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1 Introduction

The quantum entangled states have become one of the key resources in quantum information
processing. The study of quantum teleportation, quantum cryptography, quantum dense
coding, quantum error correction and parallel computation [1, 2, 3] has spurred a flurry of
activities in the investigation of quantum entanglements. Despite the potential applications
of quantum entangled states, the theory of quantum entanglement itself is far from being
satisfied. The separability for bipartite and multipartite quantum mixed states is one of the
important problems in quantum entanglement.

Let H1 (resp. H2) be an m (resp. n)-dimensional complex Hilbert space, with |i〉,
i = 1, ..., m (resp. |j〉, j = 1, ..., n), as an orthonormal basis. A bipartite mixed state is said
to be separable if the density matrix can be written as

ρ =
∑

i

piρ
1
i ⊗ ρ2

i , (1)
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where 0 < pi ≤ 1,
∑

i pi = 1, ρ1
i and ρ2

i are rank one density matrices on H1 and H2

respectively. It is a challenge to find a decomposition like (1) or proving that it does
not exist for a generic mixed state ρ [4, 5, 6]. With considerable effort in analyzing the
separability, there have been some (necessary) criteria for separability in recent years, for
instance, the Bell inequalities [7], PPT (positive partial transposition)[8] (which is also
sufficient for the cases 2 × 2 and 2 × 3 bipartite systems [9]), reduction criterion[10, 11],
majorization criterion[12], entanglement witnesses [9] and [13, 14], realignment [15, 16, 17]
and generalized realignment [18], as well as some necessary and sufficient criteria for low
rank density matrices [19, 20, 21] and also for general ones but not operational [9].

In [22] the minimum distance (in the sense of matrix norm) between a given matrix and
some other matrices with certain rank is studied. In [23] and [24], for a given matrix A, the
minimum of the Frobenius norm like ||A −∑i Bi ⊗ Ci||F is investigated. In this paper we
develop the method of Hermitian tensor product approximation for general complex matrix
A, i.e. we require Bi and Ci to be Hermitian matrices. By dealing with the Hermitian
condition as higher dimensional real constraints, an explicit construction of general matrices
on H1⊗H2 according to the sum of the tensor products of Hermitian matrices as well as real
symmetric matrices on H1⊗H2 is presented. The results are generalized to the multipartite
case. The separability problem is discussed in terms of these tensor product expressions.

2 Tensor product decomposition in terms of real sym-

metric matrices

We first consider the tensor product decompositions according to real symmetric matrices.
Let A be a given mn×mn real matrix on H1⊗H2. We consider the problem of approximation
of A such that the Frobenius norm

||A −
r∑
i

Bi ⊗ Ci||F (2)

is minimized for some m × m real symmetric matrix Bi on H1 and n × n real symmetric
matrix Ci on H2, i = 1, ..., r ∈ IN .

We first introduce some notations. For an m×m block matrix Z with each block Zij of
size n × n, i, j = 1, ..., m, the realigned matrix Z̃ is defined by

Z̃ = [vec(Z11), · · · , vec(Zm1), · · · , vec(Z1m), · · · , vec(Zmm)]t,

where for any m × n matrix T with entries tij, vec(T ) is defined to be

vec(T ) = [t11, · · · , tm1, t12, · · · , tm2, · · · , t1n, · · · , tmn]t.

There is also another useful definition of Z̃, (Z̃)ij,kl = (Z)ik,jl. A matrix Z can be expressed
as the tensor product of two matrices V1 on H1 and V2 on H2, Z = V1 ⊗ V2 if and only if
(cf, e.g., [24]) Z̃ = vec(V1)vec(V2)

t, i.e., the rank of Z̃ is one, r(Z̃) = 1.

Due to the property of the Frobenius norm, we have

||A −
r∑

i=1

Bi ⊗ Ci||F = ||Ã −
r∑

i=1

vec(Bi)vec(Ci)
t||F . (3)
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The symmetric condition of the matrices Bi and Ci can be expressed in terms of some real
matrices S1 and S2 in a form

St
1 vec(Bi) = St

2 vec(Ci) = 0, i = 1, ..., r. (4)

We define Qs to be an m2 × m(m−1)
2

matrix such that, if we arrange the row indices of
Qs as {11, 21, 31, ..., m1, 12, 22, 32, ..., m2, ..., mm}, then all the entries of Qs are zero except
those at 21 and 12 (resp. 31 and 13, ...) which are 1 and −1 respectively in the first (resp.
second, ...) column. We simply denote

Qs = [{e21,−e12}; {e31,−e13}; ...; {em,m−1,−em−1,m}], (5)

where {e21,−e12} is first column of Qs, with 1 and −1 at the 21 and 12 rows respectively;
while {e31,−e13} is second column of Qs, with 1 and −1 at the 31 and 13 rows respectively;
and so on.

Similarly we define Qa to be an m2 × m(m+1)
2

matrix such that

Qa = [{e11}; {e21, e12}; {e31, e13}; ...; {e22}; {e32, e23}; {e42, e24}; ...; {em,m−1, em−1,m}, {emm}].
(6)

For m = 2, we have

Qs =

⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠ , Qa =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎠ .

S1 can then be expressed as, something like QR decomposition,

S1 = Qs ≡ Q1

(
R1

0

)
, (7)

where R1 is a full rank m(m−1)
2

× m(m−1)
2

matrix, Q1 is an orthogonal matrix, Q1 =
(
Q̄sQ̄a

)
,

where Q̄s and Q̄a are obtained by normalizing the norm of every column vector of Qs and
Qa to be one.

For the case m = 2,

Q1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

1√
2

0 1√
2

0

− 1√
2

0 1√
2

0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ , R1 =

(√
2
)

. (8)

S2 has a similar QR decomposition with S2 = Q2

(
R2

0

)
, by replacing the dimension

m with n in (7).

Set

Qt
1ÃQ2 =

(
Â11 Â12

Â21 Â22

)
. (9)
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Suppose the singular value decomposition of Â22 is given by Â22 =
∑r

i=1

√
λiuiv

t
i , where r

and λi, i = 1, 2, ..., r, are the rank and eigenvalues of Â†
22Â22 respectively and ui (resp. vi)

are the eigenvectors of the matrix Â22Â
†
22 (resp. Â†

22Â22). Set B̂i =
√

λiui, Ĉi = vi.

[Theorem 1]. Let A be an mn × mn real matrix on H1 ⊗ H2, where dim(H1) = m,
dim(H2) = n. The minimum of the Frobenius norm ||A −∑r

i Bi ⊗ Ci||F is obtained for
some m × m real symmetric matrix Bi on H1 and n × n real symmetric matrix Ci on H2,
given by

vec(Bi) = Q1

(
0

B̂i

)
, vec(Ci) = Q2

(
0

Ĉi

)
. (10)

[Proof]. Set

Qt
1 vec(Bi) =

(
b̂i

B̂i

)
, Qt

2 vec(ci) =

(
ĉi

Ĉi

)
. (11)

From (4) and (7) we have

(
Rt

1 0
)( b̂i

B̂i

)
= 0,

(
Rt

2 0
)( ĉi

Ĉi

)
= 0,

which give rise to b̂i = ĉi = 0, due to the nonsingularity of Rt
1 and Rt

2.

From (3), (9) and (11) we obtain

||A −
r∑

i=1

Bi ⊗ Ci||F = ||Qt
1ÃQ2 −

r∑
i=1

Qt
1vec(Bi)vec(Ci)

tQ2||F

=

∣∣∣∣∣
∣∣∣∣∣
(

Â11 Â12

Â21 Â22

)
−

r∑
i=1

(
0

B̂i

)(
0 Ĉt

i

)∣∣∣∣∣
∣∣∣∣∣
F

=

∣∣∣∣∣
∣∣∣∣∣
(

Â11 Â12

Â21 Â22

)
−

r∑
i=1

(
0 0

0 B̂iĈt
i

)∣∣∣∣∣
∣∣∣∣∣
F

=

√
||Â11||2F + ||Â12||2F + ||Â21||2F + ||Â22 −

r∑
i=1

B̂iĈt
i ||2F .

From matrix approximation we have that Â22 =
∑r

i=1 B̂iĈt
i is the singular value decomposi-

tion (SVD) for Â22, which results in formula (10). �.

From Theorem 1 we see that if a real symmetric matrix A has a decomposition of tensor
product of real symmetric matrices, then Â11 = Â12 = Â21 = 0. As an example we consider
the Werner state [25],

ρw =
1 − F

3
I4×4 +

4F − 1

3
|Ψ−〉〈Ψ−| =

⎛
⎜⎜⎜⎝

1−F
3

0 0 0

0 2F+1
6

1−4F
6

0

0 1−4F
6

2F+1
6

0

0 0 0 1−F
3

⎞
⎟⎟⎟⎠ , (12)

where |Ψ−〉 = (|01〉 − |10〉)/√2. State ρw is separable for F ≤ 1/2 and entangled for
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1/2 < F ≤ 1. According to the definition of realignment we have

ρ̃w =

⎛
⎜⎜⎜⎝

1−F
3

0 0 2F+1
6

0 0 1−4F
6

0

0 1−4F
6

0 0
2F+1

6
0 0 1−F

3

⎞
⎟⎟⎟⎠ .

Here the dimension m = n, hence Q2 = Q1 is given by (8). From (9) we have

Qt
1ρ̃wQ2 =

(
ρ̂w11 ρ̂w12

ρ̂w21 ρ̂w22

)
=

⎛
⎜⎜⎜⎝

4F−1
6

0 0 0

0 1−F
3

0 2F+1
6

0 0 1−4F
6

0

0 2F+1
6

0 1−F
3

⎞
⎟⎟⎟⎠ .

Therefore ρw is generally not decomposable according to real symmetric matrices because
(ρ̂w)11 = (4F − 1)/6 �= 0 as long as F �= 1/4. From the singular value decomposition of
(ρ̂w)22,

(ρ̂w)22 =

⎛
⎜⎝

1−F
3

0 2F+1
6

0 1−4F
6

0
2F+1

6
0 1−F

3

⎞
⎟⎠

we have:

u1 = v1 =
1√
2

⎛
⎝ 1

0
1

⎞
⎠ , εu2 = v2 =

1√
2

⎛
⎝ −1

0
1

⎞
⎠ , εu3 = v3 =

⎛
⎝ 0

1
0

⎞
⎠ ,

with eigenvalues λ1 = 1/4, λ2 = λ3 = (1−4F )2/36 respectively, where ε = (1−4F )/|1−4F |.
From (10) we have vec(B1) =

√
λ1(1/

√
2, 0, 0, 1/

√
2)t, vec(B2) = ε

√
λ2(−1/

√
2, 0, 0, 1/

√
2)t,

vec(B3) = ε
√

λ3(0, 1/
√

2, 1/
√

2, 0)t. Therefore the best real symmetric matrix tensor prod-
uct decomposition is

ρw ≈ 1

4
I2×2 ⊗ I2×2 +

1 − 4F

12
(σ1 ⊗ σ1 + σ3 ⊗ σ3) ,

where σi are Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

3 Hermitian tensor product decomposition of complex

matrices

We consider now the tensor product decompositions according to Hermitian matrices. Let
A be a given mn × mn complex matrix on H1 ⊗ H2. We first consider the problem of
approximation of A such that the Frobenius norm

||A − B ⊗ C||F = ||Ã − vec(B)vec(C)t||F . (13)
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is minimized for some m×m Hermitian matrix B on H1 and n× n Hermitian matrix C on
H2.

In order to impose the Hermitian condition of the matrices B and C, we separate the
matrices B and C into real and imaginary parts such that B = b + iB, C = c + iC, where
b and c (resp. B and C) are the real (resp. imaginary) parts of B and C respectively. As
vec(B) = vec(b) + i vec(B), we have

vec(B)vec(C)t = (vec(b)vec(c)t − vec(B)vec(C)t) + i(vec(b)vec(C)t + vec(B)vec(c)t).

We now map the complex matrix A to be a real one:

A −→
(

a A
−A a

)
,

where a and A are the real and the imaginary parts of A respectively. Now the approx-
imation problem of complex matrices to the tensor product of two Hermitian matrices is
reduced to the problem of real matrices and the results in [23, 24] can be used accordingly.
The problem to minimize ||Ã − vec(B)vec(C)t||F is reduced to minimize∣∣∣∣∣

∣∣∣∣∣
(

ã Ã
−Ã ã

)
−
(

vec(b) vec(B)
−vec(B) vec(b)

)(
vec(c) −vec(C)
vec(C) vec(c)

)t
∣∣∣∣∣
∣∣∣∣∣
F

(14)

under the Hermitian condition: B = B†, C = C†, i.e., b and c are symmetric, B and C are
antisymmetric. This condition can be expressed in terms of some real matrices S1 and S2

in a form

St
1

(
vec(b)
±vec(B)

)
= St

2

(
vec(c)
±vec(C)

)
= 0. (15)

[Lemma 1]. Condition (15) has a QR decomposition such that

S1 = Q1

(
R1

0

)
, S2 = Q2

(
R2

0

)
, (16)

where R1 and R2 are full rank matrices, Q1 and Q2 are orthogonal matrices.

[Proof]. S1 can be generally expressed as

S1 =

(
Qs 0
0 Qa

)
,

where Qs and Qa are given by (5) and (6) respectively. The QR decomposition of S1 is
given by

Q1 =

(
Q̄s 0 0 Q̄a

0 Q̄a Q̄s 0

)
≡
(

X1 Y1

Y1 X1

)
, (17)

with Q̄s and Q̄a given in section 2, X1 (resp. Y1) is an m2 × m2 matrix with the first
m(m− 1)/2 (resp. last m(m +1)/2) columns replaced by the matrix Q̄s (resp. Q̄a) and the
rest entries zero, R1 is a diagonal matrix with diagonal elements either 1 or

√
2. For the

case m = 2,

X1 =

⎛
⎜⎜⎝

0 0 0 0
1√
2

0 0 0

− 1√
2

0 0 0

0 0 0 0

⎞
⎟⎟⎠ , Y1 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1√

2
0

0 0 1√
2

0

0 0 0 1

⎞
⎟⎟⎠ , R1 =

⎛
⎜⎜⎝

√
2 0 0 0

0 1 0 0

0 0
√

2 0
0 0 0 1

⎞
⎟⎟⎠ . (18)
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S2 has a similar QR decomposition with

Q2 =

(
X2 Y2

Y2 X2

)
, (19)

by replacing the dimension m with n in the expression of S1. �
Set

Qt
1

(
vec(b)
−vec(B)

)
≡
(

b̂

−B̂
)

, Qt
1

(
vec(b)
vec(B)

)
≡
(

b̌
B̌
)

,

Qt
2

(
vec(c)
−vec(C)

)
≡
(

ĉ

−Ĉ
)

, Qt
2

(
vec(c)
vec(C)

)
≡
(

č
Č
)

.

(20)

From (15) and (16) we have

(
Rt

1 0
)( b̂

−B̂
)

= 0,
(

Rt
1 0

)( b̌
B̌
)

= 0,

(
Rt

2 0
)( ĉ

−Ĉ
)

= 0,
(

Rt
2 0

)( č
Č
)

= 0,

which give rise to b̂ = b̌ = ĉ = č = 0, due to the nonsingularity of Rt
1 and Rt

2.

Therefore we have(
vec(b)
−vec(B)

)
= Q1

(
b̂

−B̂
)

=

(
X1 Y1

Y1 X1

)(
0

−B̂
)

=

( −Y1B̂
−X1B̂

)
,(

vec(b)
vec(B)

)
= Q1

(
b̌
B̌
)

=

(
X1 Y1

Y1 X1

)(
0
B̌
)

=

(
Y1B̌
X1B̌

)
.

(21)

Thus −Y1B̂ = Y1B̌, X1B̂ = X1B̌ and

B̌ = (X1 + Y1)
−1(X1 − Y1)B̂ =

⎛
⎝ Q̄t

s

Q̄t
a

⎞
⎠( Q̄s −Q̄a

) B̂ = Im
s,aB̂, (22)

where Im
s,a = diag(Im

s ,−Im
a ), Im

s (resp. Im
a ) is an m(m−1)/2 (resp. m(m+1)/2) dimensional

identity matrix.

Let P denote the permutation matrix,

P =

(
0 Im2×m2

Im2×m2 0

)
.

It is easily seen that PQ1P = Q1. From the second formula in (21) we have

Qt
1

(
vec(B)
vec(b)

)
=

( B̌
0

)
.

Hence we have

Qt
1

(
vec(b) vec(B)
−vec(B) vec(b)

)
=

(
0 B̌
−B̂ 0

)
, (23)
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and, similarly,

Qt
2

(
vec(c) −vec(C)
vec(C) vec(c)

)
=

(
0 −Ĉ
Č 0

)
, (24)

where
Č = In

s,aĈ, (25)

In
s,a = diag(In

s ,−In
a ), In

s (resp. In
a ) is an n(n− 1)/2 (resp. n(n + 1)/2) dimensional identity

matrix.

Set

Qt
1

(
ã Ã
−Ã ã

)
Q2 ≡

(
Â11 Â12

Â21 Â22

)
. (26)

That is
Â11 = X t

1ãX2 + Y t
1 ãY2 + X t

1ÃY2 − Y t
1 ÃX2,

Â12 = X t
1ãY2 + Y t

1 ãX2 + X t
1ÃX2 − Y t

1 ÃY2,

Â21 = Y t
1 ãX2 + X t

1ãY2 + Y t
1 ÃY2 − X t

1ÃX2,

Â22 = Y t
1 ãY2 + X t

1ãX2 + Y t
1 ÃX2 − X t

1ÃY2.

[Theorem 2]. To minimize (13) is equivalent to minimize the following formula√
||Â22 + B̂Čt||2F + ||Â11 + B̌Ĉt||2F + ||Â12||2F + ||Â21||2F . (27)

[Proof]. From (14), (23) and (24) we obtain∣∣∣∣∣
∣∣∣∣∣
(

ã Ã
−Ã ã

)
−
(

vec(b) vec(B)
−vec(B) vec(b)

)(
vec(c) −vec(C)
vec(C) vec(c)

)t
∣∣∣∣∣
∣∣∣∣∣
F

=

∣∣∣∣∣
∣∣∣∣∣Qt

1

(
ã Ã
−Ã ã

)
Q2 − Qt

1

(
vec(b) vec(B)
−vec(B) vec(b)

)(
vec(c) −vec(C)
vec(C) vec(c)

)t

Q2

∣∣∣∣∣
∣∣∣∣∣
F

=

∣∣∣∣∣
∣∣∣∣∣
(

Â11 Â12

−Â21 Â22

)
−
(

0 B̌
−B̂ 0

)(
0 −Ĉ
Č 0

)t
∣∣∣∣∣
∣∣∣∣∣
F

=

∣∣∣∣
∣∣∣∣
(

Â11 Â21

−Â21 Â22

)
−
( −B̌Ĉt 0

0 −B̂Čt

)∣∣∣∣
∣∣∣∣
F

=
√

||Â22 + B̂Čt||2F + ||Â11 + B̌Ĉt||2F + ||Â12||2F + ||Â21||2F .

�

[Lemma 2]. If the matrix A = a + iA is Hermitian, we have the relations:

Â12 = Â21 = 0, Â11 = Im
s,aÂ22I

n
s,a.

[Proof]. As the matrix A = a + iA is Hermitian, i.e., a is symmetric and A is antisym-
metric, we have

(ã)ij,kl = (a)ik,jl = (a)jl,ik = (ã)ji,lk, (Ã)ij,kl = (A)ik,jl = −(A)jl,ik = −(Ã)ji,lk.
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Noting that in our construction of Xα and Yα, (Xα)ij,kl = −(Xα)ji,kl, (Yα)ij,kl = (Yα)ji,kl,
α = 1, 2, we obtain

(X t
1ãY2)ij,pq = (X1)kl,ij(ã)kl,mn(Y2)mn,pq = −(X t

1ãY2)ij,pq = 0.

Similarly we have Y t
1 ãX2 = X t

1ÃX2 = Y t
1 ÃY2 = 0. Hence Â12 = Â21 = 0.

From the relations Im
s,aY1 = −Y1, Im

s,aX1 = X1 and Y2I
n
s,a = −Y2, In

s,aX2 = X2, we have

Im
s,a(Y

t
1 ãY2 + X t

1ãX2)I
n
s,a = Y t

1 ãY2 + X t
1ãX2 and Im

s,a(Y
t
1 ÃX2 − X t

1ÃY2)I
n
s,a = −(Y t

1 ÃX2 −
X t

1ÃY2). Therefore Â11 = Im
s,aÂ22I

n
s,a or Â22 = Im

s,aÂ11I
n
s,a. �

For Hermitian matrix A, by using (22), (25) and Lemma 2 we have ||Â11 + B̌Ĉt||F =
||Â11 + Im

s,aB̂ČtIn
s,a||F = ||Im

s,aÂ11I
n
s,a + B̂Čt||F = ||Â22 + B̂Čt||F . From Lemma 2 we have that

to minimize ||A−B⊗C||F (13) is equivalent to minimize ||Â22 + B̂Čt||F , which maybe zero,
when Â22 = −B̂Čt.

Now the minimum of the Frobenius norm ||A −∑r
i Bi ⊗ Ci||F can be obtained readily.

Suppose the singular value decomposition of Â22 is Â22 =
∑r

i=1

√
λiuiv

t
i , where r and λi,

i = 1, 2, ..., r, are the rank and eigenvalues of Â†
22Â22 respectively and ui (resp. vi) are the

eigenvectors of the matrix Â22Â
†
22 (resp. Â†

22Â22). Set B̂i =
√

λiui, Či = −vi. By using the
results in [23, 24], for Hermitian matrix A the minimum of ||A−∑r

i=1 Bi⊗Ci||F is obtained

when Â22 = −∑r
i=1 B̂iČt

i .

[Theorem 3]. Let A be an mn×mn Hermitian matrix on H1 ⊗H2, where dim(H1) = m,
dim(H2) = n. The minimum of the Frobenius norm ||A−∑r

i Bi⊗Ci||F is obtained for some

m×m Hermitian matrix B on H1 and n×n Hermitian matrix C on H2, if Â22 = −∑r
i=1 B̂iČt

i ,

where Â22 is defined by (26), Bi = bi + iBi, Ci = ci + iCi, are given by the relations(
vec(bi)
−vec(Bi)

)
= Q1

(
0

−B̂i

)
,

(
vec(ci)
vec(Ci)

)
= Q2

(
0
Či

)
. (28)

As an example we consider the bound entangled state on 2 × 4 (m = 2, n = 4) [26],

ρb =
1

7b + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1+b
2

0 0
√

1−b2

2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
√

1−b2

2
0 0 1+b

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

where 0 < b < 1. ρb is a PPT but entangled state. The QR decomposition in our case only
depends the dimensions. Q1 is still given by (17) and (18). Q2 is a 32× 32 matrix with X2,
Y2 in (19) given by X2 = (f1, f2, f3, f4, f5, f6, 010), Y2 = (06, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10),
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where si and ai are 16 × 1 column vectors:

f1 = (0, 1/
√

2, 0, 0,−1/
√

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t,

f2 = (0, 0, 1/
√

2, 0, 0, 0, 0, 0,−1/
√

2, 0, 0, 0, 0, 0, 0, 0)t,

f3 = (0, 0, 0, 1/
√

2, 0, 0, 0, 0, 0, 0, 0, 0,−1/
√

2, 0, 0, 0)t,

f4 = (0, 0, 0, 0, 0, 0, 1/
√

2, 0, 0,−1/
√

2, 0, 0, 0, 0, 0, 0)t,

f5 = (0, 0, 0, 0, 0, 0, 0, 1/
√

2, 0, 0, 0, 0, 0,−1/
√

2, 0, 0)t,

f6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/
√

2, 0, 0,−1/
√

2, 0)t,
a1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t,

a2 = (0, 1/
√

2, 0, 0, 1/
√

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t,

a3 = (0, 0, 1/
√

2, 0, 0, 0, 0, 0, 1/
√

2, 0, 0, 0, 0, 0, 0, 0)t,

a4 = (0, 0, 0, 1/
√

2, 0, 0, 0, 0, 0, 0, 0, 0, 1/
√

2, 0, 0, 0)t,
a5 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t,

a6 = (0, 0, 0, 0, 0, 0, 1/
√

2, 0, 0, 1/
√

2, 0, 0, 0, 0, 0, 0)t,

a7 = (0, 0, 0, 0, 0, 0, 0, 1/
√

2, 0, 0, 0, 0, 0, 1/
√

2, 0, 0)t,
a8 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)t,

a9 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/
√

2, 0, 0, 1/
√

2, 0)t,
a10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)t,

06 and 010 are 16 × 6 and 16 × 10 null matrices. From (26) we have

Qt
1

(
ρ̃b 0
0 ρ̃b

)
Q2 ≡

(
Â11 0

0 Â22

)
,

where

Â11 = Â22 =
1

1 + 7b

⎛
⎜⎜⎜⎝

b 0 0 b 0 b 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 b 0 0 0 b 0 0 b 0 b
0 0 0 0 0 0 0 b 0 0 0 b 0 0 b 0

0 0 0 0 0 0 1+b
2

0 0
√

1−b2

2
b 0 0 b 0 1+b

2

⎞
⎟⎟⎟⎠ .

From the singular value decomposition of Â11 we have

B̂1 =
√

3b
1+7b

(0, 0, 1, 0)t, B̂3 =

√
λ−

(1+7b)
√

1+D2
+

(0, D+, 0, 1)t,

B̂2 =
√

3b
1+7b

(1, 0, 0, 0)t, B̂4 =

√
λ+

(1+7b)
√

1+D2−
(0, D−, 0, 1)t,

and

Č1 = − 1√
3
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0)t,

Č2 = − 1√
3
(1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t,

Č3 = − 1√
λ−(1+D2

+)
(0, 0, 0, 0, 0, 0, bD+ + 1+b

2
, 0, 0,

√
1−b2

2
, b(1 + D+), 0, 0, b(1 + D+), 0, bD+ + 1+b

2
)t,

Č4 = − 1√
λ+(1+D2

−)
(0, 0, 0, 0, 0, 0, bD− + 1+b

2
, 0, 0,

√
1−b2

2
, b(1 + D−), 0, 0, b(1 + D−), 0, bD− + 1+b

2
)t,

where

λ± =
1 + b + 6b2 ±√

1 + 2b + b2 + 20b3 + 40b4

2
,
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D± = −1 + b − 2b2 ±√
1 + 2b + b2 + 20b3 + 40b4

2b(1 + 3b)
.

Using (28) we have

ρb =
b

2(1 + 7b)

(
0 1
1 0

)
⊗

⎛
⎜⎜⎝

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞
⎟⎟⎠+

b

2(1 + 7b)

(
0 −i
i 0

)
⊗

⎛
⎜⎜⎝

0 i 0 0
−i 0 i 0
0 −i 0 i
0 0 −i 0

⎞
⎟⎟⎠

+
1

(1 + 7b)(1 + D2
+)

(
D+ 0
0 1

)
⊗

⎛
⎜⎜⎝

1+b
2

+ bD+ 0 0 1−b2

2

0 b(1 + D+) 0 0
0 0 b(1 + D+) 0

1−b2

2
0 0 1+b

2
+ bD+

⎞
⎟⎟⎠

+
1

(1 + 7b)(1 + D2−)

(
D− 0
0 1

)
⊗

⎛
⎜⎜⎝

1+b
2

+ bD− 0 0 1−b2

2

0 b(1 + D−) 0 0
0 0 b(1 + D−) 0

1−b2

2
0 0 1+b

2
+ bD−

⎞
⎟⎟⎠ .

(30)

4 Separability of bipartite mixed states

In this section we discuss some properties related to the Hermitian tensor product decom-
position that could give rise to some hints to the separability problem of bipartite mixed
states. From Theorem 3 we can always calculate the tensor product decomposition in terms
of Hermitian matrices for a given density matrix A, A =

∑r
i=1 Bi ⊗ Ci. Nevertheless the

Hermitian matrices Bi and Ci are generally not positive. They are not density matrices
defined on the subspaces H1 and H2. Hence one can not say that A is separable.

Let m(A) and M(A) denote the smallest and the largest eigenvalues of a Hermitian ma-
trix A. We can transform the decomposition into the one given by another set of Hermitian
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matrices which all have the smallest eigenvalue zero, as follows,

A =
r∑

i=1

Bi ⊗ Ci =
r∑

i=1

(Bi − m(Bi)Im + m(Bi)Im) ⊗ (Ci − m(Ci)In + m(Ci)In)

=
r∑

i=1

(Bi − m(Bi)Im) ⊗ (Ci − m(Ci)In) +
r∑

i=1

m(Ci)(Bi − m(Bi)Im) ⊗ In

+Im ⊗
r∑

i=1

m(Bi)(Ci − m(Ci)In) +

r∑
i=1

m(Bi)m(Ci)Im ⊗ In

=

r∑
i=1

(Bi − m(Bi)Im) ⊗ (Ci − m(Ci)In)

+

[
r∑

i=1

m(Ci)(Bi − m(Bi)Im) − m

(
r∑

i=1

m(Ci)(Bi − m(Bi)Im)

)
Im

]
⊗ In

+Im ⊗
[

r∑
i=1

m(Bi)(Ci − m(Ci)In) − m

(
r∑

i=1

m(Bi)(Ci − m(Ci)In)

)
In

]

+

[
m

(
r∑

i=1

m(Ci)Bi

)
+ m

(
r∑

i=1

m(Bi)Ci

)
−

r∑
i=1

m(Bi)m(Ci)

]
Im ⊗ In ,

(31)

where Im and In stand for m × m and n × n identity matrices. The coefficient of Im ⊗ In,

qB,C ≡ m

(
r∑

i=1

m(Ci)Bi

)
+ m

(
r∑

i=1

m(Bi)Ci

)
−

r∑
i=1

m(Bi)m(Ci)

associated with the decomposition A =
∑r

i=1 Bi ⊗ Ci is not necessary positive.

qB,C is decomposition dependent. Associated with another decomposition A =
∑r′

i=1 B′
i⊗

C ′
i one would obtain qB′,C′ �= qB,C . We define the maximum value of qB,C to be the sepa-

rability indicator of A, S(A) = max(qB,C) for all possible Hermitian decompositions of A.
With respect to S(A) the associated decomposition is generally of the form

A =
∑

i

B̄i ⊗ C̄i + Im ⊗ C̄ + B̄ ⊗ In + S(A)Im ⊗ In, (32)

where B̄i ≥ 0, C̄i ≥ 0 ,B̄ ≥ 0, C̄ ≥ 0 are positive Hermitian matrices.

[Theorem 4]. Let A be a Hermitian positive matrix with tensor product decompositions
of Hermitian matrices like A =

∑r
i=1 Bi ⊗ Ci. A is separable if and only if the separability

indicator S(A) ≥ 0. Moreover S(A) satisfies the following relations:

S(A) ≤ m(A), (33)

S(A) ≥ 1

2

r∑
i=1

[M(Bi)m(Ci) + M(Ci)m(Bi)

−|m(Bi)|(M(Ci) − m(Ci)) − |m(Ci)|(M(Bi) − m(Bi))],

(34)

S(A) ≥ m(A) −
∑

i

M(B̄i)M(C̄i). (35)
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[Proof]. If A is separable, A has a decomposition A =
∑

i Bi ⊗ Ci of the form (1), i.e.,
m(Bi) ≥ 0, m(Ci) ≥ 0. We have

S(A) ≥ qB,C = m

(∑
i

m(Ci)Bi

)
+ m

(∑
i

m(Bi)Ci

)
−
∑

i

m(Bi)m(Ci)

≥
∑

i

m(Ci)m(Bi) +
∑

i

m(Bi)m(Ci) −
∑

i

m(Bi)m(Ci)

=
∑

i

m(Bi)m(Ci) ≥ 0 .

If S(A) ≥ 0, then the associated decomposition (32) is already a separable expression of A.

From the decomposition (32) with respect to S(A), we have

m(A) ≥
∑

i

m(B̄i ⊗ C̄i) + m(B̄) + m(C̄) + S(A) = S(A).

On the other hand we have

S(A) ≥ qB,C ≥
∑

i

m(m(Ci)Bi) +
∑

i

m(m(Bi)Ci) −
∑

i

m(Bi)m(Ci)

=
∑

i

(
m(Bi)

m(Ci) + |m(Ci)|
2

+ M(Bi)
m(Ci) − |m(Ci)|

2

)

+
∑

i

(
m(Ci)

m(Bi) + |m(Bi)|
2

+ M(Ci)
m(Bi) − |m(Bi)|

2

)
−
∑

i

m(Bi)m(Ci) ,

which is just the formula (34).

By using the relations M(B + D) ≤ M(B) + M(D), m(B + D) ≥ m(B) + m(D),
m(B + D) ≤ m(B) + M(D) for any m × m matrices B and D, we have

m(A) = m(
∑

i B̄i ⊗ C̄i + Im ⊗ C̄ + B̄ ⊗ In + S(A)Im ⊗ In)

≤ m(Im ⊗ C̄ + B̄ ⊗ In + S(A)Im ⊗ In) + M(
∑

i B̄i ⊗ C̄i)

= m(B) + m(C) + S(A) + M(
∑

i B̄i ⊗ C̄i)

≤ S(A) +
∑

i M(B̄i)M(C̄i).

Hence formula (35) follows. �
Generally qB,C with respect to our decomposition A =

∑r
i=1 Bi⊗Ci does not equal to the

separability indicator S(A). Suppose we have another decomposition A =
∑r′

i=1 B′
i⊗C ′

i. As
Bi (and Ci) are defined in terms of the singular value decomposition eigenvectors, they are
linear independent. We can choose linear functionals ϕi such that ϕi(Bj) = δij . Applying

ϕi ⊗ 1 to both sides of
∑r

i=1 Bi ⊗ Ci =
∑r′

i=1 B′
i ⊗ C ′

i we get Ci =
∑r′

i=1 ϕi(B
′
j)C

′
j, i.e.,

Ci ∈< C ′
1, ..., C

′
r′ >. Similarly we have Bi ∈< B′

1, ..., B
′
r′ >. Therefore any other Hermitian

decomposition A =
∑r′

i=1 B′
i⊗C ′

i can be obtained from our decomposition A =
∑r

i=1 Bi⊗Ci

in terms of the following transformations

B′
j =

r∑
i=1

EijBi, C ′
j =

r∑
i=1

FijCi,
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as long as the real matrices E = (Eij) and F = (Fij) satisfy the relation EF t = Ir.

The inequalities (33)-(35) can be served as separability criterion themselves. For in-
stance, if the minimum eigenvalue of A is zero, then A is entangled if the right hand side of
(34) is great than zero.

5 Conclusion and remarks

We have developed a method of Hermitian tensor product approximation of general complex
matrices. From which an explicit construction of density matrices on H1 ⊗ H2 in terms of
the sum of tensor products of Hermitian matrices on H1 and H2 is presented. From this
construction we have shown that a state is separable if and only if the separability indicator
is positive. In principle one can always get a Hermitian tensor product decomposition
of a density matrix by using a basic set of Hermitian matrices. Our approach gives a
decomposition with minimum terms (the number of the terms depends on the rank of Â22),
similar to the Schmidt decomposition for bipartite pure states. In example (30) we see that
the 8 × 8 density matrix ρb has only 4 terms in the tensor product decomposition.

In [27] an entanglement measure called robustness is introduced. For a mixed state ρ
and a separable state ρs, the robustness of ρ relative to ρs, R(ρ||ρs), is the minimal s ≥ 0
for which the density matrix (ρ + sρs)/(1 + s) is separable, i.e. the minimal amount of
mixing with locally prepared states which washes out all entanglement. In particular, the
random robustness of ρ is the one when ρs is taken to be the (separable) identity matrix.
In this case ρ has the form ρ = (1 + t)ρ+

s − t Im ⊗ In/mn), where ρ+
s is separable. ρ is

separable if and if the minimum of t is zero. Therefore the separability indicator appeared
from our matrix decompositions is basically the minus of the random robustness, up to
a normalization. Another interesting separable approximations of density matrices was
presented in [28]. This method, so called best separable approximations, was based on
subtracting projections on product vectors from a given density matrix in such a way that
the remainder remained positively defined. In stead expressing a density matrix as the
sum of a separable part and the identity part, this approximation gives rise to a sum of a
separable part and an entangled part from which no more projections on product vectors
can be subtracted.

The results can be generalized to multipartite states. Let’s consider a general l-partite
mixed state ρ1,2,...,l on space H1 ⊗ H2 ⊗ ... ⊗ Hl. We can first consider ρ1,2,...,l as a bipartite
state on space H1 and H2⊗...⊗Hl. By using Theorem 2 we can find the tensor decomposition
ρ1,2,...,l =

∑r1

i=1 B1
i ⊗B23...l

i , where B1
i and B23...l

i are Hermitian matrices on H1 and H2⊗...⊗Hl

respectively. The matrices B23...l
i can be again decomposed as B23...l

i =
∑r2

j=1 B2
ij ⊗ B3...l

ij ,

∀ i, with B2
ij and B3...l

ij being Hermitian matrices on H2 and H3 ⊗ ... ⊗ Hl respectively. In
doing so at last we have the Hermitian tensor product decomposition of the form, ρ1,2,...,l =∑r

i=1 B1
i ⊗ B2

i ⊗ ... ⊗ Bl
i, where Bk

i are Hermitian matrices on Hk. New decompositions

can be obtained, ρ1,2,...,l =
∑r′

i=1 B′1
i ⊗ B′2

i ⊗ ... ⊗ B′l
i, where B′k

j =
∑r

i=1 Ek
ijB

k
i , k = 1, ..., l,

Ek = (Ek
ij) are the real matrices satisfying

∑r′
j=1 E1

i1jE
2
i2j ...E

l
ilj

= δi1i2δi2i3 ...δil−1il.

For any given decompositions, in terms of the protocol (31), one has ρ1,2,...,l =
∑r′

i=1 B′1
i ⊗

B′2
i ⊗ ...⊗B′l

i + q Id1 ⊗ Id2 ⊗ ...⊗ Idl, where Idi is the identity matrix on Hi, (B′1
i , B′2

i , ...,
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B′l
i) are Hermitian matrices such that m(B′k

i ) = 0, or part of them (but not all) are identity
matrices. The separability indicator S(ρ1,2,...,l) is the maximal value of the parameter q for all
possible positive Hermitian tensor product decompositions. If the parameter S(ρ1,2,...,l) ≥ 0,
the state ρ1,2,...,l is separable, otherwise it is entangled.
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