
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Piecewise rigidity

by

Antonin Chambolle, Alessandro Giacomini, and Marcello

Ponsiglione

Preprint no.: 27 2006





PIECEWISE RIGIDITYANTONIN CHAMBOLLE, ALESSANDRO GIACOMINI, AND MARCELLO PONSIGLIONEAbstra
t. In this paper we provide a Liouville type theorem in the framework of fra
tureme
hani
s, and more pre
isely in the theory of SBV deformations for 
ra
ked bodies. We provethe following rigidity result: if u 2 SBV (
;RN ) is a deformation of 
 whose asso
iated 
ra
k Juhas �nite energy in the sense of GriÆth's theory (i.e., HN�1(Ju) <1), and whose approximategradient ru is almost everywhere a rotation, then u is a 
olle
tion of an at most 
ountablefamily of rigid motions. In other words, the 
ra
ked body does not store elasti
 energy if andonly if all its 
onne
ted 
omponents are deformed through rigid motions. In parti
ular, globalrigidity 
an fail only if the 
ra
k dis
onne
ts the body.Contents1. Introdu
tion 12. Notations and preliminaries 43. 
urlru is a measure for u 2 SBV1(
) 54. Some estimates for ve
tor �elds in a 
ube 95. Proof of Theorem 1.2 13A
knowledgments 16Referen
es 171. Introdu
tionA 
lassi
al rigidity result in nonlinear elasti
ity, due to Liouville, states that if an elasti
 bodyis deformed in su
h a way that its deformation gradient is pointwise a rotation, then the bodyis indeed subje
t to a rigid motion. If the body is supposed to be hyperelasti
 with an elasti
energy density W de�ned on a natural referen
e 
on�guration 
, a standard assumption for Wwhi
h 
omes from its frame indi�eren
e is that W is minimized exa
tly on the set of rotationsSO(3). Hen
e the rigidity result implies that the body doesn't store elasti
 energy if and only ifit is deformed through a rigid motion.From a mathemati
al viewpoint, Liouville's Theorem 
an be stated as follows: if 
 � RN is openand 
onne
ted, u 2 C1(
;RN ) is su
h that ru(x) 2 SO(N) for every x 2 
, then u = a+ R � xfor some a 2 R and R 2 SO(N). The assumption on the regularity of u has been fairly weakened,and now the same rigidity result is available for deformations in the 
lass of Sobolev maps (seeYu. Reshetnyak [17℄). In this 
ase the deformation gradient is de�ned only almost everywhere in
, so that the assumption for rigidity is ru(x) 2 SO(N) for a.e. x 2 
.A quantitative rigidity estimate has been provided re
ently by Friese
ke, James and M�uller [13℄,in order to derive nonlinear plates theories from three dimensional elasti
ity. They proved that if
 is 
onne
ted and with Lips
hitz boundary, there exists a 
onstant C depending only on 
 andN su
h that for every u 2W 1;2(
;RN )(1.1) minR2SO(N) kru�RkL2(
) � Ckdist(ru; SO(N))kL2(
):1



2 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONEAs a 
onsequen
e, if the deformation gradient is 
lose to rotations (in L2), then it is in fa
t 
loseto a unique rotation. Estimate (1.1) is indeed true in Lp for every 1 < p < +1 (see [10℄).The aim of this paper is to dis
uss the problem of rigidity in the framework of fra
ture me
hani
s,that is for bodies that 
an not only deform elasti
ally, but also be 
ra
ked along surfa
es wherethe deformation be
omes dis
ontinuous. The 
lass of admissible deformations that we 
onsider, inthis setting, will be the spa
e of spe
ial fun
tions of bounded variation SBV (
;RN ) (see Se
tion 2for a pre
ise de�nition). Given u 2 SBV (
;RN ), the approximate gradient ru (whi
h exists atalmost every point of 
) takes into a

ount the elasti
 part of the deformation, while the jumpset Ju represents a 
ra
k in the referen
e 
on�guration. The set Ju is re
ti�able, that is, it 
an be
overed (up to a HN�1{negligible set) by a 
ountable number of C1 submanifolds of RN . So Juis, in some sense, a (N � 1){dimensional surfa
e.In the 
ontext of SBV deformations, we 
annot expe
t a rigidity result as for elasti
 deforma-tions, be
ause a 
ra
k 
an divide the body into two parts, ea
h of one subje
t to a di�erent rigiddeformation. We prove that this is essentially the only way rigidity 
an be violated, provided the
ra
k Ju has \�nite energy" (whi
h, in the framework of GriÆth's theory, means that its total(N � 1){dimensional surfa
e is �nite). If the body is not suitably divided by a 
ra
k in several
omponents, then rigidity as in the elasti
 
ase holds.In order to formulate our result, we need some notions from geometri
 measure theory in orderto make pre
ise the notion of a partition 
 in 
onne
tion with SBV deformations. We referto Se
tion 2 for more details. We say that a partition (Ei)i2N of 
 is a Ca

ioppoli partitionif Pi2N P (Ei;
) < +1, where P (Ei;
) denotes the perimeter of Ei in 
. Given a re
ti�ableset K � 
, we say that a Ca

ioppoli partition (Ei)i2N of 
 is subordinated to K if (up to aHN�1{negligible set) the redu
ed boundary ��Ei of Ei is 
ontained in K for every i 2 N. We saythat 
 n K is inde
omposable if the only Ca

ioppoli partition subordinated to K is the trivialone, i.e., E0 = 
.The main rigidity result of the paper is the following Liouville's type theorem for SBV - defor-mations.Theorem 1.1. Let u 2 SBV (
;RN ) su
h that HN�1(Ju) < +1 and ru(x) 2 SO(N) for a.e.x 2 
. Then u is a 
olle
tion of an at most 
ountable family of rigid deformations, i.e., thereexists a Ca

ioppoli partition (Ei)i2N subordinated to Ju su
h thatu =Xi2N(Kix+ bi)1Ei(x);where Ki 2 SO(N) and bi 2 RN (and, as a 
onsequen
e, Ju � [i2N��Ei). In parti
ular, if 
 n Juis inde
omposable, then u is a rigid deformation, i.e., u(x) = a + R � x for some a 2 RN andR 2 SO(N) (hen
e, Ju = ;).Let us observe that the assumption that HN�1(Ju) is �nite is essential in this result. Indeed,it has been shown by Alberti [1, 5℄ that any N{dimensional L1 ve
tor �eld 
an be the gradient ofa suitable SBV fun
tion, so that the rigidity 
learly fails if one just assumes ru(x) 2 SO(N) fora.e. x 2 
.In the 
ontext of fra
ture me
hani
s, Theorem 1.2 implies the following fa
t. Assume that thedensity of the elasti
 energy stored in the 
ra
ked body is represented by a fun
tion W vanishingexa
tly on SO(N). Then a deformation u of 
lass SBV does not store elasti
 energy if and onlyif the 
ra
k Ju divides 
 in several subbodies, ea
h of one subje
t to a rigid motion. If Ju is notenough to 
reate subbodies of 
, then u is a rigid motion for the entire body (and there is nojump Ju at all). In this respe
t, the spa
e SBV seems to be appropriate for the study of elasti
properties of 
ra
ked hyperelasti
 bodies.



PIECEWISE RIGIDITY 3The main diÆ
ulty to prove Theorem 1.1 is that the di�erential 
onstraint 
urlru = 0, validfor every Sobolev fun
tion, does not hold in general for SBV fun
tions, be
ause ru is onlya part of the distributional derivative of u. However we prove that if u 2 SBV (
;RN ) withru 2 L1(
;MN�N) then 
urlru is a measure, whi
h is absolutely 
ontinuous with respe
t toHN�1 Ju. This result (up to our knowledge, new and interesting on its own), 
ombined with thequantitative rigidity estimate (1.1) is enough to obtain our rigidity result.The set of rotations in RN 
an be repla
ed by any 
ompa
t set of matri
es K �MN�N whi
hsatisfy a Lp-quantitative rigidity estimate for 1 < p < NN�1 , i.e., there exists C > 0 depending onN and p su
h that, for every u 2 W 1;p(
;RN ),(1.2) minK2K kru�KkLp(
) � Ckdist(ru;K)kLp(
):Theorem 1.1 is obtained as a parti
ular 
ase of the following rigidity result.Theorem 1.2 (The rigidity result). Let K �MN�N be a 
ompa
t set su
h that the quantitativerigidity estimate (1.2) holds for some p 2 (1; N=(N � 1)). Let u 2 SBV (
;RN ) be su
h thatHN�1(Ju) < +1 and ru(x) 2 K for a.e. x 2 
. Then there exists a Ca

ioppoli partition(Ei)i2N of 
 subordinated to Ju su
h thatu =Xi2N(Kix+ bi)1Ei(x);where Ki 2 K and bi 2 RN (and, as a 
onsequen
e, Ju � [i2N��Ei). In parti
ular if 
 n Ju isunde
omposable, then u = Kx+ b for some K 2 K, b 2 RN (hen
e, Ju = ;).In order to prove Theorem 1.2, the key point is to show that ru is a pie
ewise 
onstant fun
tionthat 
an jump only on Ju, i.e., ru 2 SBV (
;MN�N ) with r(ru) = 0 and Jru � Ju: this impliesthat ru is 
onstant on a Ca

ioppoli partition subordinated to Ju, and hen
e that u is aÆne onthe same partition.In order to establish that ru is pie
ewise 
onstant with jumps on Ju, we use an approximationbased on a 
overing argument inspired by [13℄. First of all we split our domain in a disjoint unionof small 
ubes Qh of size h. On many of these 
ubes, HN�1(Ju \ Qh) will be small, showingthat 
urlru is 
lose to zero in Qh. A Helmholtz' type estimate for L1 ve
tor �elds with 
url-measure shows then that ru is 
lose in Lp to the gradient rwh of a Sobolev fun
tion, whi
hby the quantitative rigidity estimate (1.2) is 
lose in Lp to a unique matrix K(Qh) 2 K. Weshow that ru is approximated by the pie
ewise 
onstant fun
tions  h su
h that  h = wh on Qh.The sequen
e ( h)h2N has a uniformly bounded total variation whi
h is 
ontrolled by 
urlruand so by HN�1 Ju: we prove this, as in [13℄, by using again the quantitative rigidity estimateon the union of neighboring 
ubes. An appli
ation of Ambrosio's 
ompa
tness theorem for SBVfun
tions [2, 3, 4℄ is then enough to get the 
on
lusion.Let us mention that a lo
al version of Liouville Theorem on sets of �nite perimeter, for Lips
hitzmappings, was already given in [12℄. There, Dolzmann and M�uller prove that if u : 
 ! RN isin W 1;1(
;RN ), detru � 
 > 0, and ru 2 SO(N) for a.e. x 2 E, where E is a subset of 
with �nite perimeter, then ru1E 2 BV (
), and D(ru1E) (
 n ��E) = 0. (So that the thesis ofTheorem 1.1 holds inside E.)Rigidity results in the spirit of Liouville's Theorem play also an important role in order tounderstand possible mi
rostru
tures arising in elasti
 bodies. The problem of mi
rostru
tures 
anbe stated mathemati
ally in the following way: given a set of matri
es K �MN�N , �nd Lips
hitzmappings u : 
 ! RN su
h that ru(x) 2 K for a.e. x 2 
. K is said to be rigid if it doesn'tadmit nontrivial mi
rostru
tures, i.e., if the only maps u 2W 1;1(
) su
h that ru(x) 2 K for a.e.x 2 
 are aÆne.



4 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONEAn example of rigid set of matri
es is provided by a famous result by Ball and James [6℄:K = fK1;K2g is rigid if and only if rank (K1�K2) � 2. In this 
ase, Ball and James proved thatrigidity holds also in the stronger sense of approximate solutions: for every sequen
e (uh)h2N ofequi-Lips
hitz fun
tions su
h that dist(ruh;K) ! 0 in measure, then either dist(ruh;K1) ! 0,or dist(ruh;K2)! 0 in measure.Theorem 1.2 
an be used to infer a similar result in the framework of the dis
ontinuous defor-mations of 
lass SBV . The quantitative rigidity estimate we need to apply our arguments hasbeen re
ently provided by De Lellis and Sz�ekelyhidi [11℄: they prove that if K �MN�N is a �niteset of matri
es whi
h is rigid for approximate solutions, then the quantitative rigidity estimate(1.2) holds for any p 2 (1;+1) provided that 
 is Lips
hitz-regular. As a 
onsequen
e, we 
andedu
e the following result.Theorem 1.3. Let K := fK1; K2g, with rank (K1 �K2) � 2. Let u 2 SBV1(
;RN ) su
h thatru(x) 2 K for a.e. x 2 
. Then there exists a Ca

ioppoli partition (Ei)i2N of 
 subordinated toJu su
h that u =Xi2N(Kix+ bi)1Ei(x);where Ki 2 K and bi 2 RN (and, as a 
onsequen
e, Ju � [i2N��Ei). In parti
ular if 
 n Ju isinde
omposable, then u = Kx+ b for some K 2 K and b 2 RN (hen
e, Ju = ;).The rigidity result with respe
t to approximate solutions by Ball and James has been generalizedto the 
ase where K 
onsists of three matri
es without any rank-1 
onne
tion in [18℄, so thatTheorem 1.3 still holds in this 
ase. For 
ompleteness, let us say that if K 
onsists of four matri
eswithout any rank-1 
onne
tion, rigidity 
an fail for approximate solutions for a suitable 
hoi
e ofthe involved matri
es (see [19℄, [20℄), while K is always rigid with respe
t to exa
t solutions (see[9℄). The 
ase N = 5 is ni
ely illustrated in [14℄ by a non-rigid �ve point 
on�guration withoutany rank-1 
onne
tion.The paper is organized as follows. In Se
tion 2 we re
all some fa
ts from geometri
 measuretheory and from the theory of SBV spa
es. In Se
tion 3, we show that the 
url of a fun
tion uthat satis�es the assumptions of the rigidity theorem is a Radon measure absolutely 
ontinuouswith respe
t to HN�1 Ju. Se
tion 4 is devoted to the statement and proof of some Helmholtztype estimates in 
ubes. The proof of Theorem 1.2 is then given in Se
tion 5.2. Notations and preliminariesIn this se
tion we re
all the de�nition of the spa
e SBV and some fa
ts from geometri
 measuretheory that will be used throughout the paper. We refer to [5℄ for further details.The spa
e SBV . Let 
 be an open set in RN . We say that u 2 BV (
;RN ) if u 2 L1(
;RN ),and its distributional derivative Du is a ve
tor-valued Radon measure on 
. We say that u 2SBV (
;RN ) if u 2 BV (
;RN ) and its distributional derivative 
an be represented asDu(A) = ZAru(x) dx + ZA\Ju(u+(x)� u�(x))
 �x dHN�1(x);where ru denotes the approximate gradient of u, Ju denotes the set of approximate jumps of u, u+and u� are the tra
es of u on Ju, �x is the normal to Ju at x, and HN�1 is the (N�1)-dimensionalHausdor� measure. The symbol 
 denotes the tensorial produ
t of ve
tors: (a 
 b)ij = aibj forevery a; b 2 RN .



PIECEWISE RIGIDITY 5Note that if u 2 SBV (
;RN ), then the singular part of Du is 
on
entrated on Ju whi
h is a
ountably HN�1-re
ti�able set: there exists a set E with HN�1(E) = 0 and a sequen
e (Mi)i2Nof C1-submanifolds of RN su
h that Ju � E [Si2NMi.We set, for d � 1,(2.1) SBV1(
;Rd ) := fu 2 SBV (
;Rd ) : ru 2 L1(
;Md�N); HN�1(Ju) < +1g:and, as usual, SBV1(
) := SBV1(
;R) whenever d = 1.Pie
ewise 
onstant fun
tions and Ca

ioppoli partitions. Let 
 be an open set in RN ,and let E � 
. We say that E has �nite perimeter in 
 if 1E 2 SBV (
). The set of jumps of 1Eis denoted by ��E and is 
alled the redu
ed boundary of E: the derivative of 1E is 
on
entratedon ��E, and its total variation is given by HN�1 ��E. The perimeter of E in 
 is given byHN�1 (��E).We say that a partition (Ei)i2N of 
 is a Ca

ioppoli partition if Pi2NHN�1 (��E) < +1.Given a re
ti�able set K � 
, we say that a Ca

ioppoli partition (Ei)i2N of 
 is subordinated toK if (up to a HN�1{negligible set) the redu
ed boundary ��Ei of Ei is 
ontained in K for everyi 2 N. We say that 
 nK is inde
omposable if the only Ca

ioppoli partition subordinated to Kis the trivial one, i.e., E0 = 
.Ca

ioppoli partitions are naturally asso
iated to pie
ewise 
onstant fun
tions, i.e., fun
tionsu 2 SBV (
;RN ) su
h that ru = 0 a.e. on 
. These fun
tions are said pie
ewise 
ontant in 
be
ause they are indeed 
onstant on the subsets Ei of a Ca

ioppoli partition of 
. More pre
isely(see [5, Theorem 4.23℄) there exists a Ca

ioppoli partition (Ei)i2N of 
 su
h that(2.2) u =Xi2N bi1Ei ;with bi 6= bj for i 6= j. Noti
e that if K is a re
ti�able set in 
 su
h that 
 nK is inde
omposable,then a pie
ewise 
onstant fun
tion u in 
 with Ju � K is ne
essarily 
onstant on 
.3. 
urlru is a measure for u 2 SBV1(
)In this se
tion, we show that the 
url of a fun
tion u that satis�es the assumptions of thetheorem is in fa
t a measure, estimated with HN�1 Ju.Theorem 3.1. Let u 2 SBV1(
). Then 
urlru is a measure � 
on
entrated on Ju su
h thatj�j � 
kruk1HN�1 Ju:In this statement, the 
onstant 
 depends on the dimension N . However, we 
onje
ture that theoptimal 
onstant is 2p2 (
onsidering the Frobenius norm for matri
es).Remark 3.2. Clearly, if u 2 SBV1(
;Rd ) is a ve
tor-valued fun
tion (d � 2), then the resultstill holds (with the same 
onstant 
 if the norm on tensors is still the Eu
lidean norm of theasso
iated matrix).Proof. Let u 2 SBV1(
). We have: u 2 L1(
), L := kruk1 < +1, and HN�1(Ju) < +1. Thedistribution 
urlru is formally equal to the matrix (�i(�ju)� �j(�iu))1�i;j�N and is de�ned byh
urlru; 'i = NXi;j=1 Z
 �iu(x)�j('i;j � 'j;i)(x) dx ;



6 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONEfor any ' 2 C1
 (
;MN�N). The thesis of the theorem is lo
al, so that it is enough to prove thatif Q �� 
 is a hyper
ube in 
, then for any ' 2 C1
 (Q;MN�N), one has(3.1) NXi;j=1 ZQ �iu(x)�j('i;j � 'j;i)(x) dx � 
 kruk1k'k1HN�1(Ju \Q) :Without loss of generality, we may assume that Q = (0; 1)N . We will approximate u in Q witha pie
ewise smooth fun
tion, jumping only on fa
ets of smaller hyper
ubes. This will be doneusing a simpli�ed variant of the dis
retization/reinterpolation te
hnique presented in [7, 8℄, andinspired from [16℄.Step 1. Consider the set J = Ju\Q. Denote by (ei)Ni=1 the 
anoni
al basis of RN (ei = (Æi;j)Nj=1).One easily shows that for any i, the setJ"i := f�tei + x : t 2 [0; "℄; x 2 Jgis Lebesgue-measurable. Indeed, up to a HN�1{negligible set N , J is a 
ountable union of 
ompa
tsets: hen
e J"i is the union of [�"ei; 0℄+N , whi
h has Lebesgue measure zero, and of a 
ountableunion of 
ompa
t sets. We have the estimatejJ"i j � "HN�1(J) ;whi
h 
an be derived in several ways, and more pre
isely one 
an show(3.2) jJ"i j � " ZJ j�i(x)j dHN�1where �(x) = (�1(x); : : : ; �2(x)) is the normal to J at x, de�ned for HN�1-a.a. x 2 J . For y 2(0; 1)N , we now also de�ne the dis
rete binary variable ly";i(k) := 1J"i ("y+k), for any k 2 "ZN\Q.One shows that for any i = 1; : : : ; NZ(0;1)N "N�1 Xk2"ZN\Q ly";i(k) dy = "�1 Z(0;")n Xk2"ZN\Q1J"i (y + k) dy � "�1jJ"i j :Hen
e using (3.2) and PNi=1 j�ij � pN ,Z(0;1)N "N�1 NXi=1 Xk2"ZN\Q ly";i(k) dy � pNHN�1(J):Using Fatou's lemma, we dedu
eZ(0;1)N 0�lim inf"!0 "N�1 NXi=1 Xk2"ZN\Q ly";i(k)1A dy � pNHN�1(J);so that for any Æ > 0, there exists a set A of positive measure in (0; 1)N , su
h that(3.3) y 2 A ) lim inf"!0 "N�1 NXi=1 Xk2"ZN\Q ly";i(k) � pNHN�1(J) + Æ:Step 2. Let now �(t) := maxf1� jtj; 0g (t 2 R) and �N (�) =QNi=1�(�i) for all � 2 RN (whi
his known in �nite elements approximation as the \Q1" interpolation fun
tion). If we letvy" (x) := Xk2"ZN\Qu("y + k)�N �x� k" � y� ;it is well known that for a.e. y 2 (0; 1)N , vy" ! u in L1(Q) (see for instan
e [7℄).



PIECEWISE RIGIDITY 7Step 3. The sli
ing properties of BV fun
tions (see [5℄) also ensure that for all i and HN�1-a.e.z 2 fx 2 Q : xi = 0g, the fun
tion (0; 1) 3 t 7! u(z + tei) is in SBV (0; 1), with �nite jumpset given by ft : z + tei 2 Jg, and whose derivative is given by t 7! �iu(z + tei), whi
h byassumption is bounded by L. We dedu
e that for a.e. y 2 (0; 1)N , the dis
rete fun
tion vy" satis�esjvy" (k + "ei) � vy" (k)j � L" for any i = 1; : : : ; N and k 2 "ZN \ Q su
h that k + "ei 2 Q andJ \ ["y + k; "y + k + "ei℄ = ;, whi
h is equivalent to ly";i(k) = 0.Step 4. From steps 1, 2 and 3, there exists y 2 A su
h that:(3.4) lim inf"!0 "N�1 NXi=1 Xk2"ZN\Q ly";i(k) � pNHN�1(J) + Æ ;vy" ! u in L1(Q), and jvy" (k + "ei)� vy" (k)j � L" for any i = 1; : : : ; N and k 2 "ZN \Q su
h thatk + "ei 2 Q and ly";i(k) = 0. We 
hoose a sequen
e ("j)j�1 su
h that the lim inf in (3.4) is in fa
ta limit, and let vj := vy"j , and lj;i := ly"j ;i.>From now on, sin
e we refer only to the grids f"jy+"jk : k 2 ZNg whi
h we use to interpolateu, we 
an assume (up to translation) that y = 0, so that they 
oin
ide with the grids f"jk : k 2ZNg.In a small 
ube k + (0; "j)N in Q (k 2 "jZN), as soon as J does not interse
t any edge of the
ube, one has j�ivj j � L for all i = 1; : : : ; N so that jrvj j � pNL inside the 
ube. Given an edge[k; k + "jei℄, if lj;i(k) = 1, then J interse
ts the edge. In this 
ase, we 
annot 
ontrol jrvj j in allthe 
ubes in Q that share this edge, whose total number is at most 2N�1. We let Kj be the unionof all su
h 
ubes: by (3.4) we have the estimate(3.5) jKj j � 2N�1"Nj NXi=1 Xk2"jZN\Q lj;i(k) � 
"j :On the other hand (taking into a

ount the fa
t that for ea
h edge with lj;i(k) = 1, we add to theboundary of Kj at most the boundary of the union of 2N�1 adja
ent 
ubes)HN�1(�Kj) � (N + 1)2N�1"N�1j NXi=1 Xk2"jZN\Q lj;i(k) ;so that (using (3.4), with the \lim inf"!0" repla
ed with \limj!1")(3.6) lim supj!1 HN�1(�Kj) � (N + 1)2N�1(pNHN�1(J) + Æ):Let v0j = vj1QnKj . By (3.5), we still have v0j ! u in L1(Q) as j ! 1. The previous dis
ussionshows that in any Q0 �� Q, for j large enough, v0j 2 SBV (Q0) with krv0jk1 � pNL, v0j ispie
ewise smooth and S(v0j) � HN�1(�Kj) is a subset of a �nite number of fa
ets of hyper
ubes.By Ambrosio's theorem [5, Theorem 4.36℄, we know that rv0j * ru in Lp(Q0) (for any p <+1). Hen
e 
urlrv0j �* 
urlru as j !1, in the distributional sense. On the other hand, sin
eDv0j = rv0j(x) dx + v0j �KjHN�1 �Kj ;(where �Kj is the exterior normal to Kj and v0j stands here for the non-zero tra
e of v0j on theexterior surfa
e of Kj), and sin
e 
urlDv0j = 0, one has
urlrv0j = � 
url (v0j �KjHN�1 �Kj) ;whi
h 
an be shown to be equal to� (r�v0j) ^ �KjHN�1 �Kj



8 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONEwhere a ^ b denotes the antisymmetri
 tensor produ
t a
 b� b
 a. Hen
e its total variation, asa measure, is bounded by p2NLHN�1(�Kj). If ' 2 C1
 (Q;MN�N) is �xed, one has therefore(
hoosing Q0 su
h that supp' �� Q0),

urlrv0j ; '� � p2NL k'k1HN�1(�Kj) :Passing to the limit and re
alling (3.6), we geth
urlru; 'i � p2NL k'k1(N + 1)2N�1(pNHN�1(J) + Æ) :Sending Æ to zero and re
alling J = Ju \Q and L = kruk1, we 
on
lude that (3.1) holds with a
onstant 
 � p2N(N + 1)2N�1. This shows the thesis of the Theorem. �Remark 3.3. The set Ju is re
ti�able: forHN�1-a.e. x 2 Ju, if � > 0 is small enough, Ju\B(x; �)is a C1 hypersurfa
e that 
uts the ball B = B(x; �) into two disjoint Lips
hitz sets, up to a setof HN�1 measure o(�N�1). Moreover, up to a 
hange of basis, we have � ' e1 (and j�1j ' 1,j�ij << 1 for i � 2) in Ju \ B. A similar study (see again [7, 8℄) will show that in su
h a ball B,j
urlruj(B) . 2p2Nkruk1HN�1(Ju \B). Passing to the limit �! 0, we improve the 
onstant
 in the Theorem: 
 � 2p2N . We expe
t, however, that a di�erent approximation te
hnique,possibly not based on a dis
retization, would help remove the pN in that 
onstant.Remark 3.4. Noti
e that the assumption u 2 SBV1(
) is essential in order to obtain that
urlru is a measure absolutely 
ontinuous with respe
t to HN�1 Ju. In general, 
urlru is noteven a measure in 
 for u 2 SBV (
). In fa
t it suÆ
es to 
onsider f 2 L1(
) su
h that 
url f isa distribution of order one in 
, and the fun
tion u 2 SBV (
) given by Alberti's result [1℄ su
hthat ru = f . More expli
it 
ounterexamples 
an be 
onstru
ted as follows. We 
onsider fun
tionsde�ned on 
 � R2 , so that we 
an identify 
urlru with the distributionh
urlru; 'i := Z
 (�2u�1'� �1u�2') dx;where ' 2 C1
 (
).(a) If we drop the assumption ru 2 L1(
;RN ), we 
an 
onsider 
 as the squareQ1 =℄�1; 1[2of R2 and u 2 SBV (Q1) de�ned asu(x; y) := (ln(x2 + y2) if y > 00 if y < 0:It 
an be easily 
he
ked that 
urlru is a distribution of order one.(b) If we drop the assumption HN�1(Ju) < +1, we 
an reason as follows. Let # be the2-periodi
 fun
tion on R su
h that #(x) = 1�jxj for x 2 [�1; 1℄, and let #k(x) := 1k#(kx).Let Q1 =℄� 1; 1[2, and let for n � 1Sn := �(x; y) 2 Q1 : 1n+ 1 < y < 1n� :We 
an �nd kn 2 N in su
h a way that kn % +1 andu(x; y) := (#2kn (x) if (x; y) 2 Sn0 if y < 0belongs to SBV (Q1). Moreover, jru(x; y)j = 1 a.e. on Q1, so that ru 2 L1(Q1;RN ).Clearly 
urlru is a Radon measure on every open set An := f(x; y) 2 Q1 : �1=2 < x <1=2; 1n+1 < y < 34g (whi
h is 
ompa
tly 
ontained in Q1), but j
urlruj(An) = n� 1. Asa 
onsequen
e 
urlru 
annot be a measure on Q1.



PIECEWISE RIGIDITY 94. Some estimates for ve
tor fields in a 
ubeLet us �rst show the following estimate, valid for smooth ve
tor �elds.Proposition 4.1 (Helmholtz's type estimate). Let Q = (0; 1)N be the unit 
ube of RN , letf 2 L1(Q) and let ' 2 C1(Q;RN ) be a ve
tor �eld su
h that8>><>>:div' = 0 in Q;
url' = f in Q;' � � = 0 on �Q:Then for every 1 � p < NN�1 there exists a 
onstant C depending only on N and p su
h that(4.1) k'kLp(Q) � CkfkL1(Q):Proof. Let us 
onsider � = (�1; : : : ; �N ) 2 C1
 (Q;RN ), and let g = (g1; : : : ; gN ) 2 H1(Q;RN ) bea solution of the equation(4.2) 8>><>>:�g = � in Q;gi = 0 on �e?i Q�gi�� = 0 on �ekiQ ;where still, fei : i = 1; : : : ; Ng is the 
anoni
al basis of RN , and �e?i Q and �eki Q; denote the fa
esof �Q orthogonal and parallel to ei respe
tively. (Observe that (4.2) 
orresponds to �nding g thatminimizes the energy RQ jrgj2 + 2� � g, with boundary 
ondition g � � = 0 on �Q.)It is quite standard that su
h a g is smooth, and we will show later on that for every 1 < q < +1,we have the estimate(4.3) kgkW 2;q(Q) � Ck�kLq(Q);where C depends only on N and q. If in parti
ular q > N , by Sobolev's embedding theorem, (4.3)yields(4.4) krgkL1(Q) � Ck�kLq(Q):Let ' = ('1; : : : ; 'N ). We observe (also g being smooth) that(4.5) ZQ 
url' � rg dx =Xi;j ZQ(�i'j � �j'i)�jgi dx=Xi;j Z�Q('j�jgi�i � 'i�jgi�j) dHN�1 +Xi;j ZQ(�'j�2i;jgi + 'i�2j;jgi) dx :We 
laim that(4.6) Xi;j Z�Q('j�jgi�i � 'i�jgi�j) dHN�1 = 0:Indeed, for i 6= j, in view of the boundary 
onditions in (4.2), we have that �jgi = 0 on �e?i Q andon �e?j Q, so that (sin
e by de�nition, � = �ei on �e?i Q)Z�Q 'j�jgi�i dHN�1 = � Z�e?i Q 'j�jgi dHN�1 = 0and Z�Q 'i�jgi�j dHN�1 = � Z�e?j Q 'i�jgi dHN�1 = 0:



10 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONEBy (4.5) and (4.6) we getZQ 
url' � rg dx =Xi;j ZQ(�'j�2i;jgi + 'i�2j;jgi) dx = � ZQ ' � r(div g) dx+ ZQ ' ��g dx:Sin
e div' = 0 in Q and ' � � = 0 on �Q, we haveZQ ' � r(div g) dx = 0;so that ZQ 
url' � rg dx = ZQ ' ��g dx = ZQ ' � � dx:By (4.4) we 
on
lude thatZQ ' � � dx � krgkL1(Q)k
url'kL1(Q) � Ck
url'kL1(Q)k�kLq(Q) ;hen
e (taking the supremum on � 2 C1
 (
;RN ) with k�kLq(Q) � 1),k'kLq0 (Q) � Ck
url'kL1(Q)where q0 = q=(q � 1). As q varies on (N;+1), we get that p = q0 ranges over (1; NN�1 ), so that(4.1) holds.In order to 
omplete the proof, we need to justify the estimate (4.3). Consider the 
omponentg1 of g (the proof for any other 
omponent is identi
al): we have(4.7) 8>><>>:�g1 = �1 on Qg1 = 0 on �e?1 Q�g1�� = 0 on �ek1Q :We pro
eed extending g1 and �1 to ĝ1 and �̂1 de�ned on RN and two-periodi
 in ea
h variable, insu
h a way that(4.8) �ĝ1 = �̂1 on RN :First of all, we extend g1 and �1 on the 
ube [0; 2℄N . For 1 � x1 � 2 and 0 � xi � 1 withi = 2; : : : ; N , we set (ĝ1(x) := �g1(2� x1; x2; : : : ; xN )�̂1(x) := ��1(2� x1; x2; : : : ; xN ):Then for 1 � x2 � 2 and 0 � xi � 1 with i = 3; : : : ; N we set(ĝ1(x) := ĝ1(x1; 2� x2; x3; : : : ; xN )�̂1(x) := �̂1(x1; 2� x2; x3; : : : ; xN )and we pro
eed in the same way for the 
oordinates x3; x4; : : : xN .We 
an then extend ĝ1 and �̂1 by periodi
ity to the entire RN . We get immediately thatequation (4.8) is satis�ed, so that in parti
ular ĝ1 is smooth. Moreover we have that ĝ1 = 0 onthe hyperplanes orthogonal to e1 and passing through the points of the form (k; 0; 0; : : : ; 0) withk 2 Z.By Lp-regularity estimates [15, Theorem 9.11℄ we get that there exists a 
onstant C dependingonly on N and q su
h that kĝ1kW 2;q(Q) � C �kĝ1kLq( ~Q) + k�̂1kLq( ~Q)� ;



PIECEWISE RIGIDITY 11where ~Q is the 
ube 
entered at the origin with side of length 4. In view of the periodi
ity of ĝ1and �̂1, we obtain that(4.9) kg1kW 2;q(Q) � C �kg1kLq(Q) + k�1kLq(Q)� :Let us assume by 
ontradi
tion that 
laim (4.3) is false. Then there exist ĝn1 and �̂n1 periodi
 onRN su
h that(4.10) kĝn1 kW 2;q(Q) � nk�̂n1 kLq(Q):We 
an assume that kĝn1 kLq(Q) = 1. Then by (4.9) we obtainkĝn1 kW 2;q(Q) � C �1 + kĝn1 kW 2;q(Q)n � :so that(4.11) kĝn1 kW 2;q(Q) � ~C:In parti
ular ĝn1 is 
ompa
t in W 1;�lo
 (RN ) for all � < NqN�q (or in a suitable H�older spa
e). Thenthere exists ĝ periodi
 in RN su
h thatĝn1 ! ĝ strongly in W 1;�lo
 (RN ):In parti
ular we get kĝkLq(Q) = 1. By (4.7), (4.10) and (4.11) we getk�ĝn1 kLq(Q) � ~Cn ! 0;so that ĝ is harmoni
 in RN . Sin
e ĝ is periodi
, we 
on
lude that it is 
onstant. As ĝn1 = 0on �e?1 Q, we �nally dedu
e that ĝ = 0. But this is against kĝkLq(Q) = 1, so that 
laim (4.3) isproved. �The following 
orollary will be used in the proof of Theorem 1.2.Corollary 4.2 (Helmholtz's type estimate with a 
url measure). Let Q = (0; 1)N be theunit 
ube in RN . Let � 2 M(RN ;MN�N) and ' 2 L1(Q;RN ) be respe
tively a Radon measureon Q and a ve
tor �eld su
h that 8>><>>:div' = 0 in Q;
url' = � in Q;' � � = 0 on �Q;Then for every 1 � p < NN�1 we have thatk'kLp(Q;RN) � Cj�j(Q);where C depends only on N and p, and j � j denotes the total variation.Proof. Let f�"g">0 be smooth radial symmetri
 kernels. We 
laim that we 
an extend ' and � to'̂ 2 L1lo
(RN ;RN ) and �̂ 2 M(RN ;MN�N ) in su
h a way that(4.12) j�̂j(�Q) = 0;and su
h that(4.13) '" := '̂ � �"; �" := �̂ � �"



12 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONEsatisfy(4.14) 8>><>>:div'" = 0 in Q'" � � = 0 on �Q
url'" = �" in Q:If this is true, by (4.1) we will obtain that for all p < NN�1k'̂"kLp(Q) � Ck�̂"kL1(Q);where C depends only on N and p. Letting "! 0, in view of (4.12) we will dedu
ek'kLp(Q;RN) � Cj�j(Q) = Cj
url'j(Q):As in the proof of Proposition 4.1, we now build the extension ('̂; �̂) satisfying (4.12) and (4.14).First of all, we extend ' and � to the 
ube Q(0; 2). For 1 � x1 � 2 and 0 � xi � 1 withi = 2; : : : ; N , let us set '̂ := 0BBBB� �'1(2� x1; x2; : : : ; xN )'2(2� x1; x2; : : : ; xN )...'N (2� x1; x2; : : : ; xN ) 1CCCCAFor i; j 6= 1, and E Borel set 
ontained in Q+ e1, let us set�̂1j(E) := ��1j(T�11 (E)); �̂j1(E) := ��j1(T�11 (E)); �̂ij(E) := �ij(T�11 (E));where T1(x) := (2� x1; x2; : : : ; xN ).Then we pro
eed in the same way for the 
omponents x2; x3; : : : ; xN . We obtain'̂ 2 L1(Q(0; 2);RN ) and �̂ 2 Mb(Q(0; 2);MN�N):We extend now '̂ and �̂ to the entire RN by periodi
ity. We obtain'̂ 2 L1lo
(RN ;RN ) and �̂ 2Mb(RN ;MN�N)with �̂ satisfying (4.12). By 
onstru
tion we have(4.15) (div '̂ = 0
url '̂ = �̂ :The �rst identity in (4.15) is easily 
he
ked by appropriate integration against test fun
tions. Forthe se
ond, we need to show that for any  2 C1
 (RN ;MN�N), one has(4.16) NXi;j=1 ZRN '̂i�j( i;j �  j;i) dx = NXi;j=1 ZRN  i;j d�̂i;j :By 
onstru
tion, this 
learly holds if  has 
ompa
t support in Sk2ZN(k + Q). We thus needto show that any other test fun
tion  
an be approximated by fun
tions with su
h a support,without perturbing too mu
h both terms of the equality in (4.16).We observe that not only (4.12) holds, but also,j�̂j [k2ZN(k + �Q)! = 0:
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e, if �" is a family of 
ut-o� fun
tions that go lo
ally uniformly to zero in RN nSk2ZN(k+�Q),one has(4.17) NXi;j=1 ZRN  i;j d�̂i;j = lim"!0 NXi;j=1 ZRN(1� �") i;j d�̂i;jfor any smooth test fun
tion  .Let us 
hoose a smooth, even � 2 C1
 (�1; 1) with � � 1 in a neigborhood of 0, and 0 � � � 1,and let �"(x) := �(x1=") for any x 2 RN . We haveNXi;j=1 ZRN '̂i�j((1� �") i;j � (1� �") j;i) dx= NXi;j=1 ZRN(1� �")'̂i�j( i;j �  j;i) dx � NXi=1 ZRN �0(x1" )" '̂i( i;1 �  1;i) dx :Hen
e, if we 
an show that the last sum goes to 0 as "! 0, together with (4.17), this will show that in (4.16) may be repla
ed with a fun
tion whose support avoids fx1 = 0g. In an obvious way, itwill be identi
al to show that  may be repla
ed with a fun
tion whose support avoids fxi = kgfor any i = 1; : : : ; N and k 2 Z. This will show that  may be repla
ed with a fun
tion with
ompa
t support in Sk2ZN(k + Q), in whi
h 
ase, as observed, (4.16) 
learly holds. It thereforeremains to show that(4.18) lim"!0 NXi=1 ZRN �0(x1" )" '̂i(x)( i;1(x) �  1;i(x)) dx = 0 :First of all, the �rst term in the sum is 
learly zero. Then, sin
e '̂i is even with respe
t to x1 forany i � 2, and sin
e �0 is odd, one has for i � 2 (letting x = (x1; x0) for any x 2 RN )ZRN �0(x1" )" '̂i(x)( i;1(x)� 1;i(x)) dx = Z "0 ZRN�1 �0(x1" )'̂i(x) ~ i;1(x1; x0)� ~ i;1(�x1; x0)" dx0 dx1where ~ i;1 :=  i;1� 1;i. The fun
tion x 7! �0(x1" )( ~ i;1(x1; x0)� ~ i;1(�x1; x0))=" is 
learly bounded(by 
 = 2k�0k1k�1 ~ i;1k1) so that this integral is less than 
 R "0 RRN�1 j'̂ij dx whi
h goes to 0 as"! 0. Summing from i = 2 to N shows (4.18).Let us now 
onsider the 
onvolutions (4.13). Clearly we have, from (4.15),(div'" = 0
url'" = �":Moreover, sin
e we have extended the i-th 
omponent oddly in the dire
tion ei, it is readily 
he
kedthat '" � � = 0 on �Q:Sin
e the 
laims (4.12) and (4.14) are proved, the proof is 
on
luded. �5. Proof of Theorem 1.2Let us �rst dedu
e from the results in the two previous se
tion the following rigidity estimate,whi
h is valid for any 
ompa
t K su
h that estimate (1.1) holds.Proposition 5.1 (The rigidity estimate). Let Q = (0; 1)N be the unit 
ube in RN and let1 � p < N=(N � 1). Let u 2 SBV (Q;RN ) be su
h that ru(x) 2 K for a.e. x 2 Q. Then�u := 
urlru is a measure 
on
entrated on Ju and there exists K 2 K su
h that(5.1) kru�KkLp(Q) � Cj�uj(Q);



14 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONEwhere C depends only on N and p.Proof. By Theorem 3.1 we have that �u := 
urlru is a measure 
on
entrated on Ju su
h thatj�uj � 
HN�1 Ju;where 
 is a 
onstant depending only on kruk1.Let us 
onsider w 2 H1(Q;RN ) solution of the minimization problemmin�krv �ruk2 : v 2 H1(Q;RN ); ZQ v(x) dx = 0� :Let ' := ru�rw. We have that ' 2 L2(Q;MN�N), and by minimality, that RQ ' : rv dx = 0for any v 2 H1(Q;RN ), hen
e: (div' = 0 in Q' � � = 0 on �Q:Moreover we have that 
url' = 
urlru� 
urlrw = �u;i.e., 
url' 2M(Q;MN�N).By 
orollary 4.2 (applied to ea
h 
omponent of '), there exists a 
onstant C depending onlyon p and N su
h that k'kLp(Q) � Cj�uj(Q)so that(5.2) kru�rwkLp(Q) � Cj�uj(Q):Moreover, by the rigidity estimate (1.1) we have that there exists K 2 K su
h that(5.3) krw �KkLp(Q) � Ckdist(rw;K)kLp(Q)(possibly 
hanging C, whi
h still depends only on p and N). In view of (5.2) and (5.3), and sin
eru(x) 2 K for a.e. x 2 Q, we dedu
e thatkru�KkLp(Q) � krw �KkLp(Q) + kru�rwkLp(Q)� Ckdist(rw;K)kLp(Q) + kru�rwkLp(Q)� Ckdist(ru;K)kLp(Q) + (1 + C)kru�rwkLp(Q)� (1 + C)Cj�uj(Q)so that (5.1) holds. �We are now in a position to prove Theorem 1.2.Proof of Theorem 1.2. Sin
e ru(x) 2 K for a.e. x 2 
, by Theorem 3.1 we have that �u :=
urlru is a measure 
on
entrated on Ju and su
h that(5.4) j�uj � 
HN�1 Ju;where 
 = 
(kruk1). Let us 
over RN by means of disjoint 
ubes of side h, and let fQ(ai; h)gi2Ibe the family of these 
ubes 
ontained in 
. We 
arry out the proof in several steps.Step 1: Pie
ewise 
onstant approximation of ru. By Proposition 5.1, using a res
alingargument, we have that for every i 2 I there exists Khi 2 K su
h that(5.5) kru�Khi kLp(Q(ai;h)) � C hN=phN�1 j�uj(Q(ai; h));where C depends only on p and N .



PIECEWISE RIGIDITY 15Let us 
onsider the pie
ewise 
onstant fun
tion  h de�ned on 
 su
h that(5.6)  h(x) := (Khi if x 2 Q(ai; h)0 if x 62 Si2I Q(ai; h)Step 2: Estimate for jD hj. Let us estimate the total variation jD hj of  h. We 
on-sider two neighbouring 
ubes Q(ai; h) and Q(aj ; h). By applying estimate (5.1) to the re
tangleRhi;j = int(Q(ai; h) [Q(aj ; h)) (of size 2h in one dire
tion and h in the N � 1 other: the proof ofCorollary 4.2 in that 
ase is identi
al to the proof in the 
ase of a 
ube, or, alternatively, 
an beeasily dedu
ed by an appropriate transformation of the 
ube), we have that there exists K 2 Ksu
h that(5.7) kru�KkLp(Rhi;j) � ~C hN=phN�1 j�uj(Rhi;j)where ~C depends only on N and p. Then, in view of (5.5) we get thatjKhi �Khj j � jKhi �Kj+ jK �Khj j � 21�1=p �jKhi �Kjp + jK �Khj jp�1=p= 21�1=ph�N=pkK � (Khi 1Q(ai;h) +Khj 1Q(aj ;h))kLp(Rhi;j)� 21�1=ph�N=p �kK �rukLp(Rhi;j) + kru� (Khi 1Q(ai;h) +Khj 1Q(aj ;h))kLp(Rhi;j)�� 21�1=ph�N=p �kK �rukLp(Rhi;j) + kru�Khi kLp(Q(ai;h) + kru�Khj kLp(Q(aj ;h)�� 21�1=p ~C + ChN�1 j�uj(Rhi;j)so that(5.8) hN�1jKhi �Khj j � Cj�uj(Rhi;j)for some C depending only on N and p. We 
on
lude that the variation of D h a

ross theinterfa
e �Q(ai; h) \ �Q(aj ; h) is estimated with the variation of the measure �u in the union ofthe two 
ubes Q(ai; h) and Q(aj ; h) and their 
ommon interfa
e.Let now A;B be open and su
h that B � A � A � 
. By (5.8) we get that for h large enough(5.9) jD hj(B) � Cj�uj(A)for some C depending only on N and p.Step 3: ru is pie
ewise 
onstant. Sin
e K � MN�N is 
ompa
t, we have that  h is uni-formly bounded in L1(
;MN�N). In view of (5.9), and sin
e j�uj � HN�1 Ju, we 
an use the
ompa
tness in BV (see [5, Theorem 3.23℄) obtaining  2 BV (
) su
h that h !  strongly in L1(
;MN�N)and(5.10) jD j(A) � CHN�1(Ju \ A)for every open set A � 
.



16 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONELet us 
he
k that  = ru. Sin
e ru and  h are uniformly bounded in L1(
;MN�N ), andsin
e p < NN�1 , by (5.5) we have thatlim suph!+1 kru�  hkLp(
) � lim suph!+1Xi2I kru�  hkLp(Q(ai;h))� lim suph!+1Xi2I C hN=phN�1 j�uj(Q(ai; h)) � lim suph!+1 C hN=phN�1 j�uj(
) = 0so that  h ! ru strongly in Lp(
;MN�N ), and  = ru.By (5.10) we get that ru 2 SBV (
;MN�N ), and that D(ru) is 
on
entrated on Ju. Sin
eHN�1(Ju) < +1, by [5, Theorem 4.23℄ we dedu
e that ru is pie
ewise 
onstant, i.e. there existsa Ca

ioppoli partition fDjgj2N and matri
es Kj 2 K su
h that(5.11) ��Dj � Ju; Xj2NHN�1(��Dj) = 2HN�1(S(ru)) � 2HN�1(Ju)and(5.12) ru =Xj2NKj1Dj :Step 4: Con
lusion. Let us 
onsider the map w 2 SBV (
) de�ned byw(x) :=Xj2N(Kj � x)1Dj (x):Sin
e rw = ru, and Jw � Ju in view of (5.11), we dedu
e that D(u � w) is supported by Ju.By [5, Theorem 4.23℄, we 
on
lude that there exists a Ca

ioppoli partition fFkgk2N of 
, andbk 2 RN , su
h that ��Fk \ 
 � Ju; Xk2NHN�1(��Fk \ 
) = 2HN�1(Ju)and(5.13) u� w =Xk2N bk1Fk :Considering the Ca

ioppoli partition fEigi2N determined by the interse
tion of the familiesfDjgj2N and fFkgk2N, we dedu
e that there exist Ki 2 K and bi 2 RN su
h thatu =Xi2N(Ki � x+ bi)1Ei(x)and the proof is 
on
luded. �A
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