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Symboli Synhronization and the Detetion of Global Propertiesof Coupled Dynamis from Loal InformationSarika Jalan,� J�urgen Jost,y and Fatihan M. AtayzMax Plank Institute for Mathematis in the Sienes, 04103 Leipzig, Germany(Dated: April 20, 2006)AbstratWe study oupled dynamis on networks using symboli dynamis. The symboli dynamis isde�ned by dividing the state spae into a small number of regions (typially 2), and onsidering therelative frequenies of the transitions between those regions. It turns out that the global qualitativeproperties of the oupled dynamis an be lassi�ed into three di�erent phases based on the syn-hronization of the variables and the homogeneity of the symboli dynamis. Of partiular interestis the homogeneous unsynhronized phase where the oupled dynamis is in a haoti unsynhro-nized state, but exhibits (almost) idential symboli dynamis at all the nodes in the network. Werefer to this dynamial behaviour as symboli synhronization. In this phase, the loal symbolidynamis of any arbitrarily seleted node reets global properties of the oupled dynamis, suhas qualitative behavior of the largest Lyapunov exponent, omplete synhronization, and phasesynhronization. This phase depends mainly on the network arhiteture, and only to a smallerextent on the loal dynamial funtion. We present results for two model dynamis, iterations ofthe one-dimensional logisti map and the two-dimensional H�enon map, as loal dynamial funtion.
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Nonlinear dynamial elements interating with eah other an lead to syn-hronization or other types of oherent behaviour at the system sale. Coupledmap models are one of the most widely aepted models to understand thesebehaviours in systems from many diverse �elds suh as physis, biology, eologyet. Their important feature is that the individual elements an already exhibitsome omplex behaviour, for example haoti dynamis. The question then ishow to detet oordination at larger sales beyond the simplest one, synhro-nization. An important tool in the analysis of dynamial systems are symbolidynamis. We develop a new sheme of symboli dynamis that is based on thespeial partitions of the phase spae whih prevent the ourrene of ertainsymbol sequenes related to the harateristis of the dynamis. In partiular,we report a new behaviour of oupled dynamis, whih we refer to as symbolisynhronization, i.e. synhronization of the nodes at the oarse grained level,whereas mirosopially all elements behave di�erently. Through the frameworkof this symboli dynamis, we detet various global properties of oupled dy-namis on networks by using a salar time series of any randomly seleted node.A deisive advantage of our method is that the global properties are inferred byusing a very short time series, hene the method is omputationally very fast,also it does not depend on the size of the network and is robust against externalnoise.I. INTRODUCTIONIn order to gain insights into the behaviour of real systems from many diverse �elds rang-ing from hemial, physial and biologial systems, it is useful to identify model systemsthat on one hand exhibit essential dynamial features of those real world systems, but onthe other hand suppress individual details that are not really relevant for the qualitativebehavior [1℄. Coupled map models have emerged as one suh paradigm [2, 3℄. Here, we havea system of elements with idential loal dynamial funtions. These elements are arrangedin a network that expresses their ouplings so that the loal dynamial iteration depends notonly on the own state of an element, but also on the ones of its neighbour in the network.The inhomogeneities in the network then translate into qualitative features of the global dy-2



namis. While suh oupled map models already present an important simpli�ation in viewof the omplexities of real world dynamis, their behavior an nevertheless be suÆientlyompliated and diÆult to analyze. Thus, it is important to identify parameters that allowfor a faile and robust detetion of di�erent qualitative states. One needs a oarse graineddesription to analyze the ompliated time evolution of a haoti dynamial system [4, 5℄.In doing so one inevitably simpli�es the dynamis a lot and some of the information are lost,but the aim is that important invariants and robust properties of the dynamial systems anbe kept. Suh a oarse graining means that we divide the possible dynamial states of thesystem into �nitely many disrete lasses and investigate the derived symboli dynamis [4℄.Coarse graining of the time evolution of lower dimensional systems have been studied atvarious levels [5, 6℄, but symboli dynamial studies of higher dimensional spatio-temporalhaoti systems are rare and so far limited to oupled map latties [7℄. In the present paper,ontinuing the approah developed in [8℄, we study symboli dynamis of oupled map net-works and demonstrate that they an serve the above purpose well. Thereby, we attemptto provide a general frame work for oupled dynamis on networks.In [8℄, we have studied symboli dynamis of a disrete dynamial iteration of a funtionbased on non-generating partitions. We have shown two important uses of this symbolidynamis, namely, distinguishing a haoti iteration and a random iteration with the samedensity distribution (this is related to the earlier work [10℄ on transition entropy and [9℄ onpermutation entropy), and deteting synhronization in oupled dynamis on large networks.In this paper we extend these studies and propose a general method to investigate olletivebehavior of oupled systems. Besides the appliations mentioned in [8℄, we show furtherappliations for deteting various dynamial properties of oupled dynamis in relation tostrutural parameters of the underlying network.We take oupled map network models as generi models to apply our method. Chaotioupled maps show rih spatio-temporal behaviour. One phenomenon that has reeived a lotof attention is synhronization, where di�erent random or haoti units of a system behavein unison [11, 12℄. (For a seletion of reent referenes, see also [13℄.) One appliation of oursymboli dynamis is the detetion of synhronization in large omplex systems. Traditionalmethods for the detetion of synhronization in oupled systems fous on the orrelationanalysis of the time series measured at pairs of the nodes. In [8℄ we have introdued amethod based on symboli dynamis, whih uses a very short time series of any single3



arbitrarily seleted node to detet global synhrony of all the units. In this paper we showthat the same type of symboli dynamis an be used as a measure of phase synhronization,a novel phenomenon shown by oupled dynamis on networks [14℄.In more detail, by our method we lassify the oupled dynamis into di�erent states,depending upon the synhronization of the nodes and the homogeneity of the symboli dy-namis of the nodes. The most interesting phase is the unsynhronized homogeneous phase,whih refers to the state where the loal haoti dynamis of the individual nodes are dif-ferent, but the derived symboli dynamis of all the nodes are similar. We all this state assymboli synhronization of the nodes. Reently the unsynhronized region of oupled mapsis shown to have fratal stationary density funtion [15℄. We show that, in this phase, thetransition probabilities of any randomly seleted node reet the qualitative information ofthe largest Lyapunov exponent (�l) and the phase synhronization of the oupled dynamis.For the alulation of the largest Lyapunov exponent we utilize only a very short time series,where as traditional methods to alulate the largest Lyapunov exponent from a salar timeseries require rather long time series and also involve various omputational ompliations[16℄. We point out, however, that { as to be expeted from suh a simplisti redution { oursymboli dynamis gives only the qualitative behaviour of the Lyapunov exponent �l, butof ourse not its exat value.The paper is organized as follows. After an introdutory setion we introdue the def-initions of the di�erent phases based on the symboli dynamial properties in Setion II.In Setion III, we then present numerial examples illustrating the behaviour of nodes indi�erent phases. Mostly we present results for homogeneous synhronized phase whih is ofmain interest. The key point is that the derived symboli dynamis allows for the detetionof the global properties of oupled dynamis from loal measurements, that is, we an inferglobal properties of the dynamial network by onsidering the symboli dynamis at a singlenode. Setion IV distinguishes di�erent dynamial phases based on the network parameters.Setion V desribes the relation between symboli dynamis and phase synhronization.Setion VI disusses the oupled H�enon map.
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II. MODEL AND DEFINITION OF SYMBOLIC DYNAMICSWe onsider the dynamial system de�ned by the iteration rulex(t + 1) = f(x(t)) (1)where t 2 Z is the disrete time and f : S ! S is a map on a subset S of Rn . LetfSi : i = 1; : : : ; mg be a partition of S, i.e., a olletion of mutually disjoint and nonemptysubsets satisfying [mi=1Si = S. The symboli dynamis orresponding to (1) is the sequeneof symbols f: : : ; st�1; st; st+1; : : : g where st = i if x(t) 2 Si. For the purposes of this paper,a useful partition is de�ned as follows. Let x = (x1; : : : ; xn) 2 Rn , and suppose the salarxm, 1 � m � n, is available for measurement. For a given threshold value x� 2 R, de�nethe sets S1 = fx 2 S : xm < x�gS2 = fx 2 S : xm � x�g (2)The value xm an be hosen to make the sets S1; S2 nonempty, in whih ase they forma non-trivial partition of S. For this speial partition, we use the two-symbol dynamisgenerated by st = 8<: � if xm(t) < x�� if xm(t) � x�: (3)The symboli dynamis depends only on the measurements xm, yielding a sequene of sym-bols determined by whether a measured value exeeds the threshold x� or not. Essentiallyany hoie of the threshold x� will yield a non-generating partition. For pratial alula-tions using short time series, however, a judiious hoie of x� beomes important. We willaddress this issue later in the paper (see setion V).We take the well known oupled map model [17℄,xi(t + 1) = f(xi(t)) + �kiXj wijg(xj(t); xi(t)) (4)where xi(t) is the dynamial variable of the i-th node (1 � i � N) at time t, w is theadjaeny matrix with elements wij taking values between 0 and 1 depending upon theweight of the onnetion between i and j, and ki is some normalization fator depending onthe node i, for example its degree. The funtion f(x) de�nes the loal nonlinear map and thefuntion g(x) de�nes the nature of the oupling between the nodes. In the �rst three setions,5



we present the results for the loal dynamis given by the logisti map f(x) = �x(1�x) andoupling funtion g(xj(t); xi(t)) = f(xj(t)) � f(xi(t)). The weight wij is simply one whennodes i and j are neighbours in the undireted network, and 0 otherwise. In partiular, thematrix w is symmetri; ki then is the degree of node i, as already indiated.We evolve Equation (4) starting from random initial onditions and estimate the tran-sition probabilities using time series of length � = 1000. Note that the length of the timeseries is independent of the size of the network. We alulate the transition probabilityP (i; j) by the ratio Pt n(st = i; st+1 = j)=Pt n(st = i), where n is a ount of the numberof times of ourrene [8℄.III. DIFFERENT STATES OF THE COUPLED DYNAMICSWe lassify the oupled dynamis in three di�erent ategories based on the dynamialbehaviour, and we show that how one ategory di�ers from another based on some of theparameters of underlying network:1. Unsynhronized or phase synhronized non-homogeneous behaviour : phase one,2. Partially synhronized or phase synhronized homogeneous behaviour : phase two, and3. Fully synhronized homogeneous behaviour : phase three.Here, synhronization refers to the variables at di�erent nodes having the same value xi(t) =xj(t) for all i; j. The network is globally synhronized when at eah time t, all nodes have thesame value. Partial synhronization means that some of the nodes form a luster inside whihall the nodes are synhronized while nodes in di�erent lusters are not in synhrony. We note,however, that this state usually does not our in our oupled dynamis beause the phasedi�erenes between the various lusters will interfere with the internal synhronizations. Thefollowing behavior, however, does robustly our in suitable parameter regions. A pair ofnodes is alled phase synhronized [14℄ when they have their minima (maxima) mathingfor all t > t0, that is, when one of them attains a minimum then so does the other. Theonrete values may and an be di�erent. In a phase synhronized luster all nodes arephase synhronized.
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Complete synhronization is indiated by the variane �2 of the variables over the networktending to zero, where �2 = * 1N � 1Xi [xi(t)� �x(t)℄2+t ;�x(t) = 1N Pi xi(t) denotes an average over the nodes of the network, and h: : : it denotes anaverage over time. We de�ne homogeneous and non-homogeneous behaviour based on thesymboli dynamis of the individual nodes. If all the nodes have exatly the same symbolidynamis, i.e., if the transition probabilities of all the nodes are equal, then we say thatthe oupled dynamis is homogeneous; otherwise it is non-homogeneous. Homogeneity isindiated by the variane of the transition probability over the network being zero,&2 = * 1N � 1 NXk=1[Pk(�; �)� P (�; �)℄2+ ;where P (�; �) =PNk=1 P (�; �) denotes an average over the nodes of the network.IV. HOMOGENEOUS PHASES AND COUPLED DYNAMICS ON NETWORKA. Homogeneous phase and network propertiesWe shall now onnet the symboli homogeneity with network properties. When all thenodes in a network have the same degree and the network is homogeneously onneted,i.e. if the network is ompletely symmetri, like a nearest neighbour oupled network withperiodi boundary onditions, then, unless the dynamis breaks the symmetry, eah nodeshould have qualitatively the same symboli dynamis, i.e. all transition probabilities for allthe nodes would be equal. Note that homogeneous symboli dynamis need not orrespondto synhronization. For random networks, homogeneity of the symboli dynamis dependson the number of onnetions in the network. To relate di�erent dynamial state with thenetwork parameter we onsider the quantity r = N=N2. This ratio estimates the numberof onnetions N in the network with the number of possible onnetions N(N � 1)=2,and shows how far a network is from being fully onneted. We use r as a broad borderto roughly distinguish the three phases. For a strongly onneted network, i.e. when r islose to one (number of onnetions N of order N2), we get a fully synhronized state forappropriate oupling strengths �. Then the transition probabilities of all nodes are obviously7



equal (phase 3). For N � N , we get phase two, i.e. the nodes are partially synhronizedor partially phase synhronized, but the symboli dynamis of the nodes are idential. Notehere we are only roughly relatingN and phase, later we will provide a more aurate relationbetween the number of onnetions and the phases.B. Symboli synhronized phase and global properties of oupled dynamisWe onentrate on the phase where the nodes are not synhronized though their symbolidynamis are idential. This is the most interesting phase as the omplexity of the oupleddynamis an be understood by observing the symbol sequene of any arbitrarily seletednode. We now illustrate our results using numerial simulations. Figure 1 is plotted forthe logisti map as the loal map and a sale-free network [21℄ as the oupling network.Figure 1 (a � a0), (b � b0), ( � 0) and (d � d0) are for average degree 2, 6, 10, and 20respetively. In the �gures, the x-axis represents the oupling strength and the y-axis (for�gures (a),(b),(),(d)) plots the synhronization measure for the whole network (�2), andalso the measure of homogeneity (&2). In the box we plot the largest Lyapunov exponent(�l) as a funtion of the oupling strength. Figures (a0), (b0), (0) and (d0) plot the transitionprobability P (�; �) for di�erent nodes. For larity we plot only a few arbitrarily seletednodes. We start with the example of networks having oupled dynamis in phase one(non-homogeneous unsynhronized) and we move towards the examples of networks showinghomogeneous synhronized state, phase 3.For � < 0:2, the oupled logisti map model (4) exhibits a similar behaviour for di�er-ent oupling arhitetures, with quasiperiodi behaviour around � = 0:2. The behaviourvaries with the oupling arhiteture for larger oupling strengths. In the periodi regionsthe symboli dynamis of the nodes, given by (3), would always be similar irrespetive ofthe underlying oupling network. So, in the periodi regions we do not get any extra in-formation about the network by observing symboli sequenes, but the symboli dynamisis informative when the oupled dynamis lies on the haoti attrator. Sub�gures 1(a),(a0), are plotted for sale free networks with average degree 2. The transition probabilitiesP (�; �) are ompletely di�erent for the di�erent nodes (exept for � < 0:2). Here, the nodesare not synhronized, �2 being nonzero for the entire oupling strength range. This stateorresponds to phase one. Interesting phenomena our when we inrease the number of8



onnetions in the networks. Sub�gures 1(b) and (b0) are plotted for a sale-free networkwith average degree 6. It an be seen that P (�; �) for di�erent nodes are remarkably similar.Note that we alulate P (�; �) for oupled dynamis being in the haoti and unsynhronizedregime (�l and �2 both are greater then zero). So we do not take periodi and synhronizedregions into aount whih obviously yield similar symboli dynamis for all the nodes. Thishomogeneity beomes more prominent as we inrease the average degree of the network.Figure 1(), (0) and 1 (d), (d0) are plotted for average degree 10 and 20 respetively. Thetransition probabilities of all the nodes are the same exept for a few plaes where somenodes have di�erent transition probability (e.g. node number 50 in (0) having a di�erentvalue of P (�; �)). Note that here the nodes are not synhronized, whih is indiated by thenonzero value of �2 throughout the oupling range, exept for � = 1 in () and for � > 0:8in (d).The seond interesting feature is the qualitatively similar behaviour of the largest Lya-punov exponent, whih is alulated from (4), and P (�; �), whih is alulated from a salartime series of an arbitrarily seleted node. Note that the time series used for the alulationof P (�; �) is very short ompared to the traditional methods to alulate the largest Lya-punov exponent from a salar time series. This similar behaviour of the Lyapunov exponentand the ordering relations between the values of the state variable was �rst observed byBandt and Pompe [9℄ in the ase of isolated dynamis. Here we show that a similar relationexists for oupled dynamis on networks, depending upon the network parameters, namelythe onnetion arhiteture and the onnetion ratio N=N2.Figure 2 is plotted for various networks being in the phase two (homogeneous unsynhro-nized phase). The �gures show the similar behaviour of �l and P (�; �) of any arbitrarilyseleted node. Figure 2 (a) is for a one-dimensional nearest neighbour oupled network withsize 20 and average degree two, and Figure 2 (b) is for size 50 and average degree six. Fork-nearest neighbour oupled networks we always �nd the homogeneous phase, independentof the average degree or the ratio N=N2, beause of the symmetry between the nodes. Fig-ure 2() is plotted for a random network of size 100 and average degree 10, and Figure 2(d) is plotted for a sale-free network of size 200 and average degree 10. In all the sub�g-ures, P (�; �) qualitatively mathes the largest Lyapunov exponent of the oupled dynamis.Note that P (�; �) gives a qualitatively similar behaviour as the Lyapunov exponent and notthe exat value. For phase three any arbitrary seleted node gives the trend of the largest9



Lyapunov exponent. Sine phase three is de�ned as the synhronized phase, the largestLyapunov exponent is the Lyapunov exponent of the unoupled map. Therefore, it is moreinteresting to onsider examples of networks where the oupled dynamis is in phase two.Note that only the network property is responsible for the homogeneous or non-homogeneousbehaviour of the oupled dynamis. Figure 2 is plotted for the oupled logisti map but asimilar behaviour is shown by the H�enon maps also (see below).V. RELATION BETWEEN DYNAMICAL PHASES AND NETWORK PROPER-TIESWe an also exhibit a diret relation between network parameters and dynamial be-haviour. The symmetry properties of the network and the average degree a�et the ho-mogeneity of the symboli sequenes. Figure 3 plots the deviation from the homogeneityindiated by &2� = D 1N PNi=1[Pi(�; �)� P (�; �)℄2E�, as a funtion of N=N2. Here, Pi isthe transition probability of ith node and P (�; �) = 1N PNi=1 Pi(�; �), and h�i� denotes theaverage over all oupling strengths. We start with one-dimensional nearest neighbour ou-pled network (homogeneous phase) and randomly add onnetions. For nearest neighbouroupled networks we obtain the homogeneous phase, as already explained in the previoussetion. As we add the onnetions randomly, �rst the homogeneity gets perturbed, butgets reestablished as the number of onnetions is inreased further. Note that here wealways alulate the deviation in the non-synhronized regime only, beause the synhro-nized regime obviously orresponds to the homogeneous phase. For eah randomly addedonnetion we take the average of the twenty networks. Note that in this region (phase two)sigma2 is not zero. For N=N2 lose to one, we get a synhronized state after a ouplingstrength [19℄ that orresponds to the homogeneous state (phase three).VI. PHASE SYNCHRONIZATION : SYMBOLIC SYNCHRONIZATIONIf nodes i and j have the same symboli dynamis, st(i) = st(j), then we say nodes i; j aresymbolially synhronized. Also, a luster of nodes is symbolially synhronized if all pairsof nodes belonging to that luster are symbolially synhronized. Note that in a symboliallysynhronised luster, the state values of the nodes may di�er. The symboli synhronization10



is observed in the phase two, where the number of the onnetions in the networks is verysmall, in general of the order of N . With the inrease in the number of onnetions weusually get a fully synhronized luster, whih is trivially symbolially synhronized. Real-world networks are in general sparsely onneted (N � N), and omplete synhronizationis rare, though phase synhronization or symboli synhronization is possible. We showthat P (�; �) an be used as a good measure of the phase synhronization in the oupledmap network (4). Figure 4 shows the orrelation between the phase synhronization and thetransition probability P (�; �) of an arbitrary seleted node. We see that in the homogeneousregion P (�; �) mathes onsiderably well with the phase synhronization. Note that this isa partially ordered phase region, so phase synhronized lusters vary with time. We plotthe number of lusters alulated for a ertain time length, and the number of lusters mayhange with the evolution of the oupled dynamis. Therefore at some oupling strengthregion(s), the transition probability P (�; �) does not math with the phase synhronization(For example in the Figure 4 (), at oupling strength 0.59, the value of P (�; �) is very highalthough the nodes are phase synhronized).VII. COUPLED H�ENON MAPSIn this setion we apply our method to oupled H�enon maps. The H�enon map is atwo-dimensional map [20℄, x(t+ 1) = y(t) + 1� ax(t)2y(t+ 1) = by(t):When one introdues the possibility of a time delay, the above equation an be written asthe salar equation, x(t + 1) = bx(t� 1) + 1� ax(t)2 (5)For the parameters we take the values a = 1:4 and b = 0:3, for whih the H�enon map isknown to have a haoti attrator.We de�ne the symboli dynamis as given in (3). The hoie of the threshold x� re-quires some are. A judiious hoie should make ertain short transition probabilities verysmall, whih may be useful for deteting network dynamis from single-node measurements.Clearly, inreasing the threshold dereases the probability of ourrene of the repeated11



sequene ��. However, it also dereases the probability of observing the single symbol �,making it diÆult to work with short time series. Hene, the hoie of the threshold is aompromise between these two e�ets. We use the natural density de�ned by the data tohoose a threshold. Figure (5) depits how the the probabilities of observing a single symbol� and the repeated sequene �� hange depending on the value of the threshold x�. Itan be seen that a hoie of x� roughly in the range (0:55; 1:20) would be useful, sine itrenders the sequene �� very unlikely without onstraining the ourrene of the symbol�. Note that it is immediate from their de�nitions that the probabilities P (�) and P (�; �)will be dereasing as funtions of x�, and will approah zero as x� inreases; furthermore,P (�) > P (�; �). It follows that one an �nd a threshold x� for whih P (�) is large om-pared to P (�; �). Figure (5) shows the ratio P (�; �)=P (�), and the sharp derease at aboutx� � 0:6 suggests to take some value near 0.6 as the threshold, yielding a very small P (�; �)and a large P (�) at the same time. We evolve (4) starting from random initial onditions,with (5) as loal dynamis, and estimate the transition probabilities P (i; j) as disussedin the �rst setion, using a time series of length � = 1000. At the globally synhronizedstate xi(t) = xj(t); 8i; j; t, with all nodes evolving aording to the rule (5), the symbolisequenes measured from a node will be subjet to the same onstraints as that generatedby (5).We now disuss some results based on numerial simulations on various networks. Fig-ure 6 plots the transition probabilities as a funtion of the oupling strength. We onsiderthe symboli sequenes of length two and three. For length two, we onsider the transitionprobabilities P (�; �) and P (�; �). For sequenes of length three we have 6 possible tran-sitions, but some of them are very small (like P (�; �; i) ), so we plot only those transitionprobabilities whih vary with the ouplings. It is lear from the �gures that the synhronizedstate is easily deteted by looking at the transition probabilities of any arbitrarily seletednode. Whenever the transition probabilities are equal to the transition probabilities of themap (5), the network is globally synhronized. It is lear from sub�gures (d),(e) and (f) thatfor the synhronized region (zero �2), the deviation of transition probabilities from the tran-sition probabilities of the unoupled map (5) is also zero. Here, the deviation of P (i; j) ofany node is de�ned as Æ2i;j = D 1m�1Pmk=1[Pk(i; j)� P (i; j)℄2℄E, where P (i; j) = 1mPk Pk(i; j),alulated at � = 0 k = 1; : : : : : : are m di�erent sets of random initial onditions taken be-tween �1:5 and 1:5. In all the �gures (exept (f)) we get synhronization for larger oupling12



strengths, so the deviation is almost zero there, i.e. all transition probabilities math om-pletely with those of the unoupled map. Note that there are ertain regions (small ouplingstrength range � < 0:2) where the nodes do not get synhronized while the deviations arequite small. That is beause for suÆiently small oupling strength, ouplings do not af-fet the behaviour of the individual nodes very muh, and so the transition probabilitiesalso do not di�er muh from the unoupled funtion. However, as we inrease the ouplingstrength, the transition probabilities beome dependent on the ouplings. Still, if we look atthe small oupling strength regions arefully we see that not all the deviations are small. Forexample, although the deviations of P (�; �; �) (- - -) and P (�; �; �) (-) are very small, thedeviation in P (�; �; �) (: : : ) is still large, whereas for the synhronized regime all deviationsare very lose to zero. Figure 7 plots the deviation from the homogeneity &2 as a funtion ofN=N2 (see the aption of Figure 3, whih shows a similar plot with logisti map as a loaldynamial funtion). The only di�erene is that for the H�enon map we plot the transitionprobability of three-symbol sequenes instead of two-symbol sequenes for logisti and tentmaps.VIII. CONCLUSIONWe have studied the symboli dynamis of oupled maps on networks. We de�ne oursymboli dynamis based on non-generating partitions leading to some forbidden transitionsof symbols in the time evolution of the funtion. The optimal partitions are those whihlead to the maximal di�erene between the permutation entropy of the dynamial iterationand orresponding random iteration. For one-dimensional systems �nding these partitionsis simple, whereas for higher dimensional systems it may be more diÆult. However, itturns out that symboli dynamis drawn from any non-generating partitions is usually goodenough for the appliations we have onsidered in this paper. The symboli dynamis anbe drawn when the system parameters are not known, as well as for experimental data takenin a noisy environment.We use symboli dynamis as a measure of dynamial state of the oupled system andshow various appliations of this measure. The �rst important appliation is the detetionof synhronization by omparing the transition probabilities of any arbitrarily seleted nodewith those of the unoupled funtion. In the global synhronized state the oupled dynamis13



ollapses to the dynamis of the unoupled funtion, and the symboli dynamis of any nodeis subjet to the same onstraints as that generated by the unoupled funtion.Moreover, we de�ne three di�erent states of the oupled dynamis based on the synhro-nization and the symboli dynamial properties. Phase two whih refers to the homogeneousunsynhronized phase or symboli synhronized phase is of our prime interest where the nodesare not synhronized but have idential symboli dynamis. Although these phases are de-teted dynamially, we �nd that the homogeneous unsynhronized phase is related to theratio N=N2 and to a smaller extent to the haoti dynamial funtion used. This is theregion observed for networks with N � r � N2 where 0:05 < r < 0:1. Most of the realnetworks are sparsely onneted and ome under the ategory of phase two. In this phasewe an dedue the global properties of the oupled dynamis suh as the largest Lyapunovexponent and phase synhronization by simply observing the loal symboli dynamis ofany randomly seleted node. Future investigations will involve an analytial understandingof symboli synhronization and appliation to detet various levels of synhronization inexperimental data taken from oupled systems.AknowledgmentsWe aknowledge Dr. Wenlian Lu for useful disussions.
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