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ON THE NON-TANGENTIAL TOUCH BETWEEN THE
FREE AND THE FIXED BOUNDARIES FOR THE

TWO-PHASE OBSTACLE-LIKE PROBLEM

JOHN ANDERSSON, HAYK MIKAYELYAN

Abstract. In this paper we consider the following two-phase obstacle-
problem-like equation in the unit half-ball

∆u = λ+χ{u>0} − λ−χ{u<0}, λ± > 0.

We classify the angles of touch between the free boundary and the
fixed one if the boundary data f satisfies certain conditions. This
results are connected to the results from [AMM].

1. Introduction

1.1. The Problem. The following two-phase analogue of classical ob-
stacle problem was suggested by G. S. Weiss in [W2] and then consid-
ered by N.N. Uraltseva in [U] and H. Shahgholian, N.N. Uraltseva and
G.S. Weiss in [SUW]. Study properties of a weak solution u ∈ W 1,2(D)
of

(1) ∆u = λ+χ{u>0} − λ−χ{u<0},

in the domain D, such that u− f ∈ W 1,2
0 (D) for a given f ∈ W 1,2(D).

In our paper we always assume λ± > 0, and we consider the cases
D = B1 and D = B+

1 , as well as the case of the so-called global
solutions D = R

n
+.

Obviously (1) is the Euler-Lagrange equation of the energy functional

J(u) =

∫
D

|∇u|2 + 2λ+ max(u, 0) + 2λ− max(−u, 0)dx.

Note that if the boundary data f is non-negative (non-positive) then
the solution u is so, too, and we arrive at classical obstacle problem
(see [C]). In the two-phase case we do not have the property that
the gradient vanishes on the free boundary Γu (see Section 1.2 for
definition), as it was in the classical case; this causes difficulties.

We consider the following problem: Let u be a weak solution of (1)
in B+

1 , 0 ∈ Γu, f := u|Π ∈ C1,1(B1 ∩ Π), and

(2)
f(rx′)

r2
→r→0 a+(x+

2 )2 − a−(x−
2 )2, a± > 0

Key words and phrases. Free boundary problems, two-phase obstacle problem,
contact points.
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and

f(x)± ∈ C2,Dini(sptf±).

We classify the angles of touch between the fixed and free boundaries
at 0. It should be mentioned also that in [AMM] authors and N. Mat-
evosyan proved that if a± = 0 then the free boundary of u approaches
the fixed one at 0 tangentially. Under some growth assumptions they
proved that this approach is uniform.

Several papers have been investigating similar problems using the
same techniques (see for instance [A], [AMM], [SU]). However, in this
paper we run into some new difficulties, and have to invent some new
techniques, that renders this publication some value. The main new
contribution is in the proof of Lemma 15. There we give a boundary
regularity result, in the sense of a growth estimate, by using compact-
ness and energy considerations together with geometric properties of
the free boundary. We consider this to be the heart of the paper and
believe that it will be of interest to experts in this field.

Before we state our main result let us briefly fix notation and give
a some definitions. First we would want to recall the definition of
C2,Dini(U); these are functions from C2(U) such that

|D2f(x) − D2f(y)| ≤ ω(|x− y|),
where D2f is the Hessian of f and ω is a Dini modulus of continuity,
i.e., ∫ 1

0

ω(s)

s
ds < ∞.

1.2. Notations. In the sequel we use following notations:

Rn
+ {x ∈ Rn : x1 > 0}

Rn
− {x ∈ Rn : x1 < 0},

B(z, r) {x ∈ Rn : |x − z| < r},
Br B(0, r),
B+

r Rn
+ ∩ Br,

Π {x ∈ Rn : x1 = 0},
x′ (x2, . . . , xn),
Kε {x ∈ Rn

+ : x1 > ε|x′|},
‖ · ‖∞ canonical norm,
e1, . . . , en standard basis in Rn,
ν, e arbitrary unit vectors,
Dν , Dνe first and second directional derivatives,
v+, v− max(v, 0), max(−v, 0),
χD characteristic function of the set D,
∂D boundary of the set D,
Ω+

u {x ∈ D : u (x) > 0},
Ω−

u {x ∈ D : u (x) < 0},
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Λu

{
x ∈ B+

1 : u (x) = |∇u (x)| = 0
}
,

Γu (∂Ω+
u ∪ ∂Ω−

u ) ∩ D, the free boundary.

Definition 1. We will say that ’the free boundary hits the fixed bound-
ary with an angle θ at x0’, ’the angle of touch between the free and fixed
boundaries is θ’ and equivalent formulations if

(a) x0 ∈ ∂D, that is x0 is a point on the boundary of our domain
(b) Γu ∩ Br(x0) 	= ∅ for r > 0, that is the free boundary touches the

fixed boundary at x0

(c) x0 is in the reduced boundary of Γu, and the angle between its
measure theoretic normal and the normal of ∂D equals ϑ.

We will also use ’angles of touch’ etc. if the free boundary locally
has two or more components with well defined angles of touch.

2. Main result

Theorem A. Let u be a solution of (1) in B+
1 with boundary data f

on Π, condition (2) is satisfied, ∇u(0) = 0 and

(3) a+ ≤ λ+

2
and a− ≤ λ−

2
.

Then the solution u is quadratically bounded near 0, that is |u| ≤ C|x|2,
and the free boundary can ’hit’ the fixed one only with angles θ0, θ±j ,
j = 1, 2 (to be specified later, see Figure 1). If the condition (3) fails
then the solution is not quadratically bounded and free boundary ap-
proaches the fixed one orthogonally in every non-tangential access cone.
If ∇u(0) 	= 0 then the free boundary approaches the fixed one tangen-
tially.

Remark 2. By orthogonal approach in a non-tangential access cone
we mean that in each cone x1 > ε|x′| with ε > 0 the free boundary Γu

is trapped in a cusp Γu ∈ {|x2| ≤ σε(x1)x1} where σε is a modulus of
continuity depending on n, ε and ‖u‖L∞.

This formulation of the Theorem is actually a little weaker than what
we can prove. In fact, if say a+ > λ+/2 then this is true in a small
neighbourhood of the origin so we can apply the Theorem on each touch-
ing point in that set, under the assumption that |∇u| = 0 along the
entire touching set, and deduce a stronger statement without referring
to a non-tangential approach region.

Remark 3. There is a slight difference between the formulations of
the result in the orthogonal and non-orthogonal part of the Theorem.
This is for technical reasons. Even if the result seems weaker in the
orthogonal case, it is only slightly so since we can always make the
non-tangential access cone as close as the half space as we would like.
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Remark 4. The final statement of the Theorem, that |∇u| 	= 0 im-
plies tangential touch, follows easily from classical C1,α estimates of
the solution.

Remark 5. In the formulation of the theorem we have chosen to con-
sider the case when |∇f(0)| = 0. This assumption is probably not
necessary to analyse the local behaviour of the free boundary near a
’touching point.’ We have not chosen to consider the more general
case though but will briefly describe some features that will play a role
in a description of that problem.

If we have a point where the free boundary touches the fixed boundary
and u is in C1,1 at that point; then u(x) − ∇u(0) · x is quadratically
bounded and we can make a blow-up whose limit is a homogeneous
solution to a partial differential equation similar to our original one. A
classification of global solutions will give possible angles of touch, and
therefore also determine a discrete set of possible values of ∂u(0)/∂xn.
The only problem is to characterise the touching points where u is C1,1.

Remark 6. Since the main tool we use proving Theorem A is the blow-
up argument, these results could be generalised for domains with smooth
enough boundary.

3. Technicalities

3.1. Monotonicity formulae. Here we introduce two monotonicity
formulae in the following two lemmas, which play crucial role in our
proofs. The first one was presented by H. W. Alt, L. A. Caffarelli and
A. Friedman in [ACF] and was developed then in [CKS]. The second
one is due to G. Weiss [W1], [SUW]. In [A] the first author adapted it
to the half-space case and our representation is analogous.

Lemma 7. (ACF monotonicity formula)
Let h1, h2 be two non-negative continuous sub-solutions of ∆u = 0

in BR. Assume further that h1h2 = 0 and that h1(0) = h2(0) = 0.
Then the following function is non-decreasing in r ∈ (0, R)
(4)

ϕ(r) ≡ ϕ(r, h1(x), h2(x)) =
1

r4

(∫
Br

|∇h1|2dx

|x|n−2

)(∫
Br

|∇h2|2dx

|x|n−2

)
.

More exactly, if any of the sets spt(hj)∩∂Br digresses from a spherical
half-cap by a positive area, then either ϕ′(r) > 0 or ϕ(r) = 0.

Let us point out an important scaling invariance of the monotonicity
functional ϕ, namely

ϕ(r, h1(x), h2(x)) = ϕ(1, h1(rx)/r, h2(rx)/r).

In the next Lemma we will make the assumption that our solution is
asymptotically homogeneous on the boundary. Observe that a function
g is homogeneous of order 2 if x · ∇g − 2g = 0.
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Lemma 8. (Weiss’ monotonicity formula)
Let u solve (1) in B+

R and u|Π∩BR
= g, where |x · ∇g − 2g| = o(|x|).

Then the function
(5)

Φ(r) = r−n−2

∫
Br∩R

n
+

(|∇u|2+2λ+u++2λ−u−)−r−n−3

∫
∂Br∩R

n
+

2u2dHn−1

satisfies
Φ(σ) − Φ(ρ) > −o(σ), for 0 < ρ < σ < R.

.
Moreover, if Φ(ρ) = Φ(σ) for any 0 < ρ < σ < R then Φ is homoge-

neous of degree two in (Bσ\Bρ) ∩ R
n
+.

This Lemma says that Φ is almost monotone in its argument. If g is
homogeneous then Φ will be fully homogeneous in its argument. The
proof is analogous to the proof of the Lemma 1 in [A].

4. Global solutions

Lemma 9. Let u solve (1) in R
n
+ with boundary data u|Π = a+(x+

2 )2 −
a−(x−

2 )2. Then if |u| ≤ C(1 + |x|2) for any finite C then u is two-
dimensional, i.e., in some system of coordinates

u(x) = u(x1, x2),

where the e1 direction is normal to Π.

Proof. Let us take any e ∈ Π and consider functions (Deu)±. In [U]
Uraltseva proved that these functions are sub-harmonic. If 〈e, e2〉 > 0
then the boundary values of u are monotone increasing in e direction
we can extend (Deu)− by zero to R

n
−; let us denote the new function by

h. If we now take g(x) := h(−x1, x
′), we can apply ACF monotonicity

formula on pair h, g. For r < s we have

ϕ(r, h, g) ≤ ϕ(s, h, g) ≤ lim
s→∞

ϕ(s, h, g) =: Ce.

By standard regularity theory for elliptic equations and the bound

|u| ≤ C(1 + |x|2), thus we can find a sequence urj
=

u(rjx)

r2
j

→ u∞,

uniformly on compact subsets and in (W 2,p
loc ∩ C1,α

loc )(Rn
+ ∪ Π), for any

1 < p < ∞ and 0 < α < 1. Denoting by hrj
=

h(rjx)

rj
, grj

=
g(rjx)

rj
and

their limits as j → ∞ by h∞, g∞. It is easy to see that h and g satisfies
the conditions in the ACF monotonicity formula. Using this and the
scaling invariance of the monotonicity functional ϕ we may deduce

Ce = lim
rj→∞

ϕ(srj, h, g) = lim
rj→∞

ϕ(s, hrj
, grj

) = ϕ(s, h∞, g∞), ∀s > 0.

From {x1 < 0} ⊂ {h = 0} and continuity it follows that ϕ(r, h∞, g∞) ≡
0 or ϕ′(r, h∞, g∞) > 0 for all r > 0, thus Ce = 0 and we get Deu ≥ 0.

Now let us take any e ∈ Π orthogonal to e2 and consider unit vector
e(φ) = cos φ e2 + sin φ e ∈ Π, φ ∈ [0, π]. From the C1-continuity we
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have that the sets {φ : Ω±
De(φ)u

	= ∅} are relatively open in [0, π]. On

the other hand they are both non-empty and have empty intersection
in [0, π]\{π

2
}; this means that De(π

2
)u = Deu ≡ 0 and we are done. �

Proposition 10. Let u be homogeneous of degree two and solve (1) in

R
n
+ with boundary data u|Π = a+(x+

2 )2 − a−(x−
2 )2. Then a± ≤ λ±

2
and

the function u(x) coincides with one of the following described below.
Take ϑ± = 1

2
arccos(1 − 4a±

λ± ) and assume ϑ− ≤ ϑ+ then

u1(x)
λ+

2
((x · e+

1 )+)2 − λ−
2

((x · e−1 )+)2,

u2(x) =
λ+

2
((x · e+

2 )+)2 − λ−
2

((x · e−2 )+)2,

where e+
1 = (− sin ϑ+, cosϑ+, 0, . . . , 0), e−1 = e−2 = (− sin ϑ−,− cos ϑ−, 0, . . . , 0),

e+
2 = (sin ϑ+, cos ϑ+, 0, . . . , 0). The third possible solution will be in case

ϑ− ≤ ϑ+ as follows. Take ϑ0 = 1
2
arccos(1 − 4(a++a−)

(λ++λ−)
) and

u3(r, φ) = r2(
λ+

4
+ (a+ − λ+

4
) cos 2φ + β+ sin 2φ), if 0 ≤ φ ≤ ϑ0

and

u3(r, φ) = r2(−λ−
4

− (a− − λ−
4

) cos 2φ + β− sin 2φ), if ϑ0 ≤ φ ≤ π,

where

β± =
∓λ±

4
∓ (a± − λ±

4
) cos 2ϑ0

sin 2ϑ0

The case ϑ+ < ϑ− is analogous.
It follows that if a− > λ−

2
or a+ > λ+

2
then no homogeneous solution

exists.

Proof. By Lemma 9 it is enough to consider two-dimensional functions
u. So let us rewrite u in radial coordinates as

u(x) = u(r, θ) = r2φ(θ), r ∈ [0,∞), θ ∈ [0, π].

Then we get the ODE

φ′′ + 4φ = λ+χ{φ>0} − λ−χ{φ<0}
in the interval [0, π] with boundary data φ(0) = a+ and φ(π) = −a−.

The analysis of the ODE shows that only if a− > λ−
2

or a+ > λ+

2
then

the ODE has no solution.
In the case a± ≤ λ±

2
the simple analysis of the ODE gives that the

only solutions are those which are described in the formulation of the
Proposition. These are illustrated in the Figure 1 in terms of positivity
and negativity sets for the case ϑ− < ϑ+.

Let us just mention that in the case ϑ+ < ϑ− we will take e±1 as be-
fore, e+

2 = e+
1 , e−2 = (sin ϑ−,− cos ϑ−, 0, . . . , 0) and ϑ0 = π−1

2
arccos(1−

4(a++a−)
(λ++λ−)

). �
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0

0

a+(x+
2 )2

ϑ− ϑ+

ϑ−

a+(x+
2 )2

ϑ0

a+(x+
2 )2

−a−(x−
2 )2

−a−(x−
2 )2

−a−(x−
2 )2

π − ϑ+

Figure 1. Global solutions

Remark 11. There exist global solutions which are not homogeneous.
These were constructed in [AS] for the one phase case u ≥ 0.

5. Proof of Theorem A

In this section u is a solution of (1) satisfying |∇u(0)| = 0. First
we will prove Theorem A under the assumption that u is quadratically
bounded.

Lemma 12. If a± ≤ λ±
2

and u is a solution satisfying |u(x)| ≤ C|x|2
for some finite C, then the angles of touch between the free and the
fixed boundaries are as in the case of homogeneous global solutions.

Proof. Let us take ur(x) = r−2u(rx) and observe that for a (sub)sequence
rn → 0 this converges to global solution u0, which is quadratically
bounded. What remains to show is that u0 is homogeneous of order
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two. This follows immediately from Lemma 8,

Φu0(s) = lim
j→∞

Φurj
(s) = lim

j→∞
Φu(rjs) = Φu(0+).

�

In the next Lemma we will prove the second statement of the main
Theorem.

Lemma 13. If a+ > λ+

2
or a− > λ−

2
, then u is not quadratically

bounded near 0 and the free boundary approaches the fixed boundary
orthogonally in a nontangential approach region.

Proof. We will argue by contradiction. Therefore we assume that
there is a sequence of free boundary points xj ∈ Γu approaching the
origin in a nonorthogonal way. That is xj

i/|xj| ≥ ε for i = 1, 2. We will
set rj = |xj |, rj → 0.

If u(rjx)/r2
j is uniformly bounded on compact sets then we can repeat

the proof of the previous Lemma and obtain a function u0, which is a
homogeneous global solution with boundary data a+(x+

2 )2−a−(x−
2 )2; a

contradiction, since a+ > λ+

2
or a− > λ−

2
. Therefore u(rjx)/r2

j diverges,
since the argument in this paragraph works for all sequences rj → 0
we can conclude the first part of the Lemma.

Now assume that u is not quadratically bounded. For a sequence
rj → 0 let us consider functions uj(x) = u(rjx)/Sj, where we denote
Sj = supB+

rj
|u|.

For a sub-sequence uj (that we may assume to be the full sequence)

converges to a function u0. Since
sup

B+
rj

|u|
r2 → ∞ we get that u0 is

harmonic and has zero boundary data on Π.
We want to show that u0 is a quadratic polynomial. This follows

from the Weiss energy functional. First observe that uj satisfies

∆uj =
λ+

Sj

χ{uj>0} − λ−
Sj

χ{uj<0},

and thus satisfies a monotonicity formula of Weiss type that we will
denote Φj to indicate the dependence of Sj . Moreover Φj(1/(2rj)) ≤
Cr2

j/Sj → 0 and also |Φj(1)| ≤ C, the first inequality follows from
the rescaling and the second from elliptic estimates of uj. By the
monotonicity it follows that |Φj(r)| ≤ C for r ≥ 1.

In the limit it follows that∣∣∣r−n−2

∫
Br∩R

n
+

|∇u0|2dx − r−n−3

∫
∂Br∩R

n
+

2u2
0dHn−1

∣∣∣ ≤ C for r ≥ 1.

By the conditions u(0) = |∇u(0)| = 0 we can exclude that u0 is a
constant or a plane therefore it must be a second order polynomial,
this since higher growth of u0 would contradict the above inequality.
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Using that u0 = 0 on Π we may conclude that u0 = x1

∑n
i=2 cixi, for

some constants ci.
We need to show that ci = 0 for i = 3...n. This is done with a barrier

argument for the x2 derivatives. Let us sketch some details.
We know that u2 ≡ ∂u/∂x2 is subharmonic so we can use a harmonic

function v with the same boundary values as a barrier. This barrier is
easy to estimate close to the origin where v = 2a+(x+

2 )2 − 2a−(x−
2 )2 +

o(|x|) by means of the Poisson integral. Using that u2 ≤ v we can
deduce that ci = 0 for i = 3...n.

Now we have shown that the blow up uj → cx1x2, this contradicts
that xj ∈ Γu approaches the origin non-orthogonally, since that would
imply that uj(x

j/rj) = 0 and u0 should have a point z on (∂B1)
+ where

it is zero with z · e2 	= 0 and z · e1 > 0. �
Remark 14. In the final part of this proof we see why we have to, in the
main Theorem, formulate the orthogonal result differently than the non-
orthogonal. If the sequence approached the contact point tangentially
to Π we would not get a contradiction since the blow-up is identically
zero on Π.

What remains to prove Theorem A is the following.

Lemma 15. If a± ≤ λ±
2

and ∇u = 0 then u is quadratically bounded
near 0.

Proof. The proof is inspired by the method of continuity. Actually we

prove something more. Let us denote by Q = Q(N, η) ⊂ R
2

+ the subset
of all pairs (a+, a−) such that all solutions of (1) are quadratically
bounded provided that the following additional conditions are satisfied

(1) |∇u(0)| = 0
(2) boundary data f on Π satisfying,

lim
r→0

f(rx)

r2
= a+(x+

2 )2 − a−(x−
2 )2,

(3) ‖f‖C2 ≤ N and f± ∈ C2,Dini(sptf±) with a uniform Dini modu-
lus of continuity η.

We prove that

Q = [0,
λ−
2

] × [0,
λ+

2
].

We divide the proof into following four claims:
Claim 1: Q is non-empty
Claim 2: Q is closed
Claim 3: Q is relatively open in [0, λ−

2
) × [0, λ+

2
)

Claim 4: Q ⊂ [0, λ−
2

] × [0, λ+

2
]

Proof of Claim 1: This can be done in a similar way as was done
in [AMM], where it was proven that if a+ = a− = 0 along the touching
set then u is quadratically bounded.

We will show that (0, 0) ∈ Q.
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We use a barrier argument on the derivatives in the {x1 = 0}-plane.
By the C2,Dini assumption on f in the supports of f± we know that
|e · ∇f(x′)| ≤ C|x′|η(|x′|) ≡ R(x′) for any unit vector in Π. We can
tharefore estimate the derivatives e · ∇u from above by a harmonic
function v with boundary data R on Π.

Since η is Dini we know that v has linear growth away from the origin
(see [Wi]). This directly implies that (e · ∇u)+ has linear growth. By
methods previously introduced (see the proof of Lemma 13) it is easy
to see that if u is not quadratically bounded then (after a rotation of
the coordinate system)

u(rjx)

supB+
rj
|u| → cx1x2,

for some sequence rj → 0 and supB+
rj
|u|/r2

j → ∞. But by the linear

estimate on the derivatives we have

∂u(rjx)/Sj

∂x2
≤ C

r2
j |x|
Sj

→ 0.

Which is a contradiction, therefore (0, 0) ∈ Q.
Proof Claim 2: Assume, aiming for a contradiction, that Q �

ak
± → a± /∈ Q. Since (a+, a−) /∈ Q there exists boundary values f0 and

quadratically non-bounded solution u0 such that |∇u(0)| = 0. Let us
take a sequence fk → f0 on Π with

lim
r→0

fk(rx)

r2
= ak

+(x+
2 )2 − ak

−(x−
2 )2

and denote the solutions with boundary values fk by uk. By stability we
may choose boundary values on (∂B1)

+ in such a way that |∇uk(0)| =
0. Moreover we can choose the boundary values uk so that uk → u0 in
C1,α.

We now use Weiss’ monotonicity formula. Since uk are quadratically
bounded on one hand (this follows by the assumption that (a+, a−) ∈
Q) Φ(uk, r) ≥ 0, for all 0 < r < 1 but on the other hand, by assump-
tion u0 is quadratically unbounded, for small enough r0 we can get
Φ(u0, r0) < −1, a contradiction.

Proof of Claim 3: Once again we argue indirectly and assume
that the claim is false. Then there exists a sequence (ak

+, ak
−) from the

complement of Q converging to an (a+, a−) ∈ Q ∩ [0, λ−
2

) × [0, λ+

2
).

For each pair ak
± we may choose boundary values fk and such that the

corresponding solution uk has zero gradient at the origin but it is not
quadratically bounded.

Let us denote by K a conical neighbourhood of x1-axis in the x1×x2-
half-plane which we will denote by Π12. We will consider the intersec-
tions of the free boundary with Π12. Since the functions uk are not
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quadratically bounded we know that Γuk
∩ Π12 lies in K near the ori-

gin, say for |x| ≤ rk, and let rk be the smallest such r.
That such rk exists, and that rk → 0, follows from uk → u in C1,α,

the assumption that (a+, a−) ∈ Q and the classification of angels of
touch. If no such sequence rk → 0 exists then Γuk

∩Π12 ∩Bε ⊂ K ∩Bε

that is not possible by the classification of touching angles.
We consider now the blow-up

ũk(x) =
uk(rkx)

supB+
rk
|uk| .

Since supB+
rk
|uk| ≥ max(a±)

2
r2
k two cases are possible

lim sup r−2
k sup

B+
rk

|uk| = ∞

or is finite and positive. In the first case the limit of ũk (for some sub-
sequence) will be a quadratically bounded harmonic function with zero
boundary data, thus it will be cx1x2, which by construction, should
vanish at some point on the boundary of the cone K ⊂ Π12, a contra-
diction.

In the other case we consider the blow-up

ũk(x) =
uk(rkx)

r2
k

.

The boundary values then converge to a+(x+
2 )2 − a−(x−

2 )2 and the
limit function u0 (again for some subsequence) will be quadratically
bounded. By the classification of the hit angle of quadratically bounded
solutions we know that for fixed a± we can choose the cone K small
enough, in order to avoid any points of the free boundary of u0 in
K ⊂ Π12 near the origin. On the other hand from the construction we
have that Γu0 ∩ Π12 ∩ B+

1 ⊂ K, a contradiction.
Proof of Claim 4: This is shown as in the proof of Lemma 13. �
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