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1 Introduction

1.1 Multiscale problems in micromagnetics

Ferromagnetic materials show a fascinating variety of magnetization patterns on
scales ranging from a few nanometers to hundreds of microns. The formation
and evolution of these patterns is at the heart of numerous magnetic devices,
including the ubiquitous magnetic storage media. Somewhat surprisingly, this
large variety of patterns can be understood as (local) minimizers of a simple,
yet subtle, functional, the micromagnetic energy. Their dynamics is described
by an associated evolution equation, the Landau-Lifshitz (or Landau-Lifschitz-
Gilbert) equation, which combines Hamilitonian and dissipative aspects.

Until recently the micromagnetic energy was mostly analyzed in one of two
ways. The first approach is to consider special ansatz functions (inspired by
physical intuition) with a few free parameters and then to optimize over these
parameters. While this approach has lead to valuable insights, it is also limited
in its scope. In particular one cannot detect something which has not been put
in the ansatz. The second approach is large scale computation. This has been
successful for answering specific questions for submicron devices. Due to the
wide separation of the relevant scales, direct numerical simulation is, however,
restricted to the smallest scales and cannot cover the full picture. Perhaps even
more importantly, it answers specific questions, but provides little insight in
general principles and understanding.

In the last decade a new approach to micromagnetics has emerged, and the
SPP 1095 has had an important impact in shaping it. This approach is based on
two ideas. First, considerable insight can be gained by the identification of op-
timal scaling laws involving the natural parameters, such as material constants
or geometric quantities, and the corresponding magnetization patterns. This
amounts to establishing upper and lower bounds on the micromagnetic energy.
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While for the former one can often rely on intuition and test functions devel-
oped in the physics community, the latter requires in general new mathematical
ideas. The second approach is to derive simplified theories in certain limiting
parameter regimes, e.g., for thin films. These theories reduce the complexity of
the magnetic energy landscape (and the dynamics in that landscape) and allow
one to get a better insight into the essential structures.

In this paper we focus on the mathematical analysis of the statics and dy-
namics of magnetization structures in thin films. For a broader review of recent
developments, written for a more general science audience, we refer to [12].

1.2 The micromagnetic energy and associated variational
problems

We first discuss the functional from which all our results are ultimately derived,
the micromagnetic energy. This energy is a sum of terms of various types.
Depending on certain material parameters and on the shape and size of the fer-
romagnetic sample, any of these terms can play a dominant role, or an interplay
between several of them can take place. This explains the multitude of different
patterns derived from this theory.

We consider an open domain Ω ⊂ R3 which represents the ferromagnetic
body that we study. The magnetization of this body is given by a vector field
m : Ω → R3. Below the Curie temperature, the magnetization is saturated,
which means that m is of constant length. We use a normalization such that m
has values in the unit sphere S2. Now we consider several energies associated
to m.

The so-called exchange energy models the tendency towards parallel align-
ment of neighboring magnetization vectors in the underlying atomic lattice. It
is given by the functional

d2

2

∫
Ω

|∇m|2 dx.

Here d is a material constant, called the exchange length.
The ferromagnetic material may have crystalline anisotropies which prefer

certain directions of m. An integral of the form

Q

∫
Ω

φ(m) dx

represents such anisotropies. Here φ : S2 → [0,∞) is a fixed function and Q
is another material constant. Usually φ is assumed to be smooth, often even a
polynomial.

The magnetization induces a magnetic field, often called the stray field or
demagnetizing field, which obeys the static Maxwell equations. It can be rep-
resented by a potential u : R3 → R which solves the equation

∆u = div(χΩm) in R
3.

Here χΩ is the characteristic function of Ω (in other words, we extend m by
0 outside of Ω). If Ω is bounded, the saturation condition guarantees that
m ∈ Lp(Ω,R3) for every p ∈ [1,∞]. Hence there exists a unique solution of this

2



equation in the Sobolev space H1(R3). The induced field is then represented by
−∇u. Its energy is called the magnetostatic energy and given by

1
2

∫
R3

|∇u|2 dx.

The interaction with an external field h : R3 → R3 induces an energy term

−
∫

Ω

h ·m dx

that prefers alignment of the magnetization with the external field. In this
paper, applied fields appear as driving forces in the context of moving domain
walls.

The micromagnetic energy is the sum of all four energies, that is,

E(m) =
d2

2

∫
Ω

|∇m|2 dx +Q

∫
Ω

φ(m) dx +
1
2

∫
R3

|∇u|2 dx −
∫

Ω

h ·m dx. (1)

The exchange term is of leading order in this functional, but the constant in
front of it is typically small. The other three terms are of order 0, but one
of them (the magnetostatic energy) involves the non-local pseudo-differential
operator ∇∆−1 div. In some situations, its behavior is quite different from
the behavior of the other terms. Under certain conditions, these energies may
be in competition with one another. For instance, the exchange energy favors
constant magnetizations, whereas the magnetostatic energy prefers vector fields
which are divergence free (in R3). Because of the jump at the boundary, the
two conditions cannot be satisfied simultaneously. The anisotropy term, on the
other hand, may not penalize a varying vector field in principle, at least not if
the function φ has several minima (which is usually the case), but it favors rapid
transitions between different states—unlike the exchange energy. An analysis
of such interplays can explain some of the observed patterns in ferromagnets.

We study two types of variational problems associated to the micromagnetic
energy. Minimizers of E, or more generally, local minimizers and (stable) critical
points represent the stable magnetization patterns of our ferromagnet. If we
write

∇L2E(m) = −d2∆m +Q∇φ(m) + ∇u− h (2)

for the L2-gradient of E (without the saturation constraint), then these varia-
tional problems give rise to the Euler-Lagrange equation

(1 − m ⊗ m)∇L2E(m) = ∇L2E(m) − (m · ∇L2E(m))m = 0 in Ω.

(Here 1 denotes the identity (3×3)-matrix.) That is, the projection of ∇L2E(m)
onto the tangent space TmS2 vanishes. This equation can also be expressed in
the form

d2(∆m + |∇m|2m) −Q∇φ(m) + (1− m ⊗ m)(h −∇u) = 0 in Ω.

Moreover, we have homogeneous Neumann boundary conditions

∂m
∂ν

= 0 on ∂Ω.
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A model for the dynamical behavior of the magnetization is given by the
Landau-Lifshitz equation

∂m
∂t

+ γm ∧∇L2E(m) + αm ∧ ∂m
∂t

= 0, (3)

also called the Landau-Lifshitz-Gilbert equation. Here ∧ denotes the vector
product in R3. Both γ and α are fixed constants, and we require that αγ > 0.
Another common way to write the equation is

∂m
∂t

= γ̂m ∧∇L2E(m) + α̂m ∧ (m ∧∇L2E(m)). (4)

The two versions are equivalent for

α̂ =
αγ

α2 + 1
and γ̂ = − γ

α2 + 1
.

The terms in (3) and (4) with coefficients γ and γ̂, respectively, describe a
magnetic precession. We call them the gyromagnetic terms. The terms with
coefficients α and α̂, respectively, are damping terms (hence the sign condition
on αγ, giving rise to the condition α̂ > 0). From the mathematical point of
view, the damping terms are the more important ones, because they make the
problem parabolic. Without them, the equations would be of the type of a
nonlinear Schrödinger equation.

Taking the vector product with m in all terms of (3), we obtain a third
equivalent version of the equation,

α̃
∂m
∂t

+ γ̃m ∧ ∂m
∂t

= (m ⊗ m − 1)∇L2E(m), (5)

where
α̃ =

α

γ
and γ̃ = − 1

γ
.

Representing the equation in this form is convenient because it underlines the
similarity to the negative L2-gradient flow for the functional E subject to the
constraint |m| = 1. (In fact this gradient flow is (5) for α̃ = 1 and γ̃ = 0.) We
will normally use the Landau-Lifshitz equation in the form (5).

It is natural to impose a homogeneous Neumann boundary condition also
for the Landau-Lifshitz equation.

Apart from the obvious quantities d, Q, φ, and h, the qualitative behavior of
E and of solutions of the above variational problems also depends on the shape
and the size of the sample Ω. Some idea of the dependence on the size can be
gained by studying the scaling properties of the four terms which contribute
to the micromagnetic energy. Suppose for a number λ > 0, we replace Ω by
λΩ and the vector field m by m(x/λ) (and similarly h by h(x/λ)). Then the
exchange energy is multiplied by the factor λ, whereas the other energy terms
are multiplied by λ3. Thus it is to be expected that for a very small sample,
the exchange energy determines the behavior of m to a large extent; that is, a
minimizer of E is nearly constant. For a very large sample, on the other hand,
the exchange energy is insignificant, and the behavior of m is ruled by the other
terms.

On the other hand, we can use rescalings to eliminate one of the parameters
in our problem. Replacing Ω by λΩ, and replacing simultaneously d by λd, we
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obtain a functional whose energy landscape differs only by a constant. This way
we can normalize the problem such that either d or Q become 1, or such that
Ω has unit size.

1.3 Thin films

The results in this paper are concerned with ferromagnetic bodies in the shape
of thin films. That is, we consider domains of the form

Ωδ = Ω × (0, δ),

where Ω is now a two-dimensional domain and δ > 0 is small compared with the
size of Ω. We either study the limit behavior of the micromagnetic energy and
its variational problems as δ ↘ 0, or we use the thinness of Ωδ as a justification
for working directly in two dimensions and with an energy that approximates
the micromagnetic energy for thin films. In both cases, the projection of m
onto the plane R2 × {0} and the third component of m play different roles. It
is therefore convenient to use the notation m = (m,m3) for the magnetization
vector field, where m = (m1,m2). Similarly we often write x = (x, x3) =
(x1, x2, x3) for a generic point in R3. Sometimes, however, it is more convenient
to use coordinates (x, y, z) in R3.

The reduction to two dimensions—whether by a rigorous asymptotic analysis
or formally—decreases the complexity of the problems that we study. Never-
theless, a rich variety of patterns can still be observed, and there exist different
asymptotic regimes for the thin-film limit which give rise to different reduced
theories. These regimes are determined by certain relations between the param-
eters involved in the problem, of which we have now four (under the assumption
that the shape of Ω is fixed, but the size can still be varied by scaling): In ad-
dition to the material constants d and Q, we have the thickness δ and a length
scale L of the cross-section Ω. When we are not interested in the behavior of
m near ∂Ω, we may assume Ω = R2, and then L need not be considered. If we
choose to neglect certain terms of the micromagnetic energy, this may of course
reduce the number of parameters further. For instance, if we consider only the
exchange energy and the magnetostatic energy (which we do in a substantial
part of this paper), then the asymptotic regime depends on the behavior of the
ratio d/L as we let the aspect ratio δ/L converge to 0. Some asymptotic regimes
for this thin-film limit have been studied by Gioia and James [17]; Carbou [8];
DeSimone, Kohn, Müller, and Otto [11]; and Kohn and Slastikov [22, 23]. An-
other regime is discussed in this paper, first through a simplified model in two
dimensions, then by an asymptotic analysis for the micromagnetic energy on Ωδ

for δ ↘ 0. This theory also establishes a link to the theory of Ginzburg-Landau
vortices, which were first studied by Bethuel, Brezis, and Hélein [4, 5].

A further dimensional reduction is made in the context of parametrized do-
main wall models, that we investigate in detail. Such models represent the basic
building blocks within larger domain patterns or more complex domain wall
structures. Of particular interest is the regime of weakly anisotropic (soft) thin
films, where such transition layers significantly differ from those more common
in phase transitions.
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2 Domain Walls: Internal Structure and Dy-

namics

The primary phenomenon that one associates with magnetic pattern formation
is the decomposition of a magnetic body into almost uniformly magnetized re-
gions. The so-called magnetic domains are separated by thin transition layers,
called domain walls, that interact in a complex network. The structure of such
domain walls is among the central concerns of micromagnetic theory. While
the analysis of domain walls is mathematically an interesting matter of its own,
the physical relevance relies in the resulting mutual interaction having large
impact on the global magnetic microstructure, especially when nonlocal effects
dominate. In reduced thin-film theories, domain walls often emerge as line sin-
gularities while fine structural properties no longer have any effect. Breaking
the resulting degeneracy by means of transparent selection principles rising from
higher order contributions remains a major challenge. On the other hand, mag-
netic domain walls can exhibit internal substructures themselves or can be made
up as a complex composite, such as the cross-tie wall, cf. [19] pp. 240-241.
The simplest domain wall patterns are one-dimensional and appear as extreme
cases in a hierarchy of domain wall models that emerge in diverse parameter
regimes: Within a Bloch wall, the magnetization vector performs a rotation per-
pendicular to the transition axis. The main feature is the avoidance of magnetic
volume charges, so that this wall type is energetically favorable in bulk situations
and essentially equivalent to the transition problem arising from Cahn-Hilliard
models. Such models exhibit sharply localized and rapidly decaying transition
profiles. Our analysis shows that this behavior can largely change when non-
local interactions dominate and internal length scales fail to be determined by
dimensional analysis. The Néel wall, where the transition proceeds in-plane,
is preferred in suitable thin-film regimes and characterized by the avoidance of
magnetic surface charge. The presence of three energy components with dif-
ferent scaling behavior gives rise to multiple length scales. The typical feature
of a Néel wall is the very long logarithmic tail of transition profiles. Such be-
havior has been predicted by heuristic arguments and numerical simulation (cf.
[39, 16]) in order to explain long-range interaction of Néel walls, when neigh-
boring tails overlap. Here we demonstrate rigorously how the main analytical
feature of the variational principle, a critical regularity property, gives rise to
the typical logarithmic decay behavior [30, 31, 32]. This global approach served
in addition to resolve the spatial scaling laws in terms of all involved parameters
and to derive a somewhat universal limiting profile that reflects the decay.
The evolution of magnetic patterns in the presence of applied fields is closely
related to the motion of domain walls. Gyrotropic domain wall motion is based
on the Landau-Lifshitz-Gilbert (LLG) equations, that describe a damped pre-
cession of the magnetization vector about the effective field, i.e. mathematically
a hybrid heat and Schrödinger flow for the free energy. An appropriate local
description relies on the concept of moving fronts that propagate with constant
speed. Traveling wave solutions for the associate LLG dynamics represent a nat-
ural dynamic counterpart to static domain walls. As it turns out they provide
valuable insight into the mechanisms and properties of domain wall dynamics,
where besides energetics and spatial structures, kinematic quantities as wall
mobility and wall mass come into play.
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Whereas in the equilibrium case the magnetization path is dictated by ener-
getics and particularly stray-field interactions, a second mechanism effects the
shape of a moving domain wall: the precession dynamics as prescribed by LLG
pushes the magnetization vector away from its optimal path, taking into ac-
count a gain in stray-field energy. Many interesting effects originate from this
balance of energetic and dynamic forces, especially when enhanced by strong
shape anisotropy in the regime of thin films. The bulk situation, however, can
surprisingly be solved explicitly by means of a famous construction by Walker,
i.e. a tilted version of the Landau and Lifshitz solution for the standard Bloch
wall, cf. [44]. Again all spatial and temporal scales can be read off by dimen-
sional reasoning. The natural question on whether such a construction can be
perturbed to the regime of finite layers has been answered in the affirmative
[33]. Indeed, a suitable choice of canonical coordinates transforms the associate
LLG system into a weakly coupled Schrödinger/reaction-diffusion system and
makes it accessible for spectral methods. The analysis also demonstrates that
the finite layer perturbation is indeed a singular one and how this relates to
slow decay.
In the regime of thin films the competition between stray field and precession is
singular, that is to say, the asymptotically hard constraint of in-plane magneti-
zation is geometrically incompatible with LLG. In order to derive an effective
evolution equation, the change of spatial scaling has to be accompanied with a
change of times scale. An effective thin-film limit for LLG with finite Gilbert
damping has been carried out in [15, 22] and in Theorem 12, where the gyromag-
netic precession term effectively turns into a large damping term as well. While
the overall relaxation dynamics is captured correctly, oscillatory phenomena,
such as spin waves or domain wall resonances, are suppressed in such a limit. In
order to account for these effects we consider the complementary regime where
Gilbert damping is comparable to the relative thickness. We show that in this
regime LLG keeps its oscillatory features and turns into a damped nonlocal wave
map equation [7]. In the context of domain wall motion it provides a mechanical
analogy and sheds some new light on the notion of wall mass. For small applied
fields, the traveling wave problem, modeled on this wave-type dynamics, reduces
to the question of linear stability for stationary Néel walls. Then the implicit
function theorem provides existence and determines the mobility of traveling
Néel walls.

2.1 Mathematical framework for planar domain walls

Let us consider an infinitely extended uniaxial magnetic film that is represented
by Ωδ = R2×(0, δ) and oriented by the anisotropy (easy) axis R ê2. We consider
parameterized transitions along R ê1 (that we call transition axis) that connect
antipodal states on the easy axis, i.e.

m : R → S
2 with m(±∞) = (0,±1, 0).

In the following we denote the transition parameter by x and the vertical coor-
dinate by z, i.e. we set x1 = x and x3 = z. Under the hypothesis that, within
the film, the magnetization varies only along the transition axis, we identify
the associated global magnetization field m(x) = m(x)χ(0,δ)(z) that is defined
for x ∈ R3. Then m = m(x) induces the stray field ∇u determined by the
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potential equation ∆u = ∇ · m in D′(R3). We observe that u = u(x, z) where
the z dependence only stems from shape anisotropy. Thus the micromagnetic
energy induces the following averaged domain wall energy per unit length:

E(m) =
1
2
−
∫ δ

0

{
d2

∫
|m′|2 dx +

∫
∇u ·m dx+Q

∫
(1 −m2

2) dx
}
dz. (6)

The vertical average in (6) is redundant for the exchange and anisotropy
portion. In order to perform a dimensional reduction for the stray field, we
introduce a reduced stray-field operator

Sδ : m 	→ −
∫ δ

0

∇u dz where ∆u = ∇ ·m in D′(R3).

Changing the order of integration, the averaged stray-field energy can be ex-
pressed as

Estray(m) =
1
2
−
∫ δ

0

∫
∇u · m dx dz =

1
2

∫
R

Sδ(m) ·m dx.

A straightforward calculation shows that the operator Sδ has an interpretation
in terms of Fourier multiplication operators. Indeed, we have

Sδ(m) =
[
σ(δD)m1, 0 ,

(
1 − σ(δD)

)
m3

]
: R → R

3,

where σ(D)f = F∗
(
ξ 	→ σ(ξ)f̂ (ξ)

)
. The basic Fourier multiplier σ(ξ) is given

by

σ(ξ) =
(

1 − 1 − exp(−|ξ|)
|ξ|

)
∼
{

1
2 |ξ| for low frequencies ξ

1 for high frequencies ξ.
(7)

The reduced stray-field operator can equivalently be described by means of
convolution kernel, cf. [16], [31] for a derivation and a detailed discussion.
Accordingly, the reduced stray-field energy can be written as

Estray(m) =
1
2

∫
σ(δξ) |m̂1(ξ)|2 dξ +

1
2

∫ (
1 − σ(δξ)

) |m̂3(ξ)|2 dξ. (8)

The advantage of the Fourier representation is that one can easily read off
the asymptotic form of interaction from the asymptotic behavior of Fourier
multipliers. From (8) one can separate a local contribution and a nonlocal one
that vanishes in the bulk regime

Estray(m) =
1
2
‖m1‖2

L2 +
1
2

∫ (
1 − σ(δξ)

){|m̂3(ξ)|2 − |m̂1(ξ)|2
}
dξ. (9)

Indeed, from (7) we deduce that σ(δ ξ) → 1 in the regime when δ|ξ| → ∞. Thus,
for a corresponding family of transitions m so that m1 and m3 are uniformly
bounded in L2(R), we infer that

Estray(m) =
1
2
‖m1‖2

L2 + o(1). (10)
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We observe that in the bulk regime, the stray-field interaction reduces to a local
contribution having the form of an additional anisotropy term that penalizes
magnetizations that point along the transition axis. In the complementary thin-
film regime when δ|ξ| → 0 we have σ(δ ξ) → δ|ξ| and, for m1 and m3 uniformly
bounded in H1(R), an asymptotic expansion

Estray(m) =
1
2

∥∥m3

∥∥2

L2 +
δ

4

∥∥m1

∥∥2

Ḣ1/2 + o(δ), (11)

where ‖f‖2
Ḣ1/2 =

∫ |ξ||f̂(ξ)|2 dξ denotes the homogeneous H1/2-norm. The zero
order contribution can be interpreted as the residual surface charge interaction
having the form of an additional anisotropy that penalizes vertical magnetiza-
tions. The first order term corresponds to residual volume charge interaction.
From a variational point of view the leading order stray-field contribution in
(10) and (11), respectively, determines asymptotically a geodesic magnetization
path. Whereas in the bulk situation the stray field interaction can be eliminated
completely by choosing a path perpendicular to the transition axis, i.e. m1 = 0
(Bloch walls), the penalty on the vertical component as δ → 0 enforces in-plane
rotations, i.e. m3 = 0 (Néel walls), taking into account internal stray fields that
typically appear to the leading order.

The figure shows the Bloch and the Néel wall
path as perpendicular geodesic connections of
antipodal states. It also shows an intermedi-
ate geodesic that corresponds to a moving do-
main wall in the bulk regime where dynamic
forces lead to an inclination towards the Néel
wall path, the so-called Walker path. We will
refer to the polar angle ϕ between the Bloch wall
and the Walker path as the Walker angle.

Complete elimination of stray-field interaction cannot be achieved by means
of one-dimensional transition modes. In somewhat thicker films, however, the
symmetric Néel wall would lead to comparatively large stray-field contribution.
But for an attempt to construct a stray-field free transition layer one has to
abandon the symmetry assumption and to permit variations in the vertical
direction. Such an object, referred to as asymmetric Bloch wall, has been
discovered by Hubert, cf. [19] pp. 245-249, where volume charges are avoided by
a vortex construction in the wall center. At the same time numerical simulations
have confirmed a dramatic decrease of energy by breaking the wall symmetry.
Recently, a rigorous verification based on an ansatz-free interpolation argument
has been provided by Otto in [38].

2.1.1 Bloch walls versus Néel walls

The infinite Bloch wall in bulk samples has been the first micromagnetic object
proposed and calculated in the seminal work by Landau and Lifshitz, cf. [27].
Once the stray-field energy is fully eliminated by choosing an appropriate path,
the corresponding optimal profile and minimal energy can be found by nowadays
standard variational methods. Indeed, from (6) we get for m = (0,m2,m3) :
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R → S2 with m2(±∞) = ±1,

E(m) =
d2

2

∫
|m′|2 dx+

Q

2

∫
(1 −m2

2) dx.

The length scale w =
√
d2/Q defines the typical Bloch wall domain width.

Rescaling by w and renormalizing the energy by the factor 4
√
d2Q yields

E(m) =
1
4

∫
|m′|2 dx+

1
4

∫
(1 −m2

2) dx.

Using the identity |m′|2 = (m′
2)

2/(1 −m2
2) we deduce the optimality relation

m′
2 = 1 −m2

2 with m2(±∞) = ±1 (12)

that is uniquely solved by m2(x) = tanh(x). Thus in the original scaling

m(x) =
(
0, tanh(x/w), sech(x/w)

)
. (13)

Moreover we deduce from (12) and Young’s inequality that

E(m) ≥ 1
2

∫
|m′

2| dx ≥ 1,

that is attained under equipartition for m2(x) = tanh(x). Thus we recover from
scaling that the Bloch wall energy per unit length is given by e0 = 4

√
d2Q. One

may wonder whether the Bloch wall path is indeed optimal; but this is a simply
consequence of |m′|2 ≥ (m′

2)
2/(1−m2

2) that holds true for any m : R → S2 ∈ H1

and Young’s inequality that imply the same lower energy bound.
Twenty years later, Louis Néel realized that in a regime where the film thickness
becomes comparable to the Bloch wall width, a transition mode within the film
plane can lower the total energy decisively, cf. [37]. New ideas, however, had to
be developed in order to provide a satisfactory analysis of this multiscale object.
Indeed, for an in-plane rotation m : R → S1 the thin-film approximation of (6)
yields

E(m) =
d2

2

∫
|m′|2 dx+

δ

4

∫
|ξ||m̂1(ξ)|2 dξ +

Q

2

∫
|m1|2 dx. (14)

Unlike the Bloch wall problem where only two energy components remain that
can be balanced by a single length scale, the Néel wall problem incorporates two
characteristic length scales. Those are connected with the competition of two
energy components, respectively: In order to highlight the competition between
stray field and anisotropy we rescale by the tail width w = δ/(2Q). With the
small aspect ratio Q = 4 κ2Q where κ = d/δ 
 1, we obtain the following
singular perturbation problem

EQ(m) =
Q
2

∥∥m∥∥2

Ḣ1 +
1
2

∥∥u∥∥2

Ḣ1/2 +
1
2

∥∥u∥∥2

L2 → min (15)

m = (u, v) : R → S
1 with u(0) = 1

that captures the logarithmic decay behavior as we will see below. There is a
second characteristic length scale that is smaller than the tail width and related
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to the width of the core in the very center of the Néel wall. In the above regime it
coincides merely with the exchange length d, and rescaling yields an expression

1
2

∥∥m∥∥2

Ḣ1 +
1
4κ

∥∥u∥∥2

Ḣ1/2 +
Q

2

∥∥u∥∥2

L2

that, as Q tends to zero, highlights the competition between exchange and
reduced stray-field energy.

2.2 The logarithmic tail of Néel walls

The main analytical feature of the variational problem (15) is that the energy
gives only uniform control of the H1/2-norm as Q tends to zero. Since the
H1/2(R) norm just fails to control the modulus of continuity, the pointwise
constraint u(0) = 1 is delicate and one might expect a logarithmic singularity
in a renormalized setting. Logarithmic tails of Néel walls have indeed been
predicted by heuristic arguments and the resulting very long range interaction
between different Néel walls has important consequences, cf. [19] pp. 242-245,
[39] with some extensions in [16]. Logarithmic scaling for the energy has recently
been established in [16] and the following refined version is announced in [10]:

Theorem 1. As Q tends to zero the minimal energies behave like

inf EQ =
π

2
(
1 + o(1)

)
ln(1/Q)−1

where the infimum is taken over transitions that are admissible according to
(15).

Similar scaling laws have been derived in the case of periodic Néel wall arrays,
where tails are confined by those of neighboring walls, cf. [13]. They were
used to heuristically quantify their mutual repulsive force, that is particularly
interesting in the context of optimal spacing for the cross-tie wall.
It is remarkable that, in case of finite Néel walls, the above energy asymptotics
in Theorem 1 holds true when the infimum is taken over y-periodic transitions
m = m(x, y), cf. [9]. Here, the quality factor Q is replaced by the aspect ratio
δ/w, i.e. film thickness by tail width, so that Q = 4 κ2 δ

w . The proof is based
on a dynamic system argument and a sharp interpolation inequality between
L∞ and BV. The result proves in particular (nonlinear) stability of the one-
dimensional Néel wall with respect to two-dimensional variations in the plane,
a result yet unknown for infinite Néel walls.

The proof of Theorem 1 is based on a perturbation argument; its shows
that minimal energies exhibit the same asymptotics as the minimal energies for
the relaxed problem (17) to be introduced below. It turns out to provide an
pointwise logarithmic lower bound as well and motivates the main result [31, 32]:

Theorem 2. Let uQ be a minimizing profile for the variational principle (15).
Then uQ is symmetric-decreasing and exhibits a logarithmic tail in the sense
that

uQ(x) 
 ln(1/x)
ln(1/Q)

for all Q � x � 1 and 0 < Q < 1/4.
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The notations a � b and a 
 b mean that, for some universal constant
0 < c <∞ we have a ≤ c b and 1

c b ≤ a ≤ c b, respectively. It can also be shown
that beyond the logarithmic tail a Néel wall profile decays only quadratically
ln(1/Q)uQ(x) 
 x−2 as |x| → ∞, cf. [30], a fact that is related to the limited
regularity of associated Fourier multipliers. Renormalization yields in addition
a universal limiting profile that captures the essential decay behavior:

Theorem 3. For any sequence Q → 0 so that the corresponding sequence of
renormalized profiles UQ = ln(1/Q)uQ converges in the sense of distributions,
the weak limit U0 is a multiple of the fundamental solution of the operator
(−∆)1/2 + 1, and the convergence is strong in L2

loc.

For fractional derivatives of order s > 0 we use the notation (−∆)s/2f =
F∗(ξ 	→ |ξ|sf̂(ξ)), where, for s = 2, we have (−∆)f = − d2f

dx2 . The fundamental
solution G ∈ L2(R) with (−∆)1/2G + G = δ0 is well known as a Fourier inte-
gral. It is smooth away from the origin, symmetrically decreasing and has the
following expansion:

G(x) =
1
π

{
ln(1/|x|) − γ + O(x) as |x| → 0
x−2 + O(x−4) as |x| → ∞,

(16)

where γ denotes Euler’s constant.

2.2.1 Logarithmic lower bounds

We introduce a linear comparison problem arising from relaxation that can be
solved explicitly. We have shown in [32] that relaxation of (15) leads to

E∗
Q(u) =

Q
2

∥∥u∥∥2

Ḣ1 +
1
2

∥∥u∥∥2

Ḣ1/2 +
1
2

∥∥u∥∥2

L2 → min in {u(0) = 1}. (17)

A standard convexity argument implies the existence of a unique minimizer that
satisfier the Euler-Lagrange equation

Q(−∆)u∗ + (−∆)1/2u∗ + u∗ = Λ(Q) δ0 in D′(R). (18)

Expanding the associate Fourier multiplier into partial fractions, (18) can be
solved in terms of the fundamental solution (16), so that the following properties
can be read off:

Proposition 1. The unique solutions u∗Q of the relaxed variational principles
(17) exhibit logarithmic tails in the sense that for 0 < Q < 1/4:

u∗Q(x) =
Λ(Q)
π

(
1 + o(1)

) [
ln(1/x) + rQ(x)

]
for Q < x < 1/e,

where the functions rQ(x) are uniformly bounded in the above regime. The
Lagrange multiplier Λ(Q) agrees with twice the minimal energy and has the
asymptotic behavior (cf. Theorem 1)

Λ(Q) = π
(
1 + o(1)

)
ln(1/Q)−1.

Surprisingly, the relaxed variational principle not only provides an energetic
but also a pointwise lower bound, thus, in view of Proposition 1, a logarithmic
lower bound.

12



Proposition 2. Let uQ be a minimizing profile for variational principle (15).
Then the solution u∗Q of the relaxed variational principle (17) is a pointwise
lower bound.

Proof. The idea is to derive suitable pseudo-differential inequalities for the pro-
files to be compared. We observe that |m′|2 = |u′|2/(1 − u2) and deduce the
following Euler-Lagrange equation

Q
{
− d

dx

(
u′

1 − u2

)
+
(

u′

1 − u2

)2

u

}
+ (−∆)1/2u+ u = 0 (19)

that holds true for a Néel wall profile u in {u �= 1}. By Proposition 4 this
equation holds true in R \ {0}. Now the essential ingredients are symmetric
convexity of comparison profiles stated in Proposition 1 and the following global
maximum principle for the nonlocal field operator (−∆)1/2:

Lemma 1. Suppose that the function u ∈ H1(R) is smooth in R \ {0} and
that u attains a global maximum at x0 �= 0. Then (−∆)1/2u is smooth in a
neighborhood of x0 and (−∆)1/2u(x0) ≥ 0.

We consider w = u∗ − u ∈ H1(R) with w(0) = 0. From (18) and (19) we
deduce, with the positive coefficient a(x) = Q/(1 − u2(x)), that

a(x)(−∆)w + (−∆)1/2w + w ≤ 0 in R \ {0}.

Since w is smooth away from the origin, the Lemma 1 applies and excludes a
global maximum in R \ {0}. But from Propositions 1 and 4 we infer that w(x)
decays as |x| → ∞, and the proof is complete.

2.2.2 Logarithmic upper bounds

The key observation is that logarithmic upper bounds are captured by sharp
elliptic regularity bounds that are uniform in Q. For magnetizations mQ of
bounded Néel wall energy (15) we have ‖uQ‖2

H1/2 ≤ EQ(mQ). Then Sobolev
embedding implies, for any p ∈ (2,∞), a bound ‖uQ‖2

Lp ≤ c(p)EQ(mQ). A PDE
argument, however, shows that for any such p the purely energetic argument
misses the optimal scaling by a full factor EQ(mQ) and provides in addition an
estimate on the growth of optimal constants. Qualitatively, the same is true for
fractional Sobolev norms H1/2

q that are strictly weaker than H1/2.

Proposition 3. For a critical point mQ = (uQ, vQ) of (15) we have∥∥uQ∥∥Lp ≤ c p EQ(mQ) for each p ∈ (1,∞) (20)

for some universal constant c > 0 and∥∥uQ∥∥H
1/2
q

≤ c(q) EQ(mQ) for each q ∈ (1, 2), (21)

where the constant c(q) > 0 only depends on q.

Proof. We outline the main steps: Projection of the Euler-Lagrange system

∇EQ(m) = ∇EQ(m) m⊗m (22)
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onto its first component equation yields, after a suitable decomposition of the
non-linearity, an equation of the form

Q (−∆)u+ (−∆)1/2u+ u = eQ[m]u+ r[u], (23)

where eQ[m] = Q |m′|2 + |(−∆)1/4u|2 + |u|2 is twice the energy density and r[u]
is a defect distribution arising from the in compatibility of nonlocal interaction
and the geometric constraint |m| = 1. In fact, for any test function ϕ, we have〈

r[u], ϕ
〉

=
〈
(−∆)1/4u,

[
(−∆)1/4, (uϕ)

]
u
〉
.

The operator on the left hand side of (23) is uniformly first-order elliptic, while
the right hand side is essentially L1-bounded by the energy, and in that case
the claim would follow from a simple Fourier argument. Commutator estimates,
however, show that uniform bounds for r[u] are slightly weaker than L1 and
rather distributional, i.e in H−1/2

q for q ∈ (1, 2). By means of elliptic regularity
theory we get a uniform bounds in H1/2

q , and the claim follows from asymptotic
inequalities for fractional integration.

From strict rearrangement inequalities that are valid for fractional Sobolev
norms and a simple bootstrap argument based on the Euler-Lagrange system
(22), we deduce the following symmetry and smoothness result for optimal pro-
files u = uQ.

Proposition 4. A Néel wall profile is smooth and symmetrically decreasing.

Remark 1. The above proposition is strict in the sense that a Néel wall profile
m = eiθ cannot have a plateau at 0, and the associate phase function θ is strictly
increasing, cf. Lemma 2.

Proof of Theorem 2

In view of Propositions 1 and 2 it remains to prove the logarithmic upper bound.
Let u = uQ be a Néel wall profile. Proposition 4 implies that the pointwise
values are below the local averages. Thus Hölder’s inequality and Proposition
3 yield

0 ≤ u(x) ≤ −
∫ x

0

u dy ≤
(
−
∫ x

0

|u|p dy
)1/p

≤ c p

(
1
x

)1/p

inf
M
EQ

that is a family of upper bounds parameterized by p. The pointwise optimal
choice of p, given by p(x) = ln(1/x), and Theorem 1 yield the logarithmic upper
bound.

Proof of Theorem 3

From Theorem 1 and Proposition 3 we deduce that UQ is uniformly bounded
in, say, H1/2

3/2 (R), so we can assume that UQ ⇀ U0 weakly in L2(R) and strongly
on bounded intervals. From the profile equation (23) we get

Q (−∆)UQ + (−∆)1/2UQ + UQ = ln(1/Q)
(
eQ[mQ]uQ + r[uQ]

)
.

Obviously, the left hand side converges to (−∆)1/2U0 + U0 in the sense of dis-
tributions. Thus it remains to show that
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(i) the distribution (−∆)1/2U0 + U0 is supported at the origin

(ii) the distribution ln(1/Q)r[uQ] converges to a finite measure.

Claim (i) can be deduced from (19) using the uniform pointwise convergence
of Néel wall profiles to zero away from the origin. Claim (ii) follows from an
iteration of the arguments in of Proposition 3. Indeed, for u = uQ we have
a decomposition of the remainder distribution 〈r[u], ϕ〉 = 〈f [u], ϕ〉 + 〈g[u], ϕ〉,
where 〈

f [u], ϕ
〉

=
〈
(−∆)1/4u, [(−∆)1/4, u2]ϕ

〉
,〈

g[u], ϕ
〉

=
〈
(−∆)1/4u, u2(−∆)1/4ϕ

〉
.

Product and commutator estimates for fractional derivatives (cf. [18, 21]) and
the energy estimate in Theorem 1 show that∣∣〈f [u], ϕ

〉∣∣ ≤ c
∥∥u∥∥

L∞
∥∥u∥∥2

H1/2

∥∥ϕ∥∥
C0 ≤ c ln(1/Q)−1

∥∥ϕ∥∥
C0 .

Thus we find that the contribution coming from ln(Q) f [u] is asymptotically a fi-
nite measure. On the other hand, according to the H1/2

q estimate in Proposition
3, ∣∣〈g[u], ϕ

〉∣∣ ≤ c
∥∥u∥∥

L∞
∥∥u∥∥

L6

∥∥u∥∥
H

1/2
3/2

∥∥ϕ∥∥
H

1/2
6

≤ c ln(1/Q)−2
∥∥ϕ∥∥

H
1/2
6
,

so that the contribution from ln(Q)g[u] vanishes as a distribution as Q tends to
0.

2.3 Domain wall motion in finite layers

When an external magnetic field h = H ê2 is applied that points towards the
easy axis, the end-states are no longer equally preferred. Consequently, one
expects the domain wall to become unstable and start to move. In gyrotropic
domain wall models the evolution of magnetization distributions is characterized
by the Landau-Lifshitz-Gilbert equation

m ∧ ∂tm + α∂tm + γ (1 − m ⊗ m)∇E(m) = (1 − m ⊗ m)h (24)

m : R × (0,∞) → S
2 with m(±∞, t) = (0,±1, 0) for t ∈ (0,∞).

where E(m) is the internal domain wall energy. We introduce the aspect ratio
κ = d/δ and assume for simplicity that Q = 1. Renormalizing space and energy
by the exchange length d, we get from (6) and (9) an (internal) domain wall
energy of the form

Eκ(m) =
1
2

∫
|m′|2 +

1
2

∫
(1 −m2

2) dx+
1
2

∫
m2

1 dx+Gκ(m), (25)

where the nonlocal portion of the stray-field energy is given by

Gκ(m) =
1
2

∫ (
1 − σ(κξ)

)(|m̂3(ξ)|2 − |m̂1(ξ)|2
)
dξ. (26)

Regarding the dynamic problem, a special class of solutions to constant
coefficient systems are traveling wave solutions, i.e. solutions of the form m =
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m(x + c t), that describe a motion of constant speed c. In the case κ = 0 the
traveling wave ansatz turns (24) into a constrained nonlinear system of ordinary
differential equations. Surprisingly, these equations can be solved explicitly. The
solutions are referred to as Walker’s exact solutions, see [44, 19]. Our goal is to
show that this situation is indeed generic and can be perturbed to layers of large
but finite diameter. As this corresponds to the case of small nonlocal interaction,
the nonlocal character of the equations will play a minor role. We will show
that, in suitable coordinates, domain wall motion according to Landau-Lifshitz
dynamics fits into the context of nonlocal, weakly coupled reaction-diffusion
systems. But first we review Walker’s construction.

2.3.1 Walker’s exact solutions

For κ = 0 we have a transition energy

E0(m) =
1
2

∫
|m′|2 dx+

1
2

∫
(1 −m2

2) dx+
1
2

∫
m2

1 dx.

The traveling wave ansatz m = m(x+ c γ t) yields the system

c αm′ + cm ∧m′ +
(
1 − m ⊗ m

)∇E0(m) =
(
1 − m ⊗ m

) · h. (27)

The above system can be solved explicitly, a calculation that has been first
carried out by Walker. The original calculations become more transparent, when
the equation is considered in the canonical orthogonal frame {m′,m ∧ m′} on
the tangent space of S2 along m. It turns out that the following assumptions
can be met:

(I) Under the assumption that dissipation compensates the driving force, the
system decomposes into three equations,

c α |m′|2 = Hm′
2, ∇E0(m) ·m′ = 0, and ∇E0(m) ·m∧m′ = c |m′|2.

(II) Under the assumption that the wall moves with constant polar inclination
angle ϕ, i.e. m ∧ m′ = |m′|ν for some constant unit vector ν, the energy
is the Bloch wall energy with increased anisotropy Q(ϕ) = 1 + sin2 ϕ,

E0(m) =
1
2

∫
|m′|2 dx+

Q(ϕ)
2

∫
(1 −m2

2) dx.

Moreover |m′|2 = (m′
2)

2/(1 −m2
2) and ∂m

∂ϕ = |m′|ν holds for such m.

We deduce that, up to scaling, all equations in (I) have the form |m′|2 = 1−m2
2,

i.e. m′
2 = 1 − m2

2, and can be solved jointly. Matching parameters gives the
transition profile, inclination angle, and propagation speed

m2(x) = tanh
[√

1 + sin2 ϕx
]
, sin(2ϕ) =

H

α
, and c =

sin(2ϕ)

2
√

1 + sin2 ϕ
.

(28)
Obviously a peak velocity ∼ 0.4 (i.e. about ∼ 100 m

sec for a typical garnet
material) is reached at for finite field-strength H beyond which the construction
breaks down.
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Walker’s construction shows that the dynamics of domain walls in bulks samples
is accompanied by a decrease of domain wall width by a factor (1 + sin2 ϕ)−

1
2

and an increase of domain wall energy by the inverse factor. From Walker’s
construction we deduce that the first order correction for domain wall energies
vanishes at small velocities:

eH = e0 (1 + sin2 ϕ)
1
2 = e0 +

1
2
M c2 + o

(
c2
)
.

The second order correction can be viewed as a kinetic energy contribution.
Thus, the factor M = ∂2

c eH at c = 0 is referred to as the wall mass, a notion
that has been introduced by Döring, cf. [14]. In the original scaling the wall mass
is given by M = e0/(2d2). We will encounter the wall mass again later in the
context of traveling Néel walls rising naturally from a wave-type interpretation
of Landau-Lifshitz-Gilbert dynamics in thin films.

2.3.2 Stability and perturbation of Walker’s construction

Theorem 4. For sufficiently small field strength H there is a threshold κ(H) >
0 such that, whenever κ < κ(H), there is a traveling wave for the Landau-
Lifshitz-Gilbert dynamics that connects antipodal states.

Proof. We perform a stability analysis based on a suitable choice of canonical
coordinates that transforms (24) into a weakly coupled 2×2 system of reaction-
diffusion type. For this purpose we combine standard stereographic coordinates
with a polar rotation by the Walker angle ϕ that maps the Walker path into
the Bloch wall path. In these coordinates C � z 	→ m[z] ∈ S2, the Walker path
is given by the line segment z0 : R → {0} × [−1, 1]. For m = m[z], functional
gradients transform according to λ−2(z)∇zEκ(m) = ∇Eκ(m), where λ(z) is
the conformal factor. Moreover, (24) becomes a damped Schrödinger equation

α∂tz + i ∂tz − γ Dx∂xz + γ
(
f(H, z) + b(κ, z)

)
= 0, (29)

where z(·, t) : R → C with z(±∞, t) = (0,±1). The mapping

f(H, z) = λ−2(z)∇z

∫ [1
2
(m2

1 −m2
2) −Hm2

]
dx for m = m[z]

involves anisotropy, applied field, and the limiting (local) portion of stray-field
interaction. For small enough H , it is bi-stable in its second component. With
the notation in (26), the map b(κ, z) = λ−2(z)∇zGκ(m) is a nonlocal pertur-
bation from stray-field interaction, that is continuous in κ with b(0, ·) = 0.

Remark 2. An important observation is that the mapping κ 	→ b(κ, ·), con-
sidered as a family of nonlinear operators on suitable function spaces, is not
differentiable at κ = 0. Indeed,

d

dκ
Estray(m)

∣∣
κ=0

=
1
2
‖m1‖2

Ḣ−1/2 −
1
2
‖m3‖2

Ḣ−1/2

with singular behavior at low frequencies that conflicts with slow decay properties
in the presence of internal stray fields. The perturbation at κ ∼ 0 is therefore
singular, and only continuous versions of the implicit function theorem are at
our disposal.
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Finally,
Dx∂xz = ∂2

xz + Γ(z)〈∂xz, ∂xz〉
denotes the second covariant derivative. Surprisingly, the form of Walker solu-
tions remains almost unchanged:

z0(x) =
(

0, tanh
[
1
2
(
1 + sin2 ϕ

)1/2
x

])
.

Recall that the associate propagation speed c0 inherits the Walker angle ϕ, so
for each H we identify the Walker solution with the pair (z0, c0). Introducing a
moving frame x 	→ x+ c γ t, (29) reads like

G
(
(z, c), κ) = −Dx∂xz + c(α+ i)∂xz + f(H, z) + b(κ, z) = 0.

It turns out that our choice of canonical stereographic coordinates provides an
almost triangulation for the linearized problem. Its spectral properties can be
summarized as follows:

Proposition 5. For sufficiently small field strength H the linearization at the
Walker solution (z0, c0), has the form

∂G

∂z

(
(z0, c0), 0

)
=
[
L1 M2

M1 L2

]
: H2(R; C) → L2(R; C),

where L1 : H2(R) → L2(R) has a bounded inverse while L2 and its L2-adjoint
have zero as a simple eigenvalue with eigenfunctions v′0 = Im z′0 and ψ0, respec-
tively, so that the integral

∫
v0 ψ0 dx > 0 exists. Moreover, ‖M1‖ can be made

arbitrarily small by choosing H small.

Since z′0(x) = d
dλ |λ=0z0(x + λ) can be seen as the infinitesimal generator of

translation symmetry, the proposition suggests that degeneracy only stems from
translation invariance. Thus we introduce the extended functional equation

G((z, c), κ) =
[
G
(
(z, c), κ

)
, Im z(0)

]
= (0, 0). (30)

Its linearization with respect to (z, c) at the Walker solution (z0, c0) has the
form

L0 =

⎡
⎣L1 M2 −v′0
M1 L2 αv′0
0 δ0 0

⎤
⎦ .

In view of Proposition 5, the invertibility of L0 : H2(R; C)×R → L2(R; C)×R

for sufficiently small H would follow from a Schur-type argument once we have
shown invertibility of the 2 × 2 matrix on the lower right. But this follows
from a standard Fredholm argument (cf. the proof of Theorem 6), taking into
account Proposition 5 and the positivity of v′0. Now the continuous version of
the implicit function theorem implies the solvability of (30) for sufficiently small
κ > 0.
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2.4 Domain wall motion in thin films

2.4.1 A wave-type limit for Landau-Lifshitz-Gilbert

Gyromagnetic precession is geometrically incompatible with the asymptotic con-
straint of in-plane magnetization that is imposed by stray-filed interaction, in
other words, the competition between energetic and dynamic forces becomes
singular in a thin-film limit. Thus domain wall motion in thin films should be
governed by a suitable effective limit for LLG

∂tm + γ m ∧∇E(m) + α m ∧ ∂tm = 0 (31)

as the relative thickness δ/d tends to zero. We recall that Gilbert damping α is
a small parameter as well, that is to say, precession proceeds much faster than
relaxation. Prior work on thin-film reductions for LLG, leading to enhanced
dissipation, cf. [15, 22] and Theorem 12, consider the regime when δ/d� α. In
order to preserve the oscillatory features of LLG dynamics we take into account
small Gilbert damping as well. As it turns out, the effective dynamics depends
on asymptotic regime as α and the relative thickness δ/d tend to zero. Rescaling
space by the tail width w = δ/(2Q) and energy by the quality factor, we get,
for 3-dimensional transitions m = (m,m3) : R → S2, a domain wall energy of
the form

Eε(m) = E0(m) +
Q
2

∫
|m′

3|2 dx+
1

2ε2
‖m3‖2

L2, (32)

where Q = 4 κ2Q and ε2 = Q. The in-plane portion of the energy E0(m) is
given by

E0(m) =
Q
2

∫
|m′|2 +

1
2

∥∥m1

∥∥2

Ḣ1/2 +
1
2

∫
(1 −m2

2) dx. (33)

For in-plane magnetizations, it agrees with the standard Néel wall energy that
we have considered before. We investigate the regime when ε → 0 while Q
is uniformly bounded from above and below; in other words ε ∼ δ/d can be
considered as a relative thickness. Let us consider the associated LLG equation
in the asymptotic regime when α(ε)/ε→ ν. Rescaling time by ε/γ, the system
(31) becomes

mt + εm ∧∇Eε(m) + αm ∧ mt = 0. (34)

Theorem 5. Let mε : R × (0,∞) → S2 be a family of global solutions of (34)
with uniformly bounded initial energy Eε(mε(0)) ≤ c. Suppose that α(ε)/ε→ ν
and the in-plane components mε ⇀m converge locally in L2. Then[

∂2
tm+ ν ∂tm+ ∇E0(m)

] ∧m = 0. (35)

Proof. We let m = (m, εv), i.e. we blow-up the vertical component. Then the
energy can be written as Eε(m) = E0(m) +Gε(v), where Gε(v) = 1

2

∫
ε2|v′|2 +

|v|2 dx. For νε = α(ε)/ε, the Landau-Lifshitz-Gilbert system (34) can be written
as

∂t

(
m

v

)
+

⎡
⎣ 0 −ε2 v m2

ε2 v 0 −m1

−m2 m1 0

⎤
⎦( ∇E(m) + νε ∂tm

∇Gε(v) + ε2νε ∂tv

)
= 0.
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The energy inequality implies the requisite a priori estimates

νε

∫ T

0

‖∂tmε‖2
L2 + E0(mε(T )) ≤ Eε(mε(0)),

ε2 νε

∫ T

0

‖∂tvε‖2
L2 +Gε(vε(T )) ≤ Eε(mε(0)),

and passing to the limit yields the following set of equations

∂tm− vm⊥ = 0,
∂tv +m⊥ · [∇E(m) + ν ∂tm

]
= 0.

From that system the vertical blow-up function v can be eliminated. Indeed,
the first equation is equivalent to ∂tv = ∂2

tm ·m⊥. Substitution into the second
equation yields the result.

Remark 3. Under further regularity assumptions, especially the validity of the
energy inequality, the asymptotic limit holds true in higher dimensional situa-
tions as well.

2.4.2 Traveling waves and kinematic properties of Néel walls

The latter asymptotic limit suggests the following dynamic model for the evo-
lution of Néel walls in thin films under the influence of a constant applied field
h = H ê2 that points towards one of the end states determined by anisotropy:(

∂2
tm+ ν ∂tm+ ∇E0(m)

)
∧m = h ∧m, (36)

m : R × [0, T ) → S
1 with m(±∞, t) = (0,±1).

Representing the transition vector in polar coordinates m = eiθ, the transi-
tion energy becomes

E(θ) =
Q
2

∫
|θ′|2 dx+

1
2
‖ cos θ‖2

H1/2 for θ(±∞) = ±π
2
,

where ‖f‖2
H1/2 =

∫ (
1 + |ξ|)|f̂(ξ)|2 dξ denotes the full H1/2 norm incorporating

anisotropy and stray-field interaction. Then the reduced dynamic equation (36)
reads

∂2
t θ + ν ∂tθ + ∇E(θ) = h · ieiθ, (37)

θ : R × [0, T ) → R with θ(±∞, t) = (0,±π/2).

The latter damped wave dynamics invites for a kinematic interpretation
for the wall center as a point mass with constant force and dynamic friction.
The argument will be rather informal; asymptotically, however, the kinematic
findings will be justified rigorously in the context of the traveling wave result
below. Indeed, ifH is assumed to be suitably small, the moving phase θ = θ(x, t)
is presumably close to the stationary phase profile θ0 shifted by q(t), the center
of the wall at time t. Hence we make an ansatz θ(x, t) = θ0(x, t)+θ1(x, t) where,
with a slight abuse of notation, θ0(x, t) = θ0(x + q(t)) and θ1(x, t) is assumed
to be a small perturbation. Then we approximate

∇E(θ) = ∇E(θ0) + L0θ1, where L0 = D∇E(θ0),
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and cos(θ) = cos(θ0)−sin(θ0)θ1. Now if θ1 is a solution of the linearized problem
∂2

t θ1 + ν∂tθ1 + L0θ1 +H sin(θq) θ1 = 0, then

θ′′0 |q̇|2 + θ′0 q̈ + ν θ′0 q̇ = H cos θ0.

Thus, the associate momentum p(t) = M q̇(t), where M = 1
2

∫ |θ′0|2 dx can be
interpreted as the wall mass, satisfies the equation ṗ + ν p = H with terminal
momentum p∗ = H/ν. We observe that M is consistent with the wall mass
we encountered in section 2.3.1 rising from the infinitesimal increase of energy.
Accordingly, the mobility, i.e. the rate of change of propagation speed with
respect to H , is given by β = 1/(Mν), consistent with our rigorous perturbation
result:

Theorem 6. For sufficiently small field strength H there is a traveling wave
for the reduced Landau-Lifshitz-Gilbert dynamics

c2 θ′′ + c ν θ′ + ∇E(θ) = H cos θ

that connects antipodal states at infinity θ(±∞) = ±π/2. Moreover, the prop-
agation speed has an expansion c = βH + o(H) where the wall mobility β =
1/(Mν) is related to the wall mass M = 1

2

∫ |θ′0|2 dx taken from a stationary
Néel wall θ0.

Proposition 6. Suppose that θ0 is a critical point of E(θ) subjected to center
and boundary conditions θ(0) = 0 and θ(±∞) = ±π/2. Then the Hessian

D2E(θ0)〈ϕ,ϕ〉 ≥
∫

|θ′|2|ϕ|2 dx +
∥∥ϕ sin θ

∥∥2

H1/2 ≥ 0

is non-negative for any admissible variation ϕ.

Proof. Let 〈f, g〉H1/2 = Re
∫ (

1 + |ξ|)f̂(ξ) ¯̂g(ξ) dξ be the H1/2 inner product.
Then

D2E(θ0)〈ϕ,ϕ〉 = Q
∫

|ϕ′|2 − 〈
cos θ0, ϕ2 cos θ0

〉
H1/2 +

∥∥ϕ sin θ
∥∥2

H1/2 .

In order to estimate the middle term, we deduce from the Euler-Lagrange equa-
tion

Q
∫
θ′0
(
ϕ2 cot θ0

)′
dx =

〈
cos θ0, ϕ2 cos θ0

〉
H1/2 .

Recalling that −d(cot θ)/dθ = 1 + cot2 θ, then the claim follows immediately
.

The Proposition states in particular that any critical point of E is in fact the
phase of a minimizing Néel wall.

Corollary 1. For centered Néel walls θ0, the linearization L0 = D∇E(θ0) ex-
tends to a self-adjoint operator on L2(R) having zero as a simple eigenvalue
with eigenspace spanned by θ′0.

We need the following refinement of Proposition 4 that in particular rules
out a plateau of Néel wall profiles:

Lemma 2. The phase θ0 of a stationary Néel wall is strictly increasing.
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Now the proof of Theorem 6 follows closely the one carried out in [3]. We
let G

(
(θ, c), H

)
= c2 θ′′ + c ν θ′ + ∇E(θ) − H cos θ and consider the extended

functional equation

G((θ, c), H) =
[
G
(
(θ, c), H

)
, θ(0)

]
= (0, 0).

Observe that for a stationary Néel wall θ0 and θ = θ0 + δθ, the mapping(
(θ, c), H

) 	→ G((θ, c), H) is smooth. The linearization with respect to the
first two components (θ, c) at the stationary Néel wall (θ0, 0) reads like

L0 =
[
L0 ν θ′0
0 δ0

]
.

As a mapping L0 : H2(R) × R → L2(R) × R it has a bounded inverse, i.e. for
every (f, b) ∈ L2(R) × R there is (φ, c) ∈ H2(R) × R so that L0ψ + ν θ′0 c = f
and φ(0) = b. According to the Fredholm alternative and Corollary 1 the
first equation is solvable provided c ν

∫ |θ′0|2 dx =
∫
f θ′0 dx that fixes c and

determines φ up to a multiple of θ′0. But in view of Lemma 2, the second equation
provides uniqueness. Now the implicit function theorem implies the existence of
a differentiable branch H 	→ (θ(H), c(H)), so that c′(0) ν

∫ |θ′0|2 dx = 2H , and
the claim follows.

3 Boundary vortices in a 2D model

In this section, we present results on a specific thin-film limit of the magnetic
energy for a special regime of rather small films. We will analyze a limit of a two-
dimensional functional derived by Kohn and Slastikov [23]. They considered soft
magnetic films without an external field, which corresponds to a functional that
uses only the exchange and magnetostatic terms. They studied the asymptotic
behavior of the corresponding version of (1) in a thin film Ωδ = Ω× (0, δ) with
diam Ω = 1 for δ → 0 and d2

δ log 1
δ

→ ε
2π ∈ (0,∞). The energy divided by 2πδ2

εd2

then Γ-converges to the limit functional

Eε
KS(m) =

1
2

∫
Ω

|∇m|2 +
1
2ε

∫
∂Ω

(m · ν)2 (38)

defined on maps m ∈ H1(Ω, S1) (so m3 = 0). Here ν is a unit normal to ∂Ω.
The Kohn-Slastikov theorem shows that for this special scaling, the nonlocal
contribution arising as the energy of the induced field reduces to a local term
charging the boundary. The reason for this simplification of the functional lies
in a separation of scales between the energy contribution of volume and surface
charges to the field energy.

In the following, we present results of Kurzke [26, 24, 25] on the limit of (38)
as ε → 0, for a simply connected domain Ω. The results share some features
with those of Moser [34, 35] that are presented in Section 4. In particular,
sequences of minimizers develop vortices on the boundary.

Due the two-scale process of first letting δ → 0 to obtain (38), a two-
dimensional problem, and then letting ε → 0, our approach can be seen as
a simplified model for the boundary vortices in Section 4. Since our functional
here is local, the results are more detailed, especially for the asymptotic dynam-
ics.
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The sequence of functionals Eε
KS is rather similar to the Ginzburg-Landau

functional for superconductivity of [5]. With m0 = τ being a continuous unit
tangent field to ∂Ω, we are (after rescaling and renaming variables) considering
the variational problem for m : Ω → R2: Minimize

1
2

∫
Ω

|∇m|2 +
1
2ε

∫
∂Ω

(1 − (m ·m0)2)dH1

subject to |m| = 1 in Ω as ε → 0. This problem has an interior constraint and
a boundary penalty.

Bethuel, Brezis and Hélein [5] studied the behavior as ε→ 0 of

1
2

∫
Ω

|∇m|2 +
1

4ε2

∫
Ω

(1 − |m|2)2

subject to m = m0 on ∂Ω, so this problem has a boundary constraint and an
interior penalty.

Common to both problems is that, as long as m0 has nonzero topological
degree, there is no map in H1(Ω; R2) that satisfies the constraint and makes the
penalty term zero. This is due to the fact that a continuous map w : ∂Ω → S1

can be extended to a continuous map w : Ω → S1 if and only if deg(w) = 0.
Although H1 maps need not be continuous, the argument still carries through
to show that there is not even an extension of finite H1 energy. Both problems
are thus forced to develop singularities as ε→ 0, and the minimum energy will
become unbounded.

We call the singularities of both problems vortices, since minimizers converge
as ε → 0 to maps that have the form z−ai

|z−ai| near the singularities ai. In the
Ginzburg-Landau case, these vortices are interior and each carries a topological
degree of 1; in the Kohn-Slastikov case, the singularities lie on the boundary,
and we only see one half of the vortex. Each “boundary vortex” corresponds
to a transition from m0 to −m0 or vice versa, and can be viewed as carrying 1

2
topological charge.

It was shown in [26, 24] that a single boundary vortex carries an energy of
π
2 log 1

ε (see Theorem 7), and that the interaction of these vortices is governed
by the next order term in the energy expansion, a renormalized energy that can
be calculated by the solution of a linear boundary problem (see 8). In [25] it was
shown that this renormalized energy actually governs the motion of the vortices
in the natural time scaling, when time is accelerated by a factor of log 1

ε (see
Theorem 9).

In the following, we will explain these results in more detail, and in the proper
frameworks of two orders of Γ-convergence and Γ-convergence of gradient flows.

A major advantage of the simplified energy (38) is that the problem can be
made scalar since m ∈ S1 can be written as m = eiv. The energy functional
can then be rewritten as

Eε(v) =
1
2

∫
Ω

|∇v|2 +
1
2ε

∫
∂Ω

sin2(v − g), (39)

where g is a function with ieig = ν. Since Ω is simply connected, the degree
of ν as a map from ∂Ω (which is homeomorphic to S1) to S1 is 1, and so g
needs to have a jump of height −2π, but can otherwise be chosen as smooth as
∂Ω. As ε → 0, minimizers vε of Eε will now satisfy sin2(vε − g) ≈ 0 on most
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of ∂Ω, but due to the jump of g, this will not be possible everywhere, and so
singularities will develop that correspond precisely to the fast transition from
m ≈ τ to m ≈ −τ .

We can obviously generalize this to g having a jump of height −2πD, D ∈ Z,
corresponding to deg(eig) = D, which will we do in the following. Without loss
of generality, we will assume D ≥ 0. The magnetic case of the Kohn-Slastikov
functional is given by D = 1.

3.1 Highest order asymptotics

The following calculation gives an upper bound for the energy of a single bound-
ary vortex. We will use a localized energy Eε(v;B) that is defined by

Eε(v;B) =
1
2

∫
Ω∩B

|∇v|2 +
1
2ε

∫
∂Ω∩B

sin2(v − g). (40)

To simplify matters we will assume that Ω ∩ BR(0) = B+
R(0) is a half-ball and

that g = 0, corresponding to the constant tangent. We set ΓR = ∂Ω∩BR(0) for
the flat boundary which we assume to be part of the x-axis in z = x+ iy-plane.

Proposition 7. There is a sequence vε ∈ H1(BR(0)) with vε|ΓR → v∗ = πχx<0

in all Lp(ΓR) for 1 ≤ p <∞ and

Eε(vε;BR) ≤ π

2
log

R

ε
+ C. (41)

Proof. Set vε = arg(z) in B+
R(0) \ B+

ε (0). Choose any H1 continuation w with
0 ≤ w ≤ π of arg|∂B+

1 (0) to B+
1 (0) and set vε(z) = w(εz) inside B+

ε (0). This
sequence obviously satisfies the claims.

This shows that for R = O(1), a typical vortex has an energy of approxi-
mately π

2 log 1
ε +O(1). A combination of 2D such vortices to counter the jump

of g leads to the following upper bound:

Proposition 8. Minimizers vε of Eε satisfy

Eε(vε) ≤ πD log
1
ε

+ C(Ω). (42)

A different interpretation of “every vortex carries an energy of π
2 log 1

ε” is
given by the following Γ-convergence theorem:

Theorem 7. Assume (vε) is a sequence of functions with Eε(vε) ≤ M log 1
ε .

Then there exists a sequence of aε ∈ 2πZ such that the boundary traces wε =
(vε − aε)|∂Ω are bounded in an Orlicz space of type eL, and in particular,
‖wε‖Lp(∂Ω) ≤ C(M).

The sequence wε is then precompact in the strong topology of L1(∂Ω), and
every cluster point w satisfies w − g ∈ BV(∂Ω;πZ). In addition, we have the
lower bound inequality

lim inf
ε→0

1
2 log 1

ε

∫
Ω

|∇vε|2 ≥ 1
2

∫
∂Ω

|D(w − g)|. (43)
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Conversely, for every u with u − g ∈ BV(∂Ω;πZ) there exists a sequence
uε ∈ H1(Ω) such that the trace satisfies uε → u in L1(∂Ω) and with

lim
ε→0

1
2 log 1

ε

∫
Ω

|∇uε|2 =
1
2

∫
∂Ω

|D(u− g)|. (44)

We will not prove 7 here. A proof based on a nonlocal representation using
the H1/2 seminorm and rearrangement inequalities is given in [26], and an ex-
tension to higher dimensions via slicing that utilizes the Orlicz bound is shown
in [25]. Both proofs are based on ideas of Alberti-Bouchitté-Seppecher [1, 2] for
similar functionals with a coercive instead of periodic potential.

Remark 4. Theorem 7 shows that, since the BV type limit functional has a
lower bound of πD, the energy of minimizers of Eε is πD log 1

ε + o(log 1
ε ). For

other converging sequences, we obtain just the number of jump points with mul-
tiplicities, but the limit functional is independent of the position of these jump
points.

3.2 Separation of vortices and renormalized energy

We will relate the dependence of the energy on the position of the singularities
to a renormalized energy given as follows:

Definition 1 (Possible limit functions). Let di ∈ Z with
∑

i di = 2D and
ai ∈ ∂Ω be distinct points. We define the canonical limit function v∗ = v∗(ai, di)
to be a harmonic function with sin2(v∗ − g) = 0 such that its trace on ∂Ω jumps
by −πdi at the point ai.

The renormalized energy is defined to be

W (ai, di) =
1
2

lim
ρ→0

(∫
Ω\S

i Bρ(ai)

|∇v∗|2 − π
∑

i

d2
i log

1
ρ

)
. (45)

The renormalized energy can be expressed via the solution of a linear bound-
ary value problem for the Laplacian, see [24].

With the renormalized energy, we can formulate the following second-order
Γ-convergence type theorem. For minimizers, we will have N = 2D as above.

Theorem 8. If (vε) is a sequence of functions with Eε(vε) ≤ M log 1
ε and

vε → v∗(ai, di) in L2(∂Ω), with di ∈ {±1} and ai distinct, i = 1, . . . , N , then

lim inf
ε→0

(
Eε(vε) − πN

2

(
log

1
ε

+ 1 − log 2
))

≥W (ai, di). (46)

If additionally (vε) are stationary points of Eε, then vε → v∗ in W 1,p(Ω) for
p < 2 and in H1

loc away from the ai, and (46) holds with equality.
Furthermore, for any di ∈ {±1} and ai distinct, i = 1, . . . , N , there exists a

sequence of functions wε such that wε → v∗(ai, di) and

lim
ε→0

(
Eε(vε) − πN

2

(
log

1
ε

+ 1 − log 2
))

= W (ai, di). (47)
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We will prove this theorem only partially, for the special case of minimizers,
where the bounds and the convergence follow from a comparison argument.
The general case can be shown by means of some extra PDE estimates and a
regularization technique of Yosida type, replacing the sequence by an improved
sequence that minimizes a modified functional, see [25].

Proposition 9 (Euler-Lagrange equations). Stationary points vε of Eε sat-
isfy the equations

∆vε = 0 in Ω, (48)
∂vε

∂ν
= − 1

2ε
sin 2(vε − g) on ∂Ω. (49)

Lemma 3 (Rellich-Pohoz̆aev identity). For a Lipschitz domain G and a
harmonic function v ∈ H2(G), there holds∫

∂G

∂v

∂ν
(z · ∇v) =

1
2

∫
∂G

z · ν|∇v|2. (50)

Proof. This is easily seen using by testing ∆v = 0 with z · ∇v.
An easy consequence is

Lemma 4. For a starshaped Lipschitz domain G, there exists constants such
that every harmonic function v ∈ H2(G) satisfies

c

∫
∂G

∣∣∣∣∂v∂τ
∣∣∣∣
2

≤
∫

∂G

∣∣∣∣∂v∂ν
∣∣∣∣
2

≤ C

∫
∂G

∣∣∣∣∂v∂τ
∣∣∣∣
2

. (51)

Following ideas of [5] and [42], we relate the penalty term 1
2ε

∫
∂Ω

sin2(v − g)
to a radial derivative of the energy:

Definition 2. For z0 ∈ ∂Ω and v ∈ H2(Ω) we set

A(ρ) = Av,ε,z0(ρ) = ρ

∫
∂Bρ(z0)∩Ω

|∇v|2dH1 +
ρ

ε

∫
∂Bρ(z0)∩∂Ω

sin2(v − g)dH0.

(52)

For stationary points of the energy, A can be used to bound the penalty
term:

Proposition 10. There exists ε0 > 0 and C > 0 such that for all ε < ε0,
ρ < ε3/4, any stationary point v of Eε, and any z0 ∈ ∂Ω there holds

1
2ε

∫
Γρ(z0)

sin2(v − g) ≤ A(ρ) + C
√
ε. (53)

Proof. For simplicity, we show this only for g = 0 and a flat boundary. We use
z0 = 0 and apply (50) on the domain ωρ = Ω ∩Bρ(0), which shows

1
2

∫
∂ωρ

z · ν|∇v|2 = ρ

∫
∂Bρ∩Ω

∣∣∣∣∂v∂ν
∣∣∣∣
2

+
∫

Γρ

∂v

∂ν
z · ∇v. (54)

26



Using the Euler-Lagrange equations, we obtain

ρ

2

∫
∂Bρ∩Ω

|∇v|2 = ρ

∫
∂Bρ∩Ω

∣∣∣∣∂v∂ν
∣∣∣∣
2

− 1
2ε

∫
Γρ

sin 2v(z · ∇v). (55)

Integrating by parts, we see that

1
2ε

∫
Γρ

sin2(v) =
ρ

2ε

∫
∂Bρ∩∂Ω

sin2(v)dH0 − 1
2ε

∫
Γρ

sin 2v(z · ∇v) (56)

=
ρ

2ε

∫
∂Bρ∩∂Ω

sin2(v)dH0 +
ρ

2

∫
∂Bρ∩Ω

|∇v|2 − ρ

∫
∂Bρ∩Ω

∣∣∣∣∂v∂ν
∣∣∣∣
2

(57)

≤ 1
2
A(ρ). (58)

We obtain the following criterion for vortex-free parts of the boundary:

Proposition 11. There exist constants γ > 0 and C > 0 such that for every
z0 ∈ ∂Ω, ε < ε0, ρ < ε3/4 and every stationary point v of Eε with A(ρ) < γ
there holds

sup
Γρ/2

sin2(v − g) <
1
4

(59)

and
1
2ε

∫
Γρ/2

sin2(v − g) ≤ C. (60)

Proof. By Lemma 4, we can estimate∫
Γρ

∣∣∣∣∂v∂τ
∣∣∣∣
2

≤ C

∫
∂ωρ

∣∣∣∣∂v∂ν
∣∣∣∣
2

≤ C

∫
∂Bρ∩Ω

|∇v|2 + C

∫
Γρ

∣∣∣∣∂v∂ν
∣∣∣∣
2

. (61)

We thus can estimate, using Sobolev embedding in one dimension

[v]2C0,1/2(Γρ) ≤ C

∫
Γρ

∣∣∣∣∂v∂τ
∣∣∣∣
2

≤ C

(
1
ρ
A(ρ) +

1
ε2

∫
Γρ

sin2(v − g)

)
≤ C

ε
(2γ + C

√
ε0).

Assuming now that sin2(u(z)− g(z)) ≥ 1
4 for some z ∈ Γρ/2 and choosing γ and

ε0 sufficiently small then leads to a contradiction.

Disintegrating the energy radially, we see

Lemma 5. Let (vε) be a sequence of stationary points of Eε satisfying the log-
arithmic energy bound Eε(vε) ≤ M log 1

ε . Then for any z0 ∈ ∂Ω, the function
A(ρ) = Avε,ε,z0(ρ) defined above satisfies

inf
ε6/7≤ρ≤ε5/6

A(ρ) ≤ 84
log 1

ε

Eε(vε; Ω ∩Bε5/6(z0)) ≤ 84M (62)

and
inf

5ε5/6≤ρ≤5ε4/5
A(ρ) ≤ 60M. (63)
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Using Vitali’s covering lemma, we can use this and (53) to show a local upper
bound on the penalty term near an almost singularity and in a second step a
covering of the set of almost singularities. This leads to

Proposition 12. There is a constant N = N(g,Ω,M) such that for any se-
quence of stationary points vε satisfying the energy bound Eε(vε) ≤M log 1

ε , the
approximate vortex set Sε = {z ∈ ∂Ω : sin2(vε(z) − g(z)) ≥ 1

4} can be covered
by at most N balls of radius ε, such that the ε/5 balls around the same centers
are disjoint.

For comparison arguments we shall need the following lower bound for the
energy on half-annuli whenever v − g is in different wells of sin2 on both parts
of the boundary:

Proposition 13. Let 0 < ρ < R ≤ R0, R0 sufficiently small, z0 ∈ ∂Ω, w.l.o.g.
z0 = 0. We examine the “half-annulus” DR,ρ = (BR \ Bρ) ∩ Ω, which can be
described by choosing functions ϑ1(r), ϑ2(r) as {reiϑ : ϑ1(r) < ϑ < ϑ2(r), ρ <
r < R} with |ϑ2(r)−ϑ1(r)− π| ≤ Cr. Assume also that for j = 1, 2 there holds
(v − g)(reiϑj(r)) ∈ (kjπ − δ, kjπ + δ) for some kj ∈ Z and some small δ. Then

Eε(v;DR,ρ) ≥ π

2
(k2 − k1)2 log

R

ρ
− C(k2 − k1)2(R +

ε

ρ
). (64)

Proof. For simplicity, we will assume g = 0, ϑ1 = 0 and ϑ2 = π, corresponding
to a flat boundary. We will set vj(r) = v(reiϑj ) for the function on the two
boundary components. We also assume w.l.o.g. k1 = k and k2 = 0. Using polar
coordinates, disregarding the radial derivative and by use of Hölder’s inequality,
we calculate

∫
DR,ρ

|∇v|2 ≥
∫ R

ρ

1
r

∫ π

0

∣∣∣∣∂u∂ϑ
∣∣∣∣
2

dϑdr

≥ 1
π

∫ R

ρ

(∫ π

0

∣∣∣∣ ∂v∂ϑ
∣∣∣∣
)2

≥ 1
π

∫ R

ρ

(v1 − v2)2

r
dr.

We rewrite v1−v2 = kπ−(v1−kπ)−v2. Using the lower bound sin2(t−kiπ) ≥ σt2

valid for |t| < δ with some σ = σ(δ), we can estimate

Eε(v;DR,ρ) ≥ 1
2

∫ R

ρ

1
πr

(
kπ − ((v1 − kπ) − v2)

)2 +
σ

ε

(
v2
1 + v2

2

)2
dr.

On the last term, we use the inequality v2
1 +v2

2 ≥ 1
2 (v1−kπ+v2)2. Then we use

the inequality α(A−B)2 + βB2 ≥ 1
1
α + 1

β

A2 on A = kπ and B = (v1 − kπ− v2).

The claim then follows by integration.

We now recall that vε are minimizers of Eε satisfying the upper bound

Eε(vε) ≤ πD log
1
ε

+ C0 (65)

for some constant C0, where D is the degree of eig. We will use an appropriate
lower bound for the energy away from the vortex set to show convergence by
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a comparison argument. The same arguments also hold for stationary points
satisfying (65).

By Proposition 12, there exist aε
j ∈ ∂Ω, 1 ≤ j ≤ Nε ≤ N such that the

approximate vortex set Sε satisfies Sε ⊂ ⋃
1≤j≤Nε

Bε(aε
j). Passing to a sub-

sequence of ε → 0, we can assume that Nε = N0 is constant and aε
j → a0

j

as ε → 0. Note that the a0
j need not be distinct. We define for 0 < σ <

1
2 mina0

j �=a0
j′

dist(a0
j , a

0
j′) the sets Ωε

σ = Ω \⋃j Bσ(aε
j) and Ω0

σ = Ω \⋃j Bσ(a0
j).

With this setup (and this subsequence), the lower bound of Proposition 13 can
be combined with the arguments of Struwe [42] to show

Proposition 14. There is a constant C = C(g,Ω, C0) such that Eε(vε; Ωε
σ) ≤

πD log 1
σ + C.

We obtain convergence to the canonical harmonic function:

Proposition 15. Let (vε) be a sequence of critical points satisfying the energy
bound

Eε(vε) ≤ πD log
1
ε

+ C0.

Then there is a subsequence and N = 2D points a1, . . . , aN ∈ ∂Ω such that∫
Ω′

|∇vε|2 ≤M(Ω′) <∞ (66)

for all open Ω′ with Ω′ ⊂ Ω \ {a1, . . . , aN}. Additionally, there hold the bounds∫
Ω

|∇vε|p ≤ C(p) (67)

uniformly in ε for all 1 ≤ p < 2. In particular, after adding a suitable zε ∈ 2πZ,
a subsequence of (vε) converges weakly in H1

loc and W 1,p, p < 2, to a harmonic
function v∗. The limit has the properties that (v∗ − g) is piecewise constant on
∂Ω \ {a1, . . . , aN}, with values in πZ, and jumps by −π at the points aj.

Proof. We use the setup described above, in particular, we use the points a0
j

as defined there. Note that for ε < ε0(σ), there holds Ω0
σ ⊂ Ωε

σ/2 and so by
Proposition 14, ∫

Ω0
σ

|∇vε|2 ≤ 2Eε(vε; Ωε
σ/2) ≤ 2πD log

2
σ

+ C, (68)

which proves (66). To obtain the Lp bounds (67), fix a σ > 0 and 1 ≤ p < 2.
Then by Hölder’s inequality and Proposition 14,∫

Ω

|∇vε|p ≤
∫

Ωε
σ

|∇vε|p +
∞∑


=1

∫
Ωε

2−�σ
\Ωε

2−�+1σ

|∇vε|p

≤ C +
∞∑


=1

|Ωε
2−�σ \ Ωε

2−�+1σ|1−p/2

(∫
Ωε

2−�σ

|∇vε|2
)p/2

≤ C + c

∞∑

=1

2−(1−p/2)


(
2πD log

1
2
σ

+ C

)p/2

≤ C.
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From this Lp gradient bound, we obtain the weak compactness up to translation.
The weak limit v∗ is harmonic since

∫
Ω ∇v∗ · ∇ϕ = limε→0

∫
Ω ∇vε · ∇ϕ = 0 for

all ϕ ∈ C∞
c (Ω). That the boundary values satisfy v∗ − g ∈ πZ with possible

jumps at the ai follows from
∫

∂Ω
sin2(vε − g) → 0 and (vε − g) being close to

πZ outside the approximate vortex set Sε.
That the vortices are indeed single and N = 2D can then be shown by some

refined arguments which prove that higher-order vortices must have far higher
energy.

The energy of these limit functions v∗ away from ai is the renormalized
energy of (45), and the energy of vε on Ωρ converges to that of v∗. To prove
equality in (46), we thus need to calculate the energy of vε close to ai. This is
done by an ε-scale blowup, which leads to a half-space problem. The solutions
of the half-space problem are explicitly known and essentially unique (Toland
[43], see also Cabré and Sola-Morales [6] for a more general uniqueness theorem).
Comparing vε with the rescaled half-space solution and some estimates (see [24])
then show the rest of Theorem 8. One can even show

Proposition 16. For a sequence vε of stationary points of Eε, the configuration
of vortex points (ai) is stationary for the renormalized energy W (ai, di). For
minimizers vε, it is minimizing.

3.3 Motion of vortices

Theorem 8 and the previous proposition show that the renormalized energy W
governs the interaction of the vortices on an energetic level. It can be shown
that also the motion of the vortices by the gradient flow (which corresponds to
the LLG flow since we restrict possible magnetizations to a plane) is given by
the renormalized energy:

Theorem 9. Let 0 < T ≤ ∞ and let (vε) be a sequence of solutions of

λε∂tvε = ∆vε in Ω × (0, T ) (69)
∂vε

∂ν
= − 1

2ε
sin 2(vε − g) on ∂Ω × (0,∞). (70)

For the initial conditions we assume that vε(0) → v∗(ai, di) for di ∈ {±1} and
distinct ai. Furthermore, vε is supposed to be initially well-prepared, meaning
that

Eε(vε(0)) − πN

2
log

1
ε
− πN

2
(1 − log 2) ≤W (ai, di) + o(1) (71)

as ε→ 0.
Depending on the asymptotic behavior of λε, we then have:

(i) If λε = 1
log 1

ε

, then there exists a time T ∗ > 0 such that for all t ∈ [0, T ∗),
there holds vε(t) → v∗(ai(t), di(0))). Furthermore, the ai(t) satisfy the
motion law

dai

dt
= − 2

π

∂

∂ai
W (ai(t), di(0)) (72)

in the tangent space at ai to ∂Ω. If T ∗ < T is the maximal time with
these properties, then as t → T ∗, there exist i �= j such that ai(t) and
aj(t) converge to the same point.
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The energy of vε(t) satisfies the expansion

Eε(vε(t)) =
πN

2
log

1
ε

+
πN

2
(1 − log 2) +W (�a(t), �d) + o(1) (73)

as ε→ 0.

(ii) If λε log 1
ε → 0 as ε → 0, then for almost every t ∈ [0, T ) we have vε(t) →

v∗(ai(0), di(0)), so there is no motion.

(iii) If λε log 1
ε → ∞ as ε → 0, then for almost every t ∈ [0,∞) we have

vε(t) → v∗(bi, di) with ∇W (bi, di) = 0, so the system instantaneously
jumps into a critical point.

Again, there are strong similarities between this result for the motion of
boundary vortices and those in the theory of gradient flow motion of interior
Ginzburg-Landau type vortices as studied by Jerrard and Soner [20] and Lin
[28, 29].

The proof in [25] is based on the technique of Γ-convergence of gradient flows
of Sandier and Serfaty [40], applied to the functionals

Fε(u) = Eε(u) − πN

2
(log

1
ε

+ 1 − log 2) (74)

and the limit functional
F(ai) = W (ai, di). (75)

We need some additional definitions:

Definition 3. We say that functionals Fε Γ-converge to F along the trajectory
uε(t) with respect to the convergence “ S

⇀” if there exist u(t) and a subsequence
such that for all t, uε(t)

S
⇀u(t) and

lim inf
ε→0

Fε(uε(t)) ≥ F(u(t)). (76)

The energy excess Dε(t) and the limiting energy excess D(t) for a sequence
uε(t) are defined via

Dε(t) = Eε(uε(t)) − E(u(t)), D(t) = lim sup
ε→0

Dε(t). (77)

If uε(t) are solutions to the gradient flow for Eε that satisfy D(0) = 0, they are
said to be initially well-prepared.

The proof of Theorem 9 relies on the following version of Sandier and Ser-
faty’s theorem on the Γ-convergence of gradient flows:

Theorem 10 (Sandier-Serfaty [40]). Assume Fε ∈ C1(M) and F ∈ C1(N ).
Let uε be a sequence of solutions of the gradient flow for Fε on [0, T ) with respect
to the metric structure Xε that satisfy

Fε(uε(0)) −Fε(uε(t)) =
∫ t

0

‖∂tuε(s)‖2
Xε
ds. (78)

Assume uε(0) S
⇀u0, that Fε Γ-converges to F along the trajectory uε(t), and

that (uε) is initially well-prepared. Furthermore, assume that (LB) and (CON)
hold:
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(LB) For a subsequence such that uε(t)
S
⇀u(t), we have u ∈ H1((0, T );N ) and

there exists f ∈ L1(0, T ) such that for every s ∈ [0, T ) there holds

lim inf
ε→0

∫ s

0

‖∂tuε(t)‖2
Xε
dt ≥

∫ s

0

(
‖∂tu‖2

Tu(t)N − f(t)D(t)
)
dt. (79)

(CON) If uε(t)
S
⇀u(t), there exists a locally bounded function g on [0, T ) such

that for any t0 ∈ [0, T ) and any v defined in a neighborhood of t0 that
satisfies v(t0) = u(t0) and ∂tv(t0) = −∇Tu(t0)NE(u(t0)), there exists a
sequence vε(t) such that vε(t0) = uε(t0) and the following inequalities
hold:

lim sup
ε→0

‖∂tvε(t0)‖2
Xε

≤ ‖∂tv(t0)‖2
Tv(t0)N + g(t0)D(t0) (80)

lim inf
ε→0

(
− d

dt

∣∣∣
t=0

Fε(vε(t))
)
≥ − d

dt

∣∣∣
t=0

F(v(t)) − g(t0)D(t0). (81)

Then uε(t)
S
⇀u(t) which is the solution of the gradient flow for E with respect to

the structure of TN .

This is applicable to our case since (69) with the nonlinear boundary condi-
tion (70) is the gradient flow of Fε with respect to the norm

√
λε ‖·‖L2 , which

we will use as the spaces Xε in the terminology of the theorem above. The
functionals Fε are defined on M = H1(Ω). As the sense of convergence, we
use vε

S
⇀(ai) if vε → v∗(ai, di) in L2(∂Ω). The necessary Γ-convergence for S

⇀
follows from (46).

The limit functional is defined on N = {(ai)i=1,...,N : ai �= aj for i �= j},
which is an open subset of the (flat) Riemannian manifold (∂Ω)N . The approach
of [40] for Euclidean limit spaces carries over to this situation without changes.
As the limiting norm on the tangent spaces TaN which are identified with RN

we use the constant Riemannian metric
√

π
2 ‖·‖

RN .
Theorem 10 allows us to break up the proof of Theorem 9 into two separate

parts, a lower bound and a construction. The proof of the lower bound relies
on an anisotropic version of (43) in higher dimensions. This leads to a product
estimate like the one of Sandier-Serfaty [41], which can then be used to separate
space- and time-derivatives to show (79).

The construction used to show the upper bound inequalities is done by taking
a well-prepared sequence and “pushing” the vortices along the boundary with
the flow of a vector field that is conformal close to the vortex. The conformality
ensures that the highest order of the energy does not change by the flow. With
some more detailed local estimates related to (46), the estimates (80) and (81)
then follow, as is detailed in [25].

4 Boundary vortices in a refined model

In this section we discuss a thin-film regime that is related to the theory of
the the previous section; indeed the theory of Section 3 can be regarded as a
simplified version of what is to follow (but, as mentioned earlier, it can also be
seen as an asymptotic analysis of a model arising in the thin-film theory of Kohn
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and Slastikov [23]). We now examine the development of boundary vortices in
thin films for a model that is closer to the actual micromagnetic model than
the one discussed previously, although we still use some simplifications. In
particular we consider now domains that are three-dimensional (but thin in
one dimension) and magnetization vector fields with values in S2 (not S1). We
continue to neglect the anisotropy term in the micromagnetic energy functional
and the external magnetic field, but we consider the exchange energy and the
magnetostatic energy in the form that they have in the functional E.

Naturally, the problem becomes more difficult when we drop some of the
simplifications. It is not surprising, therefore, that we need more assumptions
to obtain less information about the asymptotic behavior of the magnetization.
But the results we find for this model are consistent with those for the more
simplified model, which shows that the latter does indeed describe the significant
features of the thin-film limit in the asymptotic regime we study.

We consider the family of domains

Ωδ = Ω × (0, δ)

for δ > 0, where Ω ⊂ R2 is open and bounded. We also assume that Ω is simply
connected and that its boundary is smooth. The outer normal vector on ∂Ω
is denoted by ν. The energy functional (without the anisotropy term and the
external field) is then

E(m) =
d2

2

∫
Ωδ

|∇m|2 dx +
1
2

∫
R3

|∇u|2 dx,

where, as usual, the function u ∈ H1(R3) is determined by the condition

∆u = div(χΩδ
m) in R

3.

We assume for the moment that the shape of Ω is fixed, whereas its size can
still be varied by scaling. The problem then involves three length scales: the
exchange length d, the thickness δ, and the length scale of the cross-section,
measured, e.g., by L = diamΩ. The asymptotic regime we consider is charac-
terized by the condition that d2 is of the same magnitude as Lδ. For simplicity,
we assume d2 = Lδ. Rescaling Ω allows us to normalize L = 1, which gives
rise to the relation d2 = δ between the exchange length and the thickness (and
which means that Ω is fixed henceforth).

Since we study the asymptotic behavior of variational problems associated
to the micromagnetic energy as δ ↘ 0, we now denote a generic magnetization
vector field in Ωδ by mδ = (mδ,mδ

3) ∈ H1(Ωδ, S
2). The corresponding potential

for the induced magnetic field is then the unique solution uδ ∈ H1(R3) of

∆uδ = div(χΩδ
mδ) in R

3. (82)

We also consider the maps

mδ =
1
δ

∫ δ

0

mδ(x, s) ds, x ∈ Ω,

so that we can pass to a limit in certain spaces of functions on Ω (usually Sobolev
spaces). The limit will then be a map m = (m,m3) : Ω → S2. If we consider
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the functions δ−1uδ and apply equation (82) to a test function φ ∈ C∞
0 (R3), we

can formally pass to the limit. We obtain (formally) a limit function u : R3 → R

with ∫
R3

∇u · ∇φdx =
∫

Ω

m(x) · ∇φ(x, 0) dx (83)

for all φ ∈ C∞
0 (R3). For the problems we consider here, we have typically

m3 = 0 in Ω and m · ν = 0 on ∂Ω. If we have furthermore m ∈ W 1,4/3(Ω, S1),
then equation (83) does in fact determine a function u ∈ H1(R3) uniquely. We
will see that this function describes in part the limit of the magnetostatic energy.
Also important is its trace on Ω × {0}. We denote this trace by u0.

It is convenient to divide the micromagnetic energy by δ2. That is, we
consider the family of functionals

Eδ(mδ) =
1
2δ

∫
Ωδ

|∇mδ|2 dx +
1

2δ2

∫
R3

|∇uδ|2 dx.

Critical points of Eδ satisfy the Euler-Lagrange equation

δ(∆mδ + |∇mδ|2mδ) − (1− mδ ⊗ mδ)∇uδ = 0 in Ωδ. (84)

It is natural to impose homogeneous Neumann boundary conditions, i.e.,

∂mδ

∂x3
= 0 in Ω × {0, δ}, (85)

∂mδ

∂ν
= 0 on ∂Ω × (0, δ). (86)

Stable critical points also satisfy

d2

ds2

∣∣∣∣
s=0

Eδ

(
m+ sψ

|m+ sψ|
)

≥ 0

for all ψ ∈ C∞(Ωδ,R
3). Standard calculations transform this inequality into

0 ≤
∫

Ωδ

(|∇ṁδ|2 − |ṁδ|2(|∇mδ|2 + δ−1mδ · ∇uδ) dx +
1
δ

∫
R3

|∇uδ|2 dx, (87)

where ṁδ = (1− mδ ⊗ mδ)ψ.
For the Landau-Lifshitz equation, there exist two interesting time scales,

similarly as in the previous section. The first one gives rise to the equation

∂mδ

∂t
= −γ̂mδ ∧ (∆mδ − δ−1∇uδ) − α̂mδ ∧ (mδ ∧ (∆mδ − δ−1∇uδ)) (88)

in Ωδ × (0, T ), which is equivalent to

Rmδ

∂mδ

∂t
= ∆mδ + |∇mδ|2mδ − 1

δ
(1 − mδ ⊗ mδ)∇uδ. (89)

Here we use the abbreviation

RmδX = α̃X + γ̃mδ ∧X,
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and
α̃ =

α̂

α̂2 + γ̂2
, γ̃ =

γ̂

α̂2 + γ̂2
.

We normally use the form (89) of the equation. We impose homogeneous Neu-
mann boundary data again, that is,

∂mδ

∂x3
= 0 in Ω × {0, δ} × [0, T ), (90)

∂mδ

∂ν
= 0 on ∂Ω × (0, δ) × [0, T ). (91)

This is the time scale where we expect the development of stationary boundary
vortices in the limit δ ↘ 0, in analogy to the results of the previous section.
To study the dynamical behavior of the vortices, on the other hand, we need
to rescale the time axis by the factor log log 1

δ (accelerating the time by this
factor). The equation then becomes

Rmδ
∂mδ

∂t

log log 1
δ

= ∆mδ + |∇mδ|2mδ − 1
δ
(1− mδ ⊗ mδ)∇uδ in Ωδ × (0, T ). (92)

The boundary conditions remain of the form (90), (91).
We want to reproduce the asymptotic theory of the previous section for the

model given by the energy Eδ and the equations (84), (89), and (92). There are
several additional difficulties here, however, that we have to overcome. First, the
target space for our maps is now S

2, not S
1, which means that mδ can no longer

be represented by a single phase function. The curvature of S2 also has the
consequence that we have to consider equations with nonlinear terms involving
first derivatives of mδ. Together with the fact that our domains Ωδ are now
three-dimensional, this means that we must expect solutions of the equations
with singularities. To simplify the presentation of the results, we always assume
here that we have smooth solutions; but without this assumption, regularity is
an issue that requires extra care.

The most important new aspect of this model, however, is the nonlocal
operator appearing in the magnetostatic energy. This is at first a major imped-
iment to using the methods from the theory of Ginzburg-Landau vortices, for
these methods require pointwise comparisons between integrands of the lower
order energy terms. To overcome this difficulty, we compare Eδ with another
functional that has only local terms, namely

Fδ(mδ) =
1
2δ

∫
Ωδ

(
|∇mδ|2 +

(mδ
3)2

δ

)
dx +

log 1
δ

2δ

∫
∂Ω×(0,δ)

(mδ · ν)2 dH2.

Here Hk denotes the k-dimensional Hausdorff measure. The functional Fδ can
be thought of as the three-dimensional equivalent of

Gδ(mδ) =
1
2

∫
Ω

(
|∇mδ|2 +

(mδ
3)

2

δ

)
dx+

1
2

log
1
δ

∫
∂Ω

(m · ν)2 dH1,

where for the latter functional, we consider mδ ∈ H1(Ω, S2).
The connection to the theory discussed earlier is obvious. The connection

to the theory of Ginzburg-Landau vortices becomes even more apparent when
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one observes that (mδ
3)

2 = 1 − |mδ|2 (since mδ has values in the unit sphere),
recovering thus an integrand in the first integral of Gδ that is similar to the
one used in most works on Ginzburg-Landau vortices. Less obvious is the con-
nection between Eδ and Fδ. Before we give any rigorous arguments, we look
at this question heuristically. The magnetostatic energy seeks to minimize the
divergence of χΩδ

mδ, which consists of two parts: the divergence of mδ in the
interior of Ωδ on the one hand, and the distribution given by the perpendicu-
lar part of mδ on ∂Ωδ on the other hand. The latter further splits into two
parts according to the natural decomposition of the boundary into Ω × {0, δ}
and ∂Ω × (0, δ). The part coming from div mδ now gives a contribution to the
magnetostatic energy which is of the same order as the exchange energy. Both
of the other parts correspond to one of the terms in Fδ.

The next few lemmas give a more precise description of the relation between
these functionals.

Lemma 6. For δ ∈ (0, e−e] and mδ ∈ H1(Ωδ,R
3), the inequality

‖∇uδ‖2
L2(R3) ≤ C

√
δ‖∇mδ‖2

L4/3(Ωδ) + C‖mδ
3( · , 0)‖2

L4/3(Ω)

+ C

∫
∂Ω

‖χ(0,δ)m
δ(x, · ) · ν(x)‖2

H−1/2(R)dH1(x)

holds for a constant C that depends only on Ω. Here uδ ∈ H1(R3) is the function
determined by (82).

Proof. We have∫
R3

|∇uδ|2 dx =
∫

Ωδ

∇uδ · mδ dx

=

(∫
Ω×{δ}

−
∫

Ω×{0}

)
uδmδ

3 dx +
∫

∂Ω

∫ δ

0

uδmδ · ν dx3 dH1

−
∫ δ

0

∫
Ω

uδ div mδ dx dx3.

Now we use the continuous trace operators H1(R3) → L4(Ω) for every slice
Ω × {x3} and the continuous trace operator H1(Ω) → L2(∂Ω, H1/2(−1, 1)) to
estimate the traces of u in these spaces. Furthermore, an integration of ∂mδ

3
∂x3

along vertical lines gives

‖mδ
3( · , 0) −mδ

3( · , δ)‖2
L4/3(Ω) ≤

√
δ‖∇m‖2

L4/3(Ωδ),

and the desired estimate then follows from the Hölder inequality.

Lemma 7. For δ ∈ (0, e−e], let mδ ∈ H1(Ω, S1) and mδ(x, x3) = (mδ(x), 0).
Then

‖∇uδ‖L2(R3) ≤ Cδ2
(
‖∇mδ‖2

L4/3(Ω) + log
1
δ
‖mδ · ν‖2

L2(∂Ω)

)

for a constant C that depends only on Ω.
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Proof. A direct computation shows that the characteristic function χ(0,δ) of the
interval (0, δ) satisfies

‖χ(0,δ)‖H−1/2(R) ≤ cδ2
(

1 + log
1
δ

)

for a certain constant c which is independent of δ. The claim now follows directly
from Lemma 6.

Proposition 17. There exists a constant C, dependent only on Ω, such that

inf
H1(Ωδ,S2)

Eδ ≤ π log log
1
δ

+ C

for δ ∈ (0, e−e].

Proof. We construct a map mδ ∈ H1(Ω, S1) with two standard vortices centered
at two different points on the boundary, similarly as in the proof of Proposition
7 (with ε = 1/ log 1

δ ). For mδ(x, x3) = (mδ(x), 0), the estimates of Proposition
7, together with Lemma 7, give a bound for Eδ(mδ) of the desired form.

In fact the quantity π log log 1
δ gives also a lower bound for the infimum of Eδ

in H1(Ωδ, S
2) up to a constant. That is, it determines the asymptotic behavior

of this infimum. The proof of the lower estimate is technically more involved;
we therefore give only a sketch of the proof here.

Lemma 8. For δ ∈ (0, e−e] and mδ ∈ H1(Ωδ, S
2), the inequality∫

Ωδ

(mδ
3)

2 dx ≤ C

[
δ

∫
Ωδ

|∇mδ
3|2 dx +

∫
R3

|∇uδ|2 dx + δ2
]

(93)

holds for a constant C that depends only on Ω.

Sketch of the proof. We test (82) with a function φ ∈ C0,1(R3) which is defined
on Ω × R by

φ(x, x3) =

⎧⎨
⎩

0, if x3 ≤ 0 or x > 2δ,∫ x3

0 m3(x, s) ds if 0 < x3 ≤ δ,

(2 − x3/δ)
∫ δ

0
m3(x, s) ds if δ < x3 ≤ 2δ,

and extended suitably to R3. We recover the left-hand side of (93) as one of the
terms in the resulting equation (after an integration by parts). All other terms
can then be estimated with standard methods.

For s ≥ 0 we now define the sets

Vs = {x ∈ Ω : dist(x, ∂Ω) < s} , V δ
s = Vs × (0, δ),

Γs = {x ∈ Ω : dist(x, ∂Ω) = s} , Γδ
s = Γs × (0, δ).

We fix s0 > 0 such that Γs is a smooth curve for every s ∈ (0, 2s0]. Moreover,
we define

κ(δ) =
1

log 1
δ

.
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Lemma 9. There exists a constant C, depending only on Ω, such that for every
δ ∈ (0, e−e] and every s ∈ [0, s0] with s ≤ κ(δ), the inequality

log
1
δ

∫
Γδ

s

(mδ · ν)2 dH2 ≤ C

∫
V δ

κ(δ)

(
|∇mδ|2 +

(mδ
3)

2

δ

)
dx

+
C

δ

∫
R3

|∇uδ|2 dx + Cδ (94)

is satisfied for any mδ ∈ H1(Ωδ, S
2).

Sketch of the proof. The idea is to test (82) with a suitably constructed function
φ satisfying φ = mδ · ν on Γδ

0 and supported on a κ(δ)-neighborhood of Γδ
0. An

integration by parts on one side of the resulting equation then yields, among
other terms, the left-hand side of (94) for s = 0. A careful estimate of the
other terms gives the required inequality for Γδ

0. To obtain the corresponding
inequality for other values of s, integrate the derivative of (mδ · ν)2 along rays
in the direction of −ν.
Proposition 18. For any K ∈ R there exists a constant C, depending only on
Ω and K, such that the following holds. Suppose δ ∈ (0, e−e] and s ∈ [0, s0]. If
mδ ∈ H1(Ωδ, S

2) satisfies

Eδ(mδ) ≤ π log log
1
δ

+K, (95)

then

1
δ

∫
Ωδ

(
|∇mδ

3|2 +
∣∣∣∣∂mδ

∂x3

∣∣∣∣
2

+
(mδ

3)
2

δ

)
dx +

1
δ

∫
V δ

κ(δ)

|∇mδ|2 dx

+
1
δ2

∫
R3

|∇uδ|2 dx +
log 1

δ

δ

∫
Γδ

s

(mδ · ν)2 dH2 ≤ C. (96)

Sketch of the proof. With the arguments from Section 3, combined with similar
arguments from the theory of Ginzburg-Landau vortices, applied to slices of the
form Ω\Vs × {t}, we obtain the estimate

1
2δ

∫
Ωδ\V δ

s

(∣∣∣∣∂mδ

∂x1

∣∣∣∣
2

+
∣∣∣∣∂mδ

∂x2

∣∣∣∣
2

+
(mδ

3)2

δ

)
dx

+
log 1

δ

δ

∫
Γδ

s

(mδ · ν)2 dH2 ≥ π log log
1
δ
− C1 (97)

for a certain constant C1 that depends only on Ω. Combining this with Lemma
8, Lemma 9, and (95), we obtain the desired inequality.

Proposition 19. There exists a constant C, dependent only on Ω, such that

inf
H1(Ωδ,S2)

Eδ ≥ π log log
1
δ
− C

for δ ∈ (0, e−e].
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Proof. Choose a minimizer mδ of Eδ in H1(Ωδ, S
2), then (95) holds for a certain

constant K by Proposition 17. Thus mδ satisfies (96) and (97), and the claim
follows.

Proposition 17 and Proposition 18 together describe the asymptotic behavior
of the minimal energy as δ ↘ 0 up to an additive constant, and it is the behavior
we expect also for the functionals Fδ or Gδ. Moreover, if mδ is independent of
x3, we can estimate each term in Eδ by a combination of terms in Gδ, and vice
versa, according to Lemmas 6–9. This already relates the asymptotic regime
studied here to the model used in Section 3. We discover more similarities,
however, when we study the asymptotic behavior of critical points of Eδ or
solutions of the Landau-Lifshitz equations (89) and (92)

If we have a family of solutions mδ of one of the variational problems as-
sociated to Eδ, it is natural to apply variants of the usual arguments from the
theory of Ginzburg-Landau vortices to the slices Ω× {s} with 0 < s < δ. More
precisely, we use arguments like those discussed in the previous section for the
behavior near ∂Ω, and arguments from the theory of Bethuel, Brezis, and Hélein
[4, 5] for the behavior in the interior of Ω. This is the key element in the proofs
of each of the results that follow. We omit a detailed presentation of these
proofs (since similar arguments have been discussed earlier), but we give a brief
discussion of some additional arguments that are needed in each case. For the
complete proofs, the reader is referred to [34, 35, 36].

Theorem 11. For δ ∈ (0, e−e], suppose mδ ∈ C∞(Ω, S2) are stable critical
points of Eδ, i.e., solutions of (84) satisfying the boundary conditions (85) and
(86), such that (87) holds for every ψ ∈ C∞(Ωδ,R

3). Suppose further that there
exists a number K such that

Eδ(mδ) ≤ π log log
1
δ

+K

for every δ. Then there exist a sequence δk ↘ 0, two distinct points x1, x2 ∈ ∂Ω,
and a map m = (m, 0) ∈ W 1,1(Ω, S1 ×{0}) with m · ν = 0 on ∂Ω, such that the
following holds.

(i) For any p < 2, the sequence {mδk
} converges weakly in W 1,p(Ω,R3) to m.

The convergence also holds weakly in H1(Ω′,R3) for every Ω′ ⊂ Ω with
Ω′ ⊂ Ω\{x1, x2}.

(ii) The limit map m satisfies

∆m+ |∇m|2m−∇u0 + (m · ∇u0) = 0 in Ω, (98)

where u0 is the trace on Ω × {0} of the function determined by (83).

(iii) If R2 is identified with the complex plane C by z = x1 + ix2 (and similarly
z1 = x1

1 + ix1
2 and z2 = x2

1 + ix2
2 for x1 = (x1

1, x
1
2) and x2 = (x2

1, x
2
2)), then

m has the representation

m(z) =
z − z1

|z − z1|
z − z2

|z − z2|e
iθ(z)

for a function θ ∈ C0(Ω) which solves

∆θ = m1
∂u0

∂x2
−m2

∂u0

∂x1
in Ω. (99)
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Thus at least at the lowest possible energy level, we observe the development
of two boundary vortices in the limit. Note also that the limit equation (98) is
formally the Euler-Lagrange equation for the (formal) functional

1
2

∫
Ω

|∇m|2 dx+
1
2

∫
R3

|∇u|2 dx,

where u denotes the function in H1(R3) defined by (83). It turns out, however,
that this quantity is identically infinite. It can be replaced by a functional in-
volving the Dirichlet energy of θ, and then (98) truly becomes an Euler-Lagrange
equation, but we omit the details here.

The stability condition (87) is needed in the proof of this theorem in order
to estimate the Dirichlet energy of mδ in small cylinders of the form

(Bµ
√

δ(x) ∩ Ω) × (0, δ),

where µ > 0 is a fixed constant. This allows to use estimates from the regularity
theory of harmonic maps and to conclude that

|∇mδ| ≤ C√
δ

for a certain constant C which is independent of δ. Apart from the fact that
such a gradient estimate is normally used in the theory of Ginzburg-Landau
vortices, it is in this context also important for another reason: It means that
mδ varies very little in the third direction if δ is small, for the thickness of Ωδ

is small compared with |∇mδ|. This permits to work on a suitable slice Ω×{s}
and pretend that the domain is two-dimensional for much of the proof. The
previously mentioned arguments then give (i) and the representation of m in
(iii).

To derive the limit equation (98), we first take the vector product with mδ

on both sides of (84), which gives

δ div(mδ ∧∇mδ) = mδ ∧∇uδ = 0 in Ωδ.

This form of the equation has the advantage that it does no longer explicitly
contain the term |∇mδ|2mδ (which would be difficult to handle with the weak
convergence that we have). In particular it is then possible to pass to the limit
and to show that m satisfies

div(m1∇m2 −m2∇m1) = m1
∂u0

∂x2
−m2

∂u0

∂x1
in Ω.

This equation is exactly (99) if m is represented by θ as in (iii). Finally, the
equation is also equivalent to (98).

Theorem 12. For T ∈ (0,∞] and δ ∈ (0, e−e], suppose mδ ∈ C∞(Ωδ ×
[0, T ), S2) satisfy the Landau-Lifshitz equations (92) with boundary conditions
(90), (91). Also suppose that the initial data

m̂δ(x) = mδ(x, 0)

satisfy

Eδ(m̂δ) ≤ π log log
1
δ

+K
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and
|∇m̂δ| ≤ K√

δ

in Ωδ for a constant K that is independent of δ. Then there exist a sequence
δk ↘ 0, a map m = (m, 0) ∈ L∞([0, T ),W 1,1(Ω, S1 × {0})) with m · ν = 0 on
∂Ω × [0, T ), and two distinct points x1, x2 ∈ ∂Ω, such that the following holds.

(i) The sequence {mδk} converges weakly* in L∞([0, T ),W 1,p(Ω,R3)) to m for
any p < 2, and also weakly* in L∞([0, T ), H1(Ω′,R3)) for any Ω′ ⊂ Ω
with Ω′ ⊂ Ω\{x1, x2}.

(ii) The limit map solves

α̃
∂m

∂t
= ∆m+ |∇m|2m−∇u0 + (m · ∇u0)m in Ω × (0, T ), (100)

where u0( · , t) is the trace on Ω × {0} of the function determined by (83)
for almost every fixed t ∈ [0, T ).

(iii) It is of the form

m(z, t) =
z − z1

|z − z1|
z − z2

|z − z2|e
iθ(z,t),

where θ ∈ C0(Ω × [0, T )) is a solution of

α̃
∂θ

∂t
= ∆θ −m1

∂u0

∂x2
+m2

∂u0

∂x1
in Ω × (0, T ).

(Here we use an identification of R
2 with C as in the previous theorem.)

This is the time scale where we have stationary boundary vortices. The
limit equation (100) is formally the L2-gradient flow for the formal functional
mentioned earlier (up to a constant). It is also the true gradient flow for a
related functional.

It is interesting here to compare the limit equation (100) with the original
Landau-Lifshitz equation, especially if the latter is in the form (88). We had
originally a gyromagnetic term with coefficient γ̂ and a damping term with
coefficient α̂. The gyromagnetic term has vanished in the thin-film limit (as
it is to be expected when m remains in the plane R2 × {0}). We still have a
damping term, but the damping coefficient is now

1
α̃

= α̂+
γ̂2

α̂
.

Thinking of γ̂ as a fixed constant and of α̂ as small in comparison, we are
in the seemingly paradox situation that decreasing the damping coefficient α̂
accelerates the dynamics in the thin-film limit. This phenomenon has already
been discovered by formal computations by W. E and C. Garćıa-Cervera [15].

With the gradient estimate that we impose on the initial data, we can use the
same methods as in the proof of Theorem 11 to obtain the same development of
boundary vortices for m̂δ that we have found for stable critical points. To prove
this for times t > 0, we need slightly different arguments. Here we calculate
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how the energy develops locally with time, that is, for a function η ∈ C∞
0 (R3)

with η = 0 in a neighborhood of {x1, x2} × [0, δ], we calculate

d

dt

(∫
Ωδ

η|∇mδ|2 dx +
1
δ

∫
R3
η|∇uδ|2 dx

)
. (101)

We find that away from the vortex center points x1, x2, the energy increases
at most by a constant that is independent of δ in bounded time intervals. We
can then again use arguments from the theory of Ginzburg-Landau vortices for
fixed times t > 0.

Theorem 13. Under the conditions of Theorem 12, but with (89) replaced by
(92), there exist a sequence δk ↘ 0, two curves x1, x2 ∈ C0,1/2([0, T ), ∂Ω), and
a map

m = (m, 0) ∈
⋂
p<2

L∞([0, T ),W 1,p(Ω, S1 × {0}))

with m · ν = 0 on ∂Ω × [0, T ), such that the following holds.

(i) For any p < 2 and any q < ∞, the sequence {mδk} converges weakly in
Lq([0, T ),W 1,p(Ω,R3)) to m.

(ii) For almost every t ∈ [0, T ) and every Ω′ ⊂ Ω with Ω′ ⊂ Ω\{x1(t), x2(t)},
the map m( · , t) belongs to H1(Ω′, S1).

(iii) The equation

∆m+ |∇m|2m−∇u0 + (m · ∇u0)m = 0 in Ω × (0, T )

holds, where u0( · , t) is the trace on Ω×{0} of the function determined by
(83) for almost every fixed t ∈ [0, T ).

(iv) The map m is of the form

m(z, t) =
z − z1(t)
|z − z1(t)|

z − z2(t)
|z − z2(t)|e

iθ(z,t),

where θ ∈ C0(Ω × [0, T ]) is a solution of

∆θ = m1
∂u0

∂x1
−m2

∂u0

∂x2
in Ω × (0, T ).

In contrast to the situation of Theorem 12, we now have moving boundary
vortices. This means in particular that when we calculate the evolution of the
localized energy in (101), the vortex centers may enter the support of η after
some time. For this reason, the estimates we obtain are not quite as good as
before, and the type of convergence we find is weaker. On the other hand, an
analysis of the energy increase over a fixed time interval permits to estimate
the distance that the vortex centers have moved in this time (since most of
the micromagnetic energy is concentrated in the vortex centers). This way we
obtain the Hölder continuity of x1 and x2.

Finally, comparing Theorem 13 with the results of Section 3, especially The-
orem 9, we see that one statement is missing here: We do not have any informa-
tion about the law that governs the motion of the vortices. There is no obvious
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reason why the model discussed here should have a significantly different be-
havior in this respect, but the technical difficulties mentioned earlier make it
hard to carry over the arguments from the simpler model. This problem thus
remains open.
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