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0x-SCALAR CURVATURE AND EIGENVALUES OF THE DIRAC
OPERATOR
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ABSTRACT. On a 4-dimensional closed spin manifold (M*,g), the eigenvalues of the
Dirac operator can be estimated from below by the total oa-scalar curvature of M* as
follows

32 [0 o2(g)dvol(g)

3 vol(M*, g)

Equality implies that (M?,g) is a round sphere and the corresponding eigenspinors are
Killing spinors.
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1. INTRODUCTION

Let (M™,g) be a closed Riemannian spin manifold of dimension n > 2. Let /) be the
(classical) Dirac operator. This operator is of fundamental importance in spin geometry,
especially in the Atiyah-Singer index theorem. Let R, denote the scalar curvature of g
and V the Levi-Civita connection on spinors. By the Schriodinger-Lichnerowicz formula

([20)
1) pP=vvils

it is easy to show that all eigenvalues A of J) satisfy

1
(2) > ;Iél]\l} Ry(x).
It is obvious that (2) is interesting only if the scalar curvature is positive. This in fact
gives a topological obstruction to the existence of metrics of positive scalar curvature. One
can also see from (1) that the Lichnerowicz inequality (2) is never sharp. The first sharp
estimate for the eigenvalues of the Dirac operator was given by Friedrich in 1980 [9]. He
proved the following inequality

(3) 22> m gélj\l} Ry(x).

The Friedrich inequality (3) is interesting also only in the case that the scalar curvature is
positive. Nevertheless, this inequality is sharp in the sense that there are manifolds where
1
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equality holds. In 1986 Hijazi ([17]) generalized this inequality to obtain

9 n

where 7 is the first eigenvalue of the Yamabe operator (or the conformal Laplacian)
Y1 =4(n—1)/(n—2)A+R,. It is obvious that the Hijazi inequality (4) is interesting only
in the case that py > 0. However, the metric g itself should not to be assumed to have
positive scalar curvature. The condition pq > 0 is conformally invariant and is equivalent
to the condition that there is a conformal metric § € [g] of positive scalar curvature. In
dimension n = 2, Bér ([3]) obtained the following inequality by using the Gauss-Bonnet
theorem

(5) A2 > 27y (M?) /area(M?),
where x(M) is the Euler number of M2. It is clear that the only interesting case is
x(M?) =2, i.e., M? is a topological sphere. In this case, the Bér inequality (5) reads
9 4m
~ area(S?,9)
This inequality was conjectured in [21]. In fact, Lott [21] proved in 1986 that if ] is

invertible, then there is a constant C(M", [g]) > 0 such that for any conformal metric
g € [g], the first positive eigenvalue A(¢’) of the Dirac operator with respect to ¢’ satisfies

(6) N(g') = C(M™, [g])/vol® ™ (M", g).

See also [1] for a related problem. In the case u > 0, the Hijazi inequality (4) provides a
lower bound for the optimal constant C'(M™,[g]), namely

(7) COM™,[g)) = gy (M", 9],

where p(M™,[g]) is the Yamabe constant. See also [18].

It is a very natural question whether one can generalize the beautiful inequalities above.
There are many attempts to generalize these inequalities. See for instance [19], [11], [12]
and [10]. In a preliminary version of [10], the following conjecture was proposed

Conjecture. \? > ﬁ Jan Rydvol(g) /vol(M™, g).

Unfortunately, this conjecture was wrong ([2]). The motivation of this note is to show
that this conjecture is true, at least for 4-dimensional manifolds, provided that we replace
the scalar curvature by a newly introduced n/2-scalar curvature, .

Theorem 1. Let (M*,g) be a closed Riemannian spin manifold with py > 0. Then all
etgenvalues of the Dirac operator satisfy

(8) A > 32 Jus 02(g)dvol(g) _ 16 [y Qgilvolly)

~— 3 wol(M4,g) 3 wol(M%,g)

where o2(g) is the 2-scalar curvature and Qg the Q-curvature of g. If equality holds, then
(M 4 g) s a round sphere and the corresponding eigenspinors are Killing spinors.
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For the definition of 2-scalar curvature o3(g), see the next section. Inequality (8) has
a form similar to the Conjecture. We note that [, o2(g)dvol(g) is a conformal invariant
on a 4-dimensional manifold. The condition p; > 0 is necessary. On a product manifold
M* = 32 x 322 of two surfaces X7 and ¥3 of constant negative Gaussian curvature, one can
find a spin structure such that the corresponding Dirac operator admits harmonic spinors
(cf. [16]). It is clear that its o9 is a positive constant.

The proof of Theorem 1 is a combination of a result of Hijazi [17] and many recent results
on the 2-scalar curvature oj(g) obtained in [6] and [8]. The notion of k-scalar curvature
ok(g) was introduced by Viaclovsky in [22]. See [8] for another interesting application. For
a higher dimensional manifold, a Hijazi type inequality, Proposition 2, can be obtained
in terms of a nonlinear eigenvalue of a fully nonlinear operator involving the oj-scalar
curvature.

Acknowledgement. The author would like to thank Pengfei Guan for many helpful dis-
cussions in mathematics and Jiirgen Jost for his constant support. The author would
also like to thank B. Ammann, T. Friedrich and the anonymous referee for their helpful
suggestions.

2. BASIC FACTS OF VARIOUS SCALAR CURVATURES

Let (M™, g) be a closed, oriented Riemannian manifold and let [g] := {e"2%g|u: M™ —
R} be the conformal class of g. Let Ric, and Ry be the Ricci tensor and scalar curvature
of g, respectively. The Schouten tensor of the metric g is a normalized Ricci tensor defined

by
1 , R,
Sg_—n—Q <chg_72(n—1) -g>.

The Schouten tensor plays an important role in conformal geometry. Recall that there is
an important decomposition of the Riemann curvature tensor

Riem = Wy + S, D g,

where W, is the Weyl tensor of g. It is well-known that the Weyl tensor gt Wy is
invariant in a conformal class. Let o be the kth elementary symmetric function. For a
symmetric n x n matrix A, set o;(A) = op(A), where A = (A1, A2, , A,) is the set of
eigenvalues of A. Following Viaclovsky [22], a oy-scalar curvature or k-scalar curvature of
g is defined by

or(9) = ox(g~" - Sy),
where g1+ S, is locally defined by (g* -Sg)é- =4 9% (Sy)kj- Note that o1(g) = 2(n1—1)Rg'
Let

If={A= (1,22, . A\y) ER"|0j(A) >0,Vj <k}

be Garding’s cone. A metric g is said to be k-positive, symbolically g € T}, if g1+, € F,j
for every point z € M.
From the Newton-MacLaurin inequality, we have a simple lemma for k-scalar curvatures.
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Lemma 1. Let n = 2m be an even number. We have

(i) 0%(9) > ;2502(9)-
(ii) if g is k-positive, i.e., g € T, then (n%k!)!klalf(g) > nFor(g).

Let us introduce the integral

Filo) = [ oulg)dol(y)

In dimension four, F5 is a conformal invariant. In fact, by the Chern-Gauss-Bonnet
formula for 4-dimensional manifolds, we have

() sy (M) = / W, [2dvol(g) + 4 / o3(g)dvol(g).
M4 M4
Therefore, inequality (8) can also be written as
4 QQWQX(M4) - %f |Wg|2dU0l(9)
-3 vol (M4, g) '

The @Q-curvature introduced by Branson is another interesting quantity in conformal ge-
ometry. We have a relationship between the oo-scalar curvature and the @)-curvature

(10) A

Qgdvol(g) = 2F2(g).
M4

See [6] and [15]. Note that when n = 2m > 4 and the underlying manifold (M?™,g) is
locally conformally flat, it was proved in [22] that

(11) X(M*™) = ¢, / Om(g)dvol(g),

M2m
for some dimensional constant c,,.

Lemma 2. Let (M*,g) be a closed manifold. There exists a conformal metric § € [g] with
g € T}, provided that py > 0 and [, 02(g) >0

Proof. This is an important result, which was proved in [6]. See also [15]. |

3. PROOF OF MAIN THEOREMS
The proof of Theorem 1 follows [17] closely, after we can show the existence of solutions

of equation (16) below.

Proof of Theorem 1. From [17], we have

(12) A > ﬁ sup inf{R,-2u e "} = gsgp inf{o) (e ?g)e 2"},

for an n-dimensional manifold. Now we consider n = 4. From above, we have

(13) M > dsupinf{o? (e 2g)e 1}
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From Lemma 2, we have

8
(14) af(e *g)e " > §02(6_2“9)6_4“-
Set § = e~ ?*g. Now we claim that

: —2u —4du __ 1
(15) sgpljr\}[fag(e ug)em i = vol(g) /M o2(g)dvol(g).
First, we have
. -\ —4du 1 =\ —4u
1]1‘14f02(g)e < vol(g) /Mag(g)e Y dvol(g)
= voll(g) /M o2(g)dvol(g) = voll(g) /M o2(g)dvol(g).

Then we consider the following nonlinear eigenvalue problem:

(16) oo(e 2 g)e M = py.

Note that the only case we need to consider is [} 4 02(g)dvol(g) > 0. In this case, with
the assumption that p1 > 0 we can apply Lemma 2 to obtain a conformal metric gg € [g]
with gg € F; . Then we can show that there exists a unique pair (ug, o) satisfying (16).

It is important to note that ps > 0 and e~2“0 gy € T'f. A proof of this can be found in [8]
or in [14]. It is easy to show that us = Fa(g)/vol(g) by integrating (16) over M*

e = voll(g) /M os(e”*"g)e™ " dvol(g)
- —voll(g) /M 0‘2(6—2u9)dU0l(6_2ug) = @/M oa(g)dvol(g).

Since ug is a solution of (16), we have

1

W(Q) /M oa(g)dvol(g).

Therefore, we have the claim. From (12)-(15), we have (8).

In the case of equality in (8) we have equality in (12) and (14) as well. Hence we know
that the corresponding eigenspinor is a Killing spinor ([17]) and (M?,g) is a standard
sphere by a result of Friedrich ([9]). |

—dug _

g)e = g =

inf gg(e 240

4. SOME REMARKS

In the proof of Theorem 1, it is crucial that (16) has a solution (ug, p2). On a compact
Riemanniann manifold, one can consider a nonlinear eigenvalue problem for a given k > 1:

(17) or(e " g)e " = py.

When k = 1, pq is the first eigenvalue of the Yamabe operator mentioned above. When
g € T')f, it was proved in [14] that there is a unique pair (ug, g satisfying (17) with g > 0
and e"2%0g ¢ F:. Hence, as above, by using a similar method of [17], we have
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Proposition 1. Let (M™,g) be a closed spin manifold. If there is a conformal metric
G € gl with g €Ty} (1<k<n), then the eigenvalues of the Dirac operator Eg satisfy

Ak > (Q)k (n— k)!k!nkuk.

2 n!
When k = 1, this is the Hijazi inequality (4).
By using the methods given in [2] and [13], one can show that Theorem 1 is not true,
if we use og-scalar curvature with k& < n/2 to replace o, s2-scalar curvature. Namely, we
have

Proposition 2. Let (M",g) be a closed spin manifold with g € Ty, and k < n/2. Then
there is a constant C > 0 and a sequence of metrics g; € [g] N F,j with bounded first
(non-negative) eigenvalue \(g;) < C (Vi) and
Jar o (gi)dvol(g:)
vol(g;)

as v — 00.

In their proof [2], Ammann and Bér constructed metrics which they called Pinocchio
metrics. Those metrics can be chosen in a conformal class [g) NI}, (cf. [13]) The key
part is the domain Ay in [2] isometric to S*~!(r) x [0, L]. A simple observation is that
its og-scalar curvature is positive for £k < n/2 and o, s2 = 0. Therefore, when L — oo,
1) A, Ok — 00 for k < n/2, while [ Ay Onj2 = 0 is fixed. This simple observation motivates
this note.

For a general higher dimensional manifold, one might hope that a result similar to
Theorem 1 holds. However, the proof given here relies on the conformal invariance of F,, 5,
which was only proved to be true in the case that n = 4 or (M, g) is locally conformally flat
([22]). The average @-curvature might be a good quantity to bound the eigenvalues under
certain positivity assumptions on the Paneitz-Branson operator on a higher dimensional
manifold.
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