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Abstract

We investigate the regularity of a free boundary near contact points
with a fixed boundary, with C1,1 boundary data, for an obstacle-like free
boundary problem. We will show that under certain assumptions on the
solution, and the boundary function, the free boundary is uniformly C1 up
to the fixed boundary. We will also construct some examples of irregular
free boundaries.

1 Introduction

The Problem: In these pages we will discuss the following problem in R
n
+

(≡ R
n

⋂{x1 > 0}), or in a half ball B+
r (0) = {x : |x| < 1, x1 > 0},

∆u = χΩu where Ωu = B+
r \ {u = |∇u| = 0}

u|Π = f(x2, ..., xn) where Π = {x1 = 0}
u ∈W 2,p(B+

r (0))

⎫⎬
⎭ (1)

f in a convenient class of functions (C1,1 or C2,Dini) and

f(0) = |∇f(0)| = 0.

With the notation Λu = {u = |∇u| = 0}, we will call the set Γu = Ωu ∩ Λu

the free boundary. Our main question is then the regularity of the free boundary.
More precisely we will show that under some conditions on the blow up of u,
Γu is uniformly C1 near x0 ∈ Π ∩ Γ when

f ∈ C1,1(Rn−1) (or C2,Dini).

As things turn out we must also assume some regularity of ∂{f �= 0}, see
Theorem 2.

Other questions that will concern us are the regularity of u, and at what
angle ∂Ωu hits Π at a given point.
Main result: In Theorem 1 and its Corollary (pages 10 and 12) we show
that asymptotically we have only two behaviors of solutions to problem (1)
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near contact points. The main result in this paper is formulated in Theorem
2 (page 14). This Theorem states that if the solution behaves like the larger
of the two possibilities, then the free boundary is uniformly differetiable in a
nontangential approach region near contact points. We also show that the free
boundary approaches the fixed boundary in a uniform manner. Neither of this is
true for those solutions which behaves asymptotically as the smaller possibility,
a counter example will be given in a forthcoming paper, [AS]. However if the
solution behaves assymptotically as the smaller solution then the free boundary
is differentialble but not uniformily, and under suitable assumptions on the
support of the boundary values we can drop the assumption on a non-tangential
approach region.
Background: Problem (1) is a translated form of the dam problem, though
somewhat more general. The dam problem is a physical model of filtration of
water through a porous medium. The domain is the media, naturally divided in
a wet part Ωu, and a dry part Λu separated by a free boundary Γu. It is known
that the free boundary is a graph φ(x1). The pressure in the water u will be
zero in the dry part and nonnegative in the entire domain. It also satisfies

∇ · (∇u + χΩue1) = 0, (2)

with prescribed boundary values. If the domain is R × R+ and the boundary
values are u(0, x2) = −2λ2x2. We can define

W (x1, x2) = −
∫ x2

φ(x1)

u(x1, t)dt.

Then W is a solution to (1) in R
2
+ (if we rotate it by π/2 radians) with boundary

values f(x2) = λ2(x2)2+.
This problem was studied in [AG] in any half space of R

2 with boundary
values −(x2)− on the boundary. The authors of [AG] show that if the free
boundary touches the fixed boundary at the origin then it does so either hor-
izontally or orthogonally. They also consider other boundary values u = 0 on
the fixed boundary and the normal derivative ∂u/∂η = 0 on the free boundary.
Although their problem is slightly different from ours (except the case when the
fixed boundary is {x2 = 0}) we believe that the analysis in these pages may
strengthen their results. Firstly in this article we do not assume that u is non-
negative. Secondly, we are considering whether the free boundary approaches
the fixed boundary in a uniform manner. We are also explicitly stating our
results for a wider class of boundary functions.

The authors of [SU] consider equation (1) with f ≡ 0. More exactly they
show that the free boundary Γu is uniformly C1 near contact points with the
fixed boundary Πu Theorem 2 obviously strengthens their regularity results.

Questions about interior regularity of the free boundary have been considered
earlier in [CKS].
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Plan of the paper: In the next section we give some examples. In section 3
we state important tools for our study. In Section 4 we discuss the growth of u
near Γu, then in Section 5 we make an attempt to classify the global solutions
of (1) when f is homogeneous of second degree. By global solutions we mean
solutions in R

n
+ with quadratic growth at the infinity (i.e. solutions satisfying

lim sup|x|→∞ u(x)/|x|2 ≤ C). We write “an attempt” since we only get some
partial results on this issue, however our results are strong enough to continue
the analysis. In Section 6 we will discuss the regularity of Γu. Section 7 deals
with more general domains (C1 near a contact point) and more general right
hand sides than in (1). Then in the last section we state some open questions
directly related to this paper.
List of definitions:

R
n
+ is the upper half space: R

n ∩ {x1 > 0}.
Br(x0) is the open ball of radius r centered at x0: {x; |x− x0| < r}.
B+

r (x0) is the ball intersected with R
n
+.

Λu is the set where u = |∇u| = 0.
Ωu is the set Λc

u, the complement of Λu.
The free boundary of u, that is ∂Λu ∩ Ωu, will be denoted Γu,
χΩ is the characteristic function of Ω, i.e,

χΩ(x) =
{

1 x ∈ Ω
0 x /∈ Ω.

By ur(x), 0 < r <∞, we will mean u(rx)
r2 , unless otherwise stated.

By the blow up of u we will mean limr→0 ur through some subsequence in r
and denote it u0 (if there is no ambiguity). If rj → 0 we will say that {urj} is
a blow up sequence of u.

The shrink down of u we will mean limr→∞ ur through some subsequence.
We denote the shrink down by u∞ (if there is no ambiguity).

Π is the plane {x1 = 0}.
If Ω is a set we will by rΩ mean {x; 1

rx ∈ Ω}.
Ωc is the complement of Ω.
By x′ we will mean the vector (x2, x3, ..., xn), and sometimes write x =

(x1, x
′).

By sptu we will mean the support of u, that is the closure of {u �= 0}.
Acknowledgment: Before we start I would like to thank Henrik Shahgholian
for all his help and support, all this papers benefits are due to him, but all its
shortcomings are entirely mine.

2 Some examples.

Example 1: Obviously every solution to ∆u = 1 in the upper half ball is a
solution of (1).
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Example 2: For any unit vector e in R
n, 1

2 (e · x)2+ is a solution. Where
(·)+ ≡ max(·, 0). In this case the free boundary is the plane through the origin
with e as normal, and f(x′) = 1

2 (e′ · x′)2+.

Example 3: Let us now state a nontrivial example which in some sense shows
a substantial difference between our results and the results in [SU]. Let

f(x1, x2, x3) =

{
1
2

x2
2x2

3
x2
2+x2

3
if x2, x3 > 0

0 else.

Let also u be the solution of the obstacle problem in the upper half ball in R
3

with f as boundary values, on ∂B+
1 . By a solution to the obstacle problem we

here mean a positive solution to (1). Its existence is known, see [F].
Now we claim that the free boundary touches Π in an angle, more exactly

Ωu ∩ Π = {x2 ≥ 0} ∪ {x3 ≥ 0}. This certainly implies that Γu isn’t C1 at the
origin.

To show that Γu ∩ Π is the angle given in the previous paragraph it is
enough to show that u ≤ f in B+

1 (0). Since then, by the positivity of f and u,
spt(u) ⊂ spt(f). In particular spt(u) ∩ Π = spt(f) ∩ Π.

So lets prove that u ≤ f . Define Ω+ ≡ {x;u(x) > f(x)}. By the positivity
of u and f we know that Ω+ ⊂ Ωu. Consider the function v = u−f |Ω+ which is
positive with zero boundary values, but on the other hand ∆v = χΩu −∆f ≥ 0.
This must imply that Ω+ is empty, otherwise we would get a positive sub-
harmonic function with zero boundary values.

This example shows that we can have a boundary function f that forces the
free boundary to touch the fixed boundary in a set that isn’t C1.

But before we leave this example let us just consider another interesting
feature of the solution u. Let us consider a blow up sequence urj . By stan-
dard elliptic theory, and the quadratic growth of u, we can show that the blow
up sequence (or a subsequence) converges (in C1,α sense) to a global homoge-
neous solution of degree two. But since the boundary values are homogeneous
of degree two they are invariant under this blow up. So we can actually find a
global homogeneous solution that touches the fixed boundary in a cone. More-
over this also excludes that the free boundary, Γu, touches the fixed boundary
tangentially.

If the touch where tangentially then

ur → u0 =
{

0 x1 > 0
f x1 = 0 ,

in C1,α for some subsequence r → 0. But u0 is obviously discontinuous contra-
dicting the C1,α convergence.
Example 4: In the previous example we used that f ∈ C1,1 and that |∆f | ≤ 1
to find a solution of (1) whose free boundary hits Π in the set ∂spt(f). In this
example we will use this to construct solutions of (1) with contact set equaling
the boundary of any closed set in Π.
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We only need to construct an f ∈ C1,1 with spt(f) as the closure of the
complement of any given closed set. If we have such an f we can just divide f
with the supremum of its laplacian and then follow the construction of u in the
previous example.

Let F be a closed set, in Π, then it is possible (see [St]) to find a regularized
distance δ(x) satisfying:

1. δ(x) ∈ C∞(Π \ F )

2. c1dist(x, F ) ≤ δ(x) ≤ c2dist(x, F ) c1 and c2 are independent of F

3.
∣∣∂αδ(x)

∂xα

∣∣ ≤ Cα(dist(x, F ))1−|α| where α is a multi index and Cα is a con-
stant independent of F .

It is easy to see that f = δ2

sup(|∆δ2|) is the boundary function that will force
the free boundary of u to hit the fixed boundary in ∂F .

It is noteworthy point out that this makes it possible to construct solutions
with the Hausdorf dimension of the contact set Γu∩Π anywhere between (n−2)
and (n− 1).

The last two examples clearly shows that we have to make an assumption
not only on the regularity of f but also the regularity of the boundary of the
support of f in order to prove that the free boundary is C1 near contact points
with the fixed boundary.

3 Monotonicity formulas.

In this section we will state two monotonicity lemmas crucial to all results in
this paper. The first is due to G.S Weiss [W] and the second due to H.W. Alt,
L.A. Caffarelli and A. Friedman [ACF].

To get a reasonable class of functions to work with we make the following
definition.

Definition 1. We say that u ∈ Pr(M, f) if u satisfies (1) in Br(0), and
supBr(0)+ |u| ≤M .

We will also write u ∈ P∞(M, f) if u satisfies (1) in R
n
+ and

lim sup
|x|→∞

u(x)/|x|2 ≤M,

such solutions of (1) will be called global solutions.

Lemma 1. (Essentially due to G. S. Weiss) Let u ∈ PR(M, f) with f homoge-
neous of degree two, then the function

Ψ(r, u) ≡ r−n−2

∫
Br(0)∩R

n
+

(|∇u|2 + 2u) − r−n−3

∫
∂Br(0)∩(R)n

+

2u2 (3)

is nondecreasing in r < R.
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Proof: Set

ur(x) =
u(rx)
r2

. (4)

Then
Ψ(r, u, 0) =

∫
B+

1 (0)

(|∇ur|2 + 2ur) −
∫

∂B+
1 (0)∩R

n
+

2u2
r. (5)

It is enough to show ∂Ψ
∂r ≥ 0. Calculations of the derivative gives

∂Ψ
∂r

=
∫

B+
1 (0)∩R

n
+

(2∇ur · ∇u′r + 2u′r) −
∫

∂B+
1 (0)∩R

n
+

4uru
′
r, (6)

where u′r ≡ ∂ur

∂r = 1
r (∇ur ·x−2ur). Using integration by parts on the first term

in the above equation we obtain∫
B+

1 (0)∩R
n
+

2∇ur · ∇u′r =
∫

∂(B+
1 (0)∩R

n
+)

(2∇ur · η)u′r −
∫

B+
1 (0)

2∆uru
′
r, (7)

where η is the exterior normal of ∂(B+
1 (0) ∩ R

n
+). We can split ∂B+

1 (0) into
two parts ∂B+

1 (0) =
(
∂B+

1 (0)\Π)∪ (
B1(0)∩Π

)
. Therefore equation (7) can be

written as ∫
B+

1 (0)∩R
n
+

(2∇ur · ∇u′r) =
∫

∂B+
1 (0)\Π

(2∇ur · x)u′r+ (8)

∫
B1(0)∩Π

(2∇ur · (−e1))u′r −
∫

B+
1 (0)

2∆uru
′
r.

If we insert equation (8) in (6) we will arrive at∫
∂B+

1 (0)\Π
(2∇ur · x)u′r +

∫
B1(0)∩Π

(2∇ur · (−e1))u′r− (10)

∫
∂B+

1 (0)\Π
4uru

′
r.

Here we have used that ∆ur = χrΩ. If we further realize that ∇ur ·x = ru′r+2ur

in the first integral, the expression may be simplified to∫
∂B+

1 (0)

2r(u′r)
2 + 4

∫
B1(0)∩Π

∂ur

∂x1
u′r. (12)

But u|Π is a homogeneous polynomial of second degree so ur|Π is independent
of r which implies that u′r = 0. And we arrive at

∂Ψ
∂r

=
∫

∂B+
1 (0)

2r(u′r)
2 ≥ 0. (13)
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Remark: Ψ(r, u) is constant in r if and only if u is homogeneous of second
degree.

To see this we notice that ∂Ψ
∂r = 0 if and only if u′r = 0 that is if and only

if ∇ur · x − 2ur = 0 which happens if and only if ur is homogeneous of second
degree.

Lemma 2. Let h1 and h2 be two non-negative continuous sub-solutions of ∆u =
0 in BR(0). Assume further that h1(0) = h2(0) = h1(x)h2(x) = 0. Then the
following function is monotone in r

φ(r, h1, h2) =
1
r4

( ∫
Br(0)

|∇h1|2
|x|n−2

)( ∫
Br(0)

|∇h2|2
|x|n−2

)

for 0 < r < R. More exactly, if any of the sets spt(hi) ∩ ∂Br(0) digresses from
a half spherical cap by a positive area, then either ∂φ(r)

∂r > 0 or φ = 0.

A proof of the first part can be found in [ACF], [CKS] contains a proof of
the last statement.

4 The growth of solutions.

In this section we discuss the growth of solutions, more precisely we will prove
that

supBr(x0)u ≤ Cr2, for x0 ∈ ∂Ω,

under certain assumptions on f and the density of Λu near x0. In [CKS] and
[SU] it is shown that the solution of similar problems are C1,1. This is however
not true in our case, even if f ∈ C1,1. Lets construct a counter example. If
we take the Poisson integral of (x2)2+/2 in B+

1 we get a harmonic function with
(x2)2+/2 as boundary values on Π. If we then add x2

1/2 and subtract x1 we get
a solution in P1(2, (x2)2+/2) with 0 ∈ Λ. Explicitly the solution looks like this:

u(x1, x2) =
∫ 1

−1

cnx1

t2 + x2
1

(x2 − t)2+
2

dt+
x2

1

2
− x1.

To see that u defined above isn’t quadraticly bounded and obviously not C1,1,
we evaluate the integral and arrive at

u(x1, x2) = cn

(−x2
1 + x2

2

2
(
arctan

(x2

x1

) − arctan
(x2 − 1

x1

))

+x1x2 ln
(x2

1 + (x2 − 1)2

x2
1 + x2

2

))
+
x2

1

2
− x1.

It is easy to see that

lim
s→0+

∣∣∣u(s, s)
s2

∣∣∣ = ∞,
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that is u isn’t quadraticly bounded. Since 0 is a free boundary point this also
implies that u /∈ C1,1(B+

1/2).

Before we start to prove a bound for the growth of solutions, we need some
notation. We define

S(j, u, z) ≡ sup
B2−j (z)

T

R
n
+

|u|,

and
M(u, z) ≡ {j ∈ N; 4S(j + 1, u, z) ≥ S(j, u, z)}.

Lemma 3. Let u ∈ P1(M, f) and that for every r ≤ 1 the following inequality
holds

cap(Λu ∩B+
r (0))

cap(B+
r (0))

≥ s > 0.

Suppose also that f(x) ≤ C|x|2, then there exists a constant C such that

S(j, u, 0) ≤ C2−2j j ∈ M(u).

Proof: We will argue by contradiction. So assume that there exists uj and
kj ∈ M(uj) such that

S(kj , uj, 0) ≥ j2−2kj . (14)

Define

ũj(x) ≡ uj(2−kjx)
S(kj + 1, uj, 0)

in B+
1 (0). (15)

Then, by (14) and the definition of M, we’ll have

‖∆ũj‖∞ =
2−2jk

S(kj + 1, uj, 0)
≤ 2−2jk

1
4S(kj , uj, 0)

≤ 4 · 2−2kj

j2−2kj
=

4
j
→ 0 (16)

By (15) and since kj ∈ M(uj)

sup
B+

1/2(0)

|ũj | = 1.

Hence by standard elliptic theory a subsequence of ũj will converge in the sense
of C1,α in the half ball B+

1 (0) to, say, u0. By our capacity-density condition
it will follow (see [KS]) that cap(Λu0) > 0. But this means that we get a non
constant harmonic function with a set of non zero capacity where u0 = |∇u0| =
0. But this is a contradiction, see [RS].

Lemma 4. There exists a constant C such that, for u satisfying the hypothesis
of Lemma 3, S(j, u, z) ≤ 4C2−2j.

Proof: Let j be the first integer such that the inequality doesn’t hold, then

S(j − 1, u, 0) ≤ 4C2−2(j−1) ≤ 4S(j, u, 0) i.e. j − 1 ∈ M(u). (17)
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By Lemma 3 we will have

S(j, u, 0) ≤ S(j − 1, u, 0) ≤ C2−(j−1) = 4C2−j (18)

contradicting our assumption that S(j, u, 0) > 4C2−2j.
The lemma is important if we want to blow up u. It assures that the blow up

sequence is uniformly bounded on compact sets and thus the limit is bounded
on compact sets.

If |u(x)| ≤ C|x|2 then sup|ur| ≤ C. However, we might have that limr→0 ur ≡
0. We must assure some growth of u to exclude this, e.g. we need

sup
Br(x0)

|u| ≥ cr2.

When we blow up u at a point on the free boundary in the interior of R
n
+ this

growth is shown in [CKS]. And if we blow up at a point x0 ∈ Π we can use the
growth of the boundary function to assure that the blow up won’t go to zero, if
the boundary function satisfies

sup
Br(x0)

f ≥ cr2.

However, if the blow up of the boundary function is zero it is possible that
ur → 0. For example

max(
|x−√

3e1|2
6

− 1
|x−√

3e1|
− 2 +

√
3

2
√

3
, 0)

will be a solution of (1) in R
3
+, with it’s restriction to Π as boundary values,

whose blow up at the origin vanishes identically. On the other side if there exists
a cone in Ωu with vertex at the origin then supBr

u(x) ≥ C|r|2 for some C.

With higher regularity on the boundary values we could expect to have
quadratic growth even without our capacity assumption. This is indeed the
case as the following lemma proves. But first we need a definition.

Definition 2. We say that a function f is Ck,Dini(Ω) if f is k times continu-
ously differentiable in Ω and the k : th derivatives have a modulus of continuity
ω = ωf such that ∫ 1

0

ω(s)
s

ds <∞.

Lemma 5. If f ∈ C2,Dini(Π ∩ B1(0)) and |D2f(0)| = |∇f(0)| = f(0) = 0 and
ω(s)/sγ is decreasing for some γ < 1, then there exist a constant C(M, f) such
that

|u(x)| ≤ C|x|2,
for all u ∈ P1(M, f) with the origin as a free boundary point.
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Proof: It is enough to show that the conclusion of Lemma 3 holds under our
assumptions. Then the lemma follow by the argument in the proof of Lemma
4.

We will argue by contradiction as in Lemma 3. Assume that we have a
sequence uj of solutions in P1(M, f), kj ∈ M(uj) such that equation (14) holds.
By continuing as in Lemma 3 we can define a blow up sequence ũj as in (15).
Both (16) and (4) will also follow.

But without our capacity assumption we will have to work a little bit harder
to get the desired contradiction. We know that (for e ∈ Π and |e| = 1)
(Def(x′))± ≤ C|x′|ω(|x′|). But this implies that we can find a sequence of
harmonic functions v±j uniformly C1 up to the boundary in B+

1/2 such that
v±j ≥ (Deuj)± in B+

1/2 (see [Wi]), and v±j = Def
± on Π. Hence

sup
B+

r

|Deuj | ≤ Cr,

and we arrive at
sup
B+

r

|Deũj| ≤ Cr

j
. (19)

A subsequence of ũj will now converge in C1 to u0, say. By equation (19)
Deu0 = 0 for all e ∈ Π. This implies that u0 = ax1 + b but the origin is a free
boundary point which implies that a = b = 0, contradicting equation (4). This
means that Lemma 3 follows with our assumptions on f .

5 Classification of global solutions.

In this section we will classify all homogeneous global solutions. In a forthcoming
paper by the author and H. Shahgholian it will be shown that there exists non-
homogeneous global solutions with homogeneous boundary data. In this section
we will not discuss that result, but we will describe some of the qualitative
behavior of these solutions. We also discuss how the existence of such solutions
affect our analysis of the regularity of the free boundary.

We will start with a lemma classifying homogeneous solutions of (1).

Theorem 1. Let u be a homogeneous global solution to (1) with f = λ2(x2)2+
where λ ≤ 1√

2
. Then u must be of the following form

u =
( ±

√
1
2
− λ2x1 + λx2

)2

+
. (20)

Proof: We start by reducing the n-dimensional problem to a two dimensional
one. Consider v ≡ Deu for any unit vector e orthogonal to the x1x2-plane. The
restriction of v to Π is certainly zero. This makes it possible for us to extend
v continuously by zero to the lower half space. Lets for simplicity denote the
extended function also by v.
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If we set h1 and h2 as v± they will satisfy the assumptions of Lemma 2. Let
ψ be as in Lemma 2. Then

lim
r→∞ψ(r, v+, v−) = lim

r→∞ψ(1, v+
r , v

−
r ) = C,

and for any s > 0 and any sequence rj → ∞ such that v±rj
converges, by standard

convergence argument to, lets say, v±∞ we will have

C = lim
r→∞ψ(rs, v+, v−) = lim

r→∞ψ(s, v+
r , v

−
r ) = ψ(s, v+

∞, v
−
∞).

But then by Lemma 2, C = 0 since v±∞ = 0 in the lower half space.

It follows from the positivity and monotonicity of ψ that ψ(r, v+, v−) = 0
for any r thus v+ = 0 or v− = 0.

By a similar argument we can show that Deu never changes sign, for any
vector e orthogonal to e1 but not orthogonal to the x2-axis. Lets sketch some
details. First we assume, for definiteness, that the x2-component of e is positive.
Then we choose

h1 =
{

(Deu)− x1 ≥ 0
0 x1 < 0

and h2(x1, x2, ..., xn) ≡ h1(−x1, x2, ..., xn). Observe that h1 and h2 will be
continuous since (Deu)− is zero on Π.

Continuity of the first derivatives shows that spt(h1)∩∂B1(0) digresses from
a spherical cap by positive area and by homogeneity it follows that spt(h1) ∩
∂Br(0) digresses from a spherical cap for any r. This shows that h1, h2 have
all the characteristics of v± used in the proof above. So we can use the same
argument as above to conclude that h1 = 0 or h2 = 0. But h2(x1, .., xn) ≡
h1(−x1, .., xn) thus h1 = h2 = 0.

Let us show that u is two dimensional. Pick any x0 ∈ Ωu and any two non-
collinear vectors η1 and ν1 orthogonal to the x1-axes. We know that Dη1u(x0)
and D−η1u(x0) have different signs, thus by continuity there must exist a vector
e1 in the space spanned by η1 and ν1 such that De1u(x0) = 0. But De1u is
harmonic and never changes sign, thus by the maximum principle De1u must
be identically zero. Then we can pick two new not collinear vectors η2 and ν2

orthogonal to both e1 and the x1-axes and deduce that there exists a vector
e2 such that De2u ≡ 0. Continue this process until you can’t find two non-
collinear vectors ηk and νk orthogonal to e1, e2,..., ek−1 and the x1-axes. Since
u is independent of the directions e1, e2,..., ek−1 and there is only one vector
e ∈ Π orthogonal to {ei}i=k−1

i=1 u must be two dimensional.

Now we continue showing u has the indicated form (20). Since u is two
dimensional and homogeneous of second degree it has the following form in
polar coordinates

u∞(r, θ) = r2Θ(θ).



5 CLASSIFICATION OF GLOBAL SOLUTIONS. 12

In particular the free boundary is a line {(r, θ0); r ∈ R+} for some θ0. If we
rewrite ∆ in polar coordinates (1) becomes

∆u∞ = 4Θ(θ) + ∂2Θ(θ)
∂θ2 = χ{0<θ<θ0}

Θ(0) = λ2

Θ(θ0) = 0
∂Θ(θ0)

∂θ = 0.

This ODE is easy to solve and gives the desired representation of the solutions.

This Lemma gives us information about the local behavior of u ∈ Pr(M, f)
near 0 and ∞. But before we state that result (Corollary 1) we need another
lemma.

Lemma 6. Let u be a quadraticly bounded function in PR(M, f), with the blow
up of f ∈ C1,1, f0 = λ(x2)2+ for λ ≤ 1/2. Then the blow up limit of u is unique.

Proof: We argue by continuity of the Weiss functional. Since the Weiss func-
tional, Ψ of Lemma 1, is continuous in r ≤ R/2 for all u ∈ PR(M, f) we know
that for any two converging blow up sequences usj → us0 and urj → ur0 we
have

Ψ(1, us0) = Ψ(1, ur0). (21)

Also
lim

j→∞
Ψ(rjt, u) = lim

j→∞
Ψ(t, urj ) = Ψ(1, (ur0)t), (22)

but this equals Ψ(1, ur0) by continuity, for all t > 0. So ur0 is homogeneous of
second degree by the remark after Lemma 1. And the same argument shows
that us0 is homogeneous.

By the preceding lemma we know that there are only two homogeneous
solutions, lets denote them P1 (the function in equation (20) with a “-”-sign)
and P2 (dito with the “+”-sign). A simple calculation shows that Ψ(1, P2) >
Ψ(1, P1). Therefore, by (21), ur0 = us0 .

Corollary 1. 1. Let u ∈ Pr(M, f) be of quadratic growth (the capacity cri-
terion in Lemma 3 holds for instance) and let, any blow up of f , f0 =
λ2(x2)2+ then

u0 ≡ lim
r→0

u(rx)
r2

=
( ±

√
1
2
− λ2x1 + λx2

)2

+
,

where the existence of the limit is assured by the preceding Lemma.

2. If u ∈ P∞(M, f) and the shrink down of f , f∞ = λ2(x2)2+ then

u∞ ≡ lim
r→∞

u(rx)
r2

=
( ±

√
1
2
− λ2x1 + λx2

)2

+
,

where the existence of the limit is assured by the preceding Lemma.
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3. If both 1. and 2. above are satisfied then u∞ ≥ u0.

Proof: By the quadratic growth of u, Ψ(r, u, 0) must be bounded (Ψ is as in
Lemma 1). Therefore limr→0 Ψ(r, u, 0) converges to a constant C0. Moreover

lim
r→0

Ψ(rs, u, 0) = lim
r→0

Ψ(s, ur, 0) = C0 ∀s > 0. (23)

So u0 is homogeneous of second degree. This together with Theorem 1 shows
the first statement of the Corollary. The same argument works with the shrink
down of u (that is the case r → ∞).

The third statement in the corollary is a consequence of the monotonicity of
Ψ, Ψ(1, u∞) ≥ Ψ(1, u0). A direct calculation of the energies of the two possible
values of u0 and u∞ will show that u∞ ≥ u0.

This corollary states that we have only two kinds of behavior of global solu-
tions at the origin and two kinds of behavior at the infinity point. More precisely
the behavior is as one of two “half-polynomials”, the functions in (20) with “+”
and “-” sign respectively. These functions will be used so often hereafter that
we give them special notation.

Definition 3. By U1 and U2 we mean the following functions:

U1 =
( −

√
1
2
− λ2x1 + λx2

)2

+
,

U2 =
(

+

√
1
2
− λ2x1 + λx2

)2

+
.

It would be more correct to denote the global homogeneous solutions by Uλ
1

and Uλ
2 , since U1 and U2 depend on the parameter λ. But for simplicity of

notation we don’t explicitly indicate that λ dependence. What particular λ we
are using is always clear from context.

A reasonable question to ask is whether there exist solutions which behaves
like U1 near the origin and U2 near the infinity, i.e. with blow up equal to U1 and
shrink down equal to U2. As mentioned in the beginning of this section, such a
solution was recently constructed and will appear in a forthcoming paper by the
author and Henrik Shahgholian. These non-homogeneous solutions will force us
to define and work with a new class P̂r(M, f) in the next section. This new
class of functions will be strictly smaller than Pr(M, f) and therefore Theorem
2 will be substantially weaker than it could have been if such inhomogeneous
solutions didn’t exist, if we at all could conceive a world where our mathematics
where different (I leave the last question to the Kantians). Though we won’t
ponder upon the inhomogeneous solutions let us mention something about their
appearance, we will prove that any inhomogeneous solution of quadratic growth
lies in between U1 and U2.

Lemma 7. Let u be an inhomogeneous global solution of quadratic growth, with
homogeneous boundary values, then U1 ≤ u ≤ U2.
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Proof: Lets first prove that u ≤ U2. Assume that u is a non homogeneous
quadraticly bounded solution with blow up U2 and shrink down U1. Define
Qr = (arx1 +λx2)2+ where ar is the smallest constant such that ur ≤ Qr in B+

1 .
It is easy to see that Qr is increasing and its limit as r → ∞ is U2 which gives
the proof.

The proof that U1 ≤ u is done similarly.

6 The Regularity of the Free Boundary.

In this section we discuss the regularity of the free boundary. To be more exact
we will prove that the free boundary is pointwise differentiable up to the fixed
boundary. We get uniform C1-regularity in a non-tangential access region if at
touching points where the solution’s blow-up is the larger possibility, and non-
uniform C1-regularity at blow-up points where the limit is the smaller possibility.

The idea of the proof comes directly from [SU], where they consider the class
Pr(M, 0). In the case of [SU] all global solutions are homogeneous and there
exist no problem with non-homogeneous global solutions. Therefore they have
no problem to show uniformity of the regularity. Also their assumption that
u = 0 on Π means that they do not have to consider non-tangential approach
regions.

Let us first prove a Theorem stating the non-uniform C1-regularity of the
free boundary, and later provide further assumptions to get stronger results.

Theorem 2. Suppose u ∈ P1(M, f) be quadratically bounded and f satisfying

lim
rj→0

f(rjx+ xj)
r2j

= λ2(x2)2+,

then Γu is a C1 in N ∩ {x1 ≥ ε|x′|} for every ε and a small neighbourhood N
of the origin.

Remark 1: In section 2 we showed that we can find a solution u whose
free boundary meets the fixed boundary on the boundary of any closed set. In
particular we can find a solution u with a sawtooth function forced between two
parabola touching at the origin as contact set. As in section 2 we construct
such a function by constructing an f with the sawtooth function as ∂{f �= 0}.
The free boundary of u is certainly not C1 up to Π in this case even though the
blow up of f has support in a half space, therefore the non-tangentil approach
is a neccessary.

Proof: Let u be as in the Theorem, we need to show that near the origin the
free boundary is differentiable in the non-tangential approach region and also
that the normals converge as we get closer to the origin.

Let xj → 0 be points in Γ ∩ {x1 > δ|x′|}. Denote rj = |xj | and make the
blow-up

uj =
u(rjx)
r2j

→ Ui for i = 1 or i = 2.
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In both cases we can deduce that for j large enough the free boundary of u
is, near xj , traped between two planes paralell to ΓUi that are o(rj) appart.
Using that x1 ≥ δ|x′|, we can consider our solution in Bxj

1
(xj) where the free

boundary is trpped betweein the planes at a distance o(xj
1), interiour regularity

results applies [C] and gives the desired result.
Next we would want to get a result on the uniform regularity of the free

boundary. To do that we need to restrict our class of solutions somewhat.

Definition 4. Let f be a function satisfying

lim
r→0

f(rx)
r2

= λ2(x2)2+

for λ ∈ [0, 1√
2
]. Then we define P̂r(M, f) as the subset of Pr(M, f) consisting

of functions whose blow ups exist and equals U2, for the definition of U2 see
Definition 3 on page 13.

Theorem 3. Let u ∈ P̂1(M, f) then there exists an r0 such that
1)Γu ∩ Br0 ⊂ {x; dist(x,ΓU2 ≤ |x|σ(|x|))} for a uniform modulus of conti-

nuity σ
2) the free boundary is uniformly C1 in the region Br0 ∩ {x1 ≥ δ|x′|},

the C1 norm of Γu depends on n, δ, λ and M .

Proof: We start by proving 1. We will show that for each ε there exists a
ρε such that if x0 ∈ Γu, x0

1 ≥ δ|x0′| ‖x0‖ < ρε then x0 ∈ {x; dist(x, ∂ΩP2) <
ε|x|} ≡ K. We can then choose σ such that σ(ρε) = ε.

Assume the contrary, that is there exists uj and xj ∈ Γuj such that |xj | → 0
and xj /∈ K. To get the desired contradiction we make the following blow up

ũj(x) =
uj(|xj |x)
|xj |2 .

Obviously

x̃j :=
xj

|xj | ∈ ∂Ωũj ∩ ∂B+
1 (0),

with d(x̃j , ∂ΩP2) > ε. Now a subsequence of {ũj}j will converge in C1,α to a
global solution u0. Also x̃j → x̃ for a subsequence, with x̃ /∈ K. If we can
show that u0 = U2 we will get a contradiction to x̃ /∈ K and the first part
of the theorem follows. limr→0

u0(rx)
r2 is a global homogeneous solution so, by

Corollary 1, we have to exclude that the blow up of u0 is U1. But this follows
by Lemma 6 and that u ∈ P̂r(M, f).

So lets prove the second statement of the theorem. We will still follow the
main lines of [SU]. Our first goal is to show that Γu is C1,α away from the fixed
boundary Π. We will need the following lemma (similar to Lemma 5.2 in [SU]).
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Lemma 8. 1. Given ε > 0, there exists ρε > 0 such that if u is as in Theo-
rem 3, with λ > 0 and x0 ∈ Γu ∩Bρ+

ε
∩ {x0

1 ≥ δ|x0′|}, then

sup
B3r(0)

|u(x+ x0) − U2(x+ x0)| ≤ ε(r)2,

with r = x0
1 Moreover, u ≡ 0 in S = {x ∈ B3r/4(x0); dist(x,ΩU2) >

3C
√

εr
4 }

2. If λ = 0 the same is true with (x1−x0
1)

2
+

2 instead of U2.

Proof: Assume the contrary, i.e. there exists uj ∈ P̂1(M, f) and xj ∈
Γuj ∩B1/j(0) such that

sup
B3rj

(0)

|uj(x+ xj) − U2(x+ xj)| > ε(rj)2,

where rj = xj
1. Upon scaling uj

ũj(x) =
uj(rjx+ xj)

(rj)2

we’ll have

sup
B3(0)∩{x1>−1}

|ũj(x) − U2(x+
xj

rj
)| > ε.

We will show that both ũj and U2(x+ xj

rj
) converges to U2 and thereby get the

contradiction.
Since u is quadraticly bounded and λ > 0, ũj converges to a global solution

in C1,α. Moreover

ũj |{x1=−1} =
f(xj

1x
′ + (xj)′)

(xj
1)2

→ U2(x)|{x1=−1}.

Since 0 ∈ Γũj , for all j, ũj → U2.
So we are done, with the first part of 1. in the lemma, if we can show that

U2(x+ xj

xj
1
) → U2(x). But this is easy, by the first part of Theorem 3

xj

xj
1

→ x̂ ∈ ΓU2 .

But U2 is invariant under translations in ΓU2 .

The second part of 1 in the Lemma is an easy consequence of the well known
fact that

sup
Br(x0)

u ≥ u(x0) + Cr2
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for any ball Br(x0) ⊂ Ωu, see [CKS] for details.

The proof for λ = 0 is very similar. All the details may be found in the
proof of Lemma 5.2 in [SU]. The statement in [SU] is a little weaker but all the
details of the proof works in our case.

Continuation of the proof of Theorem 3: By Lemma 8 we may use Lemma 6.2
in [CKS] to conclude that u ≥ 0 in B3x0

1/4. Then by Theorem 7 in [C] it follows
that, for small |x0|, Γu is a C1,α-graph over ∂ΩP2 in Bx0

1/4(x0) with C1,α-norm
not larger than C/x0

1.
So it remains to show that the normal of Γu is uniformly continuous up to Π.

We will once again use an argument of contradiction. So lets assume that there
exists a sequence of functions uj ∈ P̂1(M, f), a sequence of points xj ∈ Γuj such
that |xj | → 0 and angle(nxj , e) > ε for some ε > 0. Where e is the normal of
ΓP2 and nxj is the normal of Γuj at xj .

Consider the blow up

ũj(x) =
uj(rjx+ xj)

r2j

where rj = |xj
1|. By the assumption uj ∈ P̂1(M, f), a subsequence of ũj will

converge to U2, in C1,α. But (for another subsequence if necessary) Γũj will
converge to ΓU2 in C1,α(B1(e)), that such a subsequence exists follows from
Lemma 8. By that Lemma ũj is ε-close to U2 in a ball around e, and by [C]
(Theorem 7) it follows that Γũj is uniformly C1,α when ε is small enough. This
contradicts angle(nxj , e) > ε. This implies that the normal of Γu is uniformly
continuous up to the boundary for all u ∈ P̂1(M, f).

Remark: If λ = 1
2 then P̂1(M, f) = P1(M, f).

Remark: If we let λ = 0 then this Theorem is a generalization of the first
two statements of Theorem C in [SU].

With more assumptions on the regularity of the boundary values we can
deduce more regularity of the free boundary. Let us give one such example as a
Corollary to Theorem 2.

Corollary 2. Let u ∈ P1M, f \ P̂1(M, f). Assume further that f ∈ C2(spt(f)),
{f = 0} is a C1 set and f satesfies the properties in Theorem 2 then there is a
small neighbourhood of the origin where Γu is C1.

Proof: The Weiss energy functional of Lemma 1 is upper semicontinious in
the center of the balls where the integrals are taken, therefore all the touching
points near the origin will be points where the blow-up converges to U1. Using
the regularity of f and non-tangential regularity of Theorem 2 the result follows.
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7 Generalizations

Theorem 2 may be strengthened further without much effort. Actually without
any considerable changes all the details in the proof of Theorem 2 works.

Theorem 4. Let u solve

∆u = gχΩu where g ∈ C0,Dini

u = ‖∇u‖ = 0 on Γu (the free boundary)
u|Υ = f(x2, ..., xn) where Υ = {(υ(x′), x′); |x′| ≤ 1}, υ ∈ C1

u ∈ W 2,p(B+
r (0)),

⎫⎪⎪⎬
⎪⎪⎭ (24)

υ(0) = 0, ∇υ(0) = 0 and g(0) = 1 (for simplicity), assume furthermore that
the assumptions of Theorem 2 holds, with obvious changes in the definition of
P̂1(M, f) (i.e. u solves equation (24) instead of equation (1)). We also need to
assume that

lim inf
ε→0

|Λu ∩B+
ε (x0)|

|B+
ε (x0)| >

1
4
, (25)

for all x0 ∈ Γu in a neighborhood of the origin. Then the conclusion of Theorem
2 also holds, but naturally σ will depend also on g and υ.

Proof: Since the proof is very similar to the proof of Theorem 2 we will just
indicate the differences. All the relevant results of section 4 and 5 will work with
no substantial changes in the proofs. We only have to realize that the blow up
of Υ becomes the hyper plane Π, and in the uniqueness proof for blow ups we
have to be little more careful when we show that the Weiss energy functional is
continuous, but there is no substantial changes in the proofs. So we may freely
use those lemmas.

To prove the second part of the theorem we need an equivalence of Lemma
8. But the lemma follows easy even in this case. Now the theorem easily follows
in this more general case in the same way as Theorem 2; we need only to use the
results in [B] (Theorem 7.2) to show C1 regularity of Γu away from Π, it is now
we need the condition of equation (25). We leave the details to the reader. The
interested reader may also consult [BS] for further information on free boundary
problems with the g-function appearing on the right side of our equation.

Remark: Obviously the assumption that g(0) = 1 is stronger than we need, a
simple normalization allows a more general g, we leave the details to the reader.
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