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Abstract

The solution of population balance equations is a function f(t, r, x) describing a population density
of particles of the property x at time t and space r. For instance, the additional independent variable
x may denote the particle size. The describing partial differential equation contains additional sink and
source terms involving integral operators. Since the coordinate x adds at least one further dimension
to the spatial directions and time coordinate, an efficient numerical treatment of the integral terms is
crucial. One of the more involved integral terms appearing in population balance models is the coalescence
integral, which is of the form

R x

0
κ(x−y, y)f(y)f(x−y)dy. In this paper we describe an evaluation method

of this integral which needs only O(n log n) operations, where n is the number of degrees of freedom with
respect to the variable x. This cost can also be obtained in the case of a grid geometrically refined towards
x = 0.

AMS Subject Classifications: 45E99, 45K05, 92D25
Key words: population balance model, aggregation, agglomeration, coalescence, convolution integral, integro-
partial differential equation

1 Introduction

Populations of many (small) particles of different size are described by a function f(t, r, x) which indicates
the density of particles of size x at time t and space r. In general, x might denote also other properties
than size and may also be vector valued describing several properties. As a standard reference to population
balance models, we refer to Ramkrishna [10]. While the flow with respect to t, r, x is described by a pde of
the form ∂

∂tf+divrAr(f)+divxBx(f) = Q(f) (cf. [10, (2.7.9)]), additional sink and source terms appear due
to the interaction of particles. Since the coordinate x adds at least one further dimension to the 1-3 spatial
directions and time coordinate, an efficient numerical treatment is crucial in computational engineering.

One of the more involved integral terms appearing in population balance models is the aggregation
integral, which we consider in this paper. It describes the effect that two particles say of mass x′ and x′′

combine to a new particle of mass x = x′ + x′′. As can be seen from [10, §3.3.2] or [2, p. 208], the source
part of the aggregation integral takes the form

Q(f)(x) =
∫ x

0

κ(x− y, y)f(y)f(x− y)dy (1.1)

(the space/time variables r, t of f are not written, but note that such integrals appear for all grid points
in space and time). The integral term is quadratic with respect to f and is of convolution type (at least,
concerning the part f(y)f(x− y)). The kernel function κ(·, ·) describes the aggregation rate and depends on
the particular model. In the case of crystallisation or emulsion processes, κ is also called agglomeration or
coalescence rate, however, the form (1.1) of the integral is the same.

Usually, κ(·, ·) is analytic for positive arguments. For instance, for Brownian motion in a continuum
regime, i.e., particles in liquid, the agglomeration coefficient is

κ(x, y) = C

(
1
x

+
1
y

)
(x+ y) (1.2)
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with some constant C (cf. [10, p.99]).
Often, the kernel function is to be fitted to the experiment. For instance,

κ(x, y) = C · (x+ y)a / (xy)b (1.3)

is an approach proposed by Kapur [5]. For a concrete example discussed in [9, §4.4], the optimal parameters
are a = 0.71053 and b = 0.06211.

A much more complicated example of κ is

κ(x, y) =
(

1
x

+
1
y

)
/

∫ ∞

x+y

t−2 exp (E(x, y, t)) dt (1.4)

with

E(x, y, t) :=
xy

x+ y
e−t + 1 −

(
xy

t2 − (x+ y)2
+

xy

t2 − (x− y)2
+ log

t2 − (x+ y)2

t2 − (x− y)2

)
,

which is taken from [4, Eqs. (11)-(16)], where for the sake of readability we have replaced all constants by 1.
Usually, the function f is approximated by a piecewise constant ansatz function. Let n be the number

of degrees of freedom. Then the integral (1.1) has to be evaluated for O(n) different values of x. The naive
approach would be to divide each integral (1.1) into O(n) subintervals where f(y)f(x− y) is constant. This
leads to at least O(n2) arithmetical operations for the evaluation at one space/time grid point. This is much
too costly unless n is rather small.

We shall describe an evaluation method with the cost O(n log n). The algorithm combines a separable
approximation of κ(·, ·) with the fast Fourier transform for the arising convolution integrals. Accordingly,
the separable approximation of κ is explained in the next Section §2. In §3 the kind of ansatz functions and
the properties of Q(f) are addressed. Since the fast Fourier transform requires a uniform mesh, we start
in §5 with a uniform grid discretisation. However, the nature of aggregation / agglomeration / coalescence
processes is much better described by a grid which is refined at zero. For this purpose, in §6, we introduce a
wavelet representation as a third algorithmic component. Wavelets yield not only an excellent representation
of such grids but also lead to simple integral evaluations. Again, O(N logN) bounds the cost, where N is
the number of intervals of the graded mesh. More precisely, all estimates O(. . .) of this paper contain a
factor k, which is the separation rank introduced below.

2 Separable Approximation of the Kernel function

The function κ(x, y) is called separable (with separation rank k), if it is of the form

κ(x, y) =
k∑
ν=1

αν(x)βν (y). (2.1)

The essential fact is that the variables x and y are separated. αν , βν may be any kind of functions1, in
particular, no special basis functions (like certain polynomials) are prescribed.

We notice that the Brownian kernel from (1.2) is of separation rank k = 3 with α1 = β1 =
√

2C,
α2(x) = C/x, β2(y) = y, α3(x) = x, β3(y) = C/y.

In general, κ(x, y) has no finite separation rank but can be approximated by an rank k expression:

κ(x, y) ≈
k∑
ν=1

αν(x)βν (y), (2.2)

where the error should be under control. Then the right-hand side in (2.2) is called a separable approximation
(of separation rank k).

In the case of (1.3) we can easily derive such a separable approximation. The following value of a
corresponds to the value from [9, §4.4].

1The only mathematical requirement is that the functions are integrable.
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Remark 2.1 Assume x, y ∈ [0, 1/2] and a = 0.71053 in the kernel function (1.3). Approximate the function
γ(s) = sa in [0, 1] by the exponential ansatz 2 γ̃(s) ≈ ω1 +

∑k
ν=2 ων exp (−θνs) . The best approximation (with

respect to the maximum norm) yields, e.g., the accuracy ε < 0.0004 for k = 5. Inserting s = x + y ∈ [0, 1],
we obtain the approximation

κ(x, y) = (x+ y)a / (xy)b ≈ ω1

xbyb
+

k∑
ν=2

ων
exp (−θνx)

xb
exp (−θνy)

yb

of separation rank k.

Also the complicated kernel (1.4) has a separable approximation due to its analyticity in the interior. In
the following, we assume that instead of κ we may use a separable expression with a rank k which is small.
In particular, in the complexity estimates k is considered as a constant.3

Replacing the kernel κ(x, y) by a separable expression
∑k

ν=1 αν(x)βν (y), the integral (1.1) becomes

Q(f)(x) ≈
∫ x

0

(
k∑
ν=1

αν(x− y)βν(y)

)
f(y)f(x− y)dy =

k∑
ν=1

∫ x

0

αν(x− y)βν(y)f(y)f(x− y)dy.

In the following, it suffices to consider one of the k terms. Hence, we may replace the notation αν , βν by
α, β. The resulting problem is formulated in

Problem 2.2 Instead of treating Q(f) from (1.1) we have to provide an efficient evaluation method for
integrals of the form ∫ x

0

α(x − y)β(y)f(y)f(x− y)dy, (2.3)

where f belongs to the ansatz space, while α, β are functions arising from the separable approximation.

3 Ansatz Functions and Properties of Q

The variable4 x in (2.3) is bounded from above, while zero is a natural lower bound. Therefore, we may
assume without loss of generality that

x ∈ [0, 1]. (3.1)

We assume a grid 0 = x0 < x1 < . . . < xn = 1 and start with a piecewise constant ansatz space S, i.e.,
f ∈ S is constant in each subinterval5 (xi−1, xi) .

An inspection of the integrand in (2.3) shows that one should combine β(y) and f(y) on the one hand
side and α(x − y) and f(x− y) on the other hand, to obtain a standard convolution integral∫ x

0

ϕ(y)ψ(x − y)dy with ϕ := βf, ψ := αf.

It is inconvenient to form βf, αf exactly, since they do not belong to the ansatz space S of piecewise
constant functions. Instead one should use a projection of βf, αf onto S. The L2 orthogonal projection
would be

ϕ(x) = f(x) · 1
xi − xi−1

∫ xi

xi−1

β(s)ds for x ∈ (xi−1, xi) . (3.2)

A simpler (non-orthogonal) projection is

ϕ(x) = f(x) · β
(
xi−1 + xi

2

)
for x ∈ (xi−1, xi) . (3.3)

ψ ≈ αf is treated similarly. Since the approximation errors ϕ− βf, ψ−αf of the projected ϕ, ψ are similar
to the already introduced discretisation error, the approximation of βf, αf is no serious drawback.

2For approximations by best exponential sums see [3], and for a special case [1].
3To be precise, k depends on the accuracy requirement and often k = O(log2 1

ε
) holds (cf. [1]).

4Most of the population balance models in engineering applications restrict to one variable x = x1. Nevertheless, there is
strong interest to treat more than one particle property. A two-dimensional case is considered in [8].

5For this kind of application, these intervals are also called compartments in the language of engineering sciences.
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Problem 3.1 After the projection, the new problem to be solved is the evaluation of integrals of the type∫ x

0

ϕ(y)ψ(x − y)dy (3.4)

for piecewise constant functions ϕ, ψ ∈ S.

The precise goal of evaluation depends on the kind of discretisation scheme. In the case of a collocation
method, one might be interested in

∫ ξi
0
ϕ(y)ψ(ξi− y)dy at the collocation points ξi = xi−1+xi

2 . The Galerkin
discretisation uses the weighted means

∫ xi

xi−1

(∫ ξ

0

ϕ(y)ψ(ξ − y)dy

)
dξ for i = 1, . . . , n. (3.5)

In Section 4 we will introduce a third functional (see (4.3)).

Lemma 3.2 Piecewise constant functions ϕ, ψ ∈ S yield a convolution result ω(x) :=
∫ x
0 ϕ(y)ψ(x − y)dy,

which is piecewise linear. Hence, ω is completely known, if ω is evaluated at all points where ω′ is dis-
continuous. The set of discontinuity points is {xi : 1 ≤ i ≤ n} ∪ {xj + xi ≤ 1 : 1 ≤ i, j ≤ n} .

Proof. The derivative of ω is ϕ(x)ψ(0) +
∑

xi<x
ϕ(x − xi) [ψ] (xi) , which is piecewise constant ([ψ] denotes

the jump of ψ).
Although the derivative ω′ is piecewise constant, it is in general not in the same space S as the ansatz

functions, since the set of discontinuity points contains possibly more points {xj + xi ≤ 1 : 1 ≤ i, j ≤ n} .
This is a strong reason to require a uniform grid :

xi = ih for i = 0, 1, . . . , n, h =
1
n
. (3.6)

Lemma 3.3 Under condition (3.6), ϕ, ψ ∈ S lead to ω with ω′ ∈ S. Therefore, is suffices to evaluate ω at
x = xi (0 ≤ i ≤ n) . In particular, the Galerkin integral (3.5) equals xi−xi−1

2 (ω(xi) + ω(xi+1)) .

In this new situation the actual problem takes the following form:

Problem 3.4 Under condition (3.6), one has to compute ω(xi) :=
∫ xi
0 ϕ(y)ψ(xi − y)dy with ϕ, ψ ∈ S for

all xi = ih (0 ≤ i ≤ n) .

The space of piecewise constant ansatz functions can be generalised to piecewise polynomials of degree
p. If ϕ and ψ are piecewise of degree p, ω is piecewise of degree 2p+ 1.

4 Conservation of Mass

Before we continue with algorithmic details of the evaluation, we discuss a question concerning the discreti-
sation scheme6. Since the pde is of conservation form, its discretisation is usually designed in such a way
that important physical quantities like the mass are invariant, provided that there is no outer sink or source.
A standard choice of the property coordinate x is the mass of a particle. Therefore one is interested that the
treatment of the integral terms in Q(f) is such that mass conservation is guaranteed. On the level of the
undiscretised integro-differential equation, the condition

∫∞
0
xQ(f(t, r, ·)(x)dx = 0 must be required, i.e., for

all time and space points there is no mass entering and leaving the system. This condition does not hold
for (1.1), since (1.1) only describes the source term Qsource due to aggregation. The aggregation process
creates a second sink term Qsink(f)(x) = 2f(x)

∫∞
0 κ(x, y)f(y)dy, so that Q = Qsource − Qsink satisfies the

zero balance condition (cf. [2, (7.67)], [11, Eq. (2)]). The second integral term Qsink is not considered in
this paper, since its numerical treatment is much easier.

6The author thanks the referees for putting forward the question of mass conservation. The present subsection is added to
answer this question.
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First, we have to consider the approximation of κ(x, y) by the right-hand side κ̃(x, y) of (2.2) together
with the projection (3.2) or (3.3) applied to the factors αν , βν . This replacement of κ should be done
simultaneously in Qsource and Qsink. Then the resulting terms Q̃source and Q̃sink still are in balance.

Second, the discretisation using the uniform grid (3.6) is to be considered. The mass part in the interval
[xi−1, xi] = [(i− 1)h, ih] is Mi :=

∫ xi
xi−1

xQ̃source(f)(x)dx so that
∑

iMi =
∫∞
0 Q̃source(f)(x)dx is the total

mass, where now f ∈ S is an ansatz function. We recall that Q̃source(f) consists of convolutions ω := ϕ ∗ ψ.
The critical question is how the piecewise linear function ω := ϕ ∗ ψ (ϕ, ψ ∈ S, see Lemma 3.2) is to be
mapped into a piecewise constant function ωc := Πω ∈ S by means of some projection Π. It is to be checked
whether the mass part Mi =

∫ xi
xi−1

xQ̃source(f)(x) dx equals
∫ xi
xi−1

x
(
ΠQ̃source(f)

)
(x) dx. Assuming that a

similar identity holds for the discretisation of the simpler sink term Q̃sink, we obtain exact mass conservation.
It turns out that the collocation at xi−1/2 := (i− 1/2)h or the Galerkin evaluation (3.5) does not imply∫ xi

xi−1
xω(x)dx =

∫ xi
xi−1

xωc(x)dx. In order to ensure this identity, we need a special definition of ωc. The
exact value of

∫ xi
xi−1

xω(x)dx is given by Simpson’s formula, since xω(x) is quadratic in [xi−1, xi]:

∫ xi

xi−1

xω(x)dx =
h

6

[
xiωi + 4xi−1/2

ωi−1 + ωi
2

+ xi−1ωi−1

]
(4.1)

=
h

2

[(
xi−1/2 +

h

6

)
ωi +

(
xi−1/2 − h

6

)
ωi−1

]
,

where ωi := ω(xi). On the other hand, the exact value of
∫ xi
xi−1

xωcdx (ωc constant in [xi−1, xi]) is

∫ xi

xi−1

xωcdx = hxi−1/2ωc . (4.2)

Both expressions (4.1) and (4.2) become equal for the choice

ωc :=

(
xi−1/2 + h

6

)
ωi +

(
xi−1/2 − h

6

)
ωi−1

2xi−1/2
in [xi−1, xi] . (4.3)

Since the values ωi will be determined exactly (see Problem 3.4), the computation of ωc ∈ S by (4.3) leads
to exact mass conservation in the sense that Mi =

∫ xi
xi−1

xQ̃source(f)(x)dx =
∫ xi
xi−1

x
(
ΠQ̃source(f)

)
(x)dx and

therefore
∫ 1

0
xQ̃source(f)(x)dx =

∫ 1

0
x
(
ΠQ̃source(f)

)
(x)dx.

5 Convolution by FFT

Assumption (3.6) paves the way to the fast Fourier transform application. The functions ϕ, ψ ∈ S are given
by their values ϕµ, ψµ (1 ≤ µ ≤ n) in the intervals (xµ−1, xµ) . The values of ω are

ω (xν) =: ων = h

ν∑
µ=1

ϕµψν−µ+1 (1 ≤ ν ≤ n) . (5.1)

This formula includes ω(x0) = 0 because of the empty sum, but since this value is known it need not be
computed.

We extend the vectors (ϕµ)
n
µ=1 and (ψµ)

n
µ=1 to (ϕµ)µ∈Z

and (ψµ)µ∈Z
by defining all further coefficients

by zero. Then (5.1) can be equivalently written as

ων = h

n∑
µ=1−n

ϕµψν−µ+1 (1 ≤ ν ≤ n) . (5.2)

Remark 5.1 In (5.2) we may replace n by some integer n′ > n. The newly defined ων (n < ν ≤ n′) cannot
be interpreted as values of ω(x), but the equations for 1 ≤ ν ≤ n are identical to (5.2). This is of interest, if
one wants to replace n by the next power of two: n′ = 2p, to simplify the fast Fourier transform.
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By fast Fourier transform we can find coefficients ϕ̂µ and ψ̂µ (1 − n ≤ µ ≤ n) so that

ϕµ =
n∑

ν=1−n
ϕ̂νe

iνµπ/n, ψµ =
n∑

ν=1−n
ψ̂νe

iνµπ/n (1 − n ≤ µ ≤ n) .

Insertion of these representations into (5.2) yields

ων = h

n∑
µ=1−n

n∑
γ=1−n

ϕ̂γe
iγµπ/n

n∑
λ=1−n

ψ̂λe
iλ(ν−µ+1)π/n

= h

n∑
γ=1−n

ϕ̂γ

n∑
λ=1−n

ψ̂λe
iλ(ν+1)π/n

n∑
µ=1−n

ei(γ−λ)µπ/n

= h

n∑
γ=1−n

ϕ̂γ

n∑
λ=1−n

ψ̂λe
iλ(ν+1)π/n2nδγ,λ (δγ,λ: Kronecker delta)

= 2nh
n∑

γ=1−n
ϕ̂γ ψ̂γe

iγ(ν+1)π/n (1 ≤ ν ≤ n) .

Setting ω̂γ := ϕ̂γ ψ̂γe
iγπ/n (1 − n ≤ γ ≤ n), we obtain

ων = 2nh
n∑

γ=1−n
ω̂γe

iγνπ/n.

The evaluation of ων for 1 − n ≤ γ ≤ n can again be performed by FFT. Only the values in the range
1 ≤ ν ≤ n are the desired values ω (xν) .

The following two remarks describe two situations, where the computational cost can be still reduced.

Remark 5.2 Let n determine the range of summation in (5.2), but assume that the ων’s are to be computed
only for 1 ≤ ν ≤ m with m < n. Then these ων depend only on {ϕ1, . . . , ϕm} and {ψ1, . . . , ψm} . Hence, the
convolution problem reduces to a new problem of size m instead of n.

The next remark is connected with the separable approximation mentioned in §2. In more complicated
situations like for the kernel (1.4), it is hard to find a global separable approximation as in Remark 2.1.
In such cases the domain (0, 1)2 of the kernel is subdivided into smaller squares. Then local separable
approximations are constructed in smaller domains (x′, x′′) × (y′, y′′) (e.g., by polynomial interpolation).
This is possible, since the functions αν(x), βν(y) in (2.2) may also be discontinuous functions being zero
outside of the respective intervals (x′, x′′) or (y′, y′′) (see Footnote 1). Of course, the total sum on the
right-hand side of (2.2) contains the contributions of all subdomains. Then, also the products ϕ := βf and
ψ := αf (index ν omitted) vanish outside of (x′, x′′) or (y′, y′′) , respectively. Therefore, the discrete values
ϕµ and ψµ are non-zero only for a subset of indices µ. In the next remark, the number of non-zero ϕµ-values
[ψµ-values] is at most n′′

ϕ − n′
ϕ [n′′

ψ − n′
ψ].

Remark 5.3 Assume that vectors (ϕµ)
n
µ=1 and (ψµ)

n
µ=1 are given with the property

ϕµ = 0 for 1 ≤ µ ≤ n′
ϕ and n′′

ϕ + 1 ≤ µ ≤ n,

ψµ = 0 for 1 ≤ µ ≤ n′
ψ and n′′

ψ + 1 ≤ µ ≤ n.

Then non-zero values of (ων)
n
ν=1 occur only for n′

ϕ + n′
ψ + 1 ≤ ν ≤ min{n, n′′

ϕ + n′′
ψ − 1}. Introducing the

shifted values
ϕ̃µ = ϕµ+n′

ϕ
, ψ̃µ = ψµ+n′

ψ
, ω̃ν = ων+n′

ϕ+n′
ψ
,

equation (5.1) becomes

ω̃ν = h

ν∑
µ=1

ϕ̃µψ̃ν−µ+1 for 1 ≤ ν ≤ min{n− n′
ϕ − n′

ψ, n
′′
ϕ − n′

ϕ + n′′
ψ − n′

ϕ − 1}.
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Denoting the length of the non-zero part of ϕ̃µ and ψ̃µ by mϕ := n′′
ϕ−n′

ϕ and mψ := n′′
ψ−n′

ψ, one can bound
the length of the ω̃ν sequence by min{n−n′

ϕ−n′
ψ,mϕ+mψ−1} ≤ mϕ+mψ−1. Thus, separable approximations

in small domains lead to small mϕ,mψ and therefore require proportionally less computational work.

6 Wavelets

Since the agglomeration of two particles of same mass yields a particle of double mass, an exponential grading
of the grid is useful. Such a grid with exponential grading towards x = 0 will be constructed in §6.2. Our
construction of the graded mesh uses a regular refinement of the starting uniform grid. Then the ratio of
neighbouring intervals is either 1 or 2. Other approaches use a smooth transition of the step sizes by choosing
grid points of the form 2iconst (see [11, §4.2]). However, for our efficient numerical treatment the following
graded grid will be essential.

First we introduce the wavelets for a uniformly fine grid. Readers which are well acquainted with wavelets
can skip the next subsection.

6.1 Wavelet Spaces

The space S of piecewise constant functions on the uniform grid of size h (see (3.6)) will now be renamed by
V0[0, 1]. The suffix [0, 1] has the following meaning. Let V0[−∞,∞] be the set of functions being constant
on each interval (νh, (ν + 1)h) for ν ∈ Z. Then V0[a, b] denotes the subset of f ∈ V0[−∞,∞] with support
contained in [a, b].

More general, we introduce the spaces V	[0, 1] (0 ≤ 
 ≤ L) of piecewise constant functions on the uniform
grid of size h	 := 2−	h. Obviously, the spaces are nested:

VL[0, 1] ⊃ VL−1[0, 1] ⊃ . . . ⊃ V	[0, 1] ⊃ V	−1[0, 1] ⊃ . . . ⊃ V0[0, 1] = S.

Because of V	[0, 1] ⊃ V	−1[0, 1], one can decompose V	[0, 1] into V	−1[0, 1] ⊕ W	[0, 1], where W	[0, 1] is the
orthogonal complement, i.e., W	[0, 1] = {f ∈ V	[0, 1] :

∫ 1

0
fgdx = 0 for all g ∈ V	−1[0, 1]}. Inserting this

decomposition recursively for V	−1[0, 1] etc., one obtains the representation

VL[0, 1] = V0[0, 1] ⊕W1[0, 1] ⊕W2[0, 1]⊕ . . .⊕WL[0, 1]. (6.1)

The index 
 ∈ {0, . . . , L} indicates the refinement level and is connected with the step size h	 = 2−	h.
For practical purpose, one needs basis functions of these subspaces. The basis functions of V0[0, 1] are{

Φ0
j : 0 ≤ j ≤ n− 1

}
, which are given by

Φ	0(x) =
{

1/
√
h	 for x ∈ [0, h	)

0 otherwise

}
, Φ	j(x) := Φ	0(x − jh	)

(
h	 = 2−	h

)
. (6.2)

The scaling of Φ0
j is chosen such that the Φ0

j form an orthonormal basis.
The basis functions of W	[0, 1] are

{
Ψ	
j : 0 ≤ j ≤ 2	−1n− 1

}
, where

Ψ	
0(x) =

⎧⎨
⎩

+1/
√

2h	 for x ∈ [0, h	)
−1/

√
2h	 for x ∈ [h	, 2h	)

0 otherwise

⎫⎬
⎭ , Ψ	

j(x) = Ψ	
0(x − 2jh	)

(
h	 = 2−	h

)
(6.3)

describes the Haar wavelets (cf. [7]). One checks that these function span the space W	[0, 1] from (6.1).
Furthermore, all functions Φ0

j ,Ψ
	
j′ are pairwise orthonormal.

The dimension of VL[0, 1] is 2Ln corresponding to the fact that dimV0[0, 1] = n and dimW	[0, 1] = 2	−1n.

6.2 Wavelet Representation of the Graded Mesh

In the following we assume that n is an even number.
Since VL[0, 1] from (6.1) represents the piecewise constant functions on the uniform fine grid of size

hL := 2−Lh, it is much too costly for applications. Instead we define now a graded mesh as follows.
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By W	 := W	[0, 2−	] we denote the space spanned by the basis function with support in [0, 2−	], i.e.,

W	 := W	[0, 2−	] := span
{
Ψ	
j : 0 ≤ j ≤ n/2 − 1

}
.

Together with the unchanged space V0 := V0[0, 1], we define the linear combination

Sgraded := V0 ⊕W1 ⊕ . . .⊕WL. (6.4)

Remark 6.1 a) The dimension of Sgraded is N := (1 + L/2)n. Sgraded contains all piecewise constant
functions on the grid

Ggraded :=
L⋃
	=0

G	 with G	 :=
{
xν,	 = ν2−	h : 0 ≤ ν ≤ n

}
(6.5)

which is obtained by repeated halving of the intervals in the first half of the refined zone. It is depicted in
Figure 6.1.

G

0

1G1/2G
1/4

0

2
1

Figure 6.1: Ggraded as union of G0, G1, G2

b) As before, all involved basis functions Φ0
j , Ψ	

j′ form an orthonormal basis.
c) Another way to describe Sgraded is based on

Sgraded = VL[0, 2−L] + VL−1[2−L, 21−L] + . . .+ V1[1/4, 1/2] + V0[1/2, 1].

Functions f ∈ Sgraded can be represented in two ways:

1. The traditional nodal basis in the graded grid Ggraded uses the values of f in each interval of Ggraded

where f is constant. These are the coefficients fj,	 of the representation

f =
√
hL

n−1∑
j=0

fj,LΦLj +
L−1∑
	=0

√
h	

n−1∑
j=n/2

fj,	Φ	j (6.6)

according to Remark 6.1c. Note that the factors
√
h	 arise from the particular scaling in (6.2).

2. The wavelet representation uses the coefficients f 	j (denoted with 
 as upper index) from

f =
n−1∑
j=0

f0
j Φ0

j +
L∑
	=1

n/2−1∑
j=0

f 	jΨ
	
j (6.7)

according to (6.4).

Remark 6.2 a) Let f ∈ Sgraded. The transform of the nodal coefficients from (6.6) into the coefficients of
the representation (6.7) as well as the back transform cost O(N) arithmetical operations 7 (N = (1 + L/2)n).

b) As a side product, we obtain the decomposition of f ∈ Sgraded into

f =
L∑
	=0

f	 with f0 =
n−1∑
j=0

f0
j Φ0

j ∈ V0 and f	 =
n/2−1∑
j=0

f 	jΨ
	
j ∈ W	 (1 ≤ 
 ≤ L).

As pointed out in Lemma 3.2, the convolution of piecewise constant functions from Sgraded are piecewise
linear, but not with respect to the subintervals of Ggraded. Nevertheless, in the next subsection we only
evaluate ϕ ∗ ψ at the nodal points xi of Ggraded. In a forthcoming paper, we will describe another efficient
procedure which computes the exact orthogonal projection onto each subinterval. To ensure conservation of
mass (see §4) we need another kind of projection. Whether this mass conserving projection can be performed
efficiently is presently under consideration.

7Because of the linear complexity, this transform is called the fast wavelet transform (cf. [7]).
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6.3 Evaluation of the Convolution Integral

Now we reconsider the convolution integral
∫ xi
0 ϕ(y)ψ(xi − y)dy from Problem 3.4, where ϕ, ψ ∈ Sgraded.

Since ϕ and ψ are obtained by (3.2) or (3.3) on each subinterval, they are represented by their piecewise
values, i.e., by (6.6). The wavelet transform gives us the decompositions ϕ =

∑L
	=0 ϕ	 and ψ =

∑L
	=0 ψ	

(ϕ0, ψ0 ∈ V0, ϕ	, ψ	 ∈ W	, 1 ≤ 
 ≤ L, cf. Remark 6.2b).
Next, it is essential that in our case the basis functions from (6.7) are symmetric in the sense that

Φ0
0(h0 − x) = Φ0

0(x) ∈ V0 and Ψ	
0(2h	 − x) = −Ψ	

0(x) ∈ W	. This fact ensures the implications

ψ0 ∈ V0 ⇒ ψ0(xi − ·) ∈ V0 for all xi ∈ G0 (G0 from (6.5))
ψ	 ∈ W	 ⇒ ψ	(xi − ·) ∈ W	[0, 1] for all xi ∈ G̃	−1 :=

{
ν2−	h : 0 ≤ ν ≤ 2	n

}
, 1 ≤ 
 ≤ L.

(6.8)

Hence, the terms in ψ(xi−·) =
∑L
	=0 ψ	(xi−·) describe a decomposition of ψ(xi−·) into the components of

V0 ⊕W1[0, 1]⊕ . . .⊕WL[0, 1], provided that xi ∈ G0. Note that we need W	[0, 1] instead of W	 = W	[0, 2−	],
since, e.g., for xi = 1 ψ	 ∈ W	[0, 2−	] yields ψ	(1 − ·) ∈ W	[1 − 2−	, 1] ⊂ W	[0, 1].

The orthogonality of the subspaces in V0 ⊕W1[0, 1] ⊕ . . .⊕WL[0, 1] yields

∫ xi

0

ϕ(y)ψ(xi − y)dy =
L∑
	=0

∫ xi

0

ϕ	(y)ψ	(xi − y)dy for xi ∈ G0. (6.9)

Conclusion 6.3 Let xi ∈ G0. The evaluation of
∫ xi
0 ϕ(y)ψ(xi − y)dy can be reduced to the convolutions∫ xi

0
ϕ	(y)ψ	(xi − y)dy involving the uniform grids G	. The latter integral can be computed as in §5.

The practical performance simplifies further due to the following observation.

Remark 6.4 Since the grid points xi ∈ G0 ∩ [0, 1/2] are also elements of G1 and grid points xi ∈ G1 will be
treated later, the evaluation can be restricted to xi ∈ G0 ∩ (1/2, 1]. For 
 ≥ 2 the support of ϕ	 lies in [0, 1/4],
while the support of ψ	(xi − ·) is contained in [xi − 1/4, xi] ⊂ (1/4, 1]. Hence the supports are disjoint and∫ xi
0
ϕ	(y)ψ	(xi − y)dy = 0 results for all xi ∈ G0 ∩ (1/2, 1] and 2 ≤ 
 ≤ L. Therefore, the FFT computation

of the convolutions is to be performed only for the levels 
 = 0, 1.

We have to evaluate
∫ xi
0 ϕ(y)ψ(xi − y)dy for each xi ∈ Ggraded from (6.5). Since G0 is only a part of

Ggraded, we have next to consider the convolution integral for xi ∈ G1 = {xν,1 = νh/2 : 0 ≤ ν ≤ n}.
Let ψ =

∑L
	=0 ψ	 be the decomposition from above and split ψ0 into ψ0,left + ψ0,right such that the

support of ψ0,left is in [0, 1/2] , while ψ0,right has its support in [1/2, 1] . Since xi ∈ G1 implies xi ≤ 1/2,
ψ0,right ∈ V0 [1/2, 1] leads to ψ0,right(xi − ·) ∈ V0[−∞, 0]. This means that ψ0,right is irrelevant for the
convolution integral and can be omitted8 (this fact is equivalent to the statement in Remark 5.2).

It is still easier to see that the part ϕ0,right of the corresponding splitting ϕ =
∑L
	=0 ϕ	,

ϕ0 = ϕ0,left + ϕ0,right can be omitted.8

Now we perform one partial step of the wavelet transform and replace the representation

ϕ0 + ϕ1 =
n/2−1∑
j=0

ϕ0
jΦ

0
j +

n/2−1∑
j=0

ϕ1
jΨ

1
j ∈ V0 [0, 1/2]⊕W1 [0, 1/2]

(the terms ϕ0
j with j > n

2 are omitted!) by its representation in V1[0, 1/2], i.e., ϕnew
1 = ϕ0 + ϕ1 =∑n−1

j=0 ϕ1,jΦ1
j . The same is done for the ψ components. Hence, we end up in

ϕ, ψ ∈ V1 [0, 1/2]⊕W2[0, 1/4]⊕ . . .⊕W	[0, 2−	] ⊕ . . .⊕WL[0, 2−L] = V1 [0, 1/2]⊕W2 ⊕ . . .⊕WL.

This is the same situation as in (6.4), except that h = h0 is replaced by h1 and the interval [0, 1] is replaced
by [0, 1/2] . Obviously, Conclusion 6.3 and Remark 6.4 apply now to xi ∈ G1 and to xi ∈ G1 ∩ [1/4, 1/2],
respectively.

8The function without these terms is denoted by the same name!
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7 Complexity

First we consider the case of one uniform grid.
Problem 2.2 occurs k-times, where k is the separation rank in (2.2). Each of these problems is reduced

to Problem 3.4. Its solution in §5 requires three FFT applications (ϕµ �→ ϕ̂µ, ψµ �→ ψ̂µ, ω̂ν �→ ων), the
evaluation of (3.2) or (3.3) in each interval and the computation of the products ϕ̂γ ψ̂γeiγπ/n (1 − n ≤ γ ≤ n) .
Possibly, the convolution results at xi are used to the compute the Galerkin integrals as in Lemma 3.3.
Altogether, the cost is O(n logn). With the factor k from above we get the following result.

Lemma 7.1 Let (2.2) with separation rank k be the approximation of the kernel κ(x, y) and let n be the
number of intervals of the uniform grid. Then the cost is of order O(nk logn).

Next we consider the case of the graded mesh from §6, which is characterised by the numbers n and L.
We recall that N = (1 + L/2)n is the total number of subintervals.

Due to Remark 6.4, the calculations at level 
 = 0 consists of two convolution problems of the respective
sizes n and n/2 in uniform grids. Hence, the cost is O(nk logn). As described above, we have to solve similar
problems of the same size at the levels 
 = 1, . . . , L. This leads to the next lemma.

Lemma 7.2 Let (2.2) with separation rank k be the approximation of the kernel κ(x, y). Define the graded
mesh as in §6 with the parameters n and L. Then the cost for evaluating the convolution integral is of order
O(nkL logn) ≤ O(Nk logN), where N = (1 + L/2)n is the dimension of the space Sgraded.
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