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The adaptive cross approximation (ACA) algorithm [2, 3] provides a means to com-
pute data-sparse approximants of discrete integral formulations of elliptic boundary value
problems with almost linear complexity. ACA uses only few of the original entries for
the approximation of the whole matrix and is therefore well-suited to speed up existing
computer codes. In this article we extend the convergence proof of ACA to Galerkin
discretizations. Additionally, we prove that ACA can be applied to integral formulations
of systems of second-order elliptic operators without adaptation to the respective prob-
lem. The results of applying ACA to boundary integral formulations of linear elasticity
are reported. Furthermore, we comment on recent implementation issues of ACA for
nonsmooth boundaries.
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1 Introduction

Due to improved capabilities of recent computer systems, larger and larger linear systems of equations
are to be solved. Since classical solution techniques such as Gaussian elimination have superlinear
complexity, the efficiency of such methods gets worse the faster computers develop. Therefore, in
the past few years fast summation methods have become widely popular in the field of engineering
and applied mathematics.

In this article we are interested in the efficient solution of systems of integral equations

λu(y) + (Ku)(y) = f(y), y ∈ Γ, (1.1)

with integral operators (Ku)(y) :=
∫
Γ κ(x, y)u(x) dsx and given right-hand sides f . The solution

u : Γ → R
ν is searched for on a (d− 1)-dimensional manifold Γ ⊂ R

d. This kind of integral equation
arises for instance from the boundary element method (BEM); cf. [24, 20]. The results of this article
can however be easily extended to volume integral equations in R

d.
In order to solve equation (1.1) numerically, the domain of integration Γ is approximated by a

triangulation Γh. Besides the Galerkin method, the collocation method, and the Nyström method are
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commonly used. In the Galerkin and the collocation method the solution u is approximated from a
finite-dimensional ansatz space Vh; i.e., the approximant uh ∈ Vh to u is sought of the form

uh(x) =
N∑

i=1

uiϕi(x),

where ϕi, i ∈ I := {1, . . . , N}, is a basis of Vh. Especially for complicated domains in three di-
mensions, the number of degrees of freedom N has to be chosen sufficiently large to guarantee a
reasonable accuracy of uh. All three methods reduce (1.1) to a linear system of the form

(λM +K)x = b, K,M ∈ R
I×I , b ∈ R

I ,

where M is a sparse matrix and produces no numerical difficulties. In this article M will hence be
neglected. However, K is dense and therefore requires O(N2) units of storage. Additionally, the
computation of the right-hand side b might involve the treatment of rectangular matrices. Therefore,
we are concerned with matrices A ∈ R

I×J with J := {1, . . . , N ′}, which in the case of the Petrov-
Galerkin method are

aij =
∫

Γ

∫
Γ
κ(x, y)ϕj(x)ψi(y) dsx dsy

with trial functions ψi, in the case of the collocation method

aij =
∫

Γ
κ(x, yi)ϕj(x) dsx

with collocation points yi, and in the case of the Nyström method

aij = ωjκ(yj, yi) for i �= j and aii = ci

with N numbers ci and weights ωj. Integral equations are just one example of problems which
lead to coefficient matrices of one of the above types. The evaluation of Coulomb and gravitational
potentials of particle systems are further examples.

Throughout this article we will use the notation R
t×s for the subspace of matrices in the rows

t ⊂ I and columns s ⊂ J . Furthermore, Ats or Ab, where b = t× s is an index block, will denote the
restriction of a matrix A ∈ R

I×J to R
t×s. Although the above discretization methods have principle

differences, they can be treated in a common way when approximating them by data-sparse methods.
For t ⊂ I and s ⊂ J we introduce the following linear operators Pt : L2(Γ) → R

t, Qs : L2(Γ) → R
s.

For i ∈ t and j ∈ s let

(Ptf)i =
∫
Γ f(x)ψi(x) dsx, (Qsf)j =

∫
Γ f(x)ϕj(x) dsx Galerkin method

(Ptf)i = f(yi), (Qsf)j =
∫
Γ f(x)ϕj(x) dsx collocation method

(Ptf)i = f(yi), (Qsf)j = ωjf(yj) Nyström method.

With this notation, each block Ats of the stiffness matrix A ∈ R
I×J takes the form

Ats = PtKQ∗
s, (1.2)

where Q∗
s : R

s → L2(Γ) is the adjoint of Qs defined by

(Q∗
sz, f)L2(Γ) = (z,Qsf) for all z ∈ R

s, f ∈ L2(Γ). (1.3)

Additionally, we define the supports

supp P := R
d \D,
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where D is the largest open set such that Pϕ = 0 for all ϕ ∈ L2(Γ) satisfying supp ϕ ⊂ D. With
this definition let

Xi := supp Pi, i ∈ I, and Yj := supp Qj , j ∈ J.

Data-sparse representations of the fully populated matrix A are often based on kernel approxima-
tions by degenerate kernels

κ̃(x, y) :=
k∑

�=1

u�(x)v�(y) (1.4)

on domains that are relatively to their diameters far enough away from each other. The corresponding
block in the rows t and columns s of the dense matrix A will therefore be approximated by the matrix
UV T of rank at most k, where U ∈ R

t×k, V ∈ R
s×k with entries

Ui� := Piu� and Vj� := Qjv�, i ∈ t, s ∈ j, � = 1, . . . , k. (1.5)

If k is small compared with the block sizes |t| and |s|, the amount of storage for the block t× s and
the cost for multiplying this block by a vector reduces from |t| · |s| to k(|t|+ |s|). On the other hand,
κ is evaluated without approximation on domains which are close to each other. This approach is
general in the sense that is can be applied to the singularity function S(x, y) of any elliptic operator
with constant coefficients; see Theorem 3.3. It relies on the fact that κ is singular for x = y but
smooth if x �= y. Based on the above idea, fast summation methods provide an (approximate) dense
matrix-vector multiplication of almost1 linear complexity and can hence be used to accelerate any
Krylov subspace method. Furthermore, the storage requirements of these methods is also almost
linear. If the accuracy of the approximation lies within the range of other unavoidable errors like
discretization errors, the solution will not notice this additional approximation.

The starting point of fast summation methods was the fast multipole method (FMM) published by
Rokhlin [22], which concentrated on the fast multiplication of matrices of Nyström type by a vector.
In the meanwhile variants of the FMM have been adapted to many different kernel functions; see for
instance [21] for the application to elasticity. The panel clustering method proposed by Hackbusch
and Nowak [14] was designed for the fast matrix-vector multiplication of collocation matrices; see
[15] for the application to elastostatic problems.

The main difficulty of the FMM and the panel clustering method is that the functions ui and vi

in (1.4) have to be known explicitly. Finding appropriate expansions can be quite cumbersome for
instance for anisotropic elasticity. Furthermore, since k in (1.4) is chosen apriori so as to satisfy a
prescribed accuracy in R

d, k will usually be too large. Additionally, for boundary integral operators
it is very likely that an approximation on a pair of domains within a common hyperplane is to be
computed. In this case the problem is only (d− 1)-dimensional and k could be chosen much smaller.
This led to algebraic methods like the mosaic skeleton method [27] and hierarchical (H-) matrices
[12, 13], which work on the matrix level and thus better adapt to the properties of the discrete
operator.

An interesting observation due to Tyrtyshnikov et al. [9] was the existence of low-rank approxi-
mants based on few of the original matrix entries. If such an approximant can be computed with
reasonable effort, this is of great practical importance since existing computer codes can easily be
modified, whereas the FMM and panel clustering methods require a complete recoding of the matrix-
vector multiplication including computation of coefficients. Stimulated by this existence result, the
adaptive cross approximation algorithm (ACA) [2, 3] for the computation of these low-rank approx-
imants in the case of Nyström- and collocation matrices was published. This method is nowadays
used in applications such as electromagnetics [18, 7] and in combination with algebraic multigrid [19].

1a complexity that is linear up to logarithmic factors
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Up to now, the proofs relied on the fact that collocation and Nyström matrices arise from evaluating
functions at given points. Therefore, interpolation results were applied. For Galerkin matrices an
analogous result was doubtful due to the variational character of the formulation.

The aim of this article is to prove that the ACA algorithm can also be applied to Galerkin
matrices. Hence, it is possible to approximate A by a matrix AH which needs O(N logdN) units of
storage and can be multiplied by a vector with O(N logdN) complexity. The computation of AH
requires O(N log2d−1N) arithmetical operations. The structure we are using to approximate A are
hierarchical matrices. Basically, these are matrices with a hierarchical block partitioning in which
each block is a matrix of low rank. In Sect. 2 a more detailed description of H-matrices will be given.
The asymptotic smoothness of the singularity matrix of elliptic operators with constant coefficients
is proved in Sect. 3. An important example are the Lamé equations (see Sect. 4), which will be used
in this article to demonstrate the efficiency of ACA. The asymptotic smoothness of the singularity
matrix is the only prerequisite of ACA. In Sect. 5 this algorithm is shown to converge for Galerkin
matrices. The resulting approximant will be shown to be optimal in the sense that, up to constants,
the remainder is smaller than the remainder resulting from any kernel approximation. Furthermore,
we comment on implementation aspects of ACA for nonsmooth boundaries. In Sect. 6 numerical
results from the application of ACA to Galerkin discretizations of problems from three-dimensional
linear elasticity are presented.

2 Hierarchical matrices

This section gives a brief overview over the structure of H-matrices originally introduced by Hack-
busch et al. [12, 13]. The efficiency of H-matrices is based on a hierarchical partition P of the set of
matrix indices I × J such that each block b = t× s, t ⊂ I, s ⊂ J , can be approximated by a matrix
of low-rank; i.e.,

Ab ≈ UV T , U ∈ R
t×k, V ∈ R

s×k,

where k is small compared with |t| and |s|.
As mentioned in the introduction (see (1.5)), for the block Ats a low-rank matrix approximant can

be found whenever the generating kernel function κ can be approximated where κ is evaluated. The
operators Pi and Qj guarantee that for computing the entry Aij the kernel function κ is evaluated
on Xi × Yj . Hence, for the subblock Ats we have to evaluate κ on Xt :=

⋃
i∈tXi and Ys :=

⋃
j∈s Yj .

It will be seen in Sect. 5 that in the case of asymptotically smooth kernels κ such an approximation
exists if for a given real number 0 < η < 1 it holds that

min{diam Yt,diamXs} < η dist(Yt,Xs). (2.1)

Note that for each i ∈ I there will always be j ∈ J such that Xi ∩Yj �= ∅. Condition (2.1) will hence
be violated for at least one entry in each row. In order to guarantee that Ab with (i, j) ∈ b has low
rank, the dimensions of Ab therefore have to be small. An appropriate partition can be generated
by recursive subdivision of I × J ; see [2]. The complexity of constructing P for quasi-uniform grids
can be estimated as O(N logN).

The set of H-matrices for a given partition P with blockwise rank k ∈ N is defined as

H(P, k) := {A ∈ R
I×J : rankAb ≤ k for all b ∈ P}.

Exploiting the hierarchical structure, it can be shown that provided each block t × s has complex-
ity k(|t| + |s|) the complexity of the whole matrix will be of the order kN logN ; see [2]. Hence,
both storing A ∈ H(P, k) and the computation of matrix-vector products have complexity kN logN ,
which makes H-matrices well-suited for iterative schemes such as Krylov subspace methods. Addi-
tionally, approximate versions of the usual matrix operations can be defined (see [10]) which have
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logarithmic-linear complexity. Furthermore, the approximate arithmetic allows to define approxi-
mate LU decompositions, which can be used for preconditioning coefficient matrices arising from
boundary element applications; see [5].

3 Asymptotic smoothness of singularity matrices

The boundary element method is usually applied to elliptic operators with constant coefficients,
since the kernel function κ in (1.1) has to be known explicitly. In this section we will therefore lay
theoretical ground to the efficient treatment of systems of partial differential operators

(Lu)k = −
d∑

i,j=1

ν∑
�=1

∂i(ck�
ij ∂j)u�, k = 1, . . . , ν, (3.1)

with constant coefficients ck�
ij such that L is elliptic; i.e., the Legendre-Hadamard condition (see [8])

holds
d∑

i,j=1

ν∑
k,�=1

ck�
ij viwkvjw� ≥ λL|v|2|w|2 for all v ∈ R

d, w ∈ R
ν , (3.2)

where | · | denotes the Euclidean norm, λL > 0 and

max
i,j,k,�

|ck�
ij | ≤ ΛL.

The aim of this section is to show that the entries of singularity matrices S : R
d × R

d → R
ν×ν

satisfying
LyS(x, y) = δ(x − y)Iν

are asymptotically smooth.

Definition 3.1. A function κ : Ω×R
d → R satisfying κ(x, ·) ∈ C∞(Rd \ {x}) for all x ∈ Ω is called

asymptotically smooth in Ω with respect to y if constants c and γ can be found such that for all
x ∈ Ω and all α ∈ N

d
0

|Dα
y κ(x, y)| ≤ cp!γpR−p sup

z∈BR(y)
|κ(x, z)| for all y ∈ R

d \ {x},

where R = |x− y|/2 and p = |α|.
As usual we denote by Dα

y the partial derivative

Dα
y =

(
∂

∂y1

)α1

· · ·
(

∂

∂yd

)αd

.

Asymptotical smoothness of the entries of S is a prerequisite of the ACA algorithm. It is usually
checked for each singularity matrix under investigation. The following theory states that the entries
of operators (3.1) will always have this property.

Let F denote the Fourier transform which is assumed to be normalized such that F∗ = F−1. From
F [Dαu](ξ) = ξα(2πi)|α|Fu(ξ), it follows that

−∂ic
k�
ij ∂juk = −F∗F(∂ic

k�
ij ∂juk) = (2π)2F∗(ck�

ij ξiξjFuk)
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and using (3.2) for u ∈ [H1
0 (Ω)]ν one has

d∑
i,j=1

ν∑
k,�=1

∫
Ω
ck�
ij ∂iuk∂ju� dx =

∫
Ω
(Lu, u) dx = (2π)2

d∑
i,j=1

ν∑
k,�=1

∫
Ω
ck�
ij ξiξjFukFu� dx (3.3a)

≥ (2π)2λL
d∑

i=1

ν∑
�=1

∫
Ω
|ξiFu�|2 dx = λL

d∑
i=1

ν∑
�=1

∫
Ω
|F(∂iu�)|2 dx (3.3b)

= λL
d∑

i=1

ν∑
�=1

‖∂iu�‖2
L2 = λL‖Du‖2

L2 . (3.3c)

The last estimate does not hold for variable coefficients ck�
ij . In this case, either one has to consider

operators L = −ck�
ij ∂i∂j instead of the divergence form (3.1) or the stronger condition

d∑
i,j=1

ν∑
k,�=1

ck�
ij vikvj� ≥ λL‖V ‖2

F for all V ∈ R
d×ν

has be imposed instead of (3.2). Here, ‖ · ‖F denotes the Frobenius norm.
In order to prove asymptotic smoothness, we first derive the following Caccioppoli-type inequality

with the usual technique which uses cut-off functions.

Lemma 3.2. Assume that u ∈ [H1(Ω)]ν such that Lu = 0 in Ω. Then for any compact set K ⊂ Ω
it holds that

‖Du‖L2(K) ≤
cL
σ
‖u‖L2(Ω),

where

cL =

√
8d2ν

ΛL
λL

(
1 + 8dν

ΛL
λL

)
and σ = dist(K,∂Ω).

Proof. Let η ∈ C1(Ω) satisfy 0 ≤ η ≤ 1, η = 1 in K, η = 0 in a neighborhood of ∂Ω and |∂iη| ≤ 2/σ,
i = 1, . . . , d, in Ω. With u ∈ [H1(Ω)]ν it follows that η2u ∈ [H1

0 (Ω)]ν . From

∂i(η2uk)∂ju� = ∂i(ηuk)∂j(ηu�) + uk∂iη∂j(ηu�) − u�∂i(ηuk)∂jη − uku�∂iη∂jη

we obtain using
∫
Ω(Lu, η2u) dx = 0 that for any ε > 0

d∑
i,j=1

ν∑
k,�=1

∫
Ω
ck�
ij ∂i(ηuk)∂j(ηu�) dx

≤ ΛL
d∑

i,j=1

ν∑
k,�=1

∫
Ω
|uk||u�||∂iη||∂jη| + 2|uk||∂iη||∂j(ηu�)|dx

≤ 4ΛL
d

σ

d∑
j=1

ν∑
k,�=1

∫
Ω

1
σ
|uk||u�| + |uk||∂j(ηu�)|dx

≤ 4ΛL
d

σ

⎛
⎝ν d

σ
‖u‖2

L2 +
d∑

j=1

ν∑
k,�=1

(∫
Ω
|uk|2 dx

)1/2 (∫
Ω
|∂j(ηu�)|2 dx

)1/2
⎞
⎠

≤ 4ΛL
dν

σ

⎛
⎝d

σ
‖u‖2

L2 +
d

ε

ν∑
k=1

∫
Ω
|uk|2 dx+ ε

d∑
j=1

ν∑
�=1

∫
Ω
|∂j(ηu�)|2 dx

⎞
⎠

= 4ΛL
d2ν

σ2

(
1 +

σ

ε

)
‖u‖2

L2(Ω) + 4ΛL
dν

σ
ε

∫
Ω
‖D(ηu)‖2

F dx.
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Using (3.3), we obtain

λL
∫

Ω
‖D(ηu)‖2

F dx ≤ 4ΛL
d2ν

σ2

(
1 +

σ

ε

)
‖u‖2

L2(Ω) + 4ΛL
dν

σ
ε

∫
Ω
‖D(ηu)‖2

F dx.

This leads to

‖Du‖2
L2(K) ≤ ‖D(ηu)‖2

L2(Ω) ≤
1
σ2

4ΛLd2ν(1 + σ/ε)
λL − 4ΛLdνε/σ

‖u‖2
L2(Ω).

Choosing ε = λLσ/(8ΛLdν) gives the desired result.

The Lamé equations, which arise from linear isotropic elasticity, read

−µ�∆u− (λ+ µ)∇divu = f.

Here, λ and µ denote the Lamé constants. The last operator is in the class of operators (3.1) with
coefficients ck�

ij = µδijδk� + (λ+ µ)δikδj� and ν = d. Hence,

d∑
i,j,k,�=1

ck�
ij viwkvjw� = µ|v|2|w|2 + (λ+ µ)(v · w)2 ≥ µ|v|2|w|2

and the Lamé operator satisfies condition (3.2). Another example for systems of partial differential
operators is the equation Lu = f with the operator

L := curl curl − α∇div, α > 0,

which arises from Maxwell’s equations. Since curl curl = −�∆ + ∇div, we obtain that

L = −�∆ + (1 − α)∇div.

Hence, the curl-curl operator has a similar structure as the Lamé operator. However, it differs by
the sign of the ∇div part. As a consequence, ck�

ij = δijδk� + (α− 1)δikδj� gives

d∑
i,j,k,�=1

ck�
ij viwkvjw� = |v|2|w|2 + (α− 1)(v · w)2.

If α ≥ 1, then the last expression is obviously bounded from below by |v|2|w|2. In the other case,
0 < α < 1, we observe that

|v|2|w|2 + (α− 1)(v · w)2 = α|v|2|w|2 + (1 − α)[|v|2|w|2 − (v · w)2] ≥ α|v|2|w|2

due to the Cauchy-Schwarz inequality. Hence, also the curl-curl operator satisfies (3.2).
In order to derive pointwise estimates, we need the following estimate for u satisfying Lu = 0 in

Br(x) ⊂ R
d and k ∈ N

‖u‖Hk(Bρ(x)) ≤ c(k, ρ, r) ‖u‖L2(Br(x)) for all 0 < ρ < r, (3.4)

where c depends on the coefficients of L. Estimate (3.4) can be derived by applying Lemma 3.2
iteratively on a nested sequence of balls Br�

(x), � = 1, . . . , k. Due to the Sobolev embedding theorem,
estimate (3.4) states that L-harmonic functions are locally C∞. In particular, (3.4) gives for the
choice k = d+ 1

sup
Bρ(x)

|u| ≤ c‖u‖Hd+1(Bρ(x)) ≤ c̃(ρ, r)‖u‖L2(Br(x)).
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Using a rescaling argument, we obtain for x ∈ Ω and 0 ≤ r ≤ dist(x, ∂Ω)

sup
Bρ(x)

|u| ≤ cRr
−d/2‖u‖L2(Br(x)), 0 < ρ < r, (3.5)

with cR > 0 independent of ρ and r.
The next lemma shows that the entries Sij, i, j = 1, . . . , ν, of the singularity matrix S are asymp-

totically smooth. We already know that Sij(x, ·) ∈ C∞(Ω), i, j = 1, . . . , ν, is L-harmonic in each
Ω ⊂ R

d \ {x}.
Theorem 3.3. The entries of the singularity matrix S of L are asymptotically smooth in R

d with
respect to y.

Proof. Let x ∈ R
d be arbitrary but fixed. For y ∈ R

d \{x} let R = |x−y|/2. Assume that a function
u is L-harmonic in Br(y), 0 < r < R. Choosing 0 < ρ < r and ρ′ := (r + ρ)/2, we obtain from (3.5)
and Lemma 3.2 that

sup
z∈Bρ(y)

|∂ziu(z)|2 ≤ c2R
ρ′d

∫
Bρ′ (y)

|∂ziu(z)|2 dz ≤ c2Rc
2
L

ρ′d(r − ρ′)2

∫
Br(y)

|u(z)|2 dz (3.6a)

≤ 2d+2 ωdr
d

(r + ρ)d
c2Rc

2
L

(r − ρ)2
sup

z∈Br(y)
|u(z)|2. (3.6b)

Here, ωd denotes the volume of the unit ball in R
d.

Let α ∈ N
d
0 be a multi-index and p = |α|. We define a nested sequence of balls

Bk = {z ∈ R
d : |z − y| < Rk/(p + 1)}, k = 1, . . . , p+ 1,

centered at y. Then Bk ⊂ BR(y) ⊂ R
d \ {x} and dist(Bk, ∂Bk+1) = R/(p + 1). Estimate (3.6) for

ρ = Rk/(p + 1) and r = R(k + 1)/(p + 1) reads

sup
z∈Bk

|∂ziu(z)| ≤ 2d/2+1

(
k + 1
2k + 1

)d/2 cRcL
√
ωd

R
(p+ 1) sup

z∈Bk+1

|u(z)|

= c′L
p+ 1
R

(
2k + 2
2k + 1

)d/2

sup
z∈Bk+1

|u(z)|, k = 1, . . . , p,

where c′L := 2cRcL
√
ωd. Applying the last estimate consecutively to the p partial derivatives of the

function Sij(x, ·), which together with its derivatives ∂α
y Sij(x, y) is L-harmonic in BR(y) ⊂ R

d for
arbitrary α ∈ N

d
0, we end up with

sup
z∈B1

|Dα
z Sij(x, z)| ≤ (p+ 1)d/4

(
c′L(p+ 1)

R

)p

sup
z∈Bp+1

|Sij(x, z)|

since
∏p

k=1
2k+2
2k+1 ≤ √

p+ 1. Using (p+ 1)p ≤ epp and Stirling’s approximation

√
2πp

(p
e

)p
< p!,

we obtain

|Dα
y Sij(x, y)| ≤ e√

2π
2d/4p!

(
2

d−2
8
c′Le
R

)p

sup
z∈BR(y)

|Sij(x, z)|

due to p ≤ 2p/2.
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Note that neither the smoothness of S(x, y) with respect to x nor smoothness properties of the
surface Γ are necessary. As an example, any partial derivative ∂α

xS(x, y) is asymptotically smooth
with respect to y. The hyper-singular operator, the kernel of which contains derivatives with respect
to both variables, is usually expressed in terms of the single layer operator.

Although we could apply ACA directly to the arising Galerkin matrix, in the case of discretizations
of the Lamé equations it is more efficient to exploit the following representation.

4 Galerkin discretization of the Lamé equations

We consider an elastic body Ω ⊂ R
3 with a Lipschitz boundary Γ. Suppose that a displacement

of the body gD is given on ΓD ⊂ Γ and some force gN is applied to ΓN ⊂ Γ = ΓD ∪ ΓN . To find
displacements and forces inside Ω, we set up a mixed boundary value problem for the Lamé system:

−µ�∆u− (λ+ µ)∇divu = 0, x ∈ Ω, (4.1a)
u = gD, x ∈ ΓD, (4.1b)

t = Tu = gN , x ∈ ΓN . (4.1c)

Here, u : R
3 → R

3 is the displacement vector,

Txu (x) = λdiv u (x) · n (x) + 2µ
∂

∂n
u (x) + µn (x) × curl u (x) (4.2)

is the traction on the boundary. Lamé constants λ and µ relate to the elasticity module E and the
Poisson ratio ν of the material as follows

λ =
Eν

(1 + ν) (1 − 2ν)
, µ =

E

2 (1 + ν)
. (4.3)

The problem (4.1) admits the following symmetric boundary integral formulation (for details we refer
to Sirtori [25] and Steinbach [26]):

(
V t̃

)
(x) − (Kũ) (x) =

(
1
2
I +K

)
g̃D(x) − (V g̃N ) (x) for x ∈ ΓD, (4.4a)

(
K ′t̃

)
(x) + (Dũ) (x) =

(
1
2
I −K ′

)
g̃N (x) − (Dg̃D) (x) for x ∈ ΓN , (4.4b)

where ũ = u − g̃D, t̃ = t − g̃N , g̃N and g̃D are extensions of gN and gD to the whole boundary Γ.
Here

(V t)(x) =
∫

Γ
[U∗(x, y)]T t(y) dsy,

(Ku)(x) =
∫

Γ

[
T ∗

yU
∗(x, y)

]T
u(y) dsy,

(K ′t)(x) =
∫

Γ
[TxU

∗(x, y)]T t(y) dsy,

(Du)(x) = −Tx

∫
Γ

[
T ∗

yU
∗(x, y)

]T
u(y) dsy,

are the single layer, double layer, adjoint double layer potentials, and a hyper-singular operator
respectively.

U∗
k� (x, y) =

1 + ν

8πE (1 − ν)

[
(3 − 4ν)

δk�

|x− y| +
(xk − yk) (x� − y�)

|x− y|3
]

9



is the fundamental solution. As it was shown in [17] (see also [26]), the action of K and K ′ can be
expressed in terms of V , VL, KL, and R

〈Ku, t〉 = 2µ〈V Ru, t〉 + 〈KLu, t〉 − 〈VLRu, t〉
〈K ′t, v〉 = 2µ〈V t,Rv〉 + 〈K ′

Lt, v〉 − 〈VLt, Rv〉, (4.5)

where VL, KL, and K ′
L are the corresponding operators for the Laplace equation:

VLu =
1
4π

∫
Γ

1
|x− y|u(y) dsy

KLu =
1
4π

∫
Γ

[
∂

∂ny

1
|x− y|

]
u(y) dsy

and
Rij = nj

∂

∂xi
− ni

∂

∂xj
.

The action of the hyper-singular operator can also be expressed in terms of V , VL, and R (see [17],
[26]):

〈Du, v〉 =
∫

Γ

∫
Γ

µ

4π |x− y|

(
3∑

k=1

∂

∂Sk
u(y)

∂

∂Sk
v(x)

)
+

+ (Rv)T (x)
(

µ

2π |x− y|I − 4µ2U∗(x, y)
)

(Ru)(y)+ (4.6)

+
3∑

i,j,k=1

(Rkjvi)(x)
1

|x− y|(Rkiuj)(y) dsx dsy.

Here,
∂

∂S1
= R32,

∂

∂S2
= R13,

∂

∂S3
= R21.

To see how useful the above relations are, we proceed with the variational formulation of the problem.
Consider Sobolev spaces H̃s (ΓL) = {v = ṽ|ΓL

: ṽ ∈ Hs(Γ), supp ṽ ⊂ ΓL}, L ∈ {N,D}. We
multiply equations (4.4a) by test functions τ ∈ H̃−1/2(ΓD) and v ∈ H̃1/2(ΓN ) respectively and
integrate the resulting equations over the surface. This gives

a(ũ, t̃; v, τ) = f(v, τ) for all (v, τ) ∈ H̃1/2(ΓN ) × H̃−1/2(ΓD),

where
a(ũ, t̃; v, τ) = 〈V t̃, τ〉L2(ΓD) − 〈Kt̃, τ〉L2(ΓD) + 〈K ′t̃, v〉L2(ΓN ) + 〈Dũ, v〉L2(ΓN )

and

f(v, τ) = 〈
(

1
2
I +K

)
g̃D, τ〉L2(ΓD) − 〈V g̃N , τ〉L2(ΓD) + 〈

(
1
2
I −K ′

)
g̃N , v〉L2(ΓN ) − 〈Dg̃D, v〉L2(ΓN ).

We discretize spaces H−1/2(Γ) ≈ span({ϕi}N
i=1) and H1/2(Γ) ≈ span({ψj}N ′

j=1) looking for the solu-
tion in the form

ũh(x) =
N ′∑
j=1

⎡
⎣ux,j

uy,j

uz,j

⎤
⎦ψj(x), t̃h(x) =

N∑
i=1

⎡
⎣tx,i

ty,i

tz,i

⎤
⎦ϕi(x). (4.7)
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Since ũh and t̃h represent the difference between the unknown functions and an extension of the given
data, some coefficients in the above sums are known. Substituting (4.7) into the variational formu-
lation gives the following system of linear algebraic equations for the partially unknown coefficient
vectors uh = {ux,j, uy,j , uz,j}N ′

j=1 and th = {tx,i, ty,i, tz,i}N
i=1[

Vh −Kh

KT
h Dh

] [
th
uh

]
=

[ −Vh
1
2Mh +Kh

1
2Mh −KT

h −Dh

] [
g̃N

g̃D

]
=:

[
fN

fD

]
. (4.8)

The elements of the above matrices are

(Vh)k� = 〈V ϕ�, ϕk〉L2(ΓD), (Kh)kj = 〈Kψj, ϕk〉L2(ΓD), (Dh)ij = 〈Dψj , ψi〉L2(ΓN ).

To deal with a large number of unknown coefficients, the solution of the discrete system (4.8) is
performed using an iterative scheme. Since V is elliptic, our symmetric Galerkin matrix Vh is
positive definite. We multiply the first equation in (4.8) by −KT

h V
−1
h and add the second equation

to the result obtaining an equation for ũh(
Dh +KT

h V
−1
h Kh

)
ũh = fD −KT

h V
−1
h fN .

The Schur complement Dh + KT
h V

−1
h Kh in the above equation is symmetric and positive definite

(see [26]), therefore a conjugate gradient scheme can be applied to find ũh. Then th can be found
from the first equation of (4.8).

To use the above solution method, we only need to implement matrix-vector multiplication rou-
tines. We do it using representations (4.5) and (4.6), avoiding explicit computations of the entries
of Dh and Kh. The only dense matrices that need to be stored are Vh, (VL)h, and (KL)h. In
what follows, we show that admissible blocks of these matrices can be efficiently approximated using
low-rank matrices by means of the ACA method.

5 Adaptive Cross Approximation

In this section we present a method which generates an H-matrix approximant of the Galerkin
matrix (1.2). In contrast to other methods like fast multipole, panel clustering, etc., the low-rank
approximant is not generated by replacing the kernel function of the integral operator. The algorithm
uses few of the original matrix entries to compute the low-rank matrix. Note that this does not require
to build the whole matrix beforehand. The proposed algorithm will specify which entries have to be
computed. Obviously, this has the advantage that the algorithm can be applied to any appropriate
problem without changing the algorithm, since only the original entries change, and, what is even
more important for practice, existing codes for the computation of the entries can be used, whereas
methods like multipole require a complete recoding.

The singular value decomposition would find the lowest rank that is required for a given accuracy;
cf. [16]. However, its computational complexity makes it unattractive for large-scale computations.
The presented technique can be regarded as an efficient replacement which is tailored to asymptot-
ically smooth kernels. Note that not the kernel function itself but only the information that the
kernel is in this class of functions is required. This enables the design of a black-box algorithm for
discrete integral operators with asymptotically smooth kernels.

We assume that a partition P has been generated as in Sect. 2. If a block b ∈ P does not satisfy
(2.1), then its entries are stored without approximation. Therefore, this case is not treated here.
If condition (2.1) holds for b, then we will show how to construct a low-rank approximant to the
original matrix entries A ∈ R

t×s corresponding to b = t× s. For simplicity, in the rest of this section
we will therefore focus on a single block A ∈ Rm×n.
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The idea of the algorithm is as follows. Starting from R0 := A, find a nonzero pivot in Rk, say
(ik, jk), and subtract a scaled outer product of the ik-th row and the jk-th column:

Rk+1 := Rk − [(Rk)ikjk
]−1(Rk)1:m,jk

(Rk)ik ,1:n, (5.1)

where we use the notations (Rk)i,1:n and (Rk)1:m,j for the i-th row and the j-th column of Rk,
respectively. It will turn out that jk should be chosen the maximum element in modulus of the ik-th
row of Rk−1; i.e.,

|(Rk)ikjk
| = max

j=1,...,n
|(Rk)ikj |. (5.2)

The choice of ik will be treated in Sect. 5.2.
Since in the k-th step only the entries in the jk-th column and the ik-th row of Rk are used

to compute Rk+1, there is no need to build the whole matrix Rk. Taking advantage of this, the
following algorithm is an efficient reformulation of (5.1). Note that the vectors uk and ṽk coincide
with (Rk)1:m,jk

and (Rk)Tik ,1:n, respectively.

Let k = 1; Z = ∅;
repeat

find ik as described in Sect. 5.2

ṽk := aik,1:n

for � = 1, . . . , k − 1 do ṽk := ṽk − (u�)ik
v�

Z := Z ∪ {ik}
if ṽk does not vanish then

jk := argmaxj=1,...,n|(ṽk)j |; vk := (ṽk)−1
jk
ṽk

uk := a1:m,jk

for � = 1, . . . , k − 1 do uk := uk − (v�)jk
u�.

k := k + 1
endif

until the stopping criterion (5.3) is fulfilled or Z = {1, . . . ,m}
Algorithm 5.1: Adaptive Cross Approximation (ACA)

In the set Z the vanishing rows of the Rk’s are collected. If the ik-th row of Rk is nonzero and
hence is used as vk, it is also added to Z since the ik-th row of the following remainder Rk+1 will
vanish. The matrix Sk :=

∑k
�=1 u�v

T
� will be used as an approximation of A = Sk +Rk. Obviously,

the rank of Sk is bounded by k.
Let ε > 0 be given. The following condition on k

‖uk+1‖2 ‖vk+1‖2 ≤ ε(1 − η)
1 + ε

‖Sk‖F (5.3)

can be used as a stopping criterion; see [4]. The Frobenius norm ‖Sk‖F of Sk can be computed with
O(k2(m+ n)) complexity. Therefore, the amount of numerical work required by Algorithm 5.1 is of
the order |Z|2(m+ n).

5.1 Error analysis

In order to estimate the efficiency of ACA, we have to find a bound for the norm of the remainder Rk.
The analysis in the case of the Nyström method was done in [2], collocation matrices were treated
in [3]. The proofs were quite technical. Therefore, in the following section we will present a short
unified proof which also covers the case of Galerkin matrices. In contrast to Nyström and collocation
matrices, which arise from evaluating functions at given points such that interpolation arguments
can be applied, a vanishing row in a Galerkin matrix means that a function vanishes only in a weak
sense.
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Without loss of generality, in the rest of this section we assume that for the pivotal indices i� and
j� it holds that i� = j� = �, � = 1, . . . , k. Then A has the decomposition

A =
[
A11 A12

A21 A22

]
, A11 ∈ R

k×k, (5.4)

where only the matrix blocks A11, A12 and A21 have been used by Algorithm 5.1. Note that the
(large) block A22 ∈ R

(m−k)×(n−k) has never been touched. Since the determinant of A11 is the
product of the pivots, A11 is invertible and we can express the remainder Rk of the approximation
in terms of the original matrix A.

Lemma 5.1. For Rk it holds that

Rk = A−
[
A11

A21

]
A−1

11

[
A11 A12

]
=

[
0 0
0 Ck

]
,

where Ck := A22 −A21A
−1
11 A12 is the Schur complement of A11 in A.

Proof. The assertion is obvious for k = 1. Assume that it holds for k and let A be decomposed in
the following way

A =

⎡
⎣A11 w B
vT α yT

C x D

⎤
⎦ , A11 ∈ R

k×k,

with vectors x ∈ R
m−k−1, y ∈ R

n−k−1, v,w ∈ R
k, and α ∈ R. From (5.1) we see that

Rk+1 = A−
⎡
⎣A11 w
vT α
C x

⎤
⎦[

A−1
11 + γA−1

11 wv
TA−1

11 −γA−1
11 w

−γvTA−1
11 γ

] [
A11 w B
vT α yT

]
,

where γ = (α− vTA−1
11 w)−1 and α− vTA−1

11 w is the pivot, which is chosen nonzero. Since

[
A11 w
vT α

]−1

=
[
A−1

11 + γA−1
11 wv

TA−1
11 −γA−1

11 w

−γvTA−1
11 γ

]
,

we obtain the desired result.

From Algorithm 5.1 it can be seen that the number k∗ := |Z| of zero columns in Rk may be larger
than k; i.e., we have k∗ ≥ k. This happens if in the �-th step the algorithm comes across a zero
vector ṽ� and has to continue with another row. Without loss of generality, we assume that the
indices corresponding to a zero row met in Algorithm 5.1 are {k+ 1, . . . , k∗}. Let A21 and A22 from
(5.4) be decomposed in the following way

A21 =
[
Â21

Ǎ21

]
, A22 =

[
Â22

Ǎ22

]
, Â21 ∈ R

(k∗−k)×k, Â22 ∈ R
(k∗−k)×(n−k).

It is remarkable that although the approximant Sk has rank at most k, not k but k∗ will determine
the accuracy of the approximation as can be seen from the following lemma, which will be used
to estimate the norm of the Schur complement and hence the norm of the remainder Rk. This
observation also is of practical importance. Since a zero row is not lost for the approximation
accuracy, the problem of finding nonzero pivots is save from leading to the computation of the whole
matrix.
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Lemma 5.2. Let X ∈ R
(m−k)×k∗

be arbitrary, then

Ck =
{
A22 −X

[
A12

Â22

]}
−

{
A21 −X

[
A11

Â21

]}
A−1

11 A12. (5.5)

Proof. It is easy to check that a zero row in R� will remain zero in Rk, k ≥ �. Hence, (Rk)i,1:n = 0,
i = k + 1, . . . , k∗. From Lemma 5.1 it follows that

Â22 = Â21A
−1
11 A12.

Adding and subtracting

X

[
A12

Â22

]
= X

[
A11

Â21

]
A−1

11 A12

to and from Ck, we end up with what we were after.

The expressions from (5.5) appearing in curly braces will be estimated by a relation to the approx-
imation of functions. What remains for an estimate of Ck, is a bound on the size of the coefficients
(A−1

11 A12)ij . By Cramer’s rule it holds that

(A−1
11 A12)ij =

det(a1, . . . , ai−1, a
′
j , ai+1, . . . , ak)

detA11
,

where a�, � = 1, . . . , k, are the columns of A11 and a′j is the j-th column of A12. The coefficients
(A−1

11 A12)ij in (5.5) should be as small as possible for Ck being small. The optimal choice of the
pivots would be a submatrix A11 having maximum determinant in modulus. The method of pseudo-
skeletons (cf. [28]) is based on this pivoting strategy. To find such a submatrix in A with reasonable
effort however seems to be impossible. The pivoting strategy used in Algorithm 5.1 gives the following
bound on the size of the entries in A−1

11 A12. The proof can be be done analogously to the proof of a
similar result published in [2].

Lemma 5.3. Assume that in each step we choose jk so that (5.2) is satisfied. Then for i = 1, . . . , k
and j = 1, . . . , n − k it holds that

|det(a1, . . . , ai−1, a
′
j , ai+1, . . . , ak)| ≤ 2k−i|detA11|.

We are now ready to estimate the remainder Rk. For this purpose, the entries of Rk will be
estimated by the approximation error

EΞ
ts := max

j∈s
inf

v∈span Ξ
‖KQ∗

j − v‖∞,Yt (5.6)

in an arbitrary system of functions Ξ := {Ξ1, . . . ,Ξk∗} with Ξ1 = 1. The operator Q∗
j was previously

defined in (1.3). If k∗ =
(p+d

p

) ∼ pd and Ξ = Πd
p is chosen to be algebraic polynomials, then it can

be shown (see [23]) that
EΞ

ts ∼ ηp

provided t × s satisfies (2.1). Note that KQ∗
j is asymptotically smooth with respect to y, since Qj

acts on the variable x only. Polynomials are not the only system of functions one can think of when
approximation asymptotically smooth functions. For the approximation of the kernel |x − y|−1 in
R

3 by spherical harmonics, the number of required functions to guarantee an approximation error of
order ηp is of the order p2 in contrast to p3 when polynomials are used.

Assume that k steps of Algorithm 5.1 have been carried out and let k∗ = |Z| be the number
of zero rows met. Before we consider Galerkin matrices in Theorem 5.6, the approximation error
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associated with Algorithm 5.1 applied to collocation and Nyström matrices, i.e. the case Pif = f(yi),
is estimated.

For the following theorem we assume the unisolvency of the system Ξ in the nodes yi, i = 1, . . . , k∗;
i.e.,

detW �= 0, (5.7)

where W ∈ R
k∗×k∗

has the entries wij = Ξj(yi), i, j = 1, . . . , k∗. This condition will be satisfied by
the choice of rows ik in Sect. 5.2. Denote by

‖Ik∗‖ := max{‖Ik∗f‖∞/‖f‖∞ : f ∈ C(Yt)}
the Lebesgue constant of the interpolation operator Ik∗ defined by

Ik∗f :=
k∗∑

�=1

f(yj�
)L�

with
L�(x) :=

detW�(x)
detW

, � = 1, . . . , k∗,

being the Lagrange functions for Ξ� and y�, � = 1, . . . , k∗. Here, W�(x) denotes the matrix which
results from replacing the �-th row of W by the vector [Ξj(x)]j=1,...,k∗. Since

f − Ik∗f = f − v + Ik∗(v − f) for all v ∈ spanΞ,

it follows that, up to constants, the interpolation error Ek(f) := f − Ik∗f is bounded by the error of
the best approximation

‖Ek(f)‖∞,Yt ≤ (1 + ‖Ik∗‖) inf
v∈span Ξ

‖f − v‖∞,Yt . (5.8)

Theorem 5.4. Let Pif = f(yi), i = 1, . . . ,m. Then for i = 1, . . . ,m and j = 1, . . . , n it holds that

|(Rk)ij | ≤ (1 + ‖Ik∗‖)(1 + 2k)EΞ
ts, (5.9)

where EΞ
ts is defined in (5.6).

Proof. For the entries of the (m− k) × (n− k) matrix A22 −X

[
A12

Â22

]
it holds that

(A22 −X

[
A12

Â22

]
)ij = KQ∗

j (yi) −
k∗∑
�=1

L�(yi)KQ∗
j (y�),

where we have chosen Xi� = L�(yi). From (5.8) we have

|KQ∗
j (yi) −

k∗∑
�=1

L�(yi)KQ∗
j (y�)| ≤ (1 + ‖Ik∗‖) inf

v∈span Ξ
‖KQ∗

j − v‖∞,Yt.

The same kind of estimate holds for the entries of A21 −X

[
A11

Â21

]
. Therefore, from Lemma 5.3 we

obtain
|(Rk)ij | ≤ (1 + ‖Ik∗‖)(1 + 2k) max

j=1,...,n
inf

v∈span Ξ
‖KQ∗

j − v‖∞,Yt .
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The previous theorem shows that the approximation computed by ACA is (up to constants) as
good as the best approximation of the kernel function in any system of functions.

Galerkin matrices need a different treatment. For the linear operators Pi, i = 1, . . . , k∗, corre-
sponding to the first k∗ rows in A we assume the following generalization of (5.7)

det[PiΞj]i,j=1,...,k∗ �= 0, (5.10)

which again will be guaranteed by the choice of pivoting rows ik in Sect. 5.2. The operators Pi in
the case of Galerkin matrices read

Pif =
∫

Ω
f(y)ψi(y) dsy, i = 1, . . . ,m.

In the following lemma functions
∑k∗

�=1 c
(i)
� ψ�/‖ψ�‖L1 will be constructed such that some kind of

vanishing moments property

∫
Ω

(
ψi

‖ψi‖L1

−
k∗∑
�=1

c
(i)
�

ψ�

‖ψ�‖L1

)
v dsx = 0 for all v ∈ spanΞ (5.11)

holds.

Lemma 5.5. Assume that condition (5.10) is satisfied. Then for each i ∈ {1, . . . ,m} there are
uniquely determined coefficients c(i)� , � = 1, . . . , k∗, such that (5.11) holds.

Proof. For each v ∈ spanΞ there are uniquely defined coefficients αj, j = 1, . . . , k∗, such that

v =
k∗∑

j=1

αjΞj. (5.12)

Since the matrix (PiΞj)ij is nonsingular, the linear system

k∗∑
�=1

c
(i)
�

P�Ξj

‖ψ�‖L1

=
PiΞj

‖ψi‖L1

, j = 1, . . . , k∗,

is uniquely solvable with respect to c(i)� , � = 1, . . . , k∗, for each i ∈ {1, . . . ,m}. The assertion follows
from (5.12) and the linearity of the operators Pi.

The coefficients c(i)� from the previous lemma depend on the shape of the grid, but they do depend
neither on the kernel function κ nor on the size of the finite elements. In the following theorem the
case of Galerkin matrices is treated.

Theorem 5.6. Let Pif =
∫
Ω f(y)ψi(y) dsy, i = 1, . . . ,m. Then for i = 1, . . . ,m and j = 1, . . . , n it

holds that

|(Rk)ij | ≤ (1 + ‖Ik∗‖)(1 + 2k)

(
1 +

k∗∑
�=1

|c(i)� |
)
‖ψi‖L1EΞ

ts. (5.13)

Proof. Since Ik∗KQ∗
j ∈ spanΞ, according to Lemma 5.5 there are coefficients c(i)� , � = 1, . . . , k∗, such

that ∫
Ω

Ik∗KQ∗
j (y)

ψi(y)
‖ψi‖L1

dsy =
k∗∑
�=1

c
(i)
�

∫
Ω

Ik∗KQ∗
j (y)

ψ�(y)
‖ψ�‖L1

dsy.
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For X ∈ R
(m−k)×k∗

we choose the matrix with entries

xi� =
‖ψi‖L1

‖ψ�‖L1

c
(i)
� , i = 1, . . . ,m− k, � = 1, . . . , k∗.

Then for the entries of the (m− k) × (n− k) matrix A22 −X

[
A12

Â22

]
it holds that

(A22 −X

[
A12

Â22

]
)ij =

∫
Ω
KQ∗

j (y)ψi(y) dsy −
k∗∑
�=1

c
(i)
�

‖ψi‖L1

‖ψ�‖L1

∫
Ω
KQ∗

j (y)ψ�(y) dsy

=
∫

Ω
(I − Ik∗)KQ∗

j (y)ψi(y) dsy −
k∗∑
�=1

c
(i)
�

‖ψi‖L1

‖ψ�‖L1

∫
Ω
(I − Ik∗)KQ∗

j (y)ψ�(y) dsy

=
∫

Ω
Ek∗ [KQ∗

j ](y)ψi(y) dsy −
k∗∑
�=1

c
(i)
�

‖ψi‖L1

‖ψ�‖L1

∫
Ω
Ek∗[KQ∗

j ](y)ψ�(y) dsy.

From (5.8) we have∫
Γ
|Ek∗ [KQ∗

j ](y)| |ψi(y)|dsy ≤ (1 + ‖Ik∗‖)‖ψi‖L1 inf
v∈span Ξ

‖KQ∗
j − v‖∞,Yt .

The same kind of estimate holds for A21 −X

[
A11

Â21

]
. Therefore, from Lemma 5.3 we obtain

|(Rk)ij | ≤ (1 + ‖Ik∗‖)(1 + 2k)‖ψi‖L1

(
1 +

k∗∑
�=1

|c(i)� |
)

max
j=1,...,n

inf
v∈span Ξ

‖KQ∗
j − v‖∞,Yt .

We have already pointed out the relation of ACA and the LU decomposition in [2]. It is known
that during the pivoted LU decomposition the so-called growth of entries may happen. Note that
this is reflected by the factor 2k in (5.13). The growth of entries is however rarely observable in
practice.

5.2 The right choice of rows

We have seen that the choice of columns jk from condition (5.2) is important for the boundedness of
the coefficient A−1

11 A12 in the error estimate. The choice of the rows ik will guarantee condition (5.7)
or more generally (5.10), which the interpolation in the system Ξ relies on. Satisfying this condition
is indispensable as can be seen from the following example.

Example 5.7. The evaluation of the double-layer potential∫
Γ

(nx, x− y)
|x− y|3 ϕj(x) dsx

at yi, where ϕj are defined on the left cluster and yi are located on the right cluster of Fig. 1, leads
to a reducible matrix A having the structure

A =
[

0 A12

A21 0

]
.
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The zero block in the first block row of A is caused by the interaction of domain D1 with D3 and the
other block by the interaction of domain D2 with D4 lying on a common plane, respectively. If ACA
is applied to A with a starting pivot from the rows and columns of A12, then the next nonzero pivot
can only be found within A12. Hence, the algorithm stays within A12 and the stopping criterion is
not able to notice the untouched entries of A21.

The reason for this is that the interpolation points yik are exclusively chosen from the plane de-
scribed by D3 if ACA is applied to A12. As a consequence, the Vandermonde determinant will vanish
for this choice of interpolation points and the error estimate (5.9) does not hold for points yi ∈ D4.
It remains however valid for points yi ∈ D3 since the interpolation problem reduces to a problem in
R

2 for which (5.7) can be guaranteed by an appropriate choice of yik ∈ D3.
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Figure 1: Two clusters leading to a reducible matrix block

The example above underlines the importance of the row choice, namely condition (5.10) in the
convergence analysis of ACA. Assuming that ACA works without this condition may lead to a certain
confusion; see [6].

We present two methods to choose the right rows. One of them should be used to circumvent the
mentioned difficulty. The first is an easy and obvious heuristic which seems to work reliably. The
second method explicitly guarantees (5.10) such that ACA will converge as predicted by our analysis.

For each row and each column of A we introduce a counter which reflects the number of successful
approximations applied to the respective row or column. An approximation is considered as successful
for row i if |(uk)i| is of the order of the estimated error ‖Rk−1‖F . The counter of the column j is
increased if |(vk)j| has the size of ‖Rk−1‖F . With these counters one can easily detect those rows
and columns for which the error estimator is not reliable. Pivoting to the latter rows and columns
approximates the unattended rows and columns.

Although the problem described in Example 5.7 can be overcome by the mentioned trick, for a
rigorous analysis that works in a general setting, we have to guarantee that (5.10) is satisfied by the
choice of pivots. The first row i1 can be arbitrarily chosen, because we have assumed that Ξ1(x) = 1.
Assume that i1, . . . , ik ∈ {1, . . . ,m} and j′1, . . . , j′k ∈ {1, . . . , n} have already been found such that
(5.10) holds; i.e., the Vandermonde matrix Wk ∈ R

k×k having the entries

(Wk)µν = PiµΞj′ν , µ, ν = 1, . . . , k,

is nonsingular. Note that the indices j′k may differ from the indices jk used in the previous section.
The new pivot (ik+1, j

′
k+1) has to guarantee that Wk+1 is nonsingular, too.

Assume that the normalized LU decomposition of the the k × k matrix Wk = LkUk has been
computed. Then

detWk+1 =
[
c− (U−T

k a)T (L−1
k b)

]
detWk,
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where

Wk+1 =
[
Wk b
aT c

]

and a = [Pik+1
Ξj′�]�=1,...,k, b = [Pi�Ξj′k+1

]�=1,...,k, and c = Pik+1
Ξj′k+1

. Hence, any pair (ik+1, j
′
k+1)

satisfying (U−T
k a)T (L−1

k b) �= c can be chosen as the new pivot. For stability it is however wise to
choose (ik+1, j

′
k+1) such that |c− (U−T

k a)T (L−1
k b)| is maximized. Testing a new row ik+1 requires k2

operations. Since possibly all remaining m−k rows have to be tested, finding ik+1 requires k2(m−k)
operations. The LU decomposition of Wk+1 is then given by

Wk+1 =
[

Lk 0
aTU−1

k 1

] [
Uk L−1

k b

0 c− (U−T
k a)T (L−1

k b)

]
.

Example 5.8. We return to the problem from Example 5.7. Assume that three pivots have been
chosen from D3. If i4 is chosen from the same set, then one easily calculates that

det[Ξj(yiµ)]1≤µ,j≤4 = 0,

where Ξ1(x) = 1, Ξ2(x) = x1, Ξ3(x) = x2, and Ξ4(x) = x3. There are however points yi4 ∈ D4 which
will satisfy det[Ξj(yiµ)]1≤µ,j≤4 �= 0. Hence, ACA will automatically choose the forth pivot from the
row indices of the block A21.

It may happen that columns of PiΞj are linearly dependent. If Pif = f(yi) with points yi, i =
1, . . . ,m, then this is equivalent to all points yi lying on a hypersurface H := {x ∈ R

d : vH(x) = 0},
where vH ∈ spanΞ. In such a situation, for certain j no ik+1 ∈ {1, . . . ,m} can be found such that
(U−T

k a)T (L−1
k b) �= c. Let j′k+1 be the first column which is not in the linear hull of the first k. Then

search for ik+1 in the m× (k + 1) matrix which contains the j′k+1-st column of A as its last column.
Note that the number of investigated columns is bounded by the number of columns required in the
case of linear independent columns. This can be seen from

spanΞ = spanΞ′ on H,

where Ξ′ := {Ξj′1 , . . . ,Ξj′
k′
}. The last equation shows that k′ columns give the same error EΞ

ts as all
k∗. The previous arguments also hold if Pif =

∫
Ω fψi ds.

As a result of the above procedure, we obtain two sequences i� and j′�, � = 1, . . . , k′, such that
(5.10) is satisfied; i.e.,

det[PiµΞj′ν ]1≤µ,ν≤k′ �= 0.

Example 5.9. Let d = 2 and Ξ = {1, x1, x2, x
2
1, x1x2, x

2
2, . . . }. If all points yi are located on the

x-axis, then j′1 = 1, j′2 = 2, j′3 = 4 and so on. Hence, ACA will detect the reduced dimensionality of
the problem and will implicitly use Ξ′ := {1, x1, x

2
1, . . . }.

Note that the above pivoting criterion requires only geometrical information and information about
Pi, i.e, whether a collocation or a Galerkin method is employed. The kernel function, however, is
still not required. The method proposed in [6] is based on explicit kernel approximation such that
the original matrix entries cannot be used.

We have seen that the first row i1 can be arbitrarily chosen. The efficiency of ACA can however be
improved by the following choice. Due to the Definition 3.1 of asymptotic smoothness, each kernel
function κ(x, y) is almost constant with respect to y on Xs × Yt. Hence, if the expression

max
y∈Yt

|κ(x, y) − κ(x, z)| = max
y∈Yt

|
∫ z

y
∂yκ(x, ξ) dξ| ≤ cmax

y∈Yt

|y − z|
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appearing in the remainder after the first step of ACA is to be minimized with respect to z, one
should choose z to be the Chebyshev center of Yt. Since the Chebyshev center of a polygonal set is
quite expensive to compute, we use the centroid mt of Yt instead. Hence, from these arguments it
seems promising to choose i1 so that the center zi1 of the i1-st support Yi1 is closest to mt.

In Figure 2 we compare this strategy with the “old” strategy in which i1 is chosen so that zi1 is
closest to the centroid of Xs. The matrix which these methods are applied to arises from evaluating
|x − y|−1 at two sets of points having a distance which is large compared with their diameters. In
addition, Figure 2 shows the accuracy of approximations obtained from the multipole expansion
and from the singular value decomposition applied to an admissible matrix block. The first k
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Figure 2: Accuracy of different approximants.

singular triplets give provably the best accuracy among all rank-k approximants. The influence of
the new strategy on the quality of the approximation can be realized in the first four steps, which are
often sufficient to obtain a reasonable accuracy. In this part the new version gives almost optimal
approximation. For all other steps the old and the new version behave almost the same. The quality
of the approximant generated from the multipole expansion is significantly worse.

5.3 Overall complexity

Finally, we will estimate the overall cost of generating the approximant and multiplying it by a vector
if an accuracy ε > 0 for the approximation error

‖K −KH‖F < ε‖K‖F

is prescribed. Due to the properties of the Frobenius norm, the last condition is implied by the
condition

‖Kb − Sk‖F < ε‖Kb‖F (5.14)

on each block b ∈ P . Since the error estimates (5.9) and (5.13) depend on the choice of the ap-
proximation system Ξ, we cannot estimate the constants appearing in these estimates. Since they
will enter the overall complexity through the logarithm anyhow, we assume that they are bounded
independently of m, n, and k. According to (5.6), an asymptotically smooth kernel κ on a pair of
domains satisfying (2.1) can be approximated by polynomials of order p with accuracy ηp. Since
boundary element methods are applied to (d − 1)-dimensional manifolds in R

d and since ACA can
detect the reduced dimensionality, we will assume that for each admissible block Kb ∈ R

t×s the
approximant Sk, k = dim Πd−1

p ∼ pd−1, satisfies

‖Kb − Sk‖F ≤ c ηp‖Kb‖F .
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If a block does not satisfy (2.1), then its original entries are stored. For

p ≥ log1/η c/ε

we obtain condition (5.14).
The complexity of an H-matrix results from the blockwise costs in a way that was described

in Sect. 2. Since k ∼ pd−1, generating an approximant Ã ∈ H(P, k) requires N logN | log ε|2(d−1)

arithmetical operations. Once ÃH has been generated, storing and multiplying it by a vector can be
done with complexity N logN | log ε|d−1.

6 Numerical experiments

In this section we are going to test Algorithm 5.1 on the boundary integral formulation of the inner
mixed boundary value problem for the Lamé system (4.1) in three dimensions.

We reorder the unknown coefficients to separate the components

{ux,i, uy,i, uz,i}N
i=1 → {{ux,i}N

i=1, {uy,i}N
i=1, {uz,i}N

i=1

}
,

{tx,j, ty,j , tz,j}N ′
j=1 →

{
{tx,j}N ′

j=1, {ty,j}N ′
j=1, {tz,j}N ′

j=1

}
.

In this setting, the matrix Vh can be decomposed as

Vh = c1

⎡
⎣(VL)h 0 0

0 (VL)h 0
0 0 (VL)h

⎤
⎦ + c2

⎡
⎣V1 V2 V3

V2 V4 V5

V3 V5 V6

⎤
⎦ ,

where (VL)h is the discretization of the single-layer potential for the Laplace equation and Vi, i =
1, . . . , 6, are the matrices that correspond to the entries of the second term in (4.5).

Thus, for the solution of the system (4.8) we need to store seven Hermitian N × N matrices
to represent Vh and one N × N ′ matrix KL. These matrices are composed using the hierarchical
clustering and the Algorithm 5.1 to approximate admissible blocks. We first compute the matrices
for the geometry depicted in Fig. 3. Nodes on the left face of the beam are fixed (u = 0) and a
unit vertical force t = (0, 0,−1) is applied to each triangle of the right face. The mesh is uniformly
refined to test the performance on matrices of different sizes. The compression results for the matrix

Figure 3: Test domain before and after the elastic deformation.

Vh are shown in Table 1 for fixed ε = 10−5. As expected, the compression ratio (column 3) decays.
Furthermore, we observe a decay of the memory increment (column 4). This reflects the almost linear
storage requirement for the matrix. The amount of computed matrix entries is shown in column 5
of the table. Column 6 shows that the compression procedure uses only a small portion of matrix
entries to build a blockwise low-rank approximant.
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The required CPU time per iteration also behaves in an adequate way; see Table 2. The decay of
the time increment (column 3) indicates the almost linear complexity of the compressed matrix-vector
multiplication procedure.

N size [MB] ratio mem. inc. entr. [mill.] gain entr. inc.
640 9.50 0.338 – 2.7 0.738 –

1 280 30.87 0.274 3.250 8.8 0.600 3.250
2 560 90.37 0.201 2.928 25.8 0.439 2.930
5 120 239.49 0.133 2.650 64.8 0.275 2.510

10 240 562.58 0.078 2.349 141.6 0.150 2.182
20 480 1 291.78 0.045 2.296 358.5 0.099 2.531
40 960 2 624.02 0.023 2.031 820.4 0.054 2.288

Table 1: Compression and number of computed elements of the matrix Vh for ε = 10−5.

N iter. time [sec] iter. time inc.
640 0.034 –

1 280 0.128 3.802
2 560 0.357 2.787
5 120 0.930 2.604

10 240 2.229 2.395
20 480 4.905 2.201
40 960 10.659 2.173

Table 2: The time needed for one iteration when inverting compressed Vh for ε = 10−5.

Table 3 shows how the compression rate of the matrix Vh depends on the approximation precision
ε. Here N = 20480, and matrix dimensions are 3N × 3N .

ε size [MB] ratio
1E-2 458.01 0.0159
1E-3 633.51 0.0220
1E-4 848.91 0.0295
1E-5 1 291.78 0.0449

Table 3: The size of compressed matrix Vh depending on approximation precision ε (N = 20480).

The next test is performed on the geometry shown in Fig. 4. Nodes on the bottom face of the
body are fixed (u = 0) and a unit vertical force t = (0, 0, 1) is applied to each triangle of the top face.
The performance results are collected in Table 4. We observe a behavior similar to the behavior in
the previous test.
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