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NORMAL MODES AND NONLINEAR STABILITY BEHAVIOUR
OF DYNAMIC PHASE BOUNDARIES IN ELASTIC MATERIALS

HEINRICH FREISTÜHLER AND RAMÓN G. PLAZA

Abstract. This paper considers an ideal non-thermal elastic medium de-
scribed by a stored-energy function W . It studies time-dependent configura-
tions with subsonically moving phase boundaries across which, in addition to
the jump relations (of Rankine-Hugoniot type) expressing conservation, some
kinetic rule g acts as a two-sided boundary condition. The paper establishes a
concise version of a normal-modes determinant that characterizes the local-in-
time linear and nonlinear (in)stability of such patterns. Specific attention is
given to the case where W has two local minimizers UA, UB which can coexist
via a static planar phase boundary. Dynamic perturbations of such configura-
tions being of particular interest, the paper shows that the stability behaviour
of corresponding almost-static phase boundaries is uniformly controlled by an
explicit expression that can be determined from derivatives of W and g at UA

and UB.

1. Introduction

In this paper we consider the equations
Ut −∇xV = 0,

Vt − divx σ(U) = 0,
(1)

with
curlx U = 0 (2)

of non-thermal elasticity, in which t ∈ R+, x ∈ Rd, U ∈ R
d×d
+ , V ∈ Rd (d ≥ 2),

denote time, space, local deformation gradient and local velocity, respectively. The
stress σ(U) is supposed to derive as

σ(U) =
∂W

∂U
,

from a stored-energy density function W : R
d×d
+ → R. For U ∈ R

d×d
+ and ξ ∈ Rd,

let κmin(ξ, U) ∈ R be the smallest eigenvalue of the acoustic tensor

N (ξ, U) = D2W (U)(ξ, ξ).

We study subsonic phase boundaries, i. e., weak solutions of (1) of form

(U, V )(x, t) =

{
(U−, V −), x ·N < st,

(U+, V +), x ·N > st
(3)
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with N ∈ Sd−1, and

s2 < min{κmin(N,U−), κmin(N,U+)}. (4)

Besides the classical Rankine-Hugoniot type jump relations

−s[U ]− [V ] ⊗N = 0,

−s[V ] − [σ(U)]N = 0
(5)

and the jump conditions
[U ] × N = 0 (6)

associated with (2), solutions (3) are required to satisfy an additional kinetic rule

g((U−, V −), (U+, V +), s,N) = 0, (7)

where g is a real-valued function on Ω = (Rd×d
+ × Rd) × (Rd×d

+ × Rd) × R × Sd−1.

The purpose of this paper is to characterize stability properties of general subsoni-
cally moving phase boundaries (3). Particular attention is given to the case of small
dynamic perturbations of a static configuration

(U∗, V ∗)(x, t) =

{
(UA, 0), x ·N∗ < 0,

(UB, 0), x ·N∗ > 0
(8)

For U ∈ R
d×d
+ consider the hypotheses

(H1) W is rank-one convex at U (local hyperbolicity).

(H2) For all Ũ near U and all directions of propagation ξ ∈ Rd, ξ �= 0, the eigen-
values of N (ξ, Ũ) are all semi-simple and their multiplicity is independent
of Ũ and ξ (constant multiplicity).

For quadruples ((U−, V −), (U+, V +), s,N) ∈ Ω, summarize (5) and (7) as

(H3) h((U−, V −), (U+, V +), s,N) = 0,

and formulate

(H4) The (d2 + d+ 1) × 2(d2 + d) matrix(
d(U+,V +)h , d(U−,V −)h

)∣∣
((U−,V −),(U+,V +),s,N)

has full rank.

Finally consider the possible assumptions on an equilibrium configuration

(E1) There exist two states UA �= UB in R
d×d
+ , local minima of W , and UA−UB

is rank one. W is rank-one convex both at UA and UB.

(E2) Hypothesis (H2) is satisfied both with U = UA and U = UB. Hypotheses
(H3), (H4) hold with ((U−, V −), (U+, V +), s,N) = ((UA, 0), (UB, 0), 0, N∗),
where N∗ ∈ Sd−1 such that with some υ ∈ R

d, UB − UA = υ ⊗N∗.

The paper shows the following.
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Theorem 1. For every U ∈ R
d×d
+ satisfying (H1) and any (s,N) ∈ R× Sd−1 with

s2 < κmin(N,U), there exist continuous mappings (analytic for Reλ > 0)

R̂s
s,N (U) : ΓN → C

2d×d, R̂u
s,N (U) : ΓN → C

2d×d,

Ms,N (U) : ΓN → C
2d×2d, Ks,N (U) : ΓN → C

(d2+d)×2d,

on ΓN := {(λ, ξ) ∈ C × Rd−1 : Reλ ≥ 0, ξ ·N = 0, |λ|2 + |ξ|2 = 1} with which the
following holds:

(i) For any subsonic phase boundary (3) satisfying hypotheses (H3), (H4), and
(H1), (H2) for U = U− as well as for U = U+, the stability behaviour is controlled
by the Lopatinski function

∆̂(U−, U+) = det
(
R̂s

s,N (U−) Q̂(U−, U+) R̂u
s,N (U+))

p̂−(U−, U+) q̂(U−, U+) p̂+(U−, U+)

)
: ΓN → C, (9)

in which

Q̂(U−, U+)(λ, ξ) :=
(

[U ]N
−(λs[U ]N + i[σ(U)]ξ)

)
,

q̂(U−, U+)(λ, ξ) := −λ(dsg) + i(ξ · dN )g,

p̂−(U−, U+)(λ, ξ) := −(d(U−,V −)g)Ks,N (U−)R̂s
s,N (U−),

p̂+(U−, U+)(λ, ξ) := (d(U+,V +)g)Ks,N (U+)R̂u
s,N (U+) .

More precisely:
(i)1 If ∆̂(U−, U+) has no zero on ΓN , then (3) is nonlinearly stable.
(i)2 If ∆̂(U−, U+) vanishes for some (λ, ξ) ∈ ΓN with Reλ > 0, then (3) is strongly
unstable.

(ii) M and K are given by simple explicit formulae in terms of first and second
derivatives of W . R̂s and R̂u represent the right stable and unstable spaces of M.
In their whole domain of definition, given by

−κmin(N,U) < s < κmin(N,U),

Ms,N (U),Ks,N (U), R̂s
s,N (U), R̂u

s,N (U), depend continuously on (U, s,N).

Corollary 1. If W satisfies hypotheses (E1) and (E2), then the dynamic stability
of the static phase boundary (3) is uniformly controlled by the static-case Lopatinski
function

∆̂(UA, UB) : ΓN∗ → C,

in the sense that if ∆̂(UA, UB) has no zero on ΓN∗ , then any phase boundary (3)
with (H3) and (U−, U+) sufficiently close to (UA, UB) is nonlinearly stable, while
if ∆̂(UA, UB) vanishes for some (λ, ξ) ∈ ΓN∗ with Reλ > 0, then any such phase
boundary is strongly unstable.
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Theorem 2. (i) Under the assumptions of Theorem 1, the left stable and the left
unstable spaces of Ms,N (U) are represented by mappings

L̂s
s,N (U) : ΓN → C

d×2d, L̂u
s,N(U) : ΓN → C

d×2d,

with the same regularity properties as the R̂s
s,N (U), R̂u

s,N (U).
(ii) The (d+ 1) × (d+ 1) determinants

∆̂u(U−, U+) := det
(
L̂u

s,N (U−)Q̂(U−, U+) L̂u
s,N(U−)R̂u

s,N (U+)
q̂u(U−, U+) p̂u(U−, U+)

)
, (10)

where

p̂u := ((d(U+,V +)g)Ks,N (U+) + (d(U−,V −)g)Ks,N (U−))R̂u
s,N (U+)

q̂u := q̂(U+, U−) + (d(U−,V −)g)Ks,N (U−)Q̂(U−, U+),

and

∆̂s(U−, U+) = det
(
L̂s

s,N (U+)R̂s
s,N (U−) L̂s

s,N (U+)Q̂(U−, U+)
p̂s(U−, U+) q̂s(U−, U+)

)
, (11)

where

p̂s := −((d(U+,V +)g)Ks,N (U+) + (d(U−,V −)g)Ks,N (U−))R̂s
s,N (U−),

q̂s := q̂(U+, U−) − (d(U+,V +)g)Ks,N (U+)Q̂(U−, U+),

are equivalent to ∆̂(U−, U+),

∆̂(U−, U+) ∼ ∆̂u(U−, U+) ∼ ∆̂s(U−, U+),

in the sense that the three differ from each other only by non-vanishing factors.

Remark 1.1. Hypothesis (H1) is both the Legendre-Hadamard ellipticity condition
for the static problem and the natural well-posedness criterion for the dynamic
problem (cf., e.g. [8, 10]), at some constant state U . Hypothesis (H2) means
that the system is symmetrizable hyperbolic with constant multiplicity (cf. notably
[24]). (H3) just summarizes the Rankine-Hugoniot relations and the kinetic rule,
and (H4) constitutes a non-degeneracy condition the need for which, in general
contexts, was pointed out in [9]. The reference configuration described by condition
(E1) is standard in steady-state two-phase elasticity (cf., e.g. [26]).

Remark 1.2. An interesting alternative for characterizing stability properties of
moving phase boundaries (3) is [15] via the second-order system

Xtt − divxσ(∇xX) = 0 (12)

and Sakamoto’s theory [27, 28]. In contrast to the situation for (12), the static case
s = 0 is characteristic for (1), which may make it seem difficult at first sight; in
fact, however, the constraint (2) prevents the 0-speed mode from being active, so
that s = 0 poses no problem. One (certainly temporary) advantage of the first-
order framework consists in the fact that the theory for nonlinear non-constant-
coefficients settings is readily available for it in the literature [22, 23, 9].
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Remark 1.3. The literature offers significant approaches towards the issues of
(i) whether simple kinetic rules like (7) are at all capable to capture at least some
of the complexities of phase-boundary dynamics in real solid materials, and (ii) how
such rules may be derived from considerations, of deterministic or stochastic nature,
at microscopic and mesoscopic levels; cf., e. g., [2, 33, 11]. We indeed view our
results as a critical contribution to this modeling problem. To say it negatively: a
kinetic rule that passes not even the test of a multidimensional stability analysis can
hardly be accepted for a mathematically satisfactory description of stably moving
phase boundaries!

Plan of the paper. In Section 2 we gather basic facts about moving interfaces in
conservative systems and show how to reduce the order of Lopatinski determinants
for general undercompressive or Lax shock fronts. Section 3 describes the objects of
our study, namely subsonic phase boundaries for hyperelastic materials. We justify
assumptions (H1)-(H4) and (E1), (E2) by discussing the model and explaining its
principal features. The central Section 4 contains a careful investigation into the
peculiarities of the normal-mode analysis in the specific situation of this model.
Section 5 combines the previous findings into proofs of Theorems 1 and 2.

2. Lopatinski determinants and undercompressive shock waves

2.1. Conservation laws and shock fronts. Consider a system of n conservation
laws in d spatial variables of form

ut +
d∑

j=1

fj(u)xj = 0. (13)

where u ∈ U ⊂ Rn, U open and convex, fj ∈ C∞(U ; Rn), j = 1, . . . , d. We assume
that system (13) is hyperbolic, i. e., for any u ∈ U and all ξ ∈ Rd, the matrix

A(ξ, u) :=
d∑

j=1

ξjAj(u), Aj(u) := Dfj(u),

is diagonalizable over R with C∞ real eigenvalues a1(u; ξ) ≤ · · · ≤ an(u; ξ) (called
characteristic speeds) of fixed algebraic multiplicities α1, . . . , αn. System (13) sup-
ports planar discontinuity fronts

u(x, t) =

{
u+, if x ·N > st,

u−, if x ·N < st,
(14)

where u± are constant states in U , u+ �= u−, N ∈ Sd−1 is the direction of propa-
gation and s ∈ R is the speed of the discontinuity. The classical Rankine-Hugoniot
type jump relations

−s[u] + [f(u)]N = 0, (15)

where f := (f1, . . . , fd) ∈ Rn×d, are necessary for (14) being a weak solution to
(13). We assume that the discontinuity is non-characteristic, that is, there exist
integers o−, o+ ∈ {1, . . . , n} (the “numbers of outgoing modes”) such that

aj(N, u−) < s < ak(N, u−) for all j ≤ o−, k > o−, (16)

aj(N, u+) < s < ak(N, u+) for all j ≤ n− o+, k > n− o+, (17)
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and define a “degree of undercompressivity” as

l = o− + o+ + 1 − n.

Obviously, l counts the amount by which the total number o = o− + o+ of outgoing
modes exceeds n− 1. The case l = 0 corresponds to the classical “Lax type” shock
wave [21], while discontinuity waves with l > 0 are often called undercompressive
shock waves. For undercompressive shock waves one augments (15) to

0 = h(u+, u−, s,N) :=
(−s[u] + [f(u)]N
g(u+, u−, s,N)

)
, (18)

with the last l kinetic conditions given by a “kinetic function” [31, 32, 30, 1, 35, 13,
14]

g : U × U × R × Sd−1 → R
l.

2.2. Lopatinski determinants. Due to the fundamental work of Majda and
Métivier [22, 12, 23], the nonlinear stability behaviour of shock fronts is known
to be controlled by so called Lopatinski conditions, as they were introduced for
hyperbolic problems by Kreiss [20] and Sakamoto [27, 28]. The Majda-Métivier
theory has been extended to general undercompressive shocks [14, 4, 9].

The starting point of these analyses is a Fourier decomposition of the constant
coefficients linearized problem associated with (13) and (18) at (14). Introducing a
level set function (φ = x ·N − st at the reference configuration), we write (18) as

h(u−, u+,−φt,∇xφ) = 0.

The linearized problem reads

w±
t +

d∑
j=1

Aj(u±)w±
xj

= 0, for x ·N − st ≷ 0,

(du+h)w+ + (du−h)w− − (dsh)ψt + (dNh) · ∇ψ = 0, at x ·N − st = 0.

Considering a single Fourier mode

w±(x, t) = ŵ±(x ·N − st)eiξ·x+λt, x ·N − st ≷ 0,

ψ(x, t) = ψ̂eiξ·x+λt,

with λ ∈ C, ξ ·N = 0, we obtain

λŵ± + (A±
N − sI)(ŵ±)′ + iA±

ξ ŵ
± = 0,

(du+h)ŵ+(0) + (du−h)ŵ−(0) − ψ̂(λ(dsh) + i(ξ · dN )h) = 0,
(19)

where A±
ν is a short-cut for A(ν, u±), for every ν ∈ Rd. The bounded solutions

ŵ+ : [0,+∞) → Cn, ŵ− : (−∞, 0] → Cn correspond to initial values

ŵ+ = ŵ(0) ∈ span R̃u
+, ŵ− = ŵ−(0) ∈ span R̃s

−,

with matrices R̃s
+, R̃

u
− whose columns span the stable and unstable spaces of

(A±
N − sI)−1(λI + iA±

ξ ),
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respectively. The basic stability requirement of Lopatinski, Kreiss, Majda and
successors is that for Reλ ≥ 0, no pair (ŵ−, ŵ+) ∈ R̃s

− × R̃u
+ allow a solution ψ̂ of

(19). This yields the uniform Lopatinski condition that

∆(λ, ξ) = det
(
(du−h)R̃s

−(λ, ξ), −λ(dsh) + i(dNh)ξ, (du+h)R̃u
+(λ, ξ)

)
have no zero on

ΓN := {(λ, ξ) ∈ C × R
d : Reλ ≥ 0, ξ ·N = 0, |λ|2 + |ξ|2 = 1}.

In the Lax case (l = 0), this Lopatinski determinant reads

∆ = det
(
Rs

− Q Ru
+

)
with

Rs,u
± (λ, ξ) spanning the stable/unstable space of (λI + iA±

ξ )(A±
N − sI)−1 (20)

and
Q = Q(λ, ξ) = λ[u] + i[f(u)]ξ. (21)

For undercompressive shocks, one obtains

∆ = det
(

Rs
− Q Ru

+

−(du−g)(A−
N − sI)−1Rs− q (du+g)(A+

N − sI)−1Ru
+

)
(22)

with (20),(21), and
q = q(λ, ξ) = −λ(dsg) + i(dNg)ξ.

2.3. A reduction. In this subsection we indicate a systematic way of decreasing
the order of Lopatinski determinants. The Lopatinski determinant (22) of an un-
dercompressive or Lax shock can be reduced as follows. First, if l > 0, multiplying
the upper n× (n+ l) block of the matrix on the right hand side of (22) from the left
by (du−g)(A−

N − sI)−1 and subtracting the result from the lower l × (n+ l) block,
we get a matrix of the form (

Rs
− Q Ru

+

0 qu pu

)
.

We let Lu−(λ, ξ) denote an (n−o−)×nmatrix whose rows represent the left unstable
space of (λI + iA±

ξ )(A±
N − sI)−1. Necessarily, Lu

−R
s
− = 0. We multiply⎛

⎝(Rs
−)t 0
Lu− 0
0 I

⎞
⎠(Rs

− Q Ru
+

0 qu pu

)
=

⎛
⎝(Rs

−)tRs
− ∗ ∗

0 Lu−Q Lu−Ru
+

0 qu pu

⎞
⎠ . (23)

The matrix on the far left of (23) and the matrix (Rs
−)tRs

− are not singular. Thus,
the Lopatinski determinant reduces, up to a non-vanishing factor, to the (o+ + l)×
(o+ + l) determinant

∆u := det
(
Lu
−Q Lu

−R
u
+

qu pu

)
, (24)

where

pu :=
(
(du+g)(A+

N − sI)−1 + (du−g)(A−
N − sI)−1

)
Ru

+,

qu := q + du−g (A−
N − sI)−1Q.
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Obviously, the reduction can equally well be performed on the right column. Multi-
plying the upper block by (du+g)(A+

N −sI)−1, subtracting the result from the lower
block, and multiplying by a suitable non-singular matrix on the left, we obtain

∆s = det
(
Ls

+R
s
− Ls

+Q
ps qs

)
, (25)

where

ps :=−((du−g)(A−
N − sI)−1+(du+g)(A+

N − sI)−1
)
Rs

−,

qs := q − (du+g)(A+
N − sI)−1Q.

Equation (25) is an (o− + l) × (o− + l) determinant.

Lemma 2.1 (Reduced Lopatinski determinant). Suppose (14) is a Lax or under-
compressive planar shock front of degree l ≥ 0, satisfying Rankine-Hugoniot jump
conditions plus l transition conditions of form g = 0. Then the associated Lopatinski
determinant and the reduced versions (24), (25) are equivalent to each other,

∆ ∼ ∆u ∼ ∆s,

in the sense that they differ only by a non-vanishing factor.

Remark 2.2. For extreme Lax k-shocks, k = n (o+ = 0) or k = 1 (o− = 0), the
reduced Lopatinski determinants are just products of a left Lopatinski vector with
the jump vector,

∆u = lu−Q if k = n, and ∆s = ls+Q if k = 1;

these expressions are familiar from, e. g. [29, 17]. The general expressions

∆u = det
(
Lu
−Q Lu

−R
u
+

)
∆s = det

(
Ls

+R
s
− Ls

+Q
)

may be useful for investigations on non-extreme Lax shocks.

3. Elastodynamics and moving phase boundaries

3.1. Modeling. We consider an elastic body identified at rest by a reference config-
uration, which is an open set Ξ ⊂ Rd, d ≥ 2, and describe its motion by a mapping
(x, t) �→ X , Ξ × [ 0,+∞) → Rd, where X is the position at instant t of the particle
that was situated in x ∈ Ξ at rest. We assume that, (i) no thermal effects play a
role, (ii) the forces in the medium derive from a stored-energy function W (∇xX),
and (iii) there are no external forces. Then basic principles of continuum mechanics
show that X(t, x) satisfies the second-order PDE system [8]

Xtt − divx((DW )(∇xX)) = 0. (26)

We define the velocity V : Ξ × [ 0,+∞) → Rd and the deformation gradient
U : Ξ × [ 0,+∞) → Rd×d by

V := Xt, U := ∇xX

or, component-wise, by Vj = ∂Xj/∂t, Uij = ∂Xi/∂xj , i, j = 1, . . . , d. Eqs. (26) and
various equalities of mixed partial derivatives yield the d2 + d first-order equations
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of motion
∂tUij − ∂jVi = 0, i, j = 1, . . . , d,

∂tVi −
d∑

j=1

∂j

(
∂W (U)
∂Uij

)
= 0, i = 1, . . . , d,

and the constraints
∂kUij = ∂jUik, i, j, k = 1, . . . , d.

The equations of motion account for conservation of mass, momentum, and more
[10]. The stored-energy density W is defined (at most) for U ∈ R

d×d
+ , the set of

d×d-matrices with positive determinant (the material does not change orientation),
and is fundamentally nonlinear. A basic restriction on W is the principle of frame
indifference,

W (U) = W (OU) for all O ∈ SOd(R),
where SOd(R) denotes the set of d× d proper orthogonal real matrices (rotations).
This restriction has important consequences [8] for the possible shapes of W ; we do
not enter any details since they do not matter for the considerations in this paper.

From now on, we assume that Ξ = Rd; due to finite speed of propagation and
the fact that we are interested in the local-in-time, local-in-space evolution near
the phase boundary, this means no loss of generality.

Notation. In the sequel, we shall adopt the following notation. We write the stress
tensor as

σ(U) :=
∂W

∂U
,

and denote Uj and σj as the j-th columns of U and σ, respectively; those are,

Uj =

⎛
⎜⎝
U1j

...
Udj

⎞
⎟⎠ , and σ(U)j = WUj =

⎛
⎜⎝
WU1j

...
WUdj

⎞
⎟⎠ .

Without confusion we occasionally write Vj as the j-th scalar component of the
velocity. To express the second derivatives ofW , we define for each pair 1 ≤ i, j ≤ d,
the d× d matrices

Bj
i (U) :=

∂σj

∂Ui
=

⎛
⎜⎝
WU1jU1i · · · WU1jUdi

...
...

WUdjU1i · · · WUdjUdi

⎞
⎟⎠ ∈ R

d×d.

Clearly, each Bi
i is symmetric, and (Bi

j)
t = Bj

i .

3.2. Rank-one convexity and hyperbolicity. Equations (27) constitute a sys-
tem of conservation laws of form (13), where u := (U t

1, . . . , U
t
d, V

t) ∈ Rn, n =
d2 + d. We write u = (U, V )t for short. The fluxes in (13) are given by

fj(U, V ) := −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
V
...
0

σ(U)j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
d2+d, j = 1, . . . , d, (27)
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where the vector V appears in the j-th position. In our notation, the Jacobians
are, correspondingly,

Aj(U) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...
I
...
0

Bj
1(U) · · · Bj

d(U) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(d2+d)×(d2+d), (28)

where the 0 matrix in the upper left is the d2 × d2 null matrix, and the matrix I
on the last column appears in the j-th d×d block from top to bottom. Notice that
Aj is a matrix-valued function of the deformation gradient alone.

Definition 3.1. [10] We define the d× d acoustic tensor N (ξ, U) as

N (ξ, U) :=
d∑

i,j=1

ξiξjB
j
i (U), (29)

for U ∈ R
d×d
+ and for all ξ ∈ Rd.

Definition 3.2. [8, 10] We say the energy density function W is rank-one convex
at U if it satisfies Legendre-Hadamard condition,

νtN (ξ, U)ν > 0, for all ν and ξ in R
d, (30)

that is, if W is convex along any direction ξ ⊗ ν with rank one (or equivalently, if
the acoustic tensor is positive definite for any ξ ∈ Rd).

Lemma 3.3. At any state U , if W is rank-one convex, then system (27) is hyper-
bolic.

Proof. From the expression of the Jacobians we note that a = 0 is an eigenvalue
with algebraic multiplicity bigger than or equal to d2. For a �= 0, the eigenvalue
problem

A(ξ, U)(Ũ , Ṽ )t = a(Ũ , Ṽ )t

with Aj(ξ, U) :=
∑

j ξjAj(U) can be written as

ξiṼ + aŨi = 0, i = 1, . . . , d,∑
i,j

ξjB
j
i (U)Ũi + aṼ = 0.

Upon substitution,

a2Ṽ =
∑
i,j

ξjξiB
j
i (U)Ṽ = N (ξ, U)Ṽ .

Since Legendre-Hadamard condition (30) holds, then a2 ∈ R+ for ξ �= 0, and the
eigenvalues a of A(ξ, U) are all real for every ξ ∈ Rd. �

Note that the characteristic speeds of A(ξ, U), ξ �= 0, are the 2d square roots of
the d positive eigenvalues of the acoustic tensor, with the same multiplicity, and
a = 0 with algebraic multiplicity d2−d. More precisely, since by assumptions (H1),
(H2) and by continuity, the eigenvalues of N (ξ, U), ξ �= 0 are all semi-simple and
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positive with multiplicity depending neither on ξ nor on U near UA or UB, we
obtain

Corollary 3.4. Under assumptions (H1) and (H2), for any ξ ∈ Rd \ {0}, the
characteristic speeds of A(ξ, U) are (with numbering slightly different from section
2.1)

1. a0(ξ, U) = 0 with constant algebraic multiplicity α0 = d2 − d, and

2. a±j (ξ, U) = ±√κj(ξ, U), j = 1, . . . ,m, where κj are the m distinct semi-
simple eigenvalues of N , m ≤ d, with constant multiplicities αj , and with∑
αj = d.

3.3. Static rank-one connections and spinodality. Two constant-state phases
coexist in a static configuration when there is a piecewise linear deformation X(x)
with

∇xX =

{
UA, if x ·N∗ < 0,
UB, if x ·N∗ > 0.

for some unit vector N∗ ∈ Rd. Continuity of the tangential derivatives of X across
the boundary—formally a consequence of (2)— implies

UB = UA + υ ⊗N∗, for some υ ∈ R
d; (31)

we say that UA and UB are rank-one connected [3, 26]. By virtue of the second one
of the Rankine-Hugoniot relations (5), the function ψ(ρ) := W (U(ρ)) with

U(ρ) = UA + ρ υ ⊗N∗ = UB − (1 − ρ) υ ⊗N∗

satisfies ψ′(0) = ψ′(1) = 0. Therefore if the Legendre-Hadamard condition (30) is
satisfied at any U(ρ) with ρ ∈ [0, 1], for example at UA and UB, then also

0 > ψ′′(ρ̃) =
∑ ∂2W

∂Uij∂Uhk
(U(ρ̃))υiυhN

∗
j N

∗
k ,

for an open set of ρ̃ ∈ (0, 1), i. e., the Legendre-Hadamard condition is violated
along the way. This region where hyperbolicity is lost is sometimes called the
spinodal region [34].

3.4. Subsonicity.

Definition 3.5. (i) A speed s ∈ R is called subsonic with respect to a direction
N ∈ Sd−1 and a state U ∈ R

d×d
+ N ∈ Sd−1 if

s2 < min{κj(N,U) : j = 1, . . . ,m}.
(ii) A phase boundary (3) is called subsonic if its speed s is subsonic with respect
to both (N,U−) and (N,U+).

Lemma 3.6. With o−, o+, l denoting the number of outgoing characteristics on
the left, the number of outgoing characteristics on the right, and the degree of
undercompressivity, respectively, (cf. Sec. 2), a subsonic phase boundary of speed
s > 0 [s < 0] has

o− = d, o+ = d2, l = 1 [o− = d2, o+ = d, l = 1].

Proof. This is a direct consequence of Corollary 3.4. �
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3.5. Choice of the kinetic rule. The fact that l = 1 is the reason why one
takes the function g in the kinetic rule (7) with values in R1 (as opposed to Rl

with some other l). Clearly, the existence and the stability behavior of a phase
boundary solution (3) depend crucially on the actual shape of g. The material-
sciences literature provides significant proposals regarding this choice; cf., e. g.,
[2, 33, 11]. The present paper does not enter this question at all. For the application
of its results to a well-motivated general class of kinetic rules, the reader is referred
to [15].

4. Normal-modes analysis

We study modes of the matrix field

A(U, s, λ, ξ̃) = C(s)−1(λI + i
∑
j �=1

ξjAj(U))(A1(U) − sI)−1C(s) (32)

with

C(s) :=

⎛
⎝Id 0 0

0 s Id2−d 0
0 0 Id.

⎞
⎠ , (33)

assuming that U satisfies hypothesis (H1) of local hyperbolicity and s is subsonic
with respect to ((1, 0, . . . , 0), U). The spatio-temporal frequency vector (λ, ξ̃) =
(λ, ξ2, . . . , ξd) ranges in

Γ = {(λ, ξ̃) ∈ C × R
d−1 : Reλ ≥ 0, |λ|2 + |ξ̃|2 = 1}

For convenience we extend the definition of the acoustic tensor to allow complex
directions. Let (ω, ω̃) ∈ C × Cd−1, ω1 = ω, ω̃ = (ω2, . . . , ωd) and define

Ñ (ω, ω̃, U) :=
d∑

i,j=1

ωiωjB
j
i (U)

= ω2B1
1(U) + ω

∑
j �=1

ωj(B1
j (U) +Bj

1(U)) +
∑
i,j �=1

ωiωjB
j
i (U).

We use the short-cut Ñ (ω, ω̃) = Ñ (ω, ω̃, U).

Lemma 4.1. For every (λ, ξ̃) ∈ Γ, the 2d-dimensional linear space

G(λ, ξ̃) := {(λY, iξ2Y, · · · , iξdY, Z)� : Y, Z ∈ C
d} ⊆ C

d2+d, (34)

is invariant for A(U, s, λ, ξ̃). The matrix M : C2d → C2d that expresses the action

A(U, s, λ, ξ̃)(λY, iξ2Y, · · · , iξdY, Z)� = (λỸ , iξ2Ỹ , · · · , iξdỸ , Z̃)�

of A on G as

M(U, s, λ, ξ̃)
(
Y
Z

)
:=
(
M1

1 M2
1

M1
2 M2

2

)(
Y
Z

)
=
(
Ỹ

Z̃

)
, (35)

has the d× d-block components

M1
1 := −B̂(λsI + i

∑
j �=1

ξjB
1
j ), (36)

M2
1 := B̂, (37)
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M1
2 := (λsI + i

∑
j �=1

ξjB
j
1)B̂(λsI + i

∑
j �=1

ξjB
1
j ) − λ2I −

∑
i,j �=1

ξiξjB
i
j , (38)

M2
2 := −(λsI + i

∑
j �=1

ξjB
j
1)B̂ (39)

where
B̂(s) := (s2 −B1

1)−1 (40)
and is well defined for all subsonic s including 0.

Remark 4.2. (i) This shows that, while A is defined only for s �= 0, its restriction

A(U, s)|G : G → G

has a unique continuous/analytic extension to all values (U, s) such that s is sub-
sonic with respect to U , including s = 0. (ii) Regarding (40), note that the invert-
ibity of s2 − B1

1 follows from subsonicity.

For the proof and later we will use

Lemma 4.3.

C(s)−1(A1 − sI) =

⎛
⎜⎜⎜⎜⎜⎝

−sI 0 · · · 0 −I
0 −I · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0
−B1

1 −B1
2 · · · −B1

d −sI

⎞
⎟⎟⎟⎟⎟⎠ (41)

and

(A1 − sI)−1C(s) =

⎛
⎜⎜⎜⎜⎜⎝

−sB̂ −B̂B1
2 · · · −B̂B1

d B̂
0 −I · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0
B̂B1

1 sB̂B1
2 · · · sB̂B1

d −sB̂

⎞
⎟⎟⎟⎟⎟⎠ , (42)

continuous/analytic functions including s = 0.

Proof. By direct block computation. �
Proof of Lemma 4.1. Let r = (λY, iξ2Y, · · · , iξdY, Z)� ∈ G, for some Y, Z ∈ C

d.
With the aid of (42) one can compute

(A1 − sI)−1C(s)r =

⎛
⎜⎜⎜⎜⎜⎝

B̂(Z − (λsI + i
∑

j �=1 ξjB
1
j )Y )

−iξ2Y
...

−iξdY
B̂((λB1

1 + is
∑

j �=1 ξjB
1
j )Y − sZ)

⎞
⎟⎟⎟⎟⎟⎠ ,

where B̂ is defined by (40). Multiplying on the left by C(s)−1(λI + i
∑

j �=1 ξjAj)
we obtain

A(λ, ξ̃, s)r =

⎛
⎜⎜⎜⎜⎜⎝

λỸ

iξ2Ỹ
...

iξdỸ

Z̃

⎞
⎟⎟⎟⎟⎟⎠ ,
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with
Ỹ = B̂(Z − (λsI + i

∑
j �=1

ξjB
1
j )Y ), (43)

and

Z̃ = (λsI + i
∑
j �=1

ξjB
j
1)B̂((λsI + i

∑
j �=1

ξjB
1
j )Y − Z) − λ2Y −

∑
i,j �=1

ξiξjB
i
jY, (44)

showing AG ⊆ G, as claimed. Clearly, dim G = 2d. Let us take a look at the
mapping (Y, Z) �→ (Ỹ , Z̃) defined by (43), (44), which can be written in matrix
form as (35) - (39). We are interested in the eigenvalues β = −iµ ∈ C of M.
Assuming (Y, Z)� ∈ C2d is an eigenvector, then

M1
1Y +M2

1Z = −iµY,
M1

2Y +M2
2Z = −iµZ.

Hence, Z = −(M2
1 )−1(iµI +M1

1 )Y and Y �= 0. Upon substitution,

(M1
2 −M2

2 (M2
1 )−1M1

1 − iµ(M2
2 (M2

1 )−1 + (M2
1 )−1M1

1 ) + µ2(M2
1 )−1)Y = 0.

Plugging the expressions for M i
j into the matrix acting on Y in the last equation

and simplifying we obtain

(λsI + i
∑
j �=1

ξjB
j
1)B̂(λsI + i

∑
j �=1

ξjB
1
j ) − λ2I −

∑
i,j �=1

ξiξjB
i
j+

− (λsI + i
∑
j �=1

ξjB
j
1)B̂(λsI + i

∑
j �=1

ξjB
1
j )+

+ iµ(λs+ i
∑
j �=1

ξjB
1
j ) + iµ(λs+ i

∑
j �=1

ξjB
j
1) + µ2(s2 −B1

1) =

= −(µ2B1
1 + µ

∑
j �=1

ξj(B1
j +Bj

1) +
∑
i,j �=1

ξjξiB
i
j) − (iµs− λ)2I =

= −(Ñ (µ, ξ̃) + (iµs− λ)2I),

yielding
(Ñ (µ, ξ̃) + (iµs− λ)2I)Y = 0.

�

We will investigate only those modes of A(U, s, ·, ·) the amplitudes of which lie
in G.

Lemma 4.4. For (λ, ξ̃) ∈ Γ and s subsonic, the eigenvalues −iµ of M(U, s, λ, ξ̃)
satisfy

det(Ñ (µ, ξ̃, U) + (iµs− λ)2I) = 0, (45)

and (Y, Z)� ∈ C
2d is an eigenvector of M if and only if

Y ∈ ker(Ñ (µ, ξ̃) + (iµs− λ)2I), Y �= 0, and

Z =
(
s(λ− iµs)I + iµB1

1 + i
∑
j �=1

ξjB
1
j

)
Y. (46)

Moreover, for Reλ > 0, d of these eigenvalues (counting multiplicities) have Imµ >
0, while the remaining d of them have Imµ < 0.
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Proof. Clearly, (45) and (46) follow from the proof of Lemma 4.1. The last assertion
comes essentially from Hersh’ lemma [16]. For completeness, we recall the original
argument of Hersh. Suppose µ ∈ R is a solution to (45). Since Ñ (µ, ξ̃) = N (µ, ξ̃)
is the real acoustic tensor, by hyperbolicity (H1), −(iµs − λ)2 must be real and
positive, implying Reλ = 0. Therefore, the roots of (45) in Reλ > 0 must all
have Imµ �= 0. By continuity of the roots and connectedness of Γ, it suffices to
count them for λ = η ∈ R+, ξ̃ = 0. This yields Ñ (µ, 0) = µ2B1

1 , and consequently
µ = iη/(±√

κ−s), where κ > 0 is an eigenvalue of B1
1 . By hypothesis, s is subsonic,

thus,
Imµ =

η

+
√
κ− s

> 0, and, Imµ =
η

−√
κ− s

< 0,

lead us to count d unstable and d stable frequencies. �

Lemma 4.5. There exist continuous mappings (analytic for Reλ > 0)

R̂u
s (U) : Γ → C

2d×d, L̂u
s (U) : Γ → C

d×2d,

R̂s
s(U) : Γ → C

2d×d, L̂s
s(U) : Γ → C

d×2d,
(47)

with L̂u
s (U)R̂u

s (U) = Id, L̂
s
s(U)R̂s

s(U) = Id, spanning right and left invariant spaces
of M(U, s, λ, ξ̃), spaces that are unstable, respectively stable (at least) for Reλ > 0.
The matrix fields

R̂u
s (U), L̂u

s (U), R̂s
s(U), L̂s

s(U)

depend continuously on U and s ∈ (−√κmin(e1, U),
√
κmin(e1, U)).

Proof. By Lemma 4.4, it is clear that for Reλ > 0 and subsonic s (including s = 0)
the matrix M is hyperbolic in the sense that its eigenvalues −iµ have non-zero real
part, and additionally, they split into d stable (with Imµ < 0), and d unstable
(with Imµ > 0) ones. By standard matrix perturbation theory [18], the stable and
unstable spaces are analytic in (λ, ξ̃) and we can choose bases arranged in analytic
matrix fields (47), for Reλ > 0. The next lemma will show that M satisfies Majda’s
block structure assumption. This allows us to extend the matrix fields continuously
to the imaginary axis Reλ = 0, as claimed. �

For a precise statement of the block structure condition see [22, 24] and the
references therein.

Lemma 4.6. The matrix M defined in (35) satisfies the block structure condition
of Majda on a neighborhood of any point (λ, ξ̃, U, s) ∈ C × Rd−1 × R

d×d
+ × R, with

U near UA or UB, −√κmin(e1, U) < s <
√
κmin(e1, U), and λ = iτ , τ ∈ R,

|τ |2 + |ξ̃|2 = 1.

Proof. We follow Métivier’s arguments in [24] closely. Let us denote λ = η + iτ ,
with η, τ ∈ R and by z = (U, s, η, τ, ξ̃) the parameters in R

d×d
+ × Rd+2. Define the

sets
Σ := {(η, τ, ξ̃) : η2 + τ2 + |ξ̃|2 = 1, η ≥ 0},

Σ0 := Σ ∩ {η = 0}, (imaginary axis).

M(z) is a 2d × 2d matrix, defined on a neighborhood O of z ∈ R
d×d
+ × R × Σ,

and C∞ in z, where U is near UA or UB. It suffices to show that M satisfies the
following conditions:



16 H. FREISTÜHLER AND R. G. PLAZA

(i) When η > 0, then det(iµI + M(z)) �= 0, for all µ ∈ R.

(ii) When z ∈ R
d×d
+ ×R×Σ0, then for all µ ∈ R such that det(iµI+M(z)) = 0,

there are a positive integer α ∈ Z+ and C∞ functions ν(µ, ξ̃, U, s) and
θ(z, µ) defined on neighborhoods of (µ, ξ̃, U, s) in C×Rd−1×R

d×d
+ ×R, and

(z, µ) ∈ O × C, respectively, holomorphic in µ and such that

det(iµI + M(z)) = θ(z, µ)(η + iτ + iν(µ, ξ̃, U, s))α. (48)

Moreover, ν is real when µ is real, and θ(z, µ) �= 0. In addition, there is
a C∞ matrix-valued function P(µ, ξ̃, U, s) on a neighborhhod of (µ, ξ̃, U, s),
holomorphic in µ, such that P is a projection of rank α and

ker(iµI + M̄(z)) = P(µ, ξ̃, U, s)C2d, (49)

when η + iτ + iν(µ, ξ̃, U, s) = 0.

By hyperbolicity, (i) holds. Indeed, suppose η > 0. If −iµ is an eigenvalue of
M(z) with µ ∈ R, then by Lemma 4.4,

det(N (µ, ξ̃, U) + (η + iτ − iµs)2I) = 0,

where N is the real acoustic tensor. By assumption (H1), (η + iτ − iµs)2 must be
real and negative, yielding a contradiction with η > 0.

To verify (ii), suppose η = 0. If µ ∈ R is such that det(iµI + M(z)) = 0, then
by Lemma 4.4,

det(N (µ, ξ̃, U) − (τ − µs)2I) = 0.

Since (τ , ξ̃) �= (0, 0), then (µ, ξ̃) �= (0, 0). Indeed, if ξ̃ = 0 then N (µ, 0) =
µ2B1

1 and det(µB1
1 − (τ − µs)2I) = 0 implies µ �= 0. (In particular, τ − µs �= 0

holds.) Therefore, by (H1) and (H2), there exists a unique κj(µ, ξ̃, U) > 0 such
that (τ − µs)2 = κj(µ, ξ̃, U), or equivalently, there exists a unique root (depending
on the sign of τ − µs), aj = µs+ √

κj or aj = µs−√
κj , such that

τ + aj(µ, ξ̃, U, s) = 0.

The characteristic speeds aj are real analytic functions of µ, which can be ex-
tended to the complex domain. In addition, the factorization

det(iµI + M(z)) = θ(z, µ)
m∏

l=1

(τ − µs+
√
κl)αl(τ − µs−√

κl)αl

= θ̃(z, µ)(τ + aj(µ, ξ̃, U, s))αj ,

with θ(z, µ) �= 0, also extends to a complex neighborhood of µ and to λ = iτ+η ∈ C

(see [19]). Indeed, there exists δ > 0 such that aj are extended to analytic functions
νj(µ, ξ̃, U, s) defined for complex µ such that |Imµ| ≤ δ(|Re µ| + |ξ̃|), with νj = aj

whenever µ is real (see [25].) The factorization can also be complexified in a possibly
smaller neighborhood of µ and to λ = iτ + η where

det(iµI + M(z)) = θ̃(z, µ)(η + iτ + iνj(µ, ξ̃, U, s))αj ,

when η + iτ + iνj = 0, i.e. where (48) holds.
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Since for each (µ, ξ̃) �= (0, 0), µ ∈ R, κj is a real, positive and semi-simple
eigenvalue of N (µ, ξ̃, U) with local constant multiplicity αj , then the matrix Πj :
Cd → Cd, defined as

Πj(µ, ξ̃, U) := − 1
2πi

∫
|ζ−κj(µ,ξ̃,U)|≤ε

(N (µ, ξ̃, U) − ζ)−1 dζ,

with ε > 0 sufficiently small, is a projector of constant rank αj , C∞ function of
(µ, ξ̃, U), for (µ, ξ̃) �= (0, 0). Thus,

ker(N (µ, ξ̃, U) − (τ − µs)2I) = Πj(µ, ξ̃, U)Cd.

By analytic continuation, the projectors Πj extend analytically to µ in a small
neighborhood of µ. Thus, if we define Pj(µ, ξ̃, U, s) : C2d → C2d as

Pj(µ, ξ̃, U, s) :=

(
Πj(µ, ξ̃, U) 0

i(s(τ − µs)I + µB1
1 +

∑
k �=1 ξk

B1
k)Πj(µ, ξ̃, U) 0

)
,

then it is clearly a projector of constant rank αj , which can be extended analytically
to some small complex neighborhood of µ as well. By Lemma 4.4, M has an
eigenvector (Y, Z)� ∈ C2d with eigenvalue −iµ if and only if

Z = (s(τ − µs)I + iµB1
1 +

∑
k �=1

ξ
k
B1

k)Y, and, (N (µ, ξ̃, U) − (τ − µs)2I)Y = 0.

Hence Y ∈ Πj(µ, ξ̃, U)Cd, and by construction, it is then clear that

ker(iµI + M(z)) = Pj(µ, ξ̃, U, s)C2d.

Analogously, this relation and the projector Pj extend to a small complex neigh-
borhood of µ such that (49) holds.

In this fashion, we have shown that M satisfies the generic Assumption 1.4 in
[24]. By Theorem 1.5 in the same reference, and taking the parameter a in [24]
as a := (U, s), we can conclude that M satisfies the block structure condition on a
neighborhood of z, as claimed. �

Remark 4.7. Continued inspection shows that the characteristic polynomial of A
is

π(µ) = (iµs− λ)d2−d det(Ñ (µ, ξ̃) + (iµs− λ)2I).
Eqs. (1) thus possess also a Lopatinski frequency

β∗ = −iµ∗ = − λ

s
.

This frequency creates a bad singularity around s = 0.

5. Proofs of Theorems 1 and 2

In principle, we could compose the original (d2 + d+1)× (d2 + d+1) Lopatinski
determinant as in (22). However, Theorems 1,2 establish determinants of distinctly
smaller order and, more importantly, in them (i) the singular mode mentioned at
the end of Sec. 4 does not appear, while (ii) the characteristic case s = 0 is not
singular.

The key point for proving Theorems 1,2 is the observation that due to the con-
straints (2), the whole Fourier analysis can be restricted to a 2d-dimensional bundle
(over Γ) of amplitudes and: this bundle is G !
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We assume without loss of generality that N is the positive direction of the
x1-axis.

Lemma 5.1. Consider any solution to (1),(2) of the form

(U, V )(x, t) = (Û(x1 − st), V̂ (x1 − st)) exp(iξ̃ · x̃+ λt),

where x = (x1, x̃), x̃ = (x2, . . . , xd) ∈ Rd−1 and (λ, ξ̃) ∈ Γ. Then, necessarily,

C(s)−1(A1 − sI)(Û(·), V̂ (·))� ∈ G(λ, ξ̃).

Proof. Constraints (2) account for ∂jUk = ∂kUj for all j, k = 1, . . . , d. Hence, for
j, k �= 1, we have iξjÛk = iξkÛj , which, in turn, implies that

Ûj = −iξjY, for some Y ∈ C
d, all j �= 1. (50)

Equations (2) also imply ∂1Uj = ∂jU1, for j �= 1, which leads to

Û ′
j = iξjÛ1. (51)

From the first equations in (1) we have ∂tUij = ∂jVi for all i, j, implying

λÛ1 − sÛ ′
1 = V̂ ′, (52)

λÛj − sÛ ′
j = iξj V̂ , for all j �= 1. (53)

From (50), (51), and (53), we obtain for j �= 1,

iξj V̂ = λÛj − sÛ ′
j

= −iξjλY − isξjÛ1,

or simply,
V̂ = −(λY + sÛ1).

Hence (Û , V̂ )�(·) has the form⎛
⎜⎜⎜⎜⎜⎝

Û1

Û2

...
Ûd

V̂

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

Û1

−iξ2Y
...

−iξdY
−(λY + sÛ1)

⎞
⎟⎟⎟⎟⎟⎠ .

Multiplying on the left by C(s)−1(A1 − sI) we get

C(s)−1(A1 − sI)(Û , V̂ )�(·) =

⎛
⎜⎜⎜⎜⎜⎝

−sI 0 · · · 0 −I
0 −I · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0
−B1

1 −B1
2 · · · −B1

d −sI

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Û1

−iξ2Y
...

−iξdY
−(λY + sÛ1)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

λY
iξ2Y

...
iξdY
Z

⎞
⎟⎟⎟⎟⎟⎠ ∈ G(λ, ξ̃),
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where Z := (s2 −B1
1)Û1 + (i

∑
j �=1 ξjB

1
j − λsI)Y . This proves the result. �

Proof of the Theorems. At every point (λ, ξ̃) ∈ Γ, the isomorphism J (λ, ξ̃) :
C

2d → G, with matrix representation

J =

⎛
⎜⎜⎜⎜⎜⎝

λI 0
iξ2I 0

...
...

iξdI 0
0 I

⎞
⎟⎟⎟⎟⎟⎠ , (54)

translates between G and its natural coordinates representation we have introduced
in Sec. 4. For example, the stable and unstable right bundles of M readily lift to
stable and unstable bundles of A as

Řs(λ, ξ̃) := J (λ, ξ̃)R̂s(λ, ξ̃),

Řu(λ, ξ̃) := J (λ, ξ̃)R̂u(λ, ξ̃).
(55)

Note that Řs and Řu are not both the full stable and unstable bundle of A, since
amplitudes associated with the singular frequency µ∗ are not captured. However,
these latter are exactly the ones which are not compatible with the constraint (2),
while Řs and Řu comprise all stable and unstable amplitudes which are compatible
with the constraint. Consequently, we simply work directly with R̂s, R̂u.

Using the jump conditions (5), (6), here

−s[U1] − [V ] = 0,

−s[V ] − [σ(U)1] = 0,

[Uj ] = 0, for all j �= 1,

we find the jump vector

Q =

⎛
⎜⎜⎜⎜⎜⎝

λ[U1]
isξ2[U1]

...
isξd[U1]

−(λs[U1] + i
∑

j �=1 ξj [σ(U)j ])

⎞
⎟⎟⎟⎟⎟⎠ .

Thus,

Q = C(s)J Q̂ with Q̂ =
(

[U1]
−(λs[U1] + i

∑
j �=1 ξj [σ(U)j ])

)
,

and we work directly with Q̂.
These considerations together with Lemma 5.1 and the findings of Sec. 4 on the

matrix field M show that ∆̂ indeed controls the linear stability in the affirmative
((i)1) as well as in the negative ((i)2) — in coordinates, on state space, which differ
from the original ones, i. e., the conserved quantities, by the linear transformation

C(s)−1(A1(U) − sI).

By Lemma 4.3, this transformation is regular, also if s = 0. Together with (H4),
this uniformity makes the whole involved nonlinear analysis of [22, 23, 9] applicable,
also if s = 0, and allows to define, in turn,

K(U±) := (A1(U±) − sI)−1C(s)J .
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Theorem 1 is proved.
Theorem 1 given, Theorem 2 is proved in exactly the same way as Lemma 2.1.

Finally, Corollary 1 is a special case of Theorem 1, of course exactly with s = 0,
which we have accentuated because of its importance.

Acknowledgements. For this paper we were equally motivated by the widely
developed static theory of two-phase elastic media [3, 26] and Benzoni-Gavage’s
extended studies of moving phase boundaries in two-phase fluids [4, 5, 6]. We are
grateful to Sylvie Benzoni-Gavage and Stefan Müller for stimulating lectures and
discussions on these topics.

References

[1] R. Abeyaratne and J. K. Knowles, Kinetic relations and the propagation of phase bound-
aries in solids, Arch. Ration. Mech. Anal. 114 (1991), pp. 119–154.

[2] R. Abeyaratne and S. Vedantam, A lattice-based model of the kinetics of twin boundary
motion, J. Mech. Phys. Solids 51 (2003), no. 9, pp. 1675–1700.

[3] J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational
Mech. Anal. 100 (1987), no. 1, pp. 13–52.

[4] S. Benzoni-Gavage, Stability of multi-dimensional phase transitions in a van der Waals
fluid, Nonlinear Anal. TMA 31 (1998), no. 1-2, pp. 243–263.

[5] , Stability of subsonic planar phase boundaries in a van der Waals fluid, Arch. Ration.
Mech. Anal. 150 (1999), pp. 23–55.

[6] , Linear stability of propagating phase boundaries in capillary fluids, Phys. D 155
(2001), no. 3-4, pp. 235–273.

[7] S. Benzoni-Gavage and H. Freistühler, Effects of surface tension on the stability of dy-
namical liquid-vapor interfaces, Arch. Ration. Mech. Anal. 174 (2004), no. 1, pp. 111–150.

[8] P. Ciarlet, Mathematical Elasticity, Vol. I: Three dimensional elasticity, North-Holland,
1988.

[9] J.-F. Coulombel, Stability of multidimensional undercompressive shock waves, Interfaces
Free Bound. 5 (2003), pp. 360–390.

[10] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag,
Berlin, 2000.

[11] N. Dirr and N. K. Yip, Pinning and de-pinning phenomena in front propagation in hetero-
geneous media. Preprint, 2005.

[12] J. Francheteau and G. Métivier, Existence de chocs faibles pour des systémes
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