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Abstract

Gradient recovery methods for a posteriori error estimation in the finite
element method are justifiably popular. They are relatively simple to implement,
cheap in terms of storage and computational cost, and generally provide efficient
and reliable global and local error estimates for adaptive algorithms. In this
paper we highlight a difficulty that such error estimators have in the case of
problems with a jumping coefficient on the diffusion term of the differential
operator, explain why this difficulty exists and offer a fairly straight-forward
way to fix it.
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1 Introduction

A posteriori error estimation via gradient recovery methods is cheap in terms of
computational cost, relatively simple to implement, and generally both efficient and
reliable (often asymptotically exact). It is no surprise, then, that such methods are
popular - particularly in the engineering community - and many good papers have
been written on the topic over the past fifteen years or so. We refer the interested
reader to [3, 4, 5, 6, 8, 9, 10, 11, 12] as a reasonable sampling of the literature.

The basic principle behind these techniques is to apply some inexpensive post-
processing to the gradient of the computed piecewise linear finite element solution,
Vup, — RVuy, so that the recovered gradient RVuj, provides a better estimate
of the true gradient Vu than Vu does. Global and local error estimates |[RVup —
Vuplo.q, [RVur—Vuplo,r provide the basis for the adaptive algorithm. Such recovery
operators R can be either local or global in nature. Perhaps the most popular recovery
technique is the patch-wise discrete least-squares fitting of Zienkiewicz and Zhu [11,
12]. An example of a very good global recovery technique is that of Bank and Xu [3, 4],
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in which a componentwise L2-projection of Vuy, into the space of continuous piecewise
linear functions on the given mesh is performed, followed by a few iterations of a
multigrid-like smoother. Local L2-projections and weighted averaging techniques are
also popular. Xu and Zhang [8] provide a general framework for the analysis of several
of these approaches. All gradient recovery techniques can be viewed as performing
some sort of averaging of the piecewise constant gradient Vuy. The purpose of this
brief paper is to highlight a difficulty which arises when gradient recovery is used for
elliptic problems with a jumping coefficient a on the diffusion term, —V - (aVu)+---,
and no care is taken to avoid averaging across the interfaces on which a has a jump
discontinuity. Although this difficulty has been noted elsewhere before (see [4], for
example), here we demonstrate explicity that the effectivity such estimators can be
arbitrarily bad and that the local error estimators can lead to adaptive refinement
which completely fails to reduce the global error. We also explain why global weighted-
gradient recovery schemes, Vuy — a~'RaVuy,, will not work; so we are really stuck
with procedures which treat each subdomain separately.

We used quotations around “bug” in the title, because problems with jumping
coefficients lead to solutions which do not meet the global regularity assumptions
specified in the theoretical justification of gradient recovery methods. In fact, u &
H?(Q), although u might be smooth almost everywhere. However, gradient recovery
error estimation and adaptive refinement has been empirically shown to be amazingly
effective in situations in which the current theory does not apply - its practical utility
is actually based on its ability to accurately identify and resolve locally singular
behavior. In light of this, we consider poor performance of the estimator, explained
and demonstrated by example in Sections 2 and 3 to be a “bug” for which we seek a
simple fix.

2 The Model Problem

Let © denote the open upper half unit disk - see Figure 1 for a labeling of the two
subdomains, boundary and interface referred to below. We consider the following
model problem:

—aAu =0in Q (1)

u=0onI4 (2)

u = by sinaf + c¢; cosal on I'y (3)
U = by sin af + co cosalf) on I's (4)
Vu-n=0onTy (5)

where a = 8 > 0in £, a = 1 in s, and u and aVu - n are continuous on the
interface v between 2; and 5. The continuity of aVu -n on v is required so that, in
the conversion to weak form, the integrals along - cancel.

Clearly, u = 0 satisfies conditions (1)-(5) trivially. If we want a nontrivial solution
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Figure 1: The domain €2, with labeled subdomains, boundary and interface.

u, we must choose «a so that the linear system

0 1 0 0 by
0 0 cosam  —sinamw c | 0 (6)
sin %+ cos G —sin ¢ —cos G bo
T o QT QT : QT
fBcos Gt —fsin g cos G sin 5* Co

has a nontrivial solution. The first two rows of this system correspond to the boundary
conditions on I'y and I'4, and the last two correspond to the continuity conditions on
~. By checking the determinant, it is clear that choosing

arccos =2

aei%mz (7)

gives us what we need. We will consider the family of solutions u of the form

r® sin o , 0<0< 3

o= r® (;—f‘l sin af) — 7\/%(le) cos a&) , 5<0<m (8)

1-8

arccos ;2
a e —F Loz, (9)

™
The gradient near the interface +y is given by
_ VB . VB
m a—1 T a—1

VU<7"7§ ) =ar ; Vu(r,§ ) =ar . (10)

/_B_ /_B_
B+1 B+1

It is clear from (10) that Vu has a jump of magnitude /3 + 1 across . We should
expect a similar jump in Vuy, for any finite element solution w;, which is a moderately
good approximation of u. Herein lies the problem:



If |Vu — Vuplo,r is small on an element 7 near v, and R is a gradi-
ent recovery operator which averages across 7y, then the error estimate
|RVup, — Vup|o,» can be quite large in comparison.

Refinement based on such local estimates is expected to concentrate heavily on the
region near vy, even if this is not an optimal strategy. In fact, if |Vu — Vup|oo,r ~ R
for a triangle 7 which has an edge touching v, we expect |[Vu — Vuy|o . ~ h? and
IRV ur,—Vup|or ~+Bh! Itisalso clear from this example that simply recovering the
weighted gradient RaVuy, for use in error estimates of the form |RaVuy —aVup|o -
or |[a='RaVuy, — Vup|o - will not fix this problem - this merely shifts the difficulty
from the z-component of the gradient to the y-component.

The comments above directly refer to our model problem, but this general difficulty
is present for any problem with a jumping diffusion coefficient a. Because aVu-n must
be continuous along the interfaces between regions where a jumps, both Vu and aVu
will almost certainly jump across these interfaces. Therefore, if the recovery operator
R averages across these interfaces, the corresponding local error estimates may be
quite large in comparison to the actual local errors. The implication is obvious:

To improve the reliability and efficiency of gradient recovery error estima-
tors for problems with jumping diffusion coefficients, it is necessary to
avoid averaging across the interfaces between regions with different coef-
ficients.

We do not argue here that avoiding averaging across the interfaces is also sufficient
for improving the performance of the estimator, although it appears to be the only
reasonable approach. The lack of even H? global regularity of the solution u does not
bode well for a general proof of this sort. However, patchwise recovery methods have
proven effective in practice on a wide variety of problems, and we are merely adding
the additional requirement that none of the patches overlap any interface between
regions where the diffusion coefficient a jumps. In Section 3 below we numerically
demonstrate on the model problem both the difficulty described above when averaging
takes place across the interface, and the near optimal performance that results from
avoiding such averaging.

3 Numerically Demonstrating the Bug and its Fix

We consider our model problem with the choice 3 = 10°. To five significant digits,
this gives us

_ 28
CB+1

=20000 , cp= _VBB-) —1000.0.  (11)

a=0.99936 , by 5

We see from (8) then, that the solution u varies much more dramatically in {25 than in
Q7. Intuitively, we should expect a well-adapted mesh to be relatively fine in Q5 and
coarse in 2;. We compare the performance of two gradient recovery operators. The
recovery operator here labeled R, due to Bank and Xu [3, 4], uses a componentwise
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Figure 2: The meshes for the jumping coefficient problem after three stages of adaptive
refinement, using R gradient recovery error estimates (left) and R gradient recovery
error estimates (right). The mesh on the left has 6390 triangles, and the mesh on the
right has 6287 triangles.

global L2-projection of Vuy into the space of continuous, piecewise linear functions
on the mesh followed by a few iterations of a multigrid-like smoother. It is global in
nature, so it will average across . The recovery operator here labeled R is essentially
the same as the first, but the projection and smoothing are carried out independently
on the two subdomains ©Q; and Q5.

In Figure 2 we see a comparison of meshes with roughly the same number of
elements, which were generated by adaptive refinement based on both types gradi-
ent recovery error estimates. The difference is striking. The R gradient recovery
refinement is concentrated heavily around the interface v, as predicted in Section 2.
Refinement based on R error estimates seems to correspond more closely to what
was predicted at the beginning of this section, but we must look at numbers before
making any real judgment.

In Table 1 we provide the number of elements N, the global gradient error es-
timates |(R — I)Vup|oq and [(R — I)Vup|o.q, the exact global gradient errors
lenl1,0, and the effectivity EFF of the estimators. Standard scientific notation
is abbreviated in the table by giving the base ten exponent as a subscript, e.g.,
5.6166_, = 5.6166 x 1072, It stands out that, in the early stages of its adaptive
refinement, (R — I)Vup|o,o over-estimates the actual gradient error on the mesh by
a factor of more than 1000 = /3. Although the effectivity seems to be improving
as the mesh is refined, a more careful inspection of the numbers reveals that this is
due to the fact that the true error is no longer being reduced by the refinement. By
contrast, we see that the performance of the R error estimator is near optimal, with
effectivity near 1 and roughly linear convergence in error.

4 Conclusions
We have seen that gradient recovery operators which average across interfaces between

regions where the diffusion coefficient a jumps can perform arbitrarily poorly, and
that variants which seek to recover the weighted gradient aVu,; will also tend to



Table 1: Estimates, exact values and effectivity in the H L_seminorm for the jumping
coefficient problem - R gradient recovery (top) and R gradient recovery (bottom).

N 66 355 1554 6390 25779 103373
(R —=DVunloq | 26412  136.95  72.115  37.474  19.197  9.7403
lenl1.0 0.14956 7.4456_ 6.1226_5 5.9943_ 5 5.9560_5 6.0322_
EFF 1766.0  1839.3  1177.8  625.16  322.31  161.47
N 66 347 1526 6287 25549 102992
[(R — I)Vuploq | 0.20885 5.7936_5 2.1005_5 9.3772_3 4.3581_3 2.1143_3
len|1.0 0.14956 4.5009_» 1.8622 5 8.9091_3 4.2268_ 3 2.0657_3
EFF 1.3964  1.2872  1.1279  1.0525  1.0311 1.0235

perform poorly. It appears necessary that we avoid averaging across such interfaces
- which rules out global recovery schemes. We demonstrated here by example that
recovery schemes that independently treat subdomains between which a has a jump
discontinuity have a reasonable hope of achieving near optimal performance.

A difficulty may arise in practice, and could be difficult to address in this way.
Suppose the domain is decomposed into subdomains in which the diffusion coefficient a
is continuous - with jump discontinuities between these subdomains. If one or more of
these subdomains is small in area or narrow, there may not be any reasonable gradient
recovery which can take place - imagine a narrow strip with very few or no interior
triangles. In such cases it may be necessary to either force the initial triangulation
to be sufficiently fine in each subdomain, or to forego the use of gradient recovery
error estimators in favor of hierarchical basis error estimators such as those described
in [1, 2, 7] which tend to be quite robust and have been shown (empirically) to work
well on problems with jumping coefficients.

The author thanks Steffen Bérm of the Max Planck Institute in Leipzig, Markus
Melenk of the Technische Universitdt Wien, and Randy Bank of the University of
California at San Diego for conversations and comments which helped to shape the
direction of this paper.
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