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Abstract

We show that the classical solution of the heat equation can be seen as the minimizer
of a suitable functional defined in space-time. Using similar ideas, we introduce a func-
tional F on the class of space-time tracks of moving hypersurfaces, and we study suitable
minimization problems related F . We show some connections between minimizers of F
and mean curvature flow.
Key words: heat equation, space-time energy minimizers, mean curvature flow.
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1 Introduction

In this paper we show that solutions to the classical heat equation can be viewed as minimizers
of a suitable space-time functional F of second order. The argument leading to the expression
of F (defined in (2.1), or more generally in (2.9)) is based on a elementary and well known
integration by parts formula, see Section 2.1, which is used together with the least squares
method. The functional F consists of two parts, which equally contribute to the energy of
the minimizers, as it happens in the theory of curves of maximal slope in the sense of De
Giorgi, see [14], [3]. Other approaches in the direction of looking at solutions of gradient flows
of convex functionals as minimizers of suitable energies were proposed in [12] and developed
further in [5] and in [21], [20].
More interestingly, an idea similar to the one leading to the expression of F can be applied
to the more difficult situation of geometric evolutions, for instance concerning the mean
curvature flow of an embedded hypersurface in R

n. In this case it turns out that, assuming
enough regularity, the functional F reads as

F(Σ) =

∫

Σ

(νn+1)
2

√
1 − (νn+1)2

dHn +

∫ +∞

0

∫

Σ(t)
(HΣ(t))

2 dHn−1dt, (1.1)

where
Σ = ∪t≥0 (Σ(t) × {t}) ⊂ R

n+1
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is the space-time track of the evolution, ν = (ν1, . . . , νn+1) ∈ R
n+1 is a unit normal vector

field to Σ, and HΣ(t) is the mean curvature of the projection Σ(t) on R
n of the t-time slice

of Σ. The energy F is therefore a functional on a suitable class of hypersurfaces (in space-
time), and consists of two competing terms: one of first order depending on the unit normal
vector field ν to Σ (singular at those points of Σ where νn+1 = 1) and the other one (of second
order) which is the Willmore functional of the time-slices of Σ integrated further in time. The
important role of the Willmore functional in motion by mean curvature is well known, see
for instance [29], [15]; such a role is displayed also in our variational approach. Observe that
being F (and also F ) of second order, the variational analysis (i.e., the direct method and
the regularity theory) is much more difficult than the one required for functionals depending
only on gradients such as those leading to elliptic PDEs. In particular, the study of the
lower semicontinuity of F with respect to suitable topologies deserves further investigation.
In this respect we remark that the possible formation of singularities in mean curvature flow
is one of the difficulties that one has to face in setting the functional (1.1) in a weak form.
Another general remark concerning both the heat equation and the mean curvature flow is
that, because of their structure, minimizing the functionals F and F could lead to backward
solutions (or to combinations of forward and backward solutions). This problem is avoided
for the heat equation using the convexity of F and some properties of its domain, while for
the geometric functional F the situation is much less clear.
The plan of the paper is the following. In Section 2 we derive the functional F , and we define
what we mean by a variational solution to the heat equation starting from an initial datum
g. For simplicity of presentation, we distinguish the case of the whole space and the case of
a bounded domain with Dirichlet boundary conditions. The existence and uniqueness of a
variational solution to the heat equation is proved in Theorem 2.5. Also it is not difficult
to check that a classical solution is a variational solution, see Remark 2.4. In Section 3
we derive the functional F in (1.1), and we define what we mean by a strong variational
mean curvature flow starting from an initial solid set E with smooth compact boundary (see
Definitions 3.6). Definition 3.6 requires some care; indeed, without assuming condition (ii) it
is possible (combining forward and backward curvature flows) to construct an initial smooth
set E ⊂ R

2 × {0} and a smooth space-time track Σ ⊂ R
2 × (0, +∞) with ∂Σ = ∂E in such

a way that F(Σ) < F(Σc), where Σc denotes the space-time track of the classical curvature
flow of ∂E (Example 3.5). Similar counterexamples cannot be constructed in the previous
case of the heat equation, due to the regularity properties enjoyed by functions belonging to
the competitor space X(Ω). In Proposition 3.10 we show that classical mean curvature flow
is a stationary point of F .
The expression of F on space-time tracks which are graphs of a function f on the initial set
E is

F(Σ) =

∫

E

1

|∇f | dx +

∫

E

(
div

∇f

|∇f |

)2

|∇f | dx =: F(f), (1.2)

see Remark 3.3 (this situation happens, as it is well known [18], in mean curvature flow of
convex sets). In Section 4 we study our minimization problem when the initial set E is a
convex set in the plane and the minimization is restricted to graphs of concave functions:
under these assumptions, we show that the minimum problem has a solution (Theorem 4.1).
The proof inspects lower semicontinuity and coercivity properties of the functional (1.2).
The minimum problem as stated in Definition 3.6 has not, in general, a solution. A possible
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weak form of the minimum problem (3.12) is proposed in Section 5: in Definition 5.1 we
introduce the weak variational mean curvature flow starting from E, and the corresponding
weak minimum problem is given in (5.1). In Proposition 3.9 we show that if a weak variational
solution is sufficiently smooth, then there is a sort of equipartition of energy in (1.1) in an
integral sense. Finally, in Section 6 we point out some preliminary relations between the
asymptotic properties (as ǫ → 0) of the sequence of second order functionals

Fǫ(v) :=

∫ +∞

0

∫

Rn

[
ǫ(vt)

2 +
1

ǫ

(
−ǫ∆v +

1

ǫ
W ′(v)

)2 ]
dxdt (1.3)

and the functional F , see the papers [27], [26] for related results. This result relates parabolic
problems with Γ-convergence (see also [32]), and is a further motivation for an independent
study of the functional F in (1.1).
We conclude this introduction by mentioning that the approach of the present paper may
have some applications to large deviation problems in statistical mechanics, see for instance
[8].

2 The heat equation: the functional F

If Ω is an open set, and w ∈ L2(Ω × (0,+∞)) we denote by w(t) = w(t)(·) the map w(·, t).
In order to illustrate the method in the simplest case, in the following section we show how
to find the functional F in the ideal situation of the heat equation in the whole of R

n.

2.1 The heat equation in R
n

Let I be the usual Dirichlet functional

I(f) :=
1

2

∫

Rn

|∇f |2 dx, f ∈ H1(Rn).

Set X(Rn) := L2
(
0, +∞; H2(Rn)

)
∩ H1

(
0,+∞; L2(Rn)

)
and define the functional F :

X(Rn) → [0, +∞] as

F (v) =

∫ +∞

0

∫

Rn

[
(vt)

2 + (∆v)2
]

dxdt, v ∈ X(Rn). (2.1)

Let g : R
n → R be a given function with I(g) < +∞, and denote by uc : R

n × [0,+∞) → R

the solution to the Cauchy problem





ut = ∆u in R
n × (0, +∞),

u(0) = g in R
n × {t = 0},

u ∈ X(Rn).

(2.2)
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In view of well known regularity and decay properties of u := uc we can compute

0 =

∫ +∞

0

∫

Rn

(ut − ∆u)2 dxdt =

∫ +∞

0

∫

Rn

[
(ut)

2 + (∆u)2 − 2ut∆u
]

dxdt

= F (u) − 2

∫ +∞

0

∫

Rn

ut∆u dxdt = F (u) + 2

∫ +∞

0

∫

Rn

∇ut · ∇u dxdt

= F (u) +

∫

Rn

∫ +∞

0

d

dt
|∇u|2 dtdx = F (uc) − 2I(g).

Forgetting now that uc is the solution to the heat equation, the above computation leads
naturally to the following definition.

Definition 2.1. We say that a function uv ∈ X(Rn) is a variational solution to (2.2) if uv

solves the minimum problem

inf
{

F (v) : v ∈ X(Rn), v(0) = g
}

. (2.3)

The general strategy behind Definition 2.1 is the following: try to prove that (2.3) has a
solution uv; in positive case, prove that no other minimizer exists; then show that

F (uv) = 2I(g). (2.4)

Finally, prove that uv = uc. This strategy will be partially pursued, for the Dirichlet problem
in a bounded domain Ω (see Remark 2.4 and Theorem 2.5 below) and can be adapted to
the case when Ω = R

n. Here we only mention that, assuming the existence and sufficient
regularity of uv, the equality uv = uc can be seen as follows. We denote by uv

t the function
(uv)t and ∆uv the function ∆(uv). Since uv is a minimum point of F it is a weak solution of
the Euler-Lagrange equation of F , i.e.,

∫ +∞

0

∫

Rn

uv
t ϕt + ∆uv∆ϕ dxdt = 0 ∀ϕ ∈ C∞

c (Rn+1). (2.5)

Denoting by ûv the Fourier transform of uv with respect to x, from (2.5) we get
∫ +∞

0

∫

Rn

ûv
t ϕ̂t + |ξ|4ûvϕ̂ dξdt = 0 ∀ϕ ∈ C∞

c (Rn+1). (2.6)

Under sufficient regularity assumptions on uv we have ûv
t = (ûv)t, therefore ûv is a weak

(hence a strong) solution of the ordinary differential equation

d2

dt2
ûv = |ξ|4ûv, ûv(0) = ĝ. (2.7)

It follows that ûv(ξ, t) = exp(−|ξ|2t)h(ξ) + exp(|ξ|2t)(ĝ(ξ) − h(ξ)), where h ∈ L2(Rn) is not
explicit, as (2.7) is under-determined. For t ∈ (0, +∞) we have

∫

Rn

|∇uv(t)|2 dx =

∫

Rn

|ξ|2ûv ûv dξ

=

∫

Rn

|ξ|2(e−2|ξ|2t|h|2 + e2|ξ|2t|ĝ − h|2 + h(ĝ − h) + h(ĝ − h)) dξ.

(2.8)

If (ĝ − h) is not zero, from (2.8) we deduce limt→+∞
∫

Rn |∇uv(t)|2 dx = +∞, which contra-

dicts
∫

Rn |∇uv(t)|2 dx ≤
∫

Rn |∇g|2 dx + 1
2F (uv). Therefore ûv(ξ, t) = exp(−|ξ|2t)ĝ(ξ) and

eventually uv = uc.
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2.2 The heat equation in Ω with Dirichlet boundary conditions

Several different methods are known to lead to the solution of the heat equation on a given
domain (with some kind of boundary and initial conditions), see for instance [30], [11], [16].
It is not the aim of the present paper to make another theory of existence, uniqueness and
regularity of parabolic PDEs. Nevertheless, in this section we briefly point out some facts
related to Definition 2.1.
Let Ω be a bounded open set of class C2 and let g ∈ H1

0 (Ω) be a given function. Set

I(g) = I(g, Ω) :=
1

2

∫

Ω
|∇g|2 dx.

Define
X(Ω) := L2

(
0, +∞; H1

0 (Ω) ∩ H2(Ω)
)
∩ H1

(
0, +∞;L2(Ω)

)
,

and

F (v) = F (v,Ω × (0, +∞)) :=

∫ +∞

0

∫

Ω

[
(vt)

2 + (∆v)2
]

dxdt, v ∈ X(Ω). (2.9)

Definition 2.2. We say that a function uv is a variational solution to





ut = ∆u in Ω × (0,+∞),

u(0) = g ∈ H1
0 (Ω), in Ω × {t = 0},

u ∈ X(Ω),

(2.10)

if uv solves the minimum problem

inf
{

F (v) : v ∈ X(Ω), v(0) = g
}

. (2.11)

Let us recall some crucial properties shared by functions belonging to X(Ω).

Remark 2.3. We recall (see for instance [30]) that

(a) if v ∈ X(Ω) then v ∈ C0([0, +∞);H1
0 (Ω)), the map t ∈ (0, +∞) →

∫
Ω |∇v(t)|2 dx has

first derivative in L1(0, +∞), and

− d

dt

1

2

∫

Ω
|∇v(t)|2 dx =

∫

Ω
vt(t)∆v(t) dx for a.e. t ∈ (0, +∞). (2.12)

In particular limt→+∞
∫
Ω |∇v(t)|2 dx = 0;

(b) the set of all v ∈ X(Ω) such that v(0) = g is non empty, and if v is one of these functions
then limt→0+

∫
Ω |∇v(t)|2 dx =

∫
Ω |∇g|2 dx;

(c) on the space H1
0 (Ω)∩H2(Ω), the H2(Ω)-norm of f is equivalent to (

∫
Ω(∆f)2dx)1/2 (see

for instance [16], 6.3.2).
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As in the case of the whole space, the classical solution uc to (2.10) satisfies uc ∈ X(Ω) and
F (uc) = 2I(g).

Remark 2.4.

(a) Since α2 + β2 ≥ 2αβ for α, β ∈ R, it follows from (a) and (b) of Remark 2.3 that

F (v) ≥ 2I(g) ∀v ∈ X(Ω) with v(0) = g.

Hence inf {F (v) : v ∈ X(Ω), v(0) = g} ≥ 2I(g) = F (uc), and therefore uc is a varia-
tional solution to (2.2).

(b) The functional F is convex on the linear space X(Ω). Hence, if u and v are two
different solutions to (2.11), it follows that ut = vt (and ∆u = ∆v) almost everywhere
on Ω × (0, +∞); since u(0) = v(0) it follows that u = v. This fact, together with (a),
shows that uv = uc is the unique solution to (2.11). In particular, it is not possible to
have minimizers of F solving the backward heat equation in some space-time region.

(c) Simple modifications of the previous arguments allow to find energy functionals for a
large class of parabolic equations in divergence form. This approach is strongly related
to the theory of the curves of maximal slope in the sense of De Giorgi [14], [3]. Moreover
also in our case the functional F consists of two parts, which equally contribute to the
energy of the minimizers.

(d) Assume for simplicity n = 1; if the solution of (2.11) is known to be smooth enough we
can prove that uv is a classical solution of the heat equation only using its minimality
as follows. Let I ⊂⊂ Ω be an interval and denote by uv

I the I-periodic extension of the
restriction of uv to I. Let {Ck(t)}k∈Z be the coefficients of the Fourier series of uv

I .

By the smoothness assumptions made on uv
I and the fact that (being a minimizer) uv

is a solution of the Euler Lagrange equation of F it follows

C ′′
k (t) = Ck(t)|k|4 ∀k ∈ Z, Ck(0) = cgI

k ,

where {cgI

k }k∈Z are the cofficent of the Fourier series of the I-periodic extension of g|I .
Repeating the same argument above using Fourier series in place of Fourier transform
we will eventually obtain that uv is a classical solution of the heat equation on I.

We now want to consider the minimum problem (2.11) independently of the knowledge of uc.
The following result shows in particular the existence and uniqueness of uv.

Theorem 2.5. Let g ∈ H1
0 (Ω). Then there exists a unique solution uv of (2.11) and F (uv) ≥

2I(g). Moreover

∫

Ω
(uv

t (t))
2 dx =

∫

Ω
(∆uv(t))2 dx for a.e. t ∈ (0, +∞). (2.13)

Proof. The space X(Ω) is a Hilbert space if endowed with the norm given by F . Define
K := {v ∈ X(Ω) : v(0) = g}. Then K is non empty (see [30, pag. 21]), and is a convex
subset of X(Ω). Moreover, K is closed in X(Ω) (see [30, Rem. 3.5]). Therefore the minimum

6



problem (2.11) has a unique solution uv by [11, Th. V.6]. Moreover, F (uv) ≥ 2I(g) as a
consequence of Remark 2.4 (a).
Let s > 0 and set u := uv. Let us show that

∫ +∞

s

∫

Ω
(ut)

2 dxdt =

∫ +∞

s

∫

Ω
(∆u)2 dxdt. (2.14)

For any λ > 0 let vλ(x, t) := u(x, s) if t ∈ [0, s] and vλ(x, t) := u(x, s + λ(t − s)) if t ≥ s.
Then vλ ∈ X(Ω) and vλ(0) = g. The minimality of u then implies

F (u) ≤F (vλ) =

∫ s

0

∫

Ω

[
(ut)

2 + (∆u)2
]

dxdt

+

∫ +∞

s

∫

Ω

[
λ2(ut(x, s + λ(t − s))2 + (∆u(x, s + λ(t − s))2

]
dxdt

=

∫ s

0

∫

Ω

[
(ut)

2 + (∆u)2
]

dxdt +

∫ +∞

s

∫

Ω

[
λ(ut)

2 +
1

λ
(∆u)2

]
dxdt =: f(λ),

hence f has a minimum for λ = 1. The equation f ′(1) = 0 yields (2.14). Let now δ > 0.
From (2.14) it follows

(2δ)−1

∫ s+δ

s−δ

∫

Ω
(ut)

2 dxdt = (2δ)−1

∫ s+δ

s−δ

∫

Ω
(∆u)2 dxdt,

and (2.13) is a consequence of Lebesgue differentation theorem.

Remark 2.6. Deviation of a function w ∈ X(Ω) with w(0) = g ∈ H1
0 (Ω) from being

a classical solution to the heat equation with zero Dirichlet boundary condition could be
measured by the following geodesic-type minimum problem:

inf{F (w) : w ∈ X(Ω), w(0) = g, w(T ) = h},

where h ∈ H1(Ω) and T ∈ (0, +∞]. This kind of problems could be related to large deviations
theory, see for instance [8].

Remark 2.7. As already mentioned in the Introduction, in the paper [12] solutions of gradi-
ent flows of proper convex lower semicontinuous energies Φ in a Hilbert space H are obtained
through the minimization of functionals of the form

∫ T

0
[Φ(v(t)) + Φ∗(−v̇(t))] dt +

1

2
‖v(T )‖2

H ,

where Φ∗ denotes the Legendre transform of Φ and T > 0 is fixed. The minimization is made
on the space

{
v ∈ C([0, T ];H);φ∗ (

−dv
dt

)
∈ L1([0, T ]), v(0) = g

}
. Such a functional differs

from F when Φ is the Dirichlet integral.
As in our case, once the existence of a minimizer u is proved, in order to show that u is weak
solution of the evolution equation up to the time T , one needs to prove that the minimum
value equals twice the energy of the initial datum g. More recently, in [21], [20] a modified
version of the functional proposed in [12] was studied. The modification is such that it makes
possible to deduce directly from the minimality that u is also a weak solution of the evolution
equation up to time T .
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We observe that the functionals considered in [12] and [21], [20] are defined by duality using
the Legendre transform; extending such an approach to geometric evolution seems not to be
immediate.

3 Motion by mean curvature: the functional F
Given a Borel set B ⊆ R

n we denote by P (B) the perimeter of B in R
n, and by Hn−1 the

(n − 1)-dimensional Hausdorff measure [2]. We denote by {e1, . . . , en+1} the canonical basis
of R

n × (0,+∞). We indicate by ∇ (resp. ∆) the gradient (resp. the laplacian) with respect
to the space variable x. Br denotes the ball of R

n centered at the origin with radius r > 0.
Let us recall the definition of classical mean curvature flow of a hypersurface, see for instance
[18]. Let E ⊂ R

n be an open set with smooth compact boundary. We say that (E(t))t∈[0,T ]

is a smooth mean curvature flow on [0, T ] starting from E = E(0) if, setting d(x, t) :=
dist(x,E(t)) − dist(x, Rn \ E(t)),

(i) there exists an open set A such that A ⊃ ∂E(t) for any t ∈ [0, T ] and d ∈ C∞(A×[0, T ]);

(ii) for all (x, t) ∈ A × [0, T ] such that d(x, t) = 0 we have

∂d

∂t
(x, t) = ∆d(x, t). (3.1)

Set Σ(t) := ∂E(t) and Σ := ∪t∈(0,T ](Σ(t) × {t}). We recall that, if x ∈ ∂E(t), then
∆d(x, t)∇d(x, t) is the mean curvature vector of ∂E(t) at x and that HΣ(t)(x) = ∆d(x, t).
Assume that E(t) is smooth up to the extinction time T ∈ (0,+∞). Define

F(Σ) :=

∫ +∞

0

∫

∂E(t)

[
(dt)

2 + (∆d)2
]
dHn−1dt. (3.2)

Using (3.1) let us compute

0 =

∫ +∞

0

∫

∂E(t)
(dt − ∆d)2 dHn−1dt =

∫ +∞

0

∫

∂E(t)

[
(dt)

2 + (∆d)2 − 2dt∆d
]

dHn−1dt (3.3)

= F(Σ) − 2

∫ +∞

0

∫

∂E(t)
dt∆d dHn−1dt. (3.4)

We now recall [1] that

d

dt
P (E(t)) = −

∫

∂E(t)
dt∇d · ∇d∆d dHn−1 = −

∫

∂E(t)
dt∆d dHn−1,

where we have used |∇d|2 = 1 in a neighbourhood of ∂E(t). Therefore from (3.3) we derive

0 =

∫ +∞

0

∫

∂E(t)
(dt − ∆d)2 dHn−1dt = F(Σ) + 2

∫ +∞

0

d

dt
P (E(t)) dt = F(Σ) − 2P (E).

The above computation leads naturally to try to define the variational mean curvature flow
Σ ⊂ R

n+1 starting from the set E ⊂ R
n × {0} as a minimizer of the functional F in (3.2).
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Before doing that, in order to have a better flavour of the meaning of the functional F , we
rewrite it on the space-time track Σ. Denote by ν = (ν1, . . . , νn+1) ∈ {n ∈ R

n+1 : |n| = 1}
the unit normal to Σ outer to the set A := ∪t∈(0,T ](E(t) × {t}). If we indicate by π :
R

n × (0,+∞) → (0,+∞) the projection function π(x, t) := t on the last coordinate, the
coarea formula on manifolds [19, pag. 103] guarantees, for B ⊆ Σ,

∫

B
|∇Σπ| dHn =

∫

IB

∫

∂E(t)
dHn−1dt, (3.5)

where IB := {t ∈ (0,+∞) : (∂E(t) × {t}) ∩ B 6= ∅} and ∇Σ denotes the tangential gradient
on Σ. Therefore ∇Σπ = en+1 − en+1 · νν = en+1 − νn+1ν, so that |∇Σπ|2 = (νn+1)

2((ν1)
2 +

· · · + (νn)2) + (1 − (νn+1)
2)2 = 1 − (νn+1)

2. Hence from (3.5) we get
∫

B

√
1 − (νn+1)2 dHn =

∫

IB

∫

∂E(t)
dHn−1dt. (3.6)

In addition observe that Σ = {(x, t) : d(x, t) = 0}, so that the equation |∇d(x, t)| = 1 implies
ν = 1√

1+(dt)2
(∇d, dt) on Σ, and therefore

(νn+1)
2

1 − (νn+1)2
= (dt)

2 on Σ. (3.7)

From (3.5) and (3.7) we deduce that the first term on the right hand side of (3.2) can be

rewritten as
∫
Σ

(νn+1)2√
1−(νn+1)2

dHn. We conclude that the functional F in (3.2) has also the

expression (1.1), i.e.,

F(Σ) =

∫

Σ

(νn+1)
2

√
1 − (νn+1)2

dHn +

∫ +∞

0

∫

Σ(t)
(HΣ(t))

2 dHn−1dt. (3.8)

Set

Fv(Σ) :=

∫

Σ

(νn+1)
2

√
1 − (νn+1)2

dHn, Fκ(Σ) :=

∫ +∞

0

∫

Σ(t)
(HΣ(t))

2 dHn−1dt, (3.9)

in such a way that
F(Σ) = Fv(Σ) + Fκ(Σ).

Remark 3.1. Fv(Σ) penalizes regions of Σ where ν = en+1 (corresponding, to fat regions
in the level set formulation of mean curvature flow). On the other hand, regions of Σ where
νn+1 = 0 do not contribute to Fv(Σ).

Remark 3.2. Assume that there exists the classical mean curvature flow E(t) of E for all
times up to the (finite) extinction time. Define Σc := ∪t∈(0,+∞)(∂E(t)×{t}) for any t. Then
F(Σc) = 2P (E).

Remark 3.3. Assume that Σ = {(x, t) ∈ E × (0,+∞) : t = f(x)} for a function f ∈ C2(E)
with nonvanishing gradient and f = 0 on ∂E. Then

∫

Σ

(νn+1)
2

√
1 − (νn+1)2

dHn =

∫

E

1

|∇f | dx,

so that F(Σ) takes the form (1.2).
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Remark 3.4. Let

φ(ξ) :=
(ξn+1)

2

√
1 − (ξn+1)2

, ξ ∈ R
n × (0,+∞), |ξ| = 1. (3.10)

Denote by φe the one-homogeneous extension of φ to the whole of R
n+1, i.e.,

φe(ξ) =
(ξn+1)

2

√
|ξ|2 − (ξn+1)2

, ξ ∈ R
n+1 \ {ξ1 = · · · = ξn = 0}. (3.11)

If n = 1 then φe is convex. If n > 1 then φe is not convex.

Before giving the definition of strong variational solution of the mean curvature flow, let
us examine one example which shows that not all smooth Σ (with finite energy) must be
included in the domain of F , since it is possible to construct smooth Σ with F(Σ) < F(Σc),
Σc the space-time track of the classical mean curvature flow. The construction is based on
the fact that, if we look at Σ as a graph with respect to the n-space variables, such a graph
may contain regions of local maxima (or local minima) with dimension n − 1.

Example 3.5. Let R0 > 0 and 0 < δ < R0/4. Let us consider the circular annulus E =
BR0

\ BR0−δ ⊂ R
2 as initial set, see (as in Figure 1. The space-time track Σc of the classical

curvature flow starting from E is given by

Σc :=
( ⋃

t∈[0,t†ext]

∂Bext(t) × {t}
)
∪

( ⋃

t∈[0,t†
int

]

∂Bint(t) × {t}
)
,

where t†ext =
R2

0

2 , t†int = (R0−δ)2

2 , Bext(t) = B√
R2

0
−2t

, Bint(t) = B√
(R0−δ)2−2t

, and

F(Σc) = 2P (E) = 4π(2R0 − δ).

Let us evolve now BR0−δ by the backward curvature flow up to time t∗ := 1
2(t†ext − t†int), and

denote such an evolution by Bint
rev(t) = B√

(R0−δ)2+2t
, t ∈ [0, t∗]. Define Σδ as

Σδ :=
⋃

t∈[0, t∗

2
]

(
∂Bext(t) ∪ ∂Bint

rev(t)
)
× {t},

see Figure 1 (b).
Observe that Σδ is not smooth (only along the time-slice circle Σδ ∩ {t = t∗

2 }) and that

P (BR0
) − P (Bext(t∗/2)) + P (Bint

rev(t
∗/2)) − P (BR0−δ) = 2πδ = F(Σδ)/2.

We now smoothen the singularity of Σδ with a sequence of radially symmetric Σδ
k of smooth

surfaces such that
lim

k→∞
F(Σδ

k) = F(Σδ) = 4πδ < F(Σc).

In view of the choice of δ, it follows that F(Σδ
k) < F(Σc) for k large enough.

10
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Figure 1: Fig.(a) represents the space-time track Σc of the curvature flow starting from an annulus.

Fig.(b) shows Σδ, constructed in Example 3.5. In Fig.(c) we depict an extinction and a nucleation

(at time T ) of the same perimeter. This explains the local nature of condition (ii) in Definition 3.6,

needed to rule out such examples.

Example 3.5 forces to add condition (ii) in the next definition, in order to rule out the surfaces
Σδ

k in the domain of F , see also in analogy (a) of Remark 2.3.

Definition 3.6. Denote by S the class of all hypersurfaces Σ ⊂ R
n × (0, +∞) of class C2

such that ∂Σ ⊂ R
n × {0}, F(Σ) < +∞ and satisfying the following assumptions:

(i) there exists a bounded open set A ⊂ R
n × (0,+∞) such that ∂A = Σ;

(ii) if we set Σ(t) := {x ∈ R
n : (x, t) ∈ Σ}, for any Borel set B ⊆ R

n the function
Hn−1 B(Σ(·)) is absolutely continuous in (0,+∞)

Let E ⊂ R
n ×{0} be an open set with smooth compact boundary. We say that Σs is a strong

variational solution of the mean curvature flow starting from E if Σs solves

inf
{
F(Σ) : Σ ∈ S, ∂Σ = ∂E

}
. (3.12)

Remark 3.7. Unlike the previous case of the heat equation, proving that S is nonempty is
not immediate (it is not difficult to prove that S is nonempty if E is convex or is smoothly
diffeomorphic to a sphere). In addition, the existence of a solution to (3.12) is not guaranteed;
therefore, it seems natural to study limits of minimizing sequences, and to relax the space S
of competitors and the definition of F (see Section 5 below). This requires some care: indeed,
weakening the regularity assumptions on Σ could lead to introduce other minimizers beside
the one, for instance, given by the level set flow of E.

Remark 3.8. Condition (ii) in Definition 3.6 is satisfied in case Σ is the space-time track of
a smooth flow in the sense of [1, Def. 5.1]. Moreover such an assumption ensures that sudden
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loss of mass or nucleation of sets of Hn−1 positive measure are not allowed. These phenomena
are related to suitable subsets of “horizontal” portions {(x, t) ∈ Σ : ν(x, t) = ±en+1} of Σ. In
fact, let Σ ∈ S and suppose that for a certain t we have ν(x, t) = en+1 for every x ∈ Ξ ⊂ Σ(t),
where Ξ is a relatively open subset of Σ(t). It is then possible to find an open neighborhood
U ⊂ R

n+1 of Ξ such that Σ ∩ U can be written as a graph of a function defined on an open
subset of R

n. Condition (ii) implies that Ξ cannot be a subset of a level set of local maxima
(which corresponds to a loss of mass) or local minima (which corresponds to a nucleation).

In the case of the heat equation, note that the fundamental equality (2.12) is a consequence
of the function v to belong to X(Ω); the analog of (2.12) would be to require in Definition
3.6

d

dt

∫

Σ(t)
ϕ dHn−1 =

∫

Σ(t)

νn+1√
1 − (νn+1)2

HΣ(t)ϕ dHn−1 +

∫

Σ(t)

νn+1√
1 − (νn+1)2

νΣ(t) · ∇ϕ dHn−1

for a.e. t ∈ (0,+∞) and for any ϕ ∈ C∞
c (Rn).

The following result is the analog of (2.13) in the geometric context.

Proposition 3.9. Let Σ ∈ S be a solution of (5.1). Then

∫

Σ(t)
(HΣ(t))

2 dHn−1 =

∫

Σ(t)

(νn+1)
2

1 − (νn+1)2
dHn−1 for a.e. t ∈ (0, +∞). (3.13)

Proof. Let (x, t) ∈ Σ and {v1, . . . , vn−1} ⊂ R
n × {0} be vectors spanning the tangent space

T(x,t)(Σ
t) to Σt at (x, t). Let γ ∈ C1((−1, 1); Σ) be such that γ(0) = (x, t) and γ′

n+1 6= 0
in (−1, 1). In particular span{v1, . . . , vn−1, γ̇(0)} = T(x,t)(Σ). Using Cramer’s formula for

the solution of linear systems we have span{ν(x, t)} = span(
∑n+1

j=1 (−1)j detAj(x, t)ej), and
Aj(x, t) is the (n × n)-matrix obtained removing the j-th column from the matrix




v1,1 . . . v1,n 0
... . . .

... 0
vn−1,1 . . . vn−1,n 0
γ′

1(0) . . . γ′
n(0) γ′

n+1(0))


 . (3.14)

Fix s > 0. For every λ > 0 we define Σ(t) := {x : (x, t) ∈ Σt}, Σλ :=
⋃

t∈(0,+∞)(Σ(t) ×
{ψλ(t)}), where ψλ(t) := t if t ≤ s and ψλ(t) := s + λ(t − s) if t ≥ s. Set also spt(Vλ) := Σλ.
Then (Σλ, Vλ) ∈ X and ∂Σλ = ∂E. Moreover, since Σλ(τ) = Σ(ψ−1

λ (τ)), we have

T(x,ψλ(t))Σλ(ψλ(t)) = T(x,t)Σ(t), HΣλ(ψλ(t))(x) = HΣ(t)(x) ∀x ∈ Σ(t).

Define γλ ∈ C1((−1, 1); Rn+1) as σ 7→ (γ1(σ), . . . , γn(σ), ψλ(γn+1(σ))). Then

γλ(σ) ∈ Σ(γn+1(σ)) × {ψλ(γn+1(σ))} ⊂ Σλ, γλ(0) = (x, ψλ(t)), γ̇λ 6= 0 in (−1, 1),

and T(x,ψλ(t))Σλ = span(v1, . . . , vn−1, γ̇λ(0)). Moreover,

span(νΣλ
(x, ψλ(t))) = span(

n+1∑

j=1

(−1)j detAλ
j (x, t)ej),
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where Aλ
j (x, t) is the (n × n)-matrix obtained removing the j-th column from the matrix

(3.14) with γ′
n+1(0) replaced by ψ′

λ(γn+1(0)). Hence

(νΣλ,n+1(x, ψλ(t)))2

1 − ν2
Σλ,n+1(x, ψλ(t))

= λ−2 (νn+1(x, t))2

1 − (νn+1(x, t))2
. (3.15)

By the minimality of Σ and (3.15), we have

Fw(Σ) ≤ Fw(Σλ)

=

∫ +∞

0

∫

Σλ(τ)

(νΣλ,n+1)
2

1 − (νΣλ,n+1)2
dHn−1 dτ +

∫ +∞

0

∫

Σλ(τ)
(HΣ(ψ−1

λ
(τ)))

2 dHn−1dτ

=λ−1

∫ +∞

0

∫

Σ(t)

(νn+1)
2

1 − (νn+1)2
dHn−1dt + λ

∫ +∞

0

∫

Σ(t)
(HΣ(t))

2 dHn−1dt =: f(λ)

The proof then proceeds exactly as in the proof of (2.13).

Classical mean curvature flow is a stationary point of F , as shown by the following result.

Proposition 3.10. Let E ⊂ R
n be a smooth bounded open set, let Σc ⊂ R

n × (0, t†) be the
time track of the mean curvature flow starting from ∂E, which is assumed to be smooth on
(0, t†), so that Σc ∈ S. Let Ψ ∈ C∞(Rn+2; Rn+1) and set Ψλ(z) := Ψ(λ, z) for λ ∈ R and
z ∈ R

n+1. Assume that Ψ0 = Id on R
n+1, Ψλ = Id out of a compact set of R

n+1 for |λ| small
enough, and that there exists ψ ∈ C∞

0 (Rn × (0, t†)) such that

d

dλ
Ψλ(x, t)

|λ=0
= ψ(x, t)(νΣc(t)(x), 0), ∀(x, t) ∈ Σ, (3.16)

where νΣc(t) is the outer unit normal vector to Σc(t). Define Σλ := Ψλ(Σc) and suppose that
Σλ ∈ S. Then

d

dλ
F(Σλ)

|λ=0
= 0. (3.17)

Proof. By (3.7) and (3.1) we have, for x ∈ Σc(t),

(νn+1(x, t))2 =
|HΣc(t)(x)|2

1 + |HΣc(t)(x)|2 ,
(
ν(x, t) · (νΣc(t)(x), 0)

)2
=

1

1 + |HΣc(t)(x)|2 . (3.18)

By the regularity of Σc, (3.16) we have (see for instance [35])

d

dλ
Fκ(Σλ)|λ=0 =

∫ +∞

0

d

dλ

(∫

Σc(t)
|HΣc(t)|2 dHn−1

)
dt|λ=0

=

∫ +∞

0

∫

Σc(t)
ψ(x, t)

(
2∆Σc(t)HΣc(t) + 2HΣc(t)|AΣc(t)|2 − (HΣc(t))

3
)

dHn−1dt,

(3.19)

where ∆Σc(t) is the Laplace-Beltrami operator on Σc(t), and |AΣc(t)|2 is the square of the
(euclidean) norm of the second fundamental form of Σc(t). In addition, by [7, Theorem 5.1]
we have

d

dλ
Fv(Σλ)|λ=0 = −

∫

Σ
(ψκφ) ν · (νΣc(t), 0) dHn,
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where κφ := div [(∇φe)(νe)]|ξ=ν , φe is defined in (3.11) and νe is a smooth extension of ν in
a neighbourhood of Σ keeping the constraint |νe| = 1. Using (3.18) we have

∇φe(νe)|ξ=ν(x,t) =

(
− (νn+1)

2ν1

(1 − (νn+1)2)3/2
, . . . ,− (νn+1)

2νn

(1 − (νn+1)2)3/2
, 2

νn+1√
1 − (νn+1)2

)

=
(
−|HΣ(t)|2νΣc(t),1, . . . ,−|HΣc(t)|2νΣc(t),n, 2HΣc(t)

)
,

where the right hand sides are evaluated at (x, t) ∈ Σ, and hence

κφ = −
n∑

j=1

∂xj

(
|HΣc(t)|2νΣc(t),j

)
+2∂t(HΣc(t)) = −(HΣc(t))

3+2∆Σc(t)HΣc(t)+2HΣc(t)|AΣc(t)|2,

where in the last equality we used ν∇ν = 0 and (see e.g. [15, Appendix B]) that

∂tHΣc(t) = ∆Σc(t)HΣc(t) + HΣc(t)|AΣc(t)|2.

Eventually, from (3.18), (3.5) and
√

1 − (νn+1(x, t))2 = 1/
√

1 + |HΣc(t)(x)|2, we deduce

d

dλ
Fv(Σλ)|λ=0 = −

∫

Σc

(ψκφ) ν · (νΣc(t), 0) dHn

=

∫

Σc

ψ
(
(HΣc(t))

3 − 2∆Σc(t)HΣc(t) − 2HΣc(t)|AΣc(t)|2
) 1√

1 + |HΣc(t)|2
dHn

=

∫ +∞

0

∫

Σc(t)
ψ

(
(HΣc(t))

3 − 2∆Σc(t)HΣc(t) − 2HΣc(t)|AΣc(t)|2
)

dHn−1dt.

(3.20)

Then (3.17) follows from (3.19) and (3.20).

We conclude this section by observing that the idea leading to the functional F could be
applied to other systems of geometric PDEs. As an example, let us mention mean curvature
flow of a smooth compact embedded manifold Γ(t) of dimension h ∈ {1, . . . , n − 2} without
boundary in R

n, see [4]. this case, the same arguments in Section 3 (cfr. Figure 2) lead to
study the following functional:

G(Σ) :=

∫

Σ

1 − |∇Σπ|2
|∇Σπ| dHh+1 +

∫ +∞

0

∫

Γ(t)
|HΓ(t)|2 dHhdt,

where now Σ is a (h + 1)-dimensional manifold in R
n × (0, +∞) and HΓ(t) still denotes the

mean curvature vector of Γ(t).

4 The geometric minimum problem for convex sets in R
2

In this section we study problem (3.12) when E is a bounded open smooth convex set of
R

2. We also restrict our minimization problem to those Σ which are subgraphs of concave
functions defined on E.
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Figure 2: Computation of the velocity of a flowing manifold of arbitrary codimension. Note that

|v|2 = |∇Σπ − (∇Σπ · en+1) en+1|2 = 1 − |∇Σπ|2.

We recall that the existence of a unique smooth mean curvature flow starting from a smooth
compact convex set E, until its extinction time, was proved by Huisken in [22].
Let us define

C :=
{
Σ : Σ = graph(f), f : E → [0,+∞) concave,

(4.1)

{f = t} := Σ(t) has curvature HΣ(t) in L2 for a.e. t ∈ (0, +∞)
}
.

It is possible to show that the class C is not empty and that there exists Σ ∈ C with F(Σ) <
+∞ (where the curvature part Fκ(Σ) of F(Σ) is obviously defined as

∫ +∞
0 ‖HΣ(t)‖2

L2

H1

dt).

The main result of this section is the following.

Theorem 4.1. Let n = 2. The problem

inf{F(graph(f)) : graph(f) ∈ C, f = 0 on ∂E} (4.2)

admits a solution.

Proof. Write graph(f) = Σf for a concave function f as in (4.2) with F(Σf ) < +∞. We
divide the proof into five steps.

Step 1. Let Σf ∈ C. Then

0 ≤ s ≤ σ ⇒ P ({f ≥ s}) ≥ P ({f ≥ σ}). (4.3)

Since f is concave, if 0 ≤ s ≤ σ the sets {f ≥ s} and {f ≥ σ} are convex and {f ≥ s} ⊇
{f ≥ σ}. The assertion then follows from [13, Lemma 2.4].

Observe that Fv(Σf ) < +∞ implies that |∇f | 6= 0 almost everywhere in E, namely the level
{f = t†}, t† := sup{t ∈ (0, +∞) : {f ≥ t} 6= ∅}, has zero Lebesgue measure.
The following step implies that if the velocity contribution Fv(Σfh

) to the energy is uniformly
bounded by a constant c along a sequence {Σfh

} ⊂ C, then all {fh ≥ t} are not empty for t
smaller than some T∗ depending only on c.
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Step 2. Let c > 0 and define

Vc :=
{
Σf ∈ C : Fv(Σf ) ≤ c

}
.

Then

sup
x∈E

f(x) ≥ T∗ ∀f ∈ Vc, T∗ :=
|E|2

cP (E)
.

By the Schwartz inequality we have

|E| =

∫

E

1

|∇f |1/2
|∇f |1/2 dx ≤

(∫

E

1

|∇f | dx

)1/2 (∫

E
|∇f | dx

)1/2

≤ c1/2

(∫

E
|∇f | dx

)1/2

.

(4.4)
We can assume that f is bounded above by some constant λ, otherwise there is nothing to
prove. Using (4.4), the coarea formula and step 1 we then get

|E| ≤ c1/2

(∫ λ

0
P ({f ≥ t}) dt

)1/2

≤ c1/2λ1/2P (E)1/2.

It follows λ ≥ |E|2
cP (E) .

The following step implies that if the curvature contribution Fκ(Σfh
) to the energy is uni-

formly bounded by a constant c along a sequence {Σfh
} ⊂ C then all {fh ≥ t} are empty for

t larger than some T depending only on c, provided n = 2.

Step 3. Let c > 0 and define

Kc := {Σf ∈ C : Fκ(Σf ) ≤ c}.

Then
sup
x∈E

f(x) ≤ T ∗ ∀f ∈ Kc,

where T ∗ := cP (E)
4π .

Let f ∈ Kc. For any t ∈ [0, +∞) such that {f = t} is non empty and has curvature Ht in
L2, using the Schwartz inequality and step 1 we have

4π =

(∫

Σf (t)
HΣf (t) dH1

)2

≤ P (Σf (t))

∫

Σf (t)
(HΣf (t))

2 dH1 ≤ P (E)

∫

Σf (t)
(HΣf (t))

2 dH1.

Integrating over [0, τ ] we get

τ ≤ P (E)

4π

∫ τ

0

∫

Σf (t)
(HΣf (t))

2 dH1 dt ≤ c
P (E)

4π
,

and the assertion follows.

Step 4. Let {Σfh
} ⊂ C be a sequence with

F(Σfh
) ≤ c ∀h ∈ N. (4.5)
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Then there exist a subsequence {Σfhk
} ⊂ C and Σf ∈ C such that {fhk

} converges to f
uniformly on compact subsets of E, and {∇fhk

} converges to ∇f almost everywhere in E.
Thanks to (4.5), we can apply step 3 to deduce that there exists a constant T ∗ such that

fh(x) ≤ T ∗ ∀x ∈ E, ∀h ∈ N.

Therefore {fh} is equi-Lipschitz on compact subsets of E, so that there exists a subsequence
{fhk

} uniformly converging, on compact subsets of E, to a function f : E → [0, +∞). It
follows that f is concave, f : E → [0, T ∗] and f = 0 on ∂E. Additionally, reasoning as in [13,
Lemma 2.2], we have also ∇fhk

→ ∇f almost everywhere on E.
Note that since fhk

→ f uniformly on compact subsets of E, then {fhk
≥ t} → {f ≥ t} in

L1 for any t ∈ [0, T ∗], hence {fhk
≥ t} → {f ≥ t} in the Hausdorff distance (see [13, Lemma

4.4]), and H1(Σfhk
) → H1(Σf (t)).

Using again (4.5) and the Fatou’s lemma, we have that for almost every t ∈ [0, T ∗]

lim inf
k→+∞

∫

Σfhk
(t)

(HΣfhk
(t))

2 dH1 < +∞. (4.6)

It follows that for almost every t ∈ [0, T ∗] there exists a subsequence {hk′} (depending on t)
such that the lim inf in (4.6) is a limit along {hk′}. Since {fhk′

≥ t} → {f ≥ t} in L1 and
H1(Σfh

k′
(t)) → H1(Σf (t)), and (4.6) holds, it follows that Σf (t) has curvature in L2, since

∫

Σf (t)
(HΣf (t))

2 dH1 ≤ lim inf
k′→∞

∫

Σfh
k′

(t)
(HΣfh

k′
(t))

2 dH1. (4.7)

holds (see for instance [6]), so that Σf ∈ C.

The proof of the next step is a consequence of Fatou’s Lemma.
Step 5. Let fh, f : E → [0, +∞[ be concave functions such that {∇fh} converges to ∇f
almost everywhere on E as h → +∞. Then

∫

E

1

|∇f | dx ≤ lim inf
h

∫

E

1

|∇fh|
dx.

The proof of the next step is a consequence of Fatou’s Lemma and the results in [6].
Step 6. Let {Σfh

} be a sequence of elements of C, and let Σf ∈ C. Assume that {fh ≥ t} →
{f ≥ t} in L1(R2) as h → +∞ for almost every t ∈ R

+. Then

Fκ(Σf ) ≤ lim inf
h

Fκ(Σfh
). (4.8)

The assertions of the theorem then follows by standard arguments.

Remark 4.2. We expect that Theorem 4.1 holds with the same proof in n = 3 space
dimensions, using the results of [23], [24] [25].
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5 Weak form of the geometric minimum problem

Finding the domain of the lower semicontinuous envelope of F (with respect to a suitable
topology) and studying its compactness properties is not easy. In particular, one has to
keep in mind that, in general, mean curvature flow admits singularities at finite time, and
that these singularities have not been completely classified. In the following definition we
propose a possible domain X for the relaxed functional of F , and a possible expression for
an extension of F (originally defined on S) on X . Our definition is partially inspired by
the definition of enhanced-flow given by Ilmanen in [29]. The main idea is that the classical
evolution ∂E(t)×{t} is replaced by the time slices of a varifold, slices having mean curvature
in L2, and containing the interior of the time slices Σt of a current Σ; such an interior makes
possible to devise what, in the smooth case, makes the role of E(t) × {t}. Concerning the
theory of currents and of varifolds we refer to [19] and [34]. If V is a varifold, its projection
on the base space is denoted by ‖V ‖.

Definition 5.1. Let X be the class of all pairs (Σ, V ) having the following properties: Σ is
a n-rectifiable integer current in R

n × (0, +∞) with ∂Σ ⊂ R
n × {0} and V is a rectifiable

unoriented integer varifold in R
n × (0, +∞) with compact support such that:

(i) for H1-almost every t ∈ (0, +∞) the support of the restriction v(t) := ‖V ‖ {xn+1 = t}
of ‖V ‖ to {xn+1 = t} contains the slice Σt := Σ ∩ {xn+1 = t};

(ii) for H1-almost every t ∈ (0,+∞), v(t) is a rectifiable measure [29] with mean curvature
Hv(t) in L2

v(t), and

Fw
κ (V ) :=

∫ +∞

0

∫

spt(v(t))
(Hv(t))

2 dv(t)dt < +∞;

(iii) if ν denotes a (Hn-almost everywhere defined) unit normal vector field to spt(‖V ‖) then

Fw
v (V ) :=

∫

Rn×(0,+∞)
φ(ν) d‖V ‖ < +∞,

where φ is defined in (3.10);

(iv) for any Borel set B ⊆ R
n the function v(·)(B) is absolutely continuous in (0, +∞).

Definition 5.2. Let E ⊂ R
n be an open set with smooth compact boundary. We say that

(Σ, V ) ∈ X is a weak variational solution to the mean curvature flow starting from E if (Σ, V )
solves

inf
{
Fw(V ) : (Σ, V ) ∈ X , ∂Σ = ∂E

}
(5.1)

where Fw(V ) := Fw
v (V ) + Fw

κ (V ).

Some comments are in order concerning Definition 5.2.
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Remark 5.3.

(a) If n = 1 the minimum problem (5.1) has the unique solution Σ(t) = spt(v(t)) = ∂E for
any t.

(b) If (Σ, V ) is a solution of (5.1) and spt(v(t)) = ∅ for some t > 0, then spt(v(s)) = ∅ for
all s ≥ t.

(c) If Σs is a strong variational solution of the mean curvature flow starting from E then,
setting v(t) := Σs ∩ {xn+1 = t}, we have that (Σs, V ) is a weak variational solution of
the mean curvature flow starting from E.

Remark 5.4. If n = 2 and ∂E is connected, it should be possible to prove that there exists
(Σ, V ) ∈ X with ∂Σ = ∂E, namely to find a smooth map between a regular parametrization
of the curve ∂E and a parametrization of the circle whithin a time interval [0, T ] and then
letting flow the circle by curvature starting at time T , without violating the smoothness
requirements in Definition 5.1.

Definition 5.5. We say that a sequence {(Σn, Vn)} ⊂ X converges to (Σ, V ) ∈ X as n → +∞
if Σn converges to Σ in the flat norm, and vn(t) converges to v(t) as a varifold, for almost
every t ∈ (0, +∞).

The above definition allows to consider the lower semicontinuous envelope Fw of the func-
tional Fw, and to try to prove that Fw = Fw on some subset of X . In this respect it becomes
useful to find the weakest topology for which Fw (or even F) is lower semicontinuous; we refer
to [9] (for n = 2) and especially [33] (for n ≥ 3) for results concerning the lower semicontinuity
of the Willmore functional.

6 Application to reaction-diffusion equations and Γ-convergence

Given a function v ∈ H1
loc(R

n) and ǫ > 0 let

mǫ(v) :=
ǫ

2
|∇v|2 +

1

ǫ
W (v), Mǫ(v) :=

∫

Rn

mǫ(v) dx, (6.1)

where W (s) = 1
4(1 − s2)2. Define c0 := 2

√
2

3 . If v ∈ H2
loc(R

n), set

eulǫ(v) := −ǫ∆v +
1

ǫ
W ′(v). (6.2)

Let R > 0 and YR := L∞([0,+∞);H2(BR))∩H1
loc([0, +∞);L2(BR)), Y := ∩RYR. Define the

sequence Fǫ : Y → [0, +∞] of functionals as

Fǫ(v) :=





∫ +∞

0

∫

Rn

[
ǫ(vt)

2 +
1

ǫ
(eulǫ(v))2

]
dxdt if v ∈ Y,

+∞ if v ∈ L2
loc(R

n × (0, +∞)) \ Y.

(6.3)
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Let g ∈ H1
loc(R

n) be a given function with Mǫ(g) < +∞. Denote by uǫ ∈ Y the solution to
the Cauchy problem





uǫt = 1
ǫ eul(uǫ) in R

n × (0,+∞),

uǫ(0) = g in R
n × {0}.

(6.4)

Following the same integration by parts in Section 2.1, let us compute

0 =

∫ +∞

0

∫

Rn

(uǫt −
1

ǫ
eulǫ(uǫ))

2 dxdt

=

∫ +∞

0

∫

Rn

[
(uǫt)

2 +
1

ǫ2
(eulǫ(uǫ))

2 − 2

ǫ
uǫteulǫ(uǫ)

]
dxdt,

so that

0 = Fǫ(uǫ) − 2

∫ +∞

0

∫

Rn

uǫteul(uǫ) dxdt = Fǫ(u)

+ 2

∫ +∞

0

∫

Rn

d

dt
mǫ(uǫ) dtdx = Fǫ(uǫ) − 2Mǫ(g).

Given B ⊆ R
n, we let χB(x) := 1 if x ∈ B and χB(x) := −1 if x /∈ B.

Theorem 6.1. The following assertions hold.

(i) Let A and Σ be connected and as in Definition 3.6. Assume that Σ(T ) × {T} =
{(x0, T )} = {(x, t) ∈ Σ : ν(x, t) = en+1} and for every 0 < δ < T/2 the manifold
Σ ∩ [0, T − δ] × R

n represents the space-time track of a smooth evolution starting from
∂Σ. Then there exists a sequence {uǫ} ⊂ Y converging to Σ in L1(Rn × (0, +∞)) such
that

lim
ǫ→0

Fǫ(uǫ) = c0F(Σ). (6.5)

(ii) Let n ∈ {2, 3} and {vǫ} ⊂ Y be such that supǫ Fǫ(vǫ) < +∞. Suppose that vǫ → 1B in
L1(Rn × (0, +∞)), where B ⊂ R

n × (0, +∞) is a smooth bounded open set, and that
limǫ→0

∫ +∞
0

∫
Rn mǫ(vǫ) dxdt = c0Hn−1(Σ), where Σ := ∂B ∩ (Rn × (0,+∞)). Then

lim inf
ǫ→0

Fǫ(vǫ) ≥ c0F(Σ), (6.6)

Proof. The sequence {uǫ} is defined through a straightforward adaptation of the construction
made in [10]. Let d(·, t) be the signed distance function from Σ(t), negative inside. For any
0 < ǫ < 1 and s ∈ R, let γǫ(s) := γ(s/ǫ) and γ̃ǫ be defined as follows: γ̃ǫ := γǫ in (0, ǫ| log ǫ|),
γ̃ǫ := pǫ in (ǫ| log ǫ|, s0

ǫ ), γ̃ǫ := +1 in (s0
ǫ , +∞), and γ̃ǫ(s) := −γ̃ǫ(−s) if s < 0. Here, pǫ is an

arc of parabola on (ǫ| log ǫ|, s0
ǫ ) connecting the points (ǫ| log ǫ|, γǫ(ǫ| log ǫ|)) and (s0

ǫ , 1), that
is pǫ(s) := −aǫ(s − s0

ǫ )
2 + 1, aǫ > 0. To find aǫ and t0ǫ , we impose the condition γ̃ǫ ∈ H2(R),

that gives s0
ǫ = ǫ + ǫ3 + ǫ| log ǫ| and aǫ = 2

(1+ǫ2)3
.

We define

uǫ :=

{
γ̃ǫ(−d), in R

n × [0, T )

−1 in R
n × [T, +∞)

(6.7)
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Then limǫ→0 uǫ = χA in L1(Rn × (0, +∞)), and

lim
ǫ→0

∫ +∞

0

∫

Rn

1

ǫ
(eulǫ(u))2 dxdt = c0Fκ(Σ),

see [10]. Therefore to show (6.5) it remains to prove that

lim
ǫ

∫ +∞

0

∫

Rn

ǫ(uǫt)
2 dxdt = c0Fκ(Σ). (6.8)

Applying the coarea formula and (6.7) we have

∫ +∞

0

∫

Rn

ǫ(uǫt)
2 dxdt =

∫ +∞

0

∫

Rn

ǫ|γ̃ǫ(d/ǫ)dt|2|∇d| dxdt

=

∫ +∞

0

∫ ǫ| ln ǫ|

−ǫ| ln ǫ|
ǫ−1|γ′(s/ǫ)|2

(∫

{d=s}
(dt)

2 dHn−1

)
dsdt

+

∫ +∞

0

∫ ǫ+ǫ3+ǫ| ln ǫ|

ǫ| ln ǫ|
ǫ|p′ǫ(s)|2

(∫

{d=s}
(dt)

2 dHn−1

)
dsdt

+

∫ +∞

0

∫ −ǫ| ln ǫ|

−ǫ−ǫ3−ǫ| ln ǫ|
ǫ|p′ǫ(s)|2

(∫

{d=s}
(dt)

2 dHn−1

)
dsdt =: Iǫ + IIǫ + IIIǫ.

By assumption we have that (3.7) holds for every (x, t) ∈ Σ(t) with t ∈ [0, T ). Moreover
letting νs(x, t) be the outward normal to ∂{d ≤ s} in (x, t), from [1, Theorem 4.3] we have
νs(x, t) = ν(πΣ(t)(x), t) + o(1). Therefore using the change of variables s/ǫ = z, we have

lim
ǫ→0

Iǫ = lim
ǫ→0

∫

(0,+∞)

∫ | ln ǫ|

−| ln ǫ|
(γ′(z))2

(∫
(νs

n+1)
2

1 − (νs
n+1)

2
dHn−1

)
dzdt

= lim
ǫ→0

∫ | ln ǫ|

−| ln ǫ|
(γ′(z))2

(∫

(0,+∞)

∫
(νn+1)

2

1 − (νn+1)2
dHn−1dt + o(1)

)
dz = c0Fv(Σ)

(6.9)

Since ǫ|p′ǫ(s)|2 = 8ǫ(s−ǫ−ǫ3−ǫ| log ǫ|)2
(1+ǫ2)6

, making the change of variable σ = s − ǫ| log ǫ|, it follows

∫ ǫ+ǫ3+ǫ| log ǫ|

ǫ| log ǫ|
ǫ|p′ǫ(s)|2 ds =

32ǫ

(1 + ǫ2)6

∫ ǫ+ǫ3

0
(τ − ǫ − ǫ3)2 dτ = O(ǫ4),

as ǫ → 0, hence

lim
ǫ→0

IIǫ + IIIǫ

= lim
ǫ→0

∫ ǫ+ǫ3+ǫ| log ǫ|

ǫ| log ǫ|
ǫ|p′ǫ(s)|2

(∫

(0,+∞)

∫

∂{d≤s}

ν2
n+1

1 − (νn+1)2
dHn−1dt + o(1)

)
ds

+

∫ −ǫ| log ǫ|

−ǫ−ǫ3−ǫ| log ǫ|
ǫ|p′ǫ(s)|2

(∫

(0,+∞)

∫

∂{d≤s}

ν2
n+1

1 − (νn+1)2
dHn−1dt + o(1)

)
ds = 0

(6.10)

Summing up (6.9) and (6.10) we obtain (6.8)
Finally, assertion (ii) is a direct consequence of [26, Section 4.3] and [31].
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We conclude the paper by observing that a full Γ-convergence and coerciveness result could be
used to prove the convergence of the minimizers of Fǫ (that reasonably can be supposed to be
solutions of (6.4)) to a minimizer of F , and obtain as a by-product [28] that the Brakke-flow
is a minimizer of the latter functional.
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[3] L. Ambrosio, N. Gigli, G. Savaré: Gradient Flows in Metric Spaces and in the Space of
Probability Measures, Lectures in Mathematics, ETH Zürich, Birkhaüser, 2005.
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