent to

s K
d/β
2

t
+

ln(C(s, d)/C) − s

t ε−2/β
≤ ln T (ε−1, 1)

ε−2/β
.

This holds for all ε ∈ (0, εn] if t ≥ sK
d/β
2 A−1

n and C ≥ C(s, d). For ε ∈ (εn, 1]
we can keep the same t and, if necessary, increase C. Taking s tending to 1
and n to infinity, we conclude tstr ≤ K

d∗/β
2 A−1

l .
Similarly we show bounds on the exponent ttra since (ln T (ε−1, d))/ε−2/β

is arbitrarily close to Al,d for small ε. This leads to ttra ≤ maxd∈[d∗] K
d/β
2 /Al,d.

To get a lower bound on ttra, we use the left-hand side inequality in (29) to
conclude that

n(ε, Sd, Λ
all
d ) ≥ exp

(
K

d/β
1 ε−2/β − 1

)− 1.

This yields that ttra ≥ maxd∈[d∗] K
d/β
1 /Al,d, and completes the proof.

For logarithmically decaying eigenvalues, Theorem 4.5 states that for β ≤
2, we do not have tractability. This means that the eigenvalues λj converge
to zero to slowly no matter how we choose a tractability function T . For
β > 2, strong tractability (and tractability) are equivalent to the condition
Al > 0. In this case, and for K1 = K2 = 1, we know the exponents of
tractability,

ttra = tstr = A−1
l .

We now illustrate Theorem 4.5 for a number of tractability functions T .

• Polynomial tractability, T (x, y) = xy. Then for β > 2, we have Al,d =
Al = 0. Hence, strong tractability (and tractability) does not hold for
an arbitrary positive β.
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• Separable restrictive tractability, T (x, y) = f1(x) with f1 as for ex-
ponential decaying eigenvalues. Let β > 2. Then strong (T, Ωres)-
tractability holds iff

Al,d = Al = lim inf
x→∞

ln f1(x)

x2/β
∈ (0,∞].

Note that Al > 0 iff ln f1(x) is at least of order xα with α ∈ [2/β, 1). If
we take f1(x) = exp

(
xα
)

then we have strong tractability with Al = 0
for α ∈ (2/β, 1), and then tstr = ttra = 0, whereas Al = 1 for α = 2/β
and tstr = ttra = 1 for K2 = K1 = 1.

• Non-separable symmetric tractability, T (x, y) = exp(f(x)f(y)) with f
as in (13). For β > 2, (T, Ωres)-tractability holds iff

Al,d = f(d) lim inf
x→∞

f(x)

x2/β
∈ (0,∞].

Hence, Al = Al,1 > 0 iff f(x) is at least of order x2/β . For example, if we
take f(x) = x2/β then Al,d = f(d). For K2 ≤ exp(1/d∗), the maximum

of the function K
d/β
2 /f(d) is attained for d = 1, and ttra ≤ K

1/β
2 and

tstr ≤ exp(1)1/β.

4.3 Restricted Tractability with d∗ ≥ 1 and ε0 < 1

Based on the results for restricted tractability in ε and d, it is easy to study
restricted tractability with d∗ ≥ 1 and ε ∈ (0, 1). In this subsection we
denote

Ωres = Ωres(ε0, d
∗) = [1,∞) × [d∗] ∪ [1, ε−1

0 ) × N

for d∗ ∈ N0 and ε0 ∈ (0, 1].
Hence, restricted tractability in ε corresponds to Ωres(ε0, 0) = [1, ε−1

0 )×N

with ε0 ∈ (0, 1), and restricted tractability in d corresponds to Ω(1, d∗) =
[1,∞) × [d∗] with d∗ ≥ 1.

Since Ωres(ε0, d
∗) = Ωres(ε0, 0) ∪ Ωres(1, d∗), it is obvious that strong

tractability and tractability for d∗ ≥ 1 and ε0 ∈ (0, 1) are equivalent to
restricted strong tractability and tractability in ε and d, respectively. We
summarize this simple fact in the following lemma.

Lemma 4.6. Let d∗ ≥ 1 and ε0 ∈ (0, 1). Let S be a linear tensor product
problem with λ1 = 1. Then
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• S is strongly (T, Ωres(ε0, d
∗))-tractable in the class of linear information

iff S is strongly (T, Ωres(ε0, 0))- and strongly (T, Ωres(1, d∗))-tractable in
the class of linear information.

• S is (T, Ωres(ε0, d
∗))-tractable in the class of linear information iff S is

(T, Ωres(ε0, 0))- and (T, Ωres(1, d∗))-tractable in the class of linear infor-
mation.

• The exponents of strong tractability and tractability for Ωres(ε0, d
∗) are

the maximum of the respected exponents for Ωres(ε0, 0) and Ωres(1, d∗).

We now combine the results of the previous subsections and present two
theorems on tractability of S for Ωres(ε0, d

∗). In these theorems by saying S
is strongly tractable we mean that S is strongly (T, Ωres(ε0, d

∗))-tractable in
the class of linear information, and by saying S is tractable we mean that S
is (T, Ωres(ε0, d

∗))-tractable in the class of linear information.

Theorem 4.7. Let d∗ ≥ 1 and ε0 ∈ (0, 1). Let S be a linear tensor product
problem with λ1 = 1.

• Let λ2 = 1. Then S is not tractable.

• Let ε2
0 < λ2 < 1. Then S is not strongly tractable, and S is tractable iff

A = lim inf
ε→0

ln T (ε−1, 1)

ln n(ε, S1, Λall
1 )

∈ (0,∞] ,

B = lim inf
d→∞

inf
ε∈[ε0,

√
λ2 )

ln T (ε−1, d)

α(ε) ln d
∈ (0,∞] ,

where α(ε) = �2 ln(1/ε)/ ln(1/λ2)	 − 1.

If A > 0 and B > 0 then

max
(
A−1, B−1

) ≤ ttra ≤ max
(
d∗A−1, B−1

)
.

• Let 0 < λ2 ≤ ε2
0.

Let limε→0 n(ε, S1, Λ
all
1 ) < ∞. Then S is strongly tractable and tstr = 0.

Let limε→0 n(ε, S1, Λ
all
1 ) = ∞. Then S is strongly tractable iff S is

tractable iff

A = lim inf
ε→0

ln T (ε−1, 1)

ln n(ε, S1, Λall
1 )

∈ (0,∞].
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If A > 0 then
A−1 ≤ ttra ≤ tstr ≤ d∗A−1.

• Let λ2 = 0. Then n(ε, Sd, Λ
all
d ) = 1 for all (ε, d) ∈ Ω(ε0, d

∗), and S is
strongly tractable with tstr = 0,

Proof. For λ2 = 1, it is enough to apply the first part of Lemma 3.1.
Let ε2

0 < λ2 < 1. The lack of strong tractability follows from the second
part of Lemma 3.1. Tractability in ε holds iff B ∈ (0,∞] due to the second
part of Theorem 4.1. Let limε→0 n(ε, S1, Λ

all
1 ) < ∞. Then tractability in d

holds and, in this case, A ∈ (0,∞], due to the reasoning before Theorem 4.2.
Let limε→0 n(ε, S1, Λ

all
1 ) = ∞. Then tractability in d holds iff A ∈ (0,∞] due

to Theorem 4.2. Hence, Lemma 4.6 implies that S is tractable iff both A, B ∈
(0,∞]. The bounds on ttra are due to Theorems 4.1, 4.2 and Lemma 4.6.

For 0 < λ2 ≤ ε2
0 and limε→0 n(ε, S1, Λ

all
1 ) < ∞, we conclude strong

tractability of S due to the first part of Theorem 4.1, the reasoning before
Theorem 4.2 and Lemma 4.6. In this case, tstr = 0.

For 0 < λ2 ≤ ε2
0 and limε→0 n(ε, S1, Λ

all
1 ) = ∞, strong tractability in ε

holds with tstr = 0 due to the first part of Theorem 4.1, and strong tractability
in d is equivalent to tractability in d and equivalent to A ∈ (0,∞] due to
Theorem 4.2. This and Lemma 4.6 yield that S is strongly tractable iff S is
tractable iff A ∈ (0,∞]. The bounds on ttra and tstr follow from Theorem 4.2.

For λ2 = 0, the problem is trivial due to the last part of Lemma 3.1.

We now summarize tractability conditions for Ω(ε0, d
∗) assuming the spe-

cific rates of convergence of the eigenvalues λ = {λj} as discussed in Theo-
rems 4.3, 4.4 and 4.5.

Theorem 4.8. Let d∗ ≥ 1 and ε0 ∈ (0, 1). Let S be a linear tensor product
problem with λ2 < λ1 = 1.

• Let λj = Θ
(
exp

( − β jα
))

converge to zero with an exponential rate
for some positive α and β.

– Let ε2
0 < λ2. Then S is not strongly tractable, and S is tractable

iff Ae = Ae,1 ∈ (0,∞] and B ∈ (0,∞] with

Ae,d = lim inf
x→∞

ln T (x, d)

ln ln x
∈ (0,∞] ,
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and B as in Theorem 4.7. If Ae > 0 and B > 0 then

ttra = max

(
1

α
max
d∈ [d∗]

d

Ae,d
,

1

B

)
.

– Let λ2 ≤ ε2
0. Then S is strongly tractable iff Ae ∈ (0,∞]. If

Ae > 0 then

tstr =
d∗

α Ae
and ttra =

1

α
max
d∈ [d∗]

d

Ae,d
.

• Let λj = Θ
(
exp

(− β(ln j)α
))

converge to zero with a polynomial rate
for some positive α and β.

– Let ε2
0 < λ2. Then S is not strongly tractable, and S is tractable

iff Ap = Ap,1 ∈ (0,∞] and B ∈ (0,∞] with

Ap,d = lim inf
x→∞

ln T (x, d)

(ln x)1/α
∈ (0,∞] ,

and B as in Theorem 4.7. If Ap > 0 and B > 0 then

ttra = max

((
2

β

)1/α

max
d∈ [d∗]

d(1−1/α)+

Ap,d
,

1

B

)
.

– Let λ2 ≤ ε2
0. Then S is strongly tractable iff Ap ∈ (0,∞]. If

Ap > 0 then

tstr =

(
2

β

)1/α
(d∗)(1−1/α)+

Ap
and ttra =

(
2

β

)1/α

max
d∈[d∗]

d(1−1/α)+

Ap,d
.

• Let λj = exp
(− β

(
ln(ln(j) + 1)

))
converge to zero with a logarithmic

rate for some positive β. For β ≤ 2, S is not tractable. For β > 2, we
have the following.

– Let ε2
0 < λ2. Then S is not strongly tractable, and S is tractable

iff Al ∈ (0,∞] and B ∈ (0,∞] with

Al = lim inf
x→∞

ln T (x, 1)

x2/β
∈ (0,∞]

and B as in Theorem 4.7. If Al > 0 and B > 0 then

ttra = max

(
1

Al

,
1

B

)
.
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– Let λ2 ≤ ε2
0. Then S is strongly tractable iff Al ∈ (0,∞]. If Al > 0

then

tstr = ttra =
1

Al

.

Proof. For the exponential rate and ε2
0 < λ2, the lack of strong tractability

follows from Theorem 4.7, whereas tractability is equivalent to Ae, B ∈ (0,∞]
due to Theorems 4.3 and 4.1. The formula for ttra also follows from these
two theorems and Lemma 4.6.

For the exponential rate and λ2 ≤ ε2
0, strong tractability in ε trivially

holds, and strong tractability in d holds iff Ae > 0 due to Theorem 4.3. The
formulas for tstr and ttra are also from Theorem 4.3.

For the polynomial and logarithmic rates, we proceed in the same way and
use Theorem 4.4 for the polynomial case, and Theorem 4.5 for the logarithmic
case, instead of Theorem 4.3.

We illustrate Theorems 4.7 and 4.8 for a number of tractability func-
tions T .

• Polynomial tractability, T (x, y) = xy. Then Ae,d = Ap,d = ∞ for α > 1,
whereas Ap,d = 1 if α = 1, and Ap,d = 0 for α < 1. Finally, Al,d =
0 for β > 2. Hence, for logarithmically and polynomially decaying
eigenvalues with α < 1, S is not tractable.

Let ε2
0 < λ2. We have B = 1/α(ε0). Then for exponentially and poly-

nomially decaying eigenvalues with α > 1, S is not strongly tractable
but is tractable with the exponent

ttra = α(ε0) = �2 ln(1/ε0)/ ln(1/λ2)	 − 1 ..

For polynomially decaying eigenvalues with α = 1, S is not strongly
tractable but is tractable with the exponent

ttra = max

(
2

β
, α(ε0)

)
.

Let λ2 ≤ ε2
0. Then for exponentially and polynomially decaying eigen-

values with α > 1, S is strongly tractable with tstr = 0. For polyno-
mially decaying eigenvalues with α = 1, S is strongly tractable with
tstr = 2/β.
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• Separable restrictive tractability, T (x, y) = f1(x) for (x, y) ∈ Ω(1, d∗),
and T (x, y) = f2(y) for (x, y) ∈ Ω(ε0, 0) with non-decreasing f1 and f2

such that limt→∞(ln fi(t))/t = 0.

For simplicity, let us take fi(t) = exp
(
(ln t)αi

)
for some positive αi.

Then Ae,d = ∞, whereas Ap,d = ∞ if α1 > 1/α, and Ap,d = 1 if
α1 = 1/α, and Ap,d = 0 if α1 < 1/α. Finally, Al,d = 0. Hence, for poly-
nomially decaying eigenvalues with α1 < 1/α, and for logarithmically
decaying eigenvalues S is not tractable.

Let ε2
0 < λ2. If α2 < 1, then B = 0 and S is not tractable. Let

α2 ≥ 1. Then for exponentially and polynomially decaying eigenvalues
with α1 > 1/α, S is not strongly tractable but S is tractable. The
exponent of tractability is ttra = α(ε0) if α2 = 1 and ttra = 0 if α2 > 1.
For polynomially decaying eigenvalues with α1 = 1/α, S is not strongly
tractable but tractable with exponent

ttra = max

{(
2

β

)1/α

(d∗)(1−1/α)+ , α(ε0)

}
if α2 = 1

and

ttra =

(
2

β

)1/α

(d∗)(1−1/α)+ if α2 > 1.

Let λ2 ≤ ε2
0. Then for exponentially and polynomially decaying eigen-

values with α1 > 1/α, S is strongly tractable and tstr = 0. For poly-
nomially decaying eigenvalues with α1 = 1/α, S is strongly tractable
with

ttra = tstr =

(
2

β

)1/α

(d∗)(1−1/α)+ .

• Non-separable symmetric tractability, T (x, y) = exp(f(x)f(y)) with f
as in (13). For simplicity, let us take f(x) = (ln(x + 1))η for some
positive η. Then Ae,d = ∞, whereas Ap,d = ∞ for η > 1/α, and
Ap,d = f(d) for η = 1/α, and Ap,d = 0 for η < 1/α. Finally, Al,d = 0.
Hence, S is not tractable for logarithmically and polynomially decaying
eigenvalues with η < 1/α.

Let ε2
0 < λ2. If η < 1, then B = 0 and S is not tractable. Let

η ≥ 1. Then for exponentially and polynomially decaying eigenvalues
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with η > 1/α, S is not strongly tractable but S is tractable. In the case
η > 1 we have ttra = 0. For polynomially decaying eigenvalues with
η = 1/α, S is not strongly tractable but tractable. If we have η > 1,
then α ∈ (0, 1) and

ttra =

(
2

β ln 2

)1/α

.

Let λ2 ≤ ε2
0. Then for exponentially and polynomially decaying eigen-

values with η > 1/α, S is strongly tractable and tstr = 0. For poly-
nomially decaying eigenvalues with η = 1/α, S is strongly tractable
with

tstr = (d∗)(1−1/α)+

(
2

β ln 2

)1/α

, ttra =

(
2

β

)1/α

max
d∈ [d∗]

d(1−1/α)+

(ln(d + 1))1/α
.
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