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Abstract. We give a brief, critical account of Connes’ spectral action prin-
ciple, its physical motivation, interpretation and its possible relation to a
quantum theory of the gravitational field coupled to matter. We then present
some speculations concerning the quantization of the spectral action and the
perspectives it might offer, most notably the speculation that the standard
model, including the gauge groups and some of its free parameters, might be
derived from first principles.
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1. Introduction

The question is not whether god did create the world.
The question is whether he had any choice.
Albert Einstein

So there is the Beauty and there is the Beast:

In the eyes of most theoretical physicists, traditionally being addicted to symme-
tries, general relativity is a theory of exceptional beauty. If one assumes that the
field equations are of second order, then — up to two free parameters — the theory is
uniquely determined by the requirements of general covariance, the motion of test
particles along geodesics and the assumption that the energy-momentum tensor
of the matter fields is the sole source of the gravitational field.

As compared to this, the standard model of particle physics appears as a real beast.
At first glance, one might say it wears the nice suit of being based on a Yang-Mills
theory. But there are many possible gauge groups, and we should really wonder
why nature has chosen this particular one. Furthermore one has to spontaneously
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break the symmetry by introducing the Higgs field in a rather ad hoc way, and
add 48 Weyl Spinors in very specific representations of the gauge group.

Why 48 ? And why do they all sit in the trivial or the fundamental (respectively its
conjugate) representation of the nonabelian gauge groups ? And why is parity bro-
ken mazimally, which need not be the case? An ideal conception of a fundamental
theory shouldn’t have as many as 26 free parameters either. Only to mention the
asthetic deficits of the classical theory. The consistency of the quantized theory
— for example the necessary absence of anomalies — gives at least a few hints on
the possible solution to these puzzles. But on the other hand it is actually not
completely clear whether the theory exists in a strict, nonpertubative sense at the
quantum level and if so whether it really describes all the observed phenomena
like e.g. confinement correctly.

Yet, in the fairy tale the Beast has all the money, quite some power and endures
all offences by its enemies completely unperturbed. The same can certainly be
said about the pertubatively quantized standard model, whose phenomenological
success is more than impressive. So maybe we should simply start to take it se-
rious and ask ourselves whether it has some hidden (inner) beauty. Besides, we
should never forget that the Beauty, as all beauties, is of a somewhat superficial
nature: Not (yet) being quantized, it has a limited range of validity, and, in fact,
even predicts its own breakdown in some regime, as is seen from the singularity
theorems.

But if the Beauty and the Beast would turn out soul mates, they might be married,
have children, so that general relativity finally becomes adult. It would then also
be well conceivable that the appearance of the Beast is actually determined by its
wife, as is the case in many marriages. Being romantic by nature, most theoreti-
cal physicists dream of such a wedlock ever since the invention of general relativity.

Noncommutative Geometry follows the above advice: It does take the standard
model serious, but seeks after its hidden mathematical structure [16, 19, 14]. In
the version we shall consider here it (almost completely) reformulates the stan-
dard model as part of the gravitational field on some noncommutative manifold
[18]. The noncommutativity of the underlying spacetime is believed to appear via
quantum effects of the gravitational field. However, at the present stage the con-
ventional gravitational field is treated as classical, assuming that this is possible in
the sense of an effective theory at presently accessible energy densities. Employing
the spectral action principle one then obtains the classical, ie. unquantized, action
of the standard model coupled to gravity in a way quite similar to the way one
derives Einstein’s equations from the assumptions given above.

Thus Noncommutative Geometry is not (yet) an approach to quantum gravity. It
only takes up some heuristically derived speculations about the nature of space-
time in such a theory and adds some more support for them by revealing a plethora
of unexpected and beautiful mathematical structures of the standard model. Since
this program works out so smoothly there is some hope that it might now be used
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as a guideline on the way to some Noncommutative Geometry approach to quan-
tum gravity.

As concerns the present status of the spectral action principle, Thomas Schiicker
compared it quite appropriately with Bohr’s model of the hydrogen atom. The pos-
tulates of the latter aren’t completely coherent, using some classical physics and
combining it with some speculative ideas about the (at that time) sought for quan-
tum theory. Yet it reproduced Rydbergs formula and paved the way to quantum
mechanics. (In particular, Bohrs postulate of quantization of angular momentum
might have led people to consider the matrix representaions of SO(3).) Of course,
it did not explain all the experimental data known at that time, e.g. it gave the
wrong value for the ground state energy of the hydrogen atom. But also these
open questions it uncovered played an important role for the later development of
quantum mechanics.

In view of this analogy, it would be important to state the postulates of the non-
commutative description of the standard model via the spectral action principle in
the same way Bohr formulated his axioms for the hydrogen atom. I have tried to
do so in this article, but to tell the truth I did not succeed. It seems that there are
still some points to be clarified before the goal to shape such postulates as coherent
as possible can be reached. Hence I decided to give only a preliminary version, but
to work out all the weak spots, so that the reader can see where improvements
might still be possible. Aspects that may lead to an experimental falsification of
the whole program are mentioned as well. I much more dreamed of presenting here
some interesting and important questions rather than well-established results.

In order not to draw the curtain of technical details over the main conceptual
issues, the article is written in a very nontechnical style. But details can be dev-
ilish and readers interested to see that things really work out the way described
here are referred to the excellent reviews [9, 12]. Still, the next two sections rather
deliberately use some slang from operator theory. Readers who are uneasy about
this might easily skip these two sections as the explanations and ideas given there
do not represent essential prerequistes for the main part of the article, which starts
in 4.2. In particular, Section 3 only gives a very intuitive picture of the noncom-
mutative world and I'm well aware that this picture may turn out completely
misleading. However, if spacetime is really noncommutative then we shall have
to find a physical interpretation of such spaces and in that section it is at least
pointed out that a picture guided by analogy to quantum mechanics is almost
surely too naive.

This paper is intended to provide some food for thought, be it in the form of crit-
ical remarks or of highly speculative ideas. Since the spectral action is intended
to provide a hint for a possible approach to quantum gravity, and as this is a
workshop about such routes, I felt it appropriate to add some ideas on where this
Tip of the TOE [1] that is maybe revealed by Noncommutative Geometry could
finally lead to. They are gathered in the last two sections.
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2. Classical spectral triples

The Gelfand-Naimark-Theorem establishes a complete equivalence of locally com-
pact topological Hausdorff spaces M and commutative C*-algebras A: Any com-
mutative C*-algebra A is given as the C*-algebra of continuous functions C'(M)
(with the supremum norm) on the space M of irreducible representations of A. For
commutative algebras all irreducible representations are one-dimensional. Thus,
labeling the normalized basis vector of such a representation space by |p) p € M,
each algebra element f € A can be viewed as a function on M by setting

f(p) = (plflp).

The nontrivial part of the Gelfand-Naimark-Theorem then shows that this space
of irreducible representations inherits a suitable topology from the norm of the al-
gebra. In fact, this is also true if the algebra is noncommutative, so that it makes
sense to speak of noncommutative C*-algebras as noncommutative topological
spaces, identifying the points with the inequivalent irreducible representations, re-
spectively with equivalence classes of pure states — which is the same, as is seen
via the GNS-construction.

But there’s more than topology to this. Almost all geometrical structures — like
for instance vector bundles or differentiable and metrical structures — can equiv-
alently be described in the language of commutative (pre-)C*-algebras and, even
more so, this description still makes sense for noncommutative algebras. However,
the generalization to the noncommutative case is in general not unique. The non-
commutative de Rham calculus, to give only one example, can be defined as the
dual of the space of derivations on A [14], on Hopf algebras also as a bicovariant
differential calculus [8], or via spectral triples. For commutative algebras all these
definitions are equivalent. However, if the pre-C*-algebra A is noncommutative
they will in general provide different answers.

Spectral triples not only provide a differential calculus and a metric on the space
of pure states (irreducible representations) over the algebra. They also give rise
to an effective way of computing certain differential topological invariants via the
local index formula of Connes and Moscovici [15, 17]. These invariants not only
appear in quantum field theory, they do so precisely in the form of the local index
formula [36]. In so far, spectral triples are quite natural candidates for geometries
on which a quantum theory can reside. Moreover, the language of spectral triples is
manifestly covariant under automorphisms of the algebra. i.e. the noncommutative
“diffeomorphisms”. Therefore this language is tailored to provide an alternative
description of (quantum) general relativity.

A detailed account of spectral triples is given e.g. in [13]. Here I would only like
to mention some essential axioms which turn out to provide phenomenological re-
strictions for the noncommutative description of the standard model. I therefore
found it important to point out their geometrical significance. In the following
A = C*®°(M) will always be commutative. For simplicity we shall also assume that
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M is a compact, orientable, smooth manifold. This need not be the case: There do
exist spectral triples for commutative spaces which describe geometries far beyond
the realm of smooth manifolds, like for instance discrete spaces. I therefore prefer
to call the manifold case “classical spectral triples”.

A real even spectral triple of dimension d is given by the following data

(j-f’ D’ ‘A7 rY’ J)

Here

H is a Hilbert space.
A is a pre-C*-algebra represented on H
D is an unbounded, essentially selfadjoint operator on H such that [D, f] is
bounded for all f € A.
Moreover we assume that the spectrum of D is discrete and that all the
eigenvalues A\, of D have only a finite degeneracy. The sum ZHN:O Ao s
assumed to diverge logarithmically in N (the A, in increasing order). This
defines the dimension d.
e v=7%v%=1and [y,A] = 0. Moreover Dy = (—1)4*1yD.
e Finally, J is an antilinear isometry on H such that
[JfJ " gl=0 Vf,g € A.
If A is commutative then it is additionally required that JfJ~! = f for all
feA
The data of a spectral triple are in particular required to obey the following axioms:
1. From the “Order-One-Condition”:
[JfI7[D,g]] = 0 Vf.g €A

together with the above requirements on D one infers that D is a differential
operator of first order. Thus locally, i.e. in each point p € M, D can be written
as:

D =iy"9, + p, [V, fl=1lp. f]=0, VfeA.
The locally defined matrices v* are selfadjoint and bounded. It is not clear at
this point, however, whether they exist globally as sections of some bundle
of matrices over M.

2. The regularity assumption [v'D2, [D, f]] € B(H) then implies that there exist
scalar functions g"” such that

YA A =29" € A.
For this conclusion one needs to employ the axiom of Poincaré duality.

3. From the axiom of orientability one then concludes that the g"” define a
nondegenerate positiv definite matrix valued function on M. Thus, the *
span in each point of M the Clifford algebra of the correct dimension.

4. It now remains to show that the locally defined Clifford algebras (over each
point p € M) glue together to define a (global) spin structure over M. One
does so with the help of a theorem of Plymen whose adaptability is (once
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more) ensured by Poincaré duality.

Thus this axiom plays an important role in the reconstruction of the met-
ric and the spin structure. Note that it is only shown that the g" define a
metrical tensor on M after the spin structure has been established. Without
this step it would not be clear that these locally defined functions glue to-
gether appropriately and hence that they transform correctly under a change
of coordinates.

5. Differential one-forms, like gauge potentials, are repreented on the Hilbert
space by w(fdg) = f[D,g], and in particular w(dz*) = iy*. This works
because the matrices v* are now shown to transform like the basis one-forms
dz* under changes of coordinates.

6. The antilinear operator J is identified with charge conjugation. This is en-
sured by requiring relations

J? = ¢(d)id, Jy =€ (d)vJ, DJ =¢€"(d)JD

where the signs e(d), €/(d), €”(d) € {1, —1} depend on the dimension according
to the “spinorial chessboard”. In particular, if the algebra is commutative
then these relations imply that the Dirac-Operator D cannot contain a term
A=~H"A,, ie. an electromagnetic vector potential, as one would have (D +
A)J = £J(D — A) in such a case: Let’s assume for simplicity that the vector
potential is pure gauge A = u[D,u] with u € A and 4 = u~'. Then, by the
above condition on J we have Ju.JJ ! = @ and thus

JAJ Y = J@a[D,u))J ! = "(d)u[D, 1] = —"(d) uu®[D,u] = —¢"(d)A.
(Similarly for generic selfadjoint one forms A.)

Remark 2.1. Note that essentially all diffeomorphisms ¢ of M are represented as
unitary operators U, on J, such that

Uy f(p) Us = f(e™ (D) VpeM, feA

and U, XUgZ = X, where X is D, vy or J, and X, the respective image under the
diffeomorphism ¢.

Furthermore it is to be noted that not all unitaries on H correspond to such
diffeomorphisms, even though that should be obvious.

As we have seen above, in the classical case A = C*°(M), the space of Dirac-
Operators is essentially the same space as the space of all metrics over M. The
spectral action is defined as

sao-((%))

where x is some smooth cutoff function, cutting out the eigenvalues above 1, while
A € R is some scale. The function y can be chosen such that Sx(D) admits
an asymptotic expansion in A. Note that Sx(D) is spectral invariant, i.e. it is
invariant under all unitaries on H and thus in particular under all diffeomorphisms.
The same must be true for each term in the asymptotic expansion, and from
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dimensional reasons (D and A have the dimension of an energy) their repective
order in the curvature is clear. Hence for the first two nontrivial orders it follows
immediately that (as A tends to infinity):

Sa(D) ~ coA* / Vadiz + ¢ A? / Ry/gd*z + O(A").
M M

The first two terms can be interpreted as the Einstein-Hilbert action with some
cosmological constant. These are the only diffeomorphism invariant terms linear,
respectively independent of the curvature. As it turns out the two constants cg, ¢;
can be chosen arbitrarily by adjusting x appropriately. The same is true for higher
orders in the curvature, which can therefore be suppressed (here). Hence, the
spectral action can be viewed as the analogue of the Einstein-Hilbert action of
pure gravity.

Remark 2.2. Honestly speaking this is not completely true: A physical action also
requires the choice of initial values for the physical field — here the metric. The
Einstein-Hilbert action is indeed defined as the integral of the scalar curvature
over any spacetime region sandwiched by two Cauchy surfaces, with the (initial
and final) values of the metric helded fixed on these Cauchy surfaces when apply-
ing the variational principle.

The spectral action, on the other hand, only reproduces the integral over all of
M. The resulting field equations therefore only state that M must be any Einstein
manifold, but not more, as the initial values of the metric are not specified.

The reason for this unpleasant fact lies in the spectral invariance of the spectral ac-
tion, which is much more than only diffeomorphism invariance. (“One cannot hear
the shape of a drum.”) The physical Einstein-Hilbert action is only diffeomorphism
invariant, but it is not spectral invariant, and, in fact, that’s quite fortunate: The
only spectral invariant quantities one might construct out of the Dirac-Operator
are its eigenvalues, which correspond to the masses of the elementary fermions.
There is only a finite number of the latter. So we couldn’t learn much about
spacetime from the spectrum of D. But fortunately we can also measure scatter-
ing phases. [5]

We should stress however that it may be possible to reconstruct a Riemmanian
space from the eigenvalues of the Dirac-Operator if the precise form of the volume
element is given. To give an example, one may conclude that the underlying space
is a circle if one knows that the spectrum of D is Z, each eigenvalue occuring
precisely once and that the volume form is given as w*[D,u], where u is some
algebra element. (We need not know more about w.) A much more intriguing
example is given in [35]. One may then speculate whether adding the volume form
to the spectral action can lead to further progress. See the most recent [34], where
this idea has been used to render the mass scale in D dynamical.
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Remark 2.3. Related to the above remark, we should also stress that the spectral
action only makes sense for Riemannian manifolds. On generic Lorentzian man-
ifolds, when each of the eigenvalues of D is infinitely degenerate, such a cutoff
trace would never exist. Even more so, the spectrum of D on generic Lorentzian
manifolds is always the same, namely R. But still we can infer most information
about the geometry from the degeneracy of a single eigenvalue of D, i.e. the space
of solutions given a fixed mass, and in addition the knowledge of the volume form
[4]. We shall have to say more about this later.

3. On the meaning of noncommutativity

If A is commutative then all the different irreducible representations of A are ob-
viously unitarily inequivalent, as they are one-dimensional:

Two representations 7y, mo on Hilbert spaces Hy, Hy are said to be unitarily equiv-
alent if there exists a unitary operator U : H; — Hs such that

U7T1(f)U*:7T2(f) VfE.A

and this implies m; = mo if dim(H;)= 1.

For noncommutative algebras there do exist equivalent representations, respec-
tively equivalent pure states. Thus, in identifying points with irreducible repre-
sentations of the algebra, one has to understand the geometrical meaning of this
equivalence.

First of all, note that for irreducible GNS representations such a unitary equiva-
lence arises via inner automorphisms of A, i.e. the corresponding unitaries U are
elements of the algebra representations, U € 7(A). A commutative algebra does
not possess inner automorphisms. On the other hand, outer automorphisms, i.e.
those which are not induced by algebra elements, do not give rise to equivalent irre-
ducible representations. It should be stressed that this picture of noncommutative
spaces is absolutely generic: A theorem of Dixmier [38] states that a C*-algebra is
noncommutative if and only if there do exist unitarily equivalent irreducible rep-
resentations. Moreover one can formulate analogues of the Gelfand-Naimark the-
orem for noncommutative algebras as characterizing topological spaces together
with some equivalence relation of points in many different ways (see [30] and ref-
erences therein.)

Thus, as a first moral one might state that there is a clear distinction between
the inner and outer automorphisms of a noncommutative algebra: Inner automor-
phisms lead to equivalent irreducible representations.

Readers may wonder how our intuition of the phase space of nonrelativistic quan-
tum mechanics, i.e. the Heisenberg algebra [z, p] = i, fits into this picture. To be
honest, I don’t know a fully compelling answer to this question:

With a suitable regularity assumption there exists up to equivalence only one irre-
ducible representation for this algebra — the one on L?(R) that we are all familiar
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with. Does this mean the phase space of quantum mechanics has only one point ?
Certainly the above statement implies that, given any sharp value for z, all val-
ues for p are completely indistinguishable. That is in good agreement with our
intuition. But it also implies that all values for x are equivalent as well, which is
certainly not consistent with the fact that we can localize an electron within a
region of radius of its Compton-wavelength. Well, only with respect to the coordi-
nate x: In a special relativistic quantum field theory every inertial observer would
agree that the particle is localized in such a region. But, in view of the Unruh
effect, accelerated observers would not even agree that there is only one electron.
And they would not necessarily see a localized state.

The point of view of Noncommutative Geometry is completely coordinate inde-
pendent. I guess that this is behind the seemingly contradictionary intuitions of
Noncommutative Geometry and quantum theory: the way we currently interpret
it, quantum field theory is not generally covariant — but any dynamical theory
of spacetime should be. Unfortunately we still lack an interpretation of quantum
theories that is in accordance with Einstein’s equivalence principle.

To be more concrete, let’s consider the Moyal-plane,
[z,y] = 0.

The noncommutativity parameter 6 is then, employing the above mentioned wrong
analogy to i in quantum mechanics, often misinterpreted as a physical observable
— even though that implies that the coordinates x,y obtain a special status. It
would then, for instance, no longer be allowed to rescale these coordinates by
r — Az, y — Ay. In quantum mechanics, due to the presence of a symplectic form,
the choice of the coordinates x,p of the phase space is really canonical, p being
the canonical momentum associated to the chosen coordinate x. However, there
should be no obstruction to the choice of coordinates of the configuration space of
a physical system. An experimental physicist should, for instance, be allowed to
choose his unit of length arbitrarily. Of course, a length is actually not described
by the coordinates alone, but by a metric g% where the matrix indices refer to the
chosen coordinates. Note that the determinant g of this metric transforms under
coordinate transformations in the same way as 62 (in two dimensions) would do,
if we allow such transformations. Thus, the combination

0

Ay Nz
is an invariant in this case and could really be viewed as a physical parameter. As
it has the dimension of an area, it might be viewed as the minimal area that can
be resolved on such a spacetime.

As for a physical interpretation of the picture of noncommutative spaces described
above, let us consider the following example:

Suppose that the configuration space Bea of a system is given by two points, Bea =
{uty, st} say. The commutative algebra of functions on Bea is then isomorphic to
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the algebra of diagonal two-by-two matrices,

A:ﬂ&@:{(ﬂ?wjéw> ﬂmwﬂmec}

We now want to describe a situation where the two points, i.e. the two inequivalent
representations of C'(Bea) are equivalent. This is achieved by adding to C(Bea) a
further unitary element u that interchanges the two representations, i.e.

w— 0 1
L1 0/
. . . . 1 0
It is not hard to see that the matrix u together with the matrices ey, = 00 )€
0 0
0 1
complex two-by-two matrices Up to equivalence Ms(C) has only one irreducible

representation. On the other hand, the set X of pure states of the algebra My(C)
is a two-sphere:

X:{(V%§F> |¢emgyaem%@.

That is just the space of possible choices of bases in C2 up to an overall phase, i.e.
the set of (mutually equivalent) representations of Ma(C) on C2.

Thus, by identifying the two points we have blown up this two point set to obtain
a bubble of foam. By doing so we have also introduced new degrees of freedom
in our algebra A that we still interpret as functions on the configuration space.
These new degrees of freedom, being given by off-diagonal two-by-two matrices
correspond in a very precise sense (as we shall see in the next section) to gauge
degrees of freedom. The inner automorphisms of the algebra, characterizing its
noncommutativity, can, in fact, always be interpreted as gauge transformations.

C(Bea) and eg = ) € C(Bea) generate the full matrix algebra My(C) of

4. The noncommutative description of the standard model and the
physical intuition behind it

Let us now come to the main part of this article, namely the postulates governing
the reformulation of the standard model of particle physics as part of the gravi-
tational field on a certain noncommutative space. Before I describe these axioms,
however, I shall first sketch its fundamental physical idea.

4.1. The intuitive idea: an effective picture of quantum spacetime at low energies
As has been shown in section 2, for classical spectral triples, A = C°°(M), it is not
possible to add a one-form, i.e. a gauge field, to the Dirac-Operator, because of
the reality condition DJ = JD. (We shall restrict to the case of 4 dimensions from
now on, when €’(4) = 1.) The Dirac-Operator of real spectral triples therefore
“only” describes the gravitational field.
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If the algebra is noncommutative, however, one may add a term of the form A +
JAJ~! to D, where A = f[D, g] is a one-form: Now there exist A with JAJ ™! #
—A. This is so because there then exist some f € A such that Jf.J~! is not in
A since JAJ ! belongs to the commutant of A, which cannot contain all of the
noncommutative algebra A.

Consider an unitary v € A, i.e. the generator of an inner automorphism. We can
associate to it the unitary operator U:

Uty :=uJuJ Lp =: upu*, Y e H.

This then represents the inner automorphism generated by v on H as U fU* =
ufu* for all f € A. The reason why this representation is chosen that way becomes
clear if one considers its action on a Dirac-Operator Dq = D + A+ JAJ

UDsU* = D g, A" = wAu* 4+ u[D,u"].

Hence adding A + JAJ ! to D gauges the inner automorphisms of A. Note that
JuJ* =: Yu* can consistently be interpreted as a right action of u* on ¥ because
it commutes with the left action and because J is antilinear.
Of course, the terms A + JAJ~! are not one-forms in a strict sense. However, if
one considers all Dirac-Operators for a given algebra — i.e. all metrics — then these
degrees of freedom have to be taken into account. Readers familiar with Connes’
distance formula will notice that these terms do infect the metric as they do not
commute with algebra elements. Let us consider an almost commutative algebra
like A = C°°(M) ® Ms(C) represented on H = L?(M, S) ® Mz(C), the space of
square integrable spinors on M with values in M3(C). The part M3(C) of A acts
by matrix multiplication from the left on this space.
As D we can take the usual Dirac-Operator on M — for some metric g — acting
trivially on M>(C). J is taken to interchange the left and the right action of
matrices on matrices, i.e. for f € C°(M), ¢ € L2 (M, S) and \,0 € Ms(C) one
defines

J(feX)J Weo=(fv)® (o)
In such a case the terms A + JAJ ™! can be interpreted as one-forms over M with
values in the Lie-algebra su(2) — but of course not as one-forms over the noncom-
mutative spacetime A.

At first glance, the above example, where the part A+ JAJ ! of D4 that gauges
the inner automorphisms can be interpreted as gauge fields on the commutative
part M of the underlying noncommutative spacetime might not seem to be rele-
vant for a quantum theory of gravity: The typical arguments that the semiclassical
states of such a theory should correspond to moncommutative manifolds like e.g.
[3, 24, 25] do not suggest such an almost commutative algebra but much more
noncommutative ones.

However, as we have seen above the appearance of gauge degrees of freedom is
an absolutely generic phenomenon on noncommutative spaces and there will be
even more such degrees of freedom if the spacetime is more noncommutative. But
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since such a noncommutativity is expected to show up only at extremly high en-
ergy densities one might think that these degrees of freedom can not be excited in
experiments that are realistic to be performed in the near future. Thus we might
expect these degrees of freedom to be frozen in contemporary experiments.

On the other hand we do see some nonabelian gauge fields already at energies of
the order of the Z-mass. So maybe it is not true that all these degrees of freedom
which reflect the noncommutativity can only be excited at the Planck energy. After
all, the Planck energy only gives some scale where we expect that quantum grav-
ity effects can longer be neglected. It might well be possible that this is the case
already at much lower energies and the above example then suggests to interpret
the strong and the weak interactions as the first shadow of the quantum correc-
tions for the gravitational field. In the present experiments of particle physics we
do not have enough energy to resolve spacetime at scales much smaller than the
Compton wavelength of the Z boson. But with this resolution we might already
see a glow of the bubble of foam that replaces points: namely the two-sphere S?
which is the set of pure states of the algebra M(C).

This intuitive idea is made more precise in the following postulates for the non-
commutative description of the standard model. Subsection 4.3. will then see their
consequences. Yet, in order to show our colours rather than cumbersome matrix
calculations, these two subsections are extremly rough and sketchy. Readers inter-
ested in the details are referred to [12, 9] As already stressed in the introduction,
the postulates are not thought to be completely coherent, and many critical com-
ments are in order. I tried to gather them in the next section.

4.2. The postulates

1. There exists an energy scale A up to which spacetime can effectively be de-
scribed as an almost commutative geometry C*°(M) ® Ap. Here M denotes
a four-dimensional (compact), orientable manifold, and A g the finite dimen-
sional real C*-algebra

Ap=CoHa® M;3(C)

where H denotes the algebra of quaternions.
In experiments with energies below A we will not see a deviation from this
picture of the topology of spacetime.

2. At energies below the energy scale A it is a very good approximation to
neglect the backreaction of matter on the Riemannian metric on M. Hence
we can keep this metric as a fized, classical background metric that therefore
need not be quantized. Accordingly we only need to take into account the
“inner fluctuations” of the metric on A, which correspond to the dynamics
of the gauge degrees of freedom for the inner automorphisms of A.

3. The spectral triple (A, H, D4,~,J) describing the space of metrics for this
situation is given by:

o H =L?*M,S) ®C where the space C* is explained as follows:
If one does not (yet) add right handed neutrinos to the standard model,
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then there do exist 45 elementary Weyl Spinors. Here we consider the
respective antiparticles separately, thus there are 90 Weyl Spinors. (We
comment later on this)
The representation of Ar on C? is chosen according to the action of
the gauge group — i.e. the unitaries in Ar — on the elementary Weyl
Spinors.

e The Dirac-Operator D is given schematically as:

Da=Dy+My+A+JAT Y,

where Di denotes the Dirac-Operator on M corresponding the fixed
background metric. M is the fermionic mass matrix. It contains all the
masses and Kobayashi-Maskawa mixing angles. Finally A denotes an
arbitrary one-form built with Dy = Dy + M~y. Thus A parametrizes
the aforementioned gauge degrees of freedom which are dynamical —
unlike Dy.

e v has eigenvalue +1 on the right handed fermions and —1 on the left
handed ones.

e J =C ® Jp where C denotes the charge conjugation on M, while Jg,
acting on C% interchanges the particles with the antiparticles (as they
both appear separately in C%.)

Only fermion fields ¢ € H obeying the Majorana condition Jy¥ = 1) are
physical. (Hence the double counting of particles and antiparticles is removed.
It is however needed to get the quantum numbers correct.)

The action for these fermions is given as S(¢) = (¢, D).

At the energy scale A, the action of the dynamical degrees of freedom A of
D 4 is invariant under all unitaries on H.

Thus, there exists a cutoff function x (smooth, with a Laplace-transform of
rapid decay) at this scale such that

- ()

The effective action at energy scales below A is then obtained via the renor-
malization group flow of the pertubatively quantized action Sy (A) + S(v))
from A to the scale under consideration.

4.3. How such a noncommutative spacetime would appear to us

1.

Under the above assumptions, the most general “inner fluctuation A of the
metric” is given as

A = ’L.’}/'“‘ (A,u, + W/,L + G,u.) + ,-quM

where A, W,,, G,, denote the gauge potentials for the electro-weak and strong
interactions, while ¢ is the scalar Higgs-doublet.

The appearance of the gauge bosons is of course put in by hand, as we
have chosen the algebra appropriately — considering A as a phenomenological
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input. But the appearance of the Higgs, which comes automatically if the
mass matrix M is nontrivial is quite surprising and really a result.

2. 10'3GeV < A < 10'7GeV. Note that this means that there is a “big desert”
in which no new physics is to be expected.

3. The spectral action Sj (A) possesses an asymptotic expansion and is given at
the Z-mass as

9
Sa(A) ~ / Vod'z {LEH(g) + Lotmod(A) + 5 43;2 CHP? Cr + %WR +.. } .
M

Here Lgp(g) denotes the Einstein-Hilbert action with a cosmological con-
stant term that is to be fixed by experiments. Note that this term is viewed
as a constant, since the background metric g is fixed. The same applies for
the Weyl-Tensor C**?? and the scalar curvature R for g.
Lst.mod(A) denotes the complete bosonic action of the standard model of
particle physics. In particular it always contains the Higgs potential that
spontaneously breaks the electroweak energy. There is no freedom to elimi-
nate this potential if the mass matrix M is nonvanishing.
The dots in the above formula indicate possible higher order terms in the cur-
vature, that may be suppressed however. Note that this is not so for the terms
62% CHP?CLype and % |#|?R as the freedom in the choice of y corresponding
to second order terms in curvature is used to adjust the coupling constants of
the standard model Lagrangean. (The precise value of the numerical factors
a, 8 can be found in [9].)

4. At the scale A the coupling constants of the three interactions of the standard

model obey the relation gyeak = gstrong = \/gghypemharge. However under
the flow of the renormalization group of the pertubatively quantized standard
model one approximately obtains the experimentally measured values at the
Z-mass. For that reason A has to lie in the range indicated above. We should
remark, however, that the so obtained values are not completely consistent
with the experimental values. But there are more severe problems of the
spectral action anyway, as we shall see.
5. The Higgs mass my is constrained as my = 182 4+ 20 GeV'.

5. Remarks and open questions

5.1. Remarks

General Relativity relies on the empirical fact that the inertial and the gravita-
tional mass are identical. Only for this reason is it possible to describe the motion
of test particles as free motion along geodesics. In this subsection I shall describe
the empirical facts which are necessary for the above description of the standard
model as part of the gravitational field on some noncommutative space to work —
well, as good or bad as it does. General relativity does not explain the equality
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of the gravitational and the inertial mass. Neither does the Noncommutative Ge-
ometry interpretation of the standard model explain any of the following facts on
which it relies:

e The elementary fermions of the standard model only appear in the trivial, the
fundamental (respectively its conjugate) representations of the gauge group.
In principle it would also be possible that some fermions sit in the adjoint
representation. But no other representation can occur, since the gauge groups
are induced by the unitaries in some algebra.

e It is highly nontrivial that the electrical charges are assigned correctly. At
first sight this would not be possible for models based on almost commutative
spectral triples, as then only the U(1) charges 0,+1 seem to be allowed.
However the algebra Ap contains two U (1) factors — one in C, one in M3(C)
— a certain combination of which drops out due to a mechanism deeply rooted
in the geometrical interpretation of spectral triples [33]. The remaining U(1)
factor then asigns the correct weak hypercharges to the fermions, so that
— after the weak symmetry is spontaneously broken — the experimentally
observed electrical charges show up.

e Parity is broken maximally. In the standard model the weak interaction could
couple to the left handed fermions with some strength 1 — € and to the right
handed ones with strength €. In models based on noncommutative geometry
this would be impossible. Fortunately experiments tell us € = 0.

e Fermion masses arise in such models only via the Higgs effect. So for this
description to be true, the Higgs must exist — which it hopefully (?!) does.

e The fact that the coupling constants of the standard model under the flow
of the renormalization group almost meet in one point is essential: Else their
derivation via the spectral action would be too bad an approximation to
provide any hope that a modification of this picture of spacetime at higher
energies could make contact with the precise experimental values.

e The “Order-One Condition” excludes the possibility that color symmetry is
broken (if one additionally requires “S%-reality”, see [7] however). Thus, if
the gluons would turn out massive, this picture of spacetime would break
down.

e Finally it has to be said that there is a minor problem with the observed
neutrino masses. Due to the axiom of Poincaré duality one can only add
two massive neutrinos to the model. One neutrino has to remain massless.
Unfortunately, it is probably impossible to detect whether all or only two
neutrinos are massive, since oscillation experiments are only sensitive to mass
differences, while, as it seems, only the mass of the electron neutrino could
in principle be measured directly. However, on the side of noncommutative
geometry it is possible to replace the axiom of Poincaré duality by other
axioms. But how could we find out empirically whether we need to do so ?
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5.2. Open problems, perspectives, more speculations

e It is certainly an aesthetic deficit that one has to first count particle and
antiparticles as different, but then impose the Majorana condition to identify
the ones with the charge conjugates of the other — even though there is
something appealing about Majorana fermions.

e We should stress that spectral invariance, which is the underlying principle to

construct the action Sy (A) is not preserved under the renormalization group
flow: It implies the constraints on the coupling constants given above and
these are obviously not fullfilled at the Z-mass.
But this breaking of spectral invariance is of course to be expected since
special relativistic quantum field theories — like the standard model whose
renormalization group flow is used here — are not compatible with the equiv-
alence principle. One may hope that in a full theory of quantum gravity such
a problem will not show up.

e It is not very encouraging that A comes out so large, implying the “big desert”
[9].

e It is definitely a major drawback of this approach that the gravitational field
— i.e. the metric on M — has to be kept fixed. The same is in fact true for
the mass matrix M which would also be a freedom in the choice of Dirac-
Operators on the noncommutative spacetime Ap. For the latter I don’t see
any good physical reason why it’s dynamics — if there are any — should not
be visible at the Z-mass. As concerns the former, one might argue that the
gravitational constant is too small, so the backreaction of matter on g can be
ignored at the considered energy scales. But one has to do so, as one needs
to take the renormalization group flow of the quantized theory into account,
and there’s as yet no way to include the gravitational field into this game.

In the long term perspective, one has to consider the full dynamics of the
Dirac-Operators D. Only then the philosophy of Noncommutative Geometry
would be fully implemented.
Note that then the fermionic mass matrices could be rendered dynamical
as well. One may speculate that in this way a mechanism that dynamically
generates the funny pattern of the fermion masses could be revealed [5, 6].
e At the present stage, the model still keeps many of the aesthetic defects
of the standard model. In particular the gauge group has to be put in by
hand. However, as shown in the series of papers ([11, 6], [31] and references
given therein) with very mild irreducibility assumptions it turns out that the
number of possible almost noncommutative geometries is fairly restricted. If
this program succeeds, then it will be possible to infer the gauge group of the
standard model from the assumption that it can be described as the inner
fluctuations of the metric on an almost commutative geometry — i.e. without
having to assume the algebra from the start.
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e Of course, a theory of quantum gravity should be valid also at higher energies
as A. In that case we would probably have to modify A however, as we expect
that then the full noncommutativity of spacetime is revealed. So there is the
question which algebra might replace the algebra of the standard model, but
lead to the same physics at energies less than A. Many people have tried
deformations of the Lorentz group to provide candidates for such algebras.
Another rather interesting candidate for this algebra is given in [2]. T will
briefly describe this idea in the next subsection. But of course, the answer to
this question can only be given to us by physics, rather than by mathematical
speculations:

e In [32] the author proposed a novel model for an almost commutative ge-
ometry which extends the algebra Ap and might exhibit interesting phe-
nomenological consequences with respect to dark matter. This is certainly
a promising route to take as it may lead to definite predictions for future
experiments.

e If Noncommutative Geometry could really be valorized to an approach to
quantum gravity, then of course we would also hope to understand the dy-
namical mechanism that leads to the noncommutative geometry of space-
time. Note that such a spacetime as the one used for the above description
has a larger diffeomorphism group as commutative manifolds. In the stan-
dard model example there are for instance also the transformations of the
different families of fermions into each other among the symmetries of the
spectral action. If we could understand where this enlarged symmetry stems
from, then we might understand why there are three families. [5]

e The spectral action is only well defined over compact Riemmanian manifolds.

For me this has always been its major drawback. On Lorentzian spectral ge-
ometries one probably has to take another route to a generalization of Ein-
steins equations. I will come to this problem in the next section, where a
proposal for a Noncommutative Geometry approach to quantum gravity will
be presented.
It is sometimes said that this problem is not important as one may always
“Wick-rotate” from the Riemannian to the Lorentzian case. As concerns grav-
ity that’s just wrong: Wick rotation requires the existence of a timelike Killing
vector to be unambiguos. So it is only possible if we severely restrict the al-
lowed space of metrics, which is certainly not in the spirit of the equivalence
principle.

e The prediction of the Higgs mass might turn out a spectacular virtue of the
theory of course. However, it is not unlikely that the Higgs turns out to be
lighter than 180GeV. I wouldn’t consider this a real problem, though. For
me this prediction has always had a similar flavor as the false prediction of
the ground state energy of the hydrogen atom by the Bohr model. In fact,
as we have seen above, the real lessons about the standard model we can
hope to learn from Noncommutative Geometry concern its particle content
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rather than the spectral action, which is not defined for the physically realistic
Lorentzian manifolds anyway.

5.3. Comparision of the intuitive picture with other approaches to Qquantum Grav-
ity

One could actually keep this story very short: As yet the effective picture of space-
time at the Z-mass that Noncommutative Geometry assumes is not shown to be in
contradiction to the expectations indicated by any of the prominent approaches to
quantum gravity. Mainly because most other approaches start at the Planck-energy
and don’t have definite predictions at the Z-mass yet, of course. Noncommutative
Geometry, on the other hand, follows a bottom-up strategy and, as we have pointed
out above, will now have to refine its picture by taking corrections into account
that will become relevant at energies higher than A. So it could be viewed as a
complementary approach that may well turn out to be equivalent to one (or all)
of the other approaches:

e String theory leads quite naturally to an effective description via noncom-
mutative gauge theories at lower energies [23, 10]. Moreover String theory
predicts that there is an infinite tower of elementary particles, thus there
are many degrees of freedom which are frozen at the Z-mass. This is very
much analogous to the picture that I described in section 3: If we believe that
spacetime is not only almost commutative but “really noncommutative” then
we would expect many more degrees of freedom than only the gauge bosons
of the standard model to show up.

As a side remark — not meant too seriously — one could add that String theory
replaces four dimensional spacetime M by M x CY where CY is an appropri-
ately chosen compact six-dimensional Calabi-Yau manifold. Noncommutative
Geometry replaces C*°(M) by C*(M) ® Ar. But Ar does of course not cor-
respond to extra dimensions. We only observe it via the gauge bosons of the
standard model and hence we need not invent any mechanism to hide it.
This is so, because the geometrical concepts behind the spectral action are
formulated in a completely background independent way. Unfortunately, in
order to make contact with the real world, the spectral invariance has to be
sacrified at the present stage.

Hence, both theories, String theory and Noncommutative Geometry, still have
to come up with a truely background independent formulation, before one can
compare them more sensibly with each other, and, much more importantly,
with reality.

e Besides the heuristic arguments in [3], quite recently many different ap-
proaches to quantum gravity have found clues for a noncommutativity of
the spacetimes corresponding to semi-classical states of these theories, see
[24, 25] for nice examples. In particular the nontrivial dimension spectrum
seen independently in [26, 27] is a generic feature of noncommutative spectral
triples [15, 17]
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e As concerns Loop Quantum Gravity, there will be many remarks in the next
chapter. See however [20] for an alternative approach to combine Loop Quan-
tum Gravity with Noncommutative Geometry.

e Finally I would like to mention the noncommutative approach to quantum
gravity advocated in [2]: Here the basic idea is to consider a noncommutative
algebra that is constructed via the frame-bundle E over M and its structure
group, i.e. the local Lorentz-transformations. To me this seems to provide a
very natural candidate for a noncommutativity of spacetime, not only because
it is obviously related to the algebra found in [24, 25]: If noncommutativity is
interpreted as appearance of equivalence relations among points of spacetime,
and if the dynamical coupling of quantum matter to geometry leads to such
a noncommutativity, then one would expect that these equivalence relations
are related to the fundamental principles underlying this coupling. Thus, it
is well conceivable that the noncommutativity of spacetime is related to local
changes of frames, i.e. the local Lorentz transformations.

6. Towards a quantum equivalence principle

The noncommutative description of the standard model certainly has many very
appealing features. However, the appropriateness of the spectral action appears
somewhat problematic: It is only available over (noncommutative) Riemannian
manifolds and it is not compatible with initial conditions for field equations. More-
over its guiding principle — spectral invariance — is not fullfilled in the standard
model alone. That problem could of course be overcome once the quantization of
the gravitational field is achieved. In that case the metric might be considered as
a dynamical degree of freedom, which is not really the case at the present stage.
Last not least, one would actually not want to put in by hand the noncommu-
tativity of spacetime. Rather one would like to infer the dynamical mechanism
that leads to this noncommutativity in a theory of quantum matter coupled to
geometry. Concrete proposals for such mechanisms have been made in [3, 24, 25].
However, while the first one of these arguments is not yet in accordance with the
equivalence principle, the other two are still restricted to low dimensional models,
when gravity only possesses topological degrees of freedom. What would really be
required first is a background independent formulation of quantum theories in the
spirit of General Relativity.

6.1. Globally hyperbolic spectral triples

The approach for such a formulation proposed in [21, 22] requires not only a notion
of Lorentzian spectral triples but also of causal structures and a generalization of
the Cauchy problem for the Dirac equation to such noncommutative spacetimes.
In this subsection the logic behind this notion shall be briefly sketched.

A Lorentzian spectral triple (Lost) over A has the data

L:(A,%,D,,B,’%J).
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There is one new ingredient: the fundamental symmetry f = —f3*, 32 = —1,
which can be viewed as a timelike one-form. In fact it is required that there exist
algebra elements (¥, g(* such that 3 = > fO[D, g™] (time-orientability). Most
of the axioms of spectral triples remain unchanged except that the Lorentzian
Dirac-Operator D is, of course, no longer selfadjoint but G-symmetric,

D* = pDg,

on the common domain of D and 8D which is required to be dense in H. Another
difference is that we now allow for nonunital algebras A, corresponding to non-
compact manifolds. If A is the algebra of smooth functions of compact support on
some smooth manifold M then the Losts over A correspond to Lorentzian metrics
and spin structures over M.

An important remark is in order here: Given the other data, the choice of 5 (and
thus D*) is not uniquely determined by the axioms. That should not be the case
anyway, as J involves the choice of a timelike direction in the commutative case
and there is no preferred such direction in general. Indeed it can be shown that
two Losts which differ only by the choice of § are unitarily equivalent. We shall
denote the set of all admissable 3 given the remaining data of L by By,. To any
such [ we associate the symmetric operator

05 = 51D.B} = 2 8(D — D°).

In the classical case A = C°(M) one can prove that 93 is a derivation on the
algebra, i.e [03, f] € A for all f € A.
We call a Lost timelike foliated if Og is essentially selfadjoint for all choices of
and if there exists an unitary algebra element u such that 8 = u*[D, u]. Moreover
it is required that u* € A, Vk € R.
Needless to say that these conditions ensure in the classical case that one may
reconstruct a foliation of M = R x ¥ along the timelike direction specified by
(. But due to the required essential selfadjointness the 0z will — even in the
noncommutative case — give rise to one-parameter groups U, = €'%37 of unitatries
on H. We denote by

Ty = {97 |3 € By}
the set of all these “time-flows”. As a matter of fact, the set I, can now be used
for all Losts to

e Define the noncommutative analogue of the space H2° of smooth spinors of
compact support.

e Given two distributions &,7 € (32°)" one can characterize whether the sup-
port of 7 lies in the causal future/past of the support of £ with the help of
TL.

e One may even reformulate the wavefront sets of such distributions by em-
ploying the elements of Tt,.

A globally hyperbolic spectral triple (ghyst) is now simply defined as a timelike
foliated Lost for which there exist uniquely determined advanced and retarded
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propagators Fy : HX — (H)'.
Here a propagator E is defined as amap E : H® — (H°) such that D E(¢)) = ¢
in a distributional sense:

(E(), Do) = (¢, ) Vip, o € HE.
Such propagators are called advanced (respectively retarded) if the support of
E(v) is contained in the causal future (respectively past) of that of 1. Given an

advanced propagator E; and a retarded one E_ one can construct all the solutions
for the Cauchy-problem for D with the help of G = FE, — F_.

Remark 6.1. We still have to work out the precise conditions under which a time-
like foliated Lost is a ghyst. An even more urgent and important open problem
is to generalize the concept of isometric embeddings of globally hyperbolic space-
times into each other to the noncommutative case. In the classical case this can
be done by replacing the unitaries representing the diffeomorphisms on H by ap-
propriate partial isometries. However this notion turns out to restrictive if A is
noncommutative, as is seen in noncommutative examples for ghysts.

6.2. Generally covariant quantum theories over spectral geometries

An important virtue of Noncommutative Geometry that has not been mentioned so
far is that it provides a mathematical language ideally tailored to reconstruct (non-
commutative) spacetimes which approximate the semiclassical states of a back-
ground independent quantum theory. We do not yet have such a theory, of course,
and accordingly the definition of “semiclassical” states for such a theory is far from
clear. But however such a theory may look like: it should provide observables to
reconstruct spacetime, and hence there should exist a map from a suitable subalge-
bra of observables to globally hyperbolic spectral triples (ghysts) or some variant
therof. Moreover this map should be covariant with respect to diffeomorphisms
and respect locality, i.e. the fact that observables localized at spacelike separated
regions commute.
In view of arguments like the one presented in [3], it has to be expected that the
image of this map does not contain classical, i.e. commutative, manifolds. But
there are probably also many noncommutative ghysts which are not realized in a
quantum theory of gravity coupled to matter.
Now suppoose we can invert the above map. The inverse would map ghysts to al-
gebras of observables. It then follows that classical ghysts cannot lie in the domain
of this map, as else the map would produce a theory that cannot exist according
to [3]- namely a theory of quantized gravity coupled to quantum matter for which
there does exist a semiclassical state corresponding to a commutative manifold on
which the matter fields reside. If one attempts to show that a full quantum theory
of gravity coupled to matter implies a noncommutativity of spacetime one may
therefore adopt the following strategy [21]:
1. Reformulate local quantum theory as a generally covariant map Obs from
the category of ghysts to the category of algebras. Thus, Obs is required to
be a covariant tensor functor between these categories. Note that the above
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requirements on Obs imply that Obs(N) is a subalgebra of Obs(M) whenever
N can be embedded as a globally hyperbolic submanifold of M. In particular
every diffeomorphism ¢ of manifolds induces an algebra homomorphism «,,
on the image of Obs.

2. Require as a further constraint on Obs that there exists a causal dynamical
law. This is achieved by demanding that for any submanifold N of M which
contains a full Cauchy surface of M it follows that Obs(N) = Obs(M), i.e. it
is sufficient to know the restriction of observables to one Cauchy surface to
know them everywhere on M.

3. Demand now that geometry and matter are dynamically coupled by requiring
the existence of a diffeomorphism invariant state for Obs. Diffeomorphism
invariance of states w here means that, with the above notation

WO, =w Y.

4. Show that the domain of a map Obs meeting all the above requirements
contains only certain noncommutative ghysts.

This is of course a very (over- ?)ambitious program, that I could sketch only very
roughly here. A complete definition of generally covariant quantum theories and
some remarks concerning its applicability to quantum gravity can be found in [37]
and the contribution of Klaus Fredenhagen to the present volume. I should stress
that it is far from clear whether the last two points of the above program are
well-defined. In particular we have not yet shown that there exists any nontrivial
functor Obs for which there exists a diffeomorphism invariant state. However for
Loop Quantum Gravity there does exist a uniqely defined diffeomorphism invari-
ant state [28, 29] and we hope to show that this provides an example for such a
functor. Even more so, we have not shown that the existence of such a state re-
ally implies diffeomorphism invariance — we only have some indications for this so
far. Moreover, as mentioned above, there are still many technical and conceptual
difficulties with the definition of the category of ghysts that we have to overcome
in the zeroth step of the program.

Nevertheless, once these problems are overcome, we hope that we may uncover the
dynamical mechanism that leads to the noncommutativity of spacetime. At least
it is to be expected that the required existence of a diffeomorphism invariant state
is such a strong demand that it excludes many (commutative) ghysts from the
domain of the corresponding functor. Thus in order to clarify this question it will
be essential to understand in which way the morphisms of the category of ghysts
M act on the states over the algebras Obs(M) associated to it.

Note that, if it succeeds, the above program can really be viewed as a quantum
version of the postulates that lead to Einstein’s equations: Namely diffeomorphism
invariance, the motion of test particles along geodesics and the existence of second
order field equations.

This then leads us back to the spectral action. It is not the idea of the above pro-
gram to produce a diffeomorphism invariant classical action and then to quantize
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it, but rather to directly infer the “Quantum Einstein equations” from first princi-
ples. Only in that way one may also hope that the dynamical mechanism leading
to the noncommutativity of spacetime can be uncovered — if there exists such a
mechanism. If we are able to reveal the precise nature of this noncommutativity it
will turn out whether it can really be approximated at the Z-mass by the almost
commutative geometry underlying the standard model.
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