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Abstract

Starting from integral representations of solutions of Poisson’s equation with

transition condition, we study the first and second derivatives of these solutions

for all dimensions d ≥ 2. This involves derivatives of single layer potentials

and Newton potentials, which we regularize smoothly. On smooth parts of the

boundary of the non-smooth domains under consideration, the convergence of

the first derivative of the solution is uniform; this is well known in the literature

for regularizations using a sharp cut-off by balls. Close to corners etc. we prove

convergence in L
1 with respect to the surface measure. Furthermore we show

that the second derivative of the solution is in L
1 on the bulk.

The interface problem studied in this article is obtained from the stationary

Maxwell equations in magnetostatics and was initiated by work on magnetic

forces.

MSC (2000): 35J05, 31A10, 31B10, 78A30

Keywords: Poisson equation with transition condition, integral representations of solu-
tions, derivatives of single layer potentials, regularization of potentials, magnetostatics

1 Introduction

We derive regularity results for solutions of Poisson’s equation with transition condi-
tion on bounded non-smooth domains in d ≥ 2 dimensions. In particular, we study
integral representations of the solutions in terms of Newton potentials and single layer
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potentials. Our interest is twofold. Firstly, we consider smoothly regularized versions
of the gradients of the potentials and calculate the limits in the bulk and on surfaces
as well as on interfaces (cf. Theorem 13). This part is closely related to several results
known in the literature, where sharp cut-offs are chosen in order to regularize, see below
for details. Moreover, we study the second gradient of solutions of Poisson’s equation.
We prove that the second gradient is an L1 function on the bulk (Theorem 16). In
order to show this we study the second gradient of the single layer potential on the
bulk (Theorem 15).

The main methods of the proofs go back to corresponding ones in [22] for d = 3 dimen-
sions and a simpler geometric setting as well as stronger assumptions on the regularity
of the domains. In [22] it is assumed among other things that the 3-dimensional do-
main Ω is a union of two domains which are nested such that the boundary of the
inner domain does not intersect the boundary of Ω. Moreover, in [22], all domains are
required to be Lipschitz continuous and piecewise C2.
In this article, the bounded domain Ω ⊂ R

d, d ≥ 2, is assumed to be the union of two
disjoint bounded domains in R

d which have some part of their boundaries in common,
but do not have to be nested. The domains are primarily assumed to be Lipschitz
continuous and piecewise C1,α, 0 < α ≤ 1, see Assumption A1 and Definition 1 for
details.
The mathematical difficulties in the case d = 2 arise since the fundamental solution of
Laplace’s equation is basically different to the three-dimensional one, cf. (7). In the
case d > 3 the fundamental solution has the same structure as the three-dimensional
one, which allows for a straightforward generalization of the previous estimates. The
difficulty in this case lies in finding appropriate assumptions on the domains, see in
particular Assumption A1(iv) and Definition 1(iii). The case of having non-nested sets
is also taken care off in Assumption A1; see also the proof of Theorem 15 on the second
gradient of the single layer potential, where we assume α = 1 to obtain the desired
bounds. Otherwise the generalization from piecewise C2 to piecewise C1,α is rather
straightforward, cf. the proofs of Propositions 5 and 6.
In this article we consider two different smooth regularization: one is analogous to the
one considered in [22], cf. the beginning of Section 3; the other regularization is defined
in (17). The latter regularization is motivated by earlier work in d = 2 dimensions,
cf. [23] and see also [20]. It has the advantage that the smooth cut-off function η
is multiplied by the gradient of the fundamental solution of Laplace’s equation, ∇N ,
which is homogeneous of degree minus one if d = 2. In the former regularization, η is
multiplied by N , which is only homogeneous of degree minus one in the case d ≥ 3.

With respect to applications in the sciences, the work in this article is motivated by
studies of magnetic forces in continuous media in [20], where the regularity results
of this paper are applied for d = 2, 3. Typical terms in magnetic force formulae are
of the form

∫
Ω
(M(x) · ∇)H(x) dx and

∫
∂Ω

(M · n)(x)H−(x) dsx, respectively, where
M : R

d → R
d denotes the magnetization, which is a given datum, and H : R

d → R
d

is a magnetic field, which is a solution of the stationary Maxwell equations and has
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inner trace H−. The outer normal to ∂Ω is denoted by n. In order to show for instance
the existence of such integrals, some regularity results on H and the gradient of H
(Theorem 16) are needed. Furthermore, the convergence results for the regularized
potentials (Theorem 13) are applied in the derivation of the force formulae, cf. [20, 22]
as well as (39).
The stationary Maxwell equations in magnetostatics lead to the Poisson equation.
Maxwell’s equations read curlH = 0 and div H = − div M , where M and H are again
a given magnetization and the magnetic field, respectively. The first equation allows
to write H as the gradient of some potential u : R

3 → R. We set H = −∇u. Then
Maxwell’s equations become Poisson’s equation for u, i.e., −∆u = − div M , where
∆ =

∑d
j=1 ∂2

j .

In physical applications, M is supported on the closure of a bounded domain Ω ⊂ R
d.

The normal component of the magnetization might jump at ∂Ω and at interfaces, while
the magnetization is smooth otherwise. Let Γ be such an interface. Then we have the
following transition condition in addition to Poisson’s equation: [H · nΓ] = −[M · nΓ],
where [a] := a+ − a−, a ∈ R, denotes the difference between outer and inner traces.
Moreover, nΓ denotes a normal to Γ. We refer to Section 2 for details about Γ and M
and the precise assumptions on them which we require in this article. In terms of u,
the transition condition reads [∇u ·nΓ] = [M ·nΓ]. A similar transition condition holds
at the boundary of Ω, cf. (3).

Integral representations of solutions u of Poisson’s equation with transition condition
are given by a sum of a Newton potential and a single layer potential, cf. (12). We
are interested in regularity results for H = −∇u and its derivatives. Therefore it
is natural to study the first and second derivatives of the potentials in the bulk and
on surfaces. Gradients of the potentials have been studied extensively in the past.
For the nowadays classical results in domains with smooth boundaries we refer to the
monographs by Kellogg [11] and Mikhlin [16]. For more general results see, e.g., [8, 17]
and the references below.
Single layer potentials are studied also in a different context. These potentials and
the so-called double layer potentials occur when one solves boundary value problems
of Laplace’s equation (and generalizations) by boundary integral equations. To solve
those integral equations, certain properties of the layer potentials are proved in order
to ensure invertibility. See for instance [12, Chapter 2, Section 2] for further references
and an overview of this potential technique in smooth domains as well as in C1 and
in Lipschitz domains. The results in Lipschitz domains trace back to the work by
Verchota [25], which we partly apply after equation (12) and in the proofs of Section 3.
For recent results in the potential theory on Lipschitz domains we refer to [14] for higher
regularity results in fractional Sobolev spaces. Moreover, there has been recent work
on potential theory on Lipschitz domains in Riemannian manifolds, see, e.g., [18] for
Sobolev-Besov space results and references therein. The last-mentioned works strive
for optimal regularity results. Here, however, our goal is more modest and the analysis
can be based on the work by Verchota [25].
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It is well known that the solutions of Laplace’s equation (and of more general elliptic
equations) have singularities near corner points and edges, see for instance [9] and
references therein. To investigate such singularities of solutions of, e.g., transmission
problems for the Laplace equation across a Lipschitz interface, single and double layer
potentials are studied, see, e.g., [5] and [15, 19]. The latter authors work in Hilbert
space settings in two and three dimensions and give some numerical examples. For
further studies of layer potentials and their first gradients in the context of numerical
simulations (boundary element methods) and thus for Hilbert space settings we refer
to [21, 24].
Costabel and Dauge [2] analyzed singularities of solutions of the time-dependent Max-
well equation on polyhedral domains in a Hilbert space setting. However, here we are
interested in solutions of the stationary Maxwell equations, which are in some L1 and
W 1,1 spaces, respectively. Moreover, we do not want to restrict the boundary data to
be continuous since applications as for instance in micromagnetism (see, e.g., [3, 10])
have boundary data M · n that are only piecewise continuous, which is in particular
due to the non-smoothness of the domain. In this article we therefore do not want to
restrict M · n to be in the Hilbert space H−1/2. We assume that the boundary data
are in L∞ on the boundary.

The outline of the paper is as follows. Section 2 gives the precise assumptions on the
domains. Moreover, Poisson’s equation with the transition conditions as well as the
solution of this in terms of Newton and single layer potential are summarized. Then,
regularized potentials are introduced and some properties are asserted. In Section 3 we
consider the gradient of the single layer potential for different smooth regularizations
and relate this to the sharp cut-off by balls often used in the literature. The topic
of Section 4 is the convergence of the regularized gradient of the solution of Poisson’s
equation and its integral representation formulae (Theorem 13). In Section 5 we prove
that the second gradient of the single layer potential is an L1 function on the bulk
(Theorem 15). Finally, we conclude that the second gradient of the solution of Poisson’s
equation is an L1 function on the bulk (Theorem 16).

2 Notation and preliminaries

Throughout this article we suppose that the following assumptions on the domains
hold.

Assumption A1 (i) A and B are bounded domains in R
d, d ≥ 2, such that A∩B = ∅.

Moreover A and B have some boundary in common, i.e., its d−1 dimensional Hausdorff
measure Hd−1(∂A ∩ ∂B) is strictly greater than zero.
(ii) A and B are Lipschitz domains, i.e., locally, the boundary of A (and B, resp.) is
the graph of a Lipschitz continuous function, and A (and B, resp.) is on one side of
the boundary only.
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Figure 1: Sketches of possible configurations.

(iii) ∂A and ∂B are piecewise C1,α for 0 < α ≤ 1, cf. Definition 1 below.
(iv) ∂A and ∂B satisfy the neighbourhood estimate, cf. Definition 2 below.

We phrase the definition of a piecewise C1,α boundary for ∂A only; the definition for
∂B runs analogously.

Definition 1 The boundary ∂A is said to be piecewise C1,α, 0 < α ≤ 1, if there exist
finitely many pairwise disjoint sets Ui ⊂ ∂A which are relatively open in ∂A and have
the following properties:
(i) Ui is a connected, orientable C1,α submanifold of R

d and the outer normal n to ∂A
restricted to Ui is C0,α up to the boundary,
(ii) ∂A ⊂

⋃
i Ūi and

(iii) the relative boundary ∂Ui is a finite union of connected C1,α submanifolds of R
d.

If d = 2, ∂Ui is required to be a union of finitely many points in R
d.

Next we give the definition of the neighbourhood estimate for ∂A. It holds analogously
for ∂B.

Definition 2 Let ∂Ui be as in Definition 1. We say that ∂A satisfies the neighbour-
hood estimate if there exists a constant c > 0 such that for any ∂Ui, the d dimensional
volume of {x ∈ R

d : dist(x, ∂Ui) ≤ r} is bounded by cr2 for small enough r.

This definition is obvious in d = 2 since ∂Ui is a union of finitely many points; it
is natural for higher dimensions, see [23, Remark 5] for a discussion of this. As an
aside, this definition is equivalent to saying that ∂Ui has finite (d − 2) dimensional
upper Minkowski content, see, e.g., [13, p. 79]. We apply Assumption A1(iv) and
Definition 1(iii) in the proofs of Lemma 11 and Theorem 15 below.

Assumption A1 includes for instance two- and three-dimensional polygonal domains.
The domains A and B might be nested, but they do not have to be nested, cf. Figure 1.
We set
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Γ := ∂A ∩ ∂B and Ω := int(A ∪ B). (1)

The common boundary Γ can be considered as an interface within Ω. Since ∂A and
∂B are piecewise C1,α by assumption, also Γ is piecewise C1,α. Thus Γ can be written
as a finite union of C1,α submanifolds of R

d as in Definition 1.

Next we summarize our assumptions on the data, i.e., on the right hand side of the
Poisson equation (2) and of the transition condition (3) below.

Assumption A2 The support of M : R
d → R

d is in Ω. If M is restricted to A,
M|A ∈ W 1,∞(A; Rd). Similarly, M|B ∈ W 1,∞(B; Rd).

For brevity we set
w := − div M

on R
3 \ (Γ∪ ∂Ω). By Assumption A2, we have w ∈ L∞(Rd \Γ∪ ∂Ω). Furthermore, let

n denote the outer normal to ∂A; this is defined almost everywhere due to Assumption
A1. The outer and inner traces

g± := (M · n)± = M± · n

on ∂A are in L∞(∂A) (see, e.g., [1, A 6.6]). Similarly, the traces

gν±

:= (M · ν)ν±

= M ν±

· ν

on ∂B are in L∞(∂B). Here, ν alludes to the outer normal ν to ∂B. For definiteness
we define the jump of the traces at the interface Γ throughout the paper as follows:
[a] := a+ − a− = −(aν+

− aν−

), a ∈ R. By Assumption A2, [g] ∈ L∞(Γ). Note that we
sometimes also write g instead of g− for brevity, if this meaning is obvious from the
context.

Remark 3 By Assumption A2 we have M|A ∈ W 1,∞(A, Rd). There exists an M̃ ∈
C0,1(A, Rd) which equals M almost everywhere by an embedding theorem (see, e.g.,

[1, Satz 8.5]). Thus we have g± = M̃± ·n almost everywhere. Since n is piecewise C0,α

by Assumption A1, also g± is piecewise C0,α almost everywhere.

We consider Poisson’s equation

−∆u = w in R
3 \ (Γ ∪ ∂Ω) (2)

with transition conditions

[∇u · n] = [g] on Γ

[∇u · ν] =

{
−g− on ∂A \ Γ

−gν−

on ∂B \ Γ
.

(3)
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Note that we sometimes tacitly assume that u decreases sufficiently fast at infinity so
that it is a unique solution.

The aim is to study integral representations of a solution uΩ of (2) and (3) and of its
gradients. In order to do so, we firstly consider Poisson’s equation on the domain A:

−∆u = w|A in R
d \ ∂A (4)

with transition condition

[∇u · n] = −g− on ∂A. (5)

A solution of these equations is denoted by uA. Similarly, uB is defined. By linearity
of Poisson’s equation we then have

uΩ = uA + uB and thus ∇uΩ = ∇uA + ∇uB. (6)

Next we study uA and its first and second gradient. Solutions of Poisson’s equation
can be represented in terms of the fundamental solution of Laplace’s equation. For this
fix a point y ∈ R

d. Then the normalized fundamental solution of Laplace’s equation
−∆u = 0 is given by (see, e.g., [8, p. 17] and note the different sign conventions)

N(x − y) :=

{
− 1

2π
ln |x − y| if d = 2

1
d(d−2)ωd

|x − y|2−d if d ≥ 3
for all x ∈ R

d, x 6= y. (7)

Here ωd denotes the volume of the unit ball in R
d. That is, ωd = 2πd/2

d Γ(d/2)
, where Γ(·) is

the Gamma-function.

We can write (4) and (5) equivalently in the form

−∆u = wLd
|A + g−Hd−1

|∂A on R
d, (8)

where Ld denotes the d dimensional Lebesgue measure and Hd−1 is as before the
d − 1 dimensional Hausdorff measure. The equation is understood in the sense of
distributions. Since the right hand side of (8) is a distribution with compact support
on R

d, there exists a solution uA of (8) with the integral representation

uA(x) =

∫

A

w(y)N(x − y) dy +

∫

∂A

g−(y)N(x − y) dsy (9)

for all x ∈ R
d with sy = Hd−1 denoting the surface measure with respect to y, see, e.g.,

[4, p. 73].

The following abbreviations will be used throughout this article

VA(w)(x) :=

∫

A

w(y)N(x − y) dy, (10)

S∂A(g)(x) :=

∫

∂A

g(y)N(x − y) dsy, (11)
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where g is understood here as the inner trace of g with respect to ∂A. Then (9) becomes

uA(x) = VA(w)(x) + S∂A(g)(x), x ∈ R
d. (12)

As usual in the literature, we call VA Newton potential and S∂A single layer potential.
It is well known that the volume potential exists under Assumptions A1 and A2 (see,
e.g., [16, Chapter 11, §6]).

As already mentioned in the introduction, there are several results about single layer
potentials known in the literature. (Be aware of different sign conventions.) Here
we follow mainly Verchota [25]. Verchota proved invertibility of layer potentials for
Laplace’s equation in certain spaces for bounded Lipschitz domains in R

d, d ≥ 2. For
this he summarized results about the existence of layer potentials in his Section 1.
We apply some of these results on the existence of single layer potentials and their
normal and tangential derivatives, see below for details. Note that the results in [25]
are phrased under the assumption that g ∈ Lp(∂A) for 1 < p < ∞. This holds in our
setting since g ∈ L∞(∂A) and Hd−1(∂A) < ∞ by Assumptions A1 and A2.

By [25, Lemma 1.8], the single layer potential (11) exists on R
d and in Lp(∂A), 1 <

p < ∞. Moreover, the jump of the traces at ∂A is zero. Since we have Hd−1(∂A) < ∞
by Assumption A1, the single layer potential also exists in L1(∂A). Next we study an
approximation of the single layer potential, which prepares for later approximations of
the derivatives of the single layer potential studied in Section 3.

In the works cited above, the singularity is truncated sharply, i.e., by a sharp cut-off.
Here we also consider a smooth cut-off, which is used in applications, cf. [20, 22], and
is interesting on its own. Let η : [0,∞] → R be a smooth function such that η(r) = 0
if 0 ≤ r ≤ 1

2
and η(r) = 1 if r ≥ 1. We set

u
(δ)
A (x) := V

(δ)
A (w)(x) + S

(δ)
∂A (g)(x), x ∈ R

d, (13)

where

V
(δ)

A (w)(x) :=

∫

A

w(y)η(
|x − y|

δ
)N(x − y) dy, (14)

S
(δ)
∂A (g)(x) :=

∫

∂A

g(y)η(
|x − y|

δ
)N(x − y) dsy. (15)

The single layer potential is approximated uniformly by S
(δ)
∂A (g) on compact subsets

of the C1,α submanifolds of the boundary and pointwise else. A proof of this can,
e.g., easily be adapted from the proof of an analogous statement for d = 3 in [22,

p. 265]. Furthermore, we note that V
(δ)

A (w) converges uniformly to the Newton po-
tential VA(w) on R

d, which follows from a straightforward calculation which yields

|VA(w)(x) − V
(δ)

A (w)(x)| ≤ cδ2| ln δ| if d = 2, and |VA(w)(x) − V
(δ)

A (w)(x)| ≤ cδ2 if
d ≥ 3. In the following sections we use these regularizations and others to study the
gradient of the solutions of the above Poisson’s equation.
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3 About the gradient of the single layer potential

In this section we study approximations of the gradient of the single layer potential on
Ω and Γ, respectively. One approximation is based on the definition of S

(δ)
∂A (g) in (15):

We take the gradient of this and calculate the limit as δ → 0. Secondly we study a
regularization, where ∇N is multiplied by a smooth function η defined as above, i.e.,
we consider

(∇S∂A)(δ)(g)(x) =

∫

∂A

g(y)R(δ)(x − y) dsy (16)

with

R(δ)(x − y) := η(
|x − y|

δ
)∇N(x − y). (17)

Note that (∇S∂A)(δ)(g) 6= (∇S
(δ)
∂A )(g) in general. The advantage of this regularization

is that η is multiplied with ∇N , which is homogeneous of degree minus one if d = 2,
cf. a corresponding remark in the introduction. Similarly we set

(∇tanS∂A)(δ)(g)(x) =

∫

∂A

g(y)R
(δ)
tan(x − y) dsy

(n · ∇S∂A)(δ)(g)(x) =

∫

∂A

g(y)n(x) · R(δ)(x − y) dsy,

where R
(δ)
tan(x−y) and n(x) ·R(δ)(x−y) are defined accordingly to (17). Note that these

functions are in general different from (∇tanS
(δ)
∂A )(g) and (n · ∇S

(δ)
∂A )(g), respectively.

The following proposition is a straightforward extension of an analogous statement [22,
p. 253] from three dimensions to d ≥ 2, to a more general geometric setting, and to
both kind of regularizations introduced above.

Proposition 4 Let Assumptions A1 and A2 hold. Then

(∇S
(δ)
∂A )(g) −→ ∇S∂A(g) in L1(Ω) as δ → 0,

(∇S∂A)(δ)(g) −→ ∇S∂A(g) in L1(Ω) as δ → 0.

Proof: Since |∇η( |x−y|
δ

)| ≤ c
δ
χ[δ/2,δ](|x − y|), we have

∣∣∇
(
η(

|x − y|

δ
)N(x − y)

)∣∣

≤
c

δ
|N(x − y)|χ[δ/2,δ](|x − y|) + c|∇N(x − y)|χ[δ/2,∞)(|x − y|).

If d ≥ 3, we can bound the first term by c|∇N(x − y)|χ[δ/2,δ](|x − y|). Thus, if d ≥ 3,
both regularizations lead to the bound c|∇N(x − y)|χ[δ/2,∞)(|x − y|).
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We split Ω in a set close to ∂A and the complement of this. To do so, we set Tt := {x ∈
Ω : dist(x, ∂A) < t} for some fixed t > 0. The volume of Tt can be estimated with the
help of the coarea formula (see, e.g., [6, Section 3.4]). This yields that the volume of
Tt is bounded by a constant times t times Hd−1(∂A), which is finite by assumption.
If x ∈ Ω \ Tt, it holds |∇N(x − y)| ≤ ct1−d for all y ∈ ∂A. Moreover, c

δ
|N(x −

y)|χ[δ/2,∞)(|x − y|) ≤ c
δ
| ln t|χ[δ/2,∞)(|x − y|) if d = 2. Hence (∇S∂A)(δ)(g)(x) as well

as (∇S
(δ)
∂A )(g)(x) converge uniformly to ∇S∂A(g)(x) =

∫
∂A

g(y)∇N(x − y) dsy for all
x ∈ Ω \ Tt as δ → 0. Therefore it is natural to consider

∫

Ω

|(∇S∂A)(δ)(g)(x) −∇S∂A(g)(x)| dx

≤

∫

Ω\Tt

|(∇S∂A)(δ)(g)(x) −∇S∂A(g)(x)| dx +

∫

Tt

|(∇S∂A)(δ)(g)(x)| dx

+

∫

Tt

|∇S∂A(g)(x)| dx

and correspondingly for (∇S
(δ)
∂A )(g). It remains to show that for all ε > 0 there exists a

t > 0 such that the latter two integrals are bounded by ε/2. Since |(∇S∂A)(δ)(g)(x)| ≤
c
∫

∂A
|∇N(x − y)| dsy, an integration over Tt yields

∫

Tt

(∇S∂A)(δ)(g)(x) dx ≤ c

∫

Tt

∫

∂A

1

|x − y|d−1
dsy dx = c

∫

∂A

∫

Tt

1

|x − y|d−1
dx dsy.

By Hölder’s inequality, we obtain for y ∈ ∂A
∫

Tt

1

|x − y|d−1
dx ≤

(∫

Tt

1 dx
) 1

2d−1
( ∫

Tt

1

|x − y|
2d−1

2

dx
) 2d−2

2d−1
. (18)

The latter integral can be estimated by c
∫ diam(Ω)

0
r−

1
2 dr and thus is bounded indepen-

dently of t. Moreover we know that the volume of Tt is bounded by ctH(∂A). Hence∫
Tt
|(∇S∂A)(δ)(g)(x)| dx ≤ ct

1
2d−1 , which can be chosen to be smaller than ε/2. Since

|∇S∂A(g)(x)| is bounded by a constant times
∫

∂A
1

|x−y|d−1 dsy, we obtain analogously∫
Tt
|∇S∂A(g)(x)| dx ≤ ε/2.

To finish the proof, we need to show similar estimates for (∇S
(δ)
∂A )(g). If d ≥ 3, we

know that |(∇S
(δ)
∂A )(g)(x)| ≤ c

∫
∂A

|∇N(x− y)| dsy and thus we can proceed as before.
It remains to consider the case d = 2 and to estimate the term

c

δ

∫

Tt

∫

∂A

| ln |x − y||χ[δ/2,δ)(|x − y|) dsy dx≤
c

δ

∫

∂A

∫

Tt

| ln |x − y||χ[δ/2,δ)(|x − y|) dx dsy.

Hölder’s inequality yields

1

δ

∫

Tt

| ln |x − y||χ[δ/2,∞)(|x − y|) dx

≤
1

δ

( ∫

Tt

|x − y|| ln |x − y||2χ[δ/2,δ)(|x − y|) dx
) 1

2
( ∫

Tt

|x − y|−1 dx
) 1

2
≤ ct

1
6 . (19)
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Indeed, the second integral on the right hand side is bounded by ct
1
3 , cf. (18). The first

integral is bounded by c
∫ δ

δ/2
r2 ln2 r dr = c

[
r3 ln2 r

3
− 2

3
r3

(
ln r
3

− 1
9

)]δ

δ/2
≤ cδ3 ln2 δ. Now,

with 1
δ
(δ3 ln2 δ)

1
2 < 1 for small δ, we obtain the asserted bound in (19) and the asserted

convergence in L1(Ω) as δ → 0. 2

Next we consider normal and tangential derivatives of the single layer potential on the
boundaries and the interface Γ. As mentioned earlier, we follow [25] mainly. Verchota
assumes that A is a bounded Lipschitz domain (with a fixed regular family of cones) and
that g ∈ Lp(∂A), 1 < p < ∞; both requirements are satisfied here by Assumptions A1

and A2. According to, e.g., Verchota [25, Theorem 1.11], the normal component of the
gradient of S∂A(g) at ∂A is

(
n · ∇S∂A(g)

)±
(x) = lim

β→0
n(x) · (∇S∂A)(g)(x ± βn(x)) (20)

= ∓
1

2
g(x) − p.v.

∫

∂A

g(y)n(x) ·
(x − y)

|x − y|d
dsy (21)

:= ∓
1

2
g(x) − lim

ε→0

∫

|x−y|>ε

g(y)n(x) ·
(x − y)

|x − y|d
dsy (22)

for almost every x ∈ ∂A. The principal value on the right hand side of (21) exists in
Lp(∂A), 1 < p < ∞, and pointwise almost everywhere. Throughout the paper, Cauchy
principal values (p.v.) of integrals are defined analogously as in (22).
If A is a smooth domain (at least C1,α, 0 < α ≤ 1) and g is a continuous function,
the convergence of the traces in (20) is uniform in x ∈ ∂A (see, e.g., [7, Chapter 3.F],
[16, Section 18.7]). It is well known that this breaks down if the domain has edges or
corners (see, e.g., [11, p. 157]). In this article we consider Lipschitz domains which are
merely piecewise C1,α, cf. Definition 1. Thus we do not have uniform convergence in
general. However, we still have uniform convergence on compactly embedded subsets
of the smooth parts of the boundary, cf. Lemma 8 below.

While the normal component of the gradient of the single layer potential jumps, its
tangential component is continuous across ∂A. It follows from [25, Theorem 1.6] that

(
∇tanS∂A(g)

)+
(x) =

(
∇tanS∂A(g)

)−
(x) = p.v.

∫

∂A

g(y)∇tanN(x − y) dsy (23)

exists in Lp(∂A), 1 < p < ∞, and for almost every x ∈ ∂A.
Kellog [11, p. 162] proves uniform convergence of the tangential derivative in three-
dimensional C2 domains under the assumption that the surface density g is uniformly
Hölder continuous. He also mentions that this result applies to compactly embedded
subsets of C2 submanifolds [11, p. 160].

In the following proposition we consider, under Assumptions A1 and A2, the conver-
gence of (∇tanS

(δ)
∂A )(g) to the tangential derivative of the single layer potential as δ → 0.

11



x
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d
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U ′ ⊂ R
d−1

x′

R

Figure 2: Parameterization of ∂A ∩ U in the proof of Proposition 5.

In Proposition 6 below we then prove an analogous statement for the convergence of
(∇tanS∂A)(δ)(g). The proofs are generalizations of the proof of an analogous statement
in [22, Section 6.3] under the assumption that A is a C2 domain in R

3.

Proposition 5 Let Assumptions A1 and A2 hold and let Ui ⊂ ∂A be one of the C1,α

submanifolds in Definition 1. Furthermore, let U be a compactly embedded subset of
Ui. Then

∇tanS∂A(g)(x) = lim
δ→0

(∇tanS
(δ)
∂A )(g)(x)

uniformly for all x ∈ U .

Proof: Let U be a neighbourhood of x ∈ U and let ψ : U ′ ⊂ R
d−1 → R

d be a
parameterization of ∂A ∩ U such that ψ(x′) = x for fixed x′ ∈ U ′, cf. Figure 2. We
choose U and ψ such that ψ−1(∂A ∩ U) = BR(x′) with some constant R > 0, where
BR(x′) denotes the d − 1 dimensional ball of radius R about x′, which reduces to the
interval [x′ − R, x′ + R] if d = 2. Notice that Dψ(x′) maps R

d−1 on the tangent space
at x = ψ(x′); if d = 2, Dψ(x′) simply is d

dx′ψ(x′). Therefore, the uniform convergence

of (∇tanS
(δ)
∂A )(g)(x) as δ → 0 is equivalent to uniform convergence of

∇xS∂A(g)(x) · Dψ(x′)v = lim
δ→0

∫

∂A

g(y)∇
(
η(

|x − y|

δ
)N(x − y)

)
· Dψ(x′)v dsy

for all v ∈ R
d−1. Note that ∇x′(S∂A(g) ◦ ψ)(x′)v = ∇xS∂A(g)(x) · Dψ(x′)v, where

∇x′ = d
dx′ if d = 2. Hence we obtain the proposition if we show that

∇x′

(
S

(δ)
∂A (g) ◦ ψ

)
−→ ∇x′

(
S∂A(g) ◦ ψ

)
(24)

uniformly as δ → 0. We rewrite S
(δ)
∂A (g) as

S
(δ)
∂A (g)(x) =

∫

∂A∩U

g(y)η(
|x − y|

δ
)N(x − y) dsy +

∫

∂A\U

g(y)η(
|x − y|

δ
)N(x − y) dsy

=

∫

∂A∩U

g(y)η(
|x − y|

δ
)N(x − y) dsy +

∫

∂A\U

g(y)N(x − y) dsy,

12



where the second equality holds for all δ smaller than the minimal distance between x
and ∂U by the definition of η. Hence we only need to consider the first term, which we
denote by S

(1,δ)
∂A (g), to prove (24). By a change of variables we obtain

S
(1,δ)
∂A (g)(x) =

∫

BR(x′)

η(
|ψ(x′) − ψ(y′)|

δ
)g(ψ(y′))N(ψ(x′) − ψ(y′))Jψ(y′) dd−1y′

=: Qδ(x
′).

Correspondingly we define Q(x′). Since g ◦ ψ and Jψ are bounded on BR(x′),

∣∣Q(x′) − Qδ(x
′)
∣∣ ≤





c
∣∣∣
∫ Cδ

0

ln r dr
∣∣∣ if d = 2

c

∫

BCδ(x′)

1

|x′ − y′|d−2
dd−1y′ if d ≥ 3

≤

{
cδ| ln(Cδ)|, if d = 2

cδ, if d ≥ 3
.

Thus Qδ(x
′) converges uniformly to Q(x′) as δ → 0. Next we show that ∇x′Qδ(x

′)
converges uniformly to ∇x′Q(x′) as δ → 0 by proving that ∇x′Qδ(x

′) is a Cauchy
sequence in C0 as δ → 0. Hence Q is C1 and ∇x′Qδ converges uniformly to ∇x′Q.
To prove that ∇x′Qδ(x

′) is a Cauchy sequence in C0 as δ → 0, let ε ∈ [δ/2, δ) initially.
We have

Qε(x
′) − Qδ(x

′) =

∫

BR(x′)

f(|ψ(x′) − ψ(y′)|)g(ψ(y′))Jψ(y′) dd−1y′, (25)

where f(t) :=
(
η( t

ε
) − η( t

δ
)
)
Ñ(t) with Ñ(|x − y|) := N(x − y). The support of f is

contained in [δ/4, δ], and, for small enough δ > 0,

|f ′(t)| ≤
∣∣ d

dt

(
η(

t

ε
) − η(

t

δ
)
)∣∣|Ñ(t)| + |η(

t

ε
) − η(

t

δ
)||Ñ ′(t)|

≤
c

t
|Ñ(t)| + ct1−d ≤ c

{
| ln t|

t
if d = 2

t1−d if d ≥ 3
. (26)

Moreover, f ∈ C∞, and f(|ψ(x′) − ψ(y′)|) vanishes for all y′ in a neighborhood of
∂BR(x′). When we differentiate (25), we can therefore commute differentiation and
integration. Hence

∣∣∇x′Qε(x
′) −∇x′Qδ(x

′)
∣∣ (27)

=
∣∣∣
∫

BR(x′)

∇x′f(|ψ(x′) − ψ(y′)|)g(ψ(y′))Jψ(y′) dd−1y′
∣∣∣

≤

∫

BR(x′)

∣∣∇x′ f(|ψ(x′) − ψ(y′)|) + ∇y′ f(|ψ(x′) − ψ(y′)|)
∣∣|g(ψ(y′))Jψ(y′)| dd−1y′ (28)

+
∣∣∣
∫

BR(x′)

∇y′f(|ψ(x′) − ψ(y′)|)g(ψ(y′))Jψ(y′) dd−1y′
∣∣∣. (29)
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Since ψ is C1,α, |Dψ(x′)−Dψ(y′)| ≤ c|x′ − y′|α. This in turn is bounded by c|ψ(x′)−
ψ(y′)|α. By (26) we then obtain for small enough δ that the integral in (28) is bounded
by

c

∫

BR(x′)

∣∣∣f ′(|ψ(x′) − ψ(y′)|)
ψ(x′) − ψ(y′)

|ψ(x′) − ψ(y′)|
(Dψ(x′) − Dψ(y′))

∣∣∣ dd−1y′

≤ c

{
| ln |δ/4||

δ
δα

∫ cδ

cδ/4
dr if d = 2

δ1−d+α
∫ cδ

cδ/4
rd−2 dr if d ≥ 3

≤ c

{
δα| ln δ| if d = 2

δα if d ≥ 3
. (30)

Hence it remains to estimate (29). By adding and subtracting Jψ(x′) we can make
again use of ψ being C1,α. We have

∣∣∣
∫

BR(x′)

∇y′f(|ψ(x′) − ψ(y′)|)g(ψ(y′))
(
Jψ(y′) − Jψ(x′)

)
dd−1y′

∣∣∣

≤
∣∣∣
∫

BR(x′)

(
∇y′f(|ψ(x′) − ψ(y′)|) + ∇x′f(|ψ(x′) − ψ(y′)|)

)
×

× g(ψ(y′))
(
Jψ(y′) − Jψ(x′)

)
dd−1y′

∣∣∣

+
∣∣∣

∫

BR(x′)

∇x′f(|ψ(x′) − ψ(y′)|)g(ψ(y′))
(
Jψ(y′) − Jψ(x′)

)
dd−1y′

∣∣∣.

The first term on the right hand side can be estimated as (28), but simpler. The second
term can be bounded by

c|Dψ(x′)|

∫

BR(x′)

|f ′(|ψ(x′) − ψ(y′)|)||y′ − x′|α dd−1y′ ≤ c

{
δα| ln δ| if d = 2

δα if d ≥ 3
.

analoglously to (30). The bound on Dψ(x′) is uniform since x = ψ(x′) ∈ U , which is
compactly embedded in Ui by assumption.
To estimate (29), we finally consider Jψ(x′)

∫
BR(x′)

∇y′f(|ψ(x′)−ψ(y′)|)g(ψ(y′)) dd−1y′.

We add and subtract g(ψ(x′)). By Remark 3, g ∈ C0,α almost everywhere. Hence

|g(ψ(y′)) − g(ψ(x′))| ≤ c|ψ(y′) − ψ(x′)|α for a.e. ψ(x′), ψ(y′) ∈ U .

Since Dψ(y′) is uniformly bounded on BR(x′), we can estimate
∫

BR(x′)
∇y′f(|ψ(x′) −

ψ(y′)|)
(
g(ψ(y′))− g(ψ(x′))

)
dd−1y′ as in (30). Finally, since f is zero on the boundary,

an integration by parts of the remaining term, Jψ(x′)g(ψ(x′))
∫

BR(x′)
∇y′f(|ψ(x′) −

ψ(y′)|) dd−1y′, yields that it vanishes. Hence (27) is bounded by cδα| ln δ| and cδα,
respectively.
Recall that we have assumed ε ∈ [δ/2, δ). We obtain the same estimates for arbitrary
0 < ε < δ by summing a geometric series. Hence ∇x′Qδ(x

′) is a Cauchy sequence

as δ → 0, and ∇x′Qδ and therefore ∇x′(S
(1,δ)
∂A (g) ◦ ψ) converge uniformly as δ → 0.

Together with the uniform convergence S
(δ)
∂A (g) → S∂A(g) this proves (24) and hence

the proposition. 2
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Proposition 6 Let Assumptions A1 and A2 hold and let Ui ⊂ ∂A be one of the C1,α

submanifolds in Definition 1. Furthermore, let U be a compactly embedded subset of
Ui. Then

∇tanS∂A(g)(x) = lim
δ→0

(∇tanS∂A)(δ)(g)(x)

uniformly for all x ∈ U .

Proof: We use the same parametrization ψ of the boundary as in the proof of Propo-
sition 5. Since (24) holds, we only need to prove that

∣∣∣∇x′

(
S

(δ)
∂A (g) ◦ ψ

)
(x′) · v −

∫

∂A

g(y)η(
|x − y|

δ
)∇N(x − y) · Dψ(x′)v dsy

∣∣∣

≤

{
cδα| ln δ| if d = 2

cδα if d ≥ 3
, (31)

where

∇x′(S
(δ)
∂A (g) ◦ ψ)(x′) · v =

∫

∂A

(
∇x′(η(

|ψ(x′) − y|

δ
)
)
· v g(y)N(ψ(x′) − y) dsy

+

∫

∂A

η(
|ψ(x′) − y|

δ
) g(y)∇N(x − y) · Dψ(x′)v dsy.

Recall that x = ψ(x′). Thus (31) follows if the first integral is bounded by cδα| ln δ| and
cδα, respectively. Note that the first integral vanishes trivally if |y − x| > δ. Similarly
as in the proof of Proposition 5 we rewrite this integral using the change of variables
y = ψ(y′). We obtain that it is bounded by c|I| with

I :=

∫

Bcδ(x′)

h(ψ(x′) − ψ(y′)) · Dψ(x′)v j(y′) dd−1y′,

where

h(w) =
1

δ
η′(

|w|

δ
)

w

|w|
N(w) and j(y′) = g(ψ(y′))Jψ(y′).

Since g ∈ C0,α almost everywhere and ψ ∈ C1,α, we have |j(y′) − j(x′)| ≤ c|x′ − y′|α

almost everywhere for some constant c > 0. Since η′( ·
δ
) is supported on [ δ

2
, δ], we have

|h(w)| ≤ c | ln δ|
δ

if d = 2 and |h(w)| ≤ cδ1−d else. Thus

∣∣∣
∫

Bcδ(x′)

h(ψ(x′) − ψ(y′)) · Dψ(x′)v
(
j(y′) − j(x′)

)
dd−1y′

∣∣∣ ≤
{

cδα| ln δ| if d = 2

cδα if d ≥ 3
.
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In order to show that I is bounded by cδα| ln δ| and cδα, respectively, it remains to
show that

∫

Bcδ(x′)

h(ψ(y′) − ψ(x′)) · Dψ(x′)v j(x′) dd−1y′ (32)

is at most bounded by cδα| ln δ| and cδα, respectively. Set z′ = x′ − y′. Since ψ is
C1,α, ψ(x′) − ψ(y′) = Dψ(x′)z′ + O(|z′|1+α). Moreover we know that h is smooth and
|Dh(w)| ≤ cδ−2| ln δ| if d = 2 and |Dh(w)| ≤ cδ−d else. Thus

h(ψ(x′) − ψ(y′)) = h(Dψ(x′)z′) +

{
O(δα−1| ln δ|) if d = 2

O(δ1+α−d) if d ≥ 3

and therefore we have

I =

∫

Bcδ(0)

h(Dψ(x′)z′) · Dψ(x′)v j(x′) dd−1z′ +

{
O(δα| ln δ|) if d = 2

O(δα) if d ≥ 3
.

The integral on the right hand side vanishes since h is antisymmetric and the domain
of integration is invariant under z ′ 7→ −z′. Hence (31) is proved, which finishes the
proof of Proposition 6. 2

Remark 7 The above proof can also be adapted to show convergence of the corre-
sponding Cauchy principal integrals as defined in (23).

Next we come back to the normal derivative of the single layer potential. Mikhlin [16,
Satz 18.7.1] proved uniform convergence of the normal derivative of the single layer
potential on closed Ljapunov-surfaces and for continuous g. He used Cauchy principal
integrals in his proof. The proof can be adapted in a straightforward way such that we
also have uniform convergence on compactly embedded subsets of C1,α submanifolds.
Here we show that the same convergence result also holds for the smooth regularizations
defined above.

Lemma 8 Let Assumptions A1 and A2 hold and let Ui be one of the C1,α submanifolds
in Definition 1. Furthermore, let U be a compactly embedded subset of Ui. Then

(n · ∇S∂A(g))±(x) = ∓
1

2
g(x) − p.v.

∫

∂A

g(y)
n(x) · (x − y)

|x − y|d
dsy

= ∓
1

2
g(x) + lim

δ→0
(n · ∇S

(δ)
∂A )(g)(x) (33)

= ∓
1

2
g(x) + lim

δ→0
(n · ∇S∂A)(δ)(g)(x) (34)

uniformly for all x ∈ U . 2
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Proof: As commented on above, the first equation follows from [16, Satz 18.7.1] and
Remark 3. To prove (33) and (34), we apply a central estimate in the proof of the
convergence of the normal derivative of the single layer potential (see, e.g., [16, Sec-
tion 18.1]): Since U ⊂ ∂A is C1,α, |n(x) · (x − y)| ≤ c|x − y|1+α for all x, y ∈ U .
Hence

∣∣∣
∫

∂A

χ[ε,∞)(|x − y|)g(y)n(x) · ∇N(x − y) dsy − (n · ∇S∂A)(δ)(g)(x)
∣∣∣

≤ c

∫

∂A

∣∣χ[ε,∞)(|x − y|)n(x) · ∇N(x − y) − n(x) · R(δ)(x − y)
∣∣ dsy

≤ c

∫

∂A

χ[min{ε,δ/2},max{ε,δ}](|x − y|)
∣∣n(x) · ∇N(x − y)

∣∣ dsy,

≤ c

∫ max{ε,δ}

min{ε,δ/2}

rα

rd−1
rd−2 dr ≤ c max{ε, δ}α,

which tends to zero as ε, δ → 0 and proves (34). To prove (33), it remains to estimate

∫

∂A

∣∣(n(x) · ∇η(
|x − y|

δ
)
∣∣|N(x − y)| dsy ≤

c

δ

∫

∂A

|x − y|αχ[δ/2,δ](|x − y|)|N(x − y)| dsy,

(35)

where we used that |n(x) · ∇η( |x−y|
δ

)
∣∣ ≤ c

δ
|n(x) · x−y

|x−y|
|χ[δ/2,δ](|x − y|). If d = 2, (35) is

bounded by cδα| ln δ|; if d ≥ 3, (35) is bounded by cδα. Both bounds tend to zero as
δ → 0. 2

By writing the gradient as a linear combination of normal and tangential derivatives,
we obtain

(
∇S∂A(g)

)±
(x) = ∓

1

2
g(x)n(x) + B∂A(g)(x) (36)

in Lp(∂A), 1 < p < ∞, and pointwise for almost every x ∈ ∂A, where

B∂A(g)(x) := p.v.

∫

∂A

g(y)∇N(x − y) dsy (37)

is defined for any function g ∈ Lp(∂A), 1 < p < ∞ and for any x ∈ R
d. Again, since

Hd−1(∂A) is bounded, this statement also holds if g is assumed to be in L∞(∂A).

Remark 9 (i) If x ∈ R
d\∂A, the principal value in (37) becomes trivial, i.e., B∂A(g) =

∇S∂A(g).
(ii) On ∂A, B∂A(g) equals the average of the inner and outer traces of ∇S∂A, i.e.

B∂A(g) =
1

2

((
∇S∂A(g)

)+
+

(
∇S∂A(g)

)−)
.
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(iii) From what we showed above, it follows that we could equivalently define B∂A(g)
by using the smooth regularizations, i.e., by replacing the right hand side in (37) with

limδ→0(∇S
(δ)
∂A )(g)(x) or with limδ→0(∇S∂A)(δ)(g)(x).

Set (∇S∂A(g))(x) = (∇tanS∂A(g))(x)+(n ·∇S∂A(g))(x)n(x). Then Proposition 5 and
Lemma 8 yield the following corollary. Recall that pointwise convergence holds for all
x ∈ ∂A according to [25].

Corollary 10 Let Assumptions A1 and A2 hold and let Ui ⊂ ∂A be one of the C1,α

submanifolds in Definition 1. Furthermore, let U be a compactly embedded subset of
Ui. Then

(∇S∂A(g))±(x) = ∓
1

2
g(x)n(x) + B∂A(g)(x)

for all x ∈ U . 2

Next we consider the parts of ∂A which are close to edges and corners. From [25]
we also know that B∂A(g) exists in Lp(∂A), 1 < p < ∞, and hence in L1(∂A) by
Assumptions A1 and A2. We give here a simple proof of this in the context of our
geometrical setting and for the regularization as in (16) close to edges and corners; the
proof is basically taken from [22, p. 257] and is given here for the convenience of the
reader. It makes in particular use of Assumption A1(iv).

Lemma 11 Let r0 > 0 and let Ui ⊂ ∂A be as in Definition 1. Set

Λ = ∪i∂Ui and Vr0 = {x ∈ ∂A : dist(x, Λ) < r0}.

Then

(∇S
(δ)
∂A )(g) −→ B∂A(g) in L1(Vr0) as δ → 0,

(∇S∂A)(δ)(g) −→ B∂A(g) in L1(Vr0) as δ → 0.

Proof: Pointwise convergence of (∇S
(δ)
∂A )(g)(x) and (∇S∂A)(δ)(g)(x), respectively, to

B∂A(g)(x) for almost every x ∈ ∂A follows from [25]. Now let x ∈ Vr0 and r =
1
2
dist(x, Λ). Then

(∇S∂A)(δ)(g)(x) =

∫

∂A\B(x,r)

g(y)R(δ)(x − y) dsy +

∫

∂A∩B(x,r)

g(y)R(δ)(x − y) dsy.

Since ∂A∩B(x, r) is contained in ∪iUi, the second term converges uniformly in x as in
the proof of Proposition 5. The first term is bounded by c

∫
∂A\B(x,r)

|∇N(x− y)| dsy ≤

18



∫
∂A\B(x,r)

c
|x−y|d−1 dsy. This can in turn be bounded by c

∫ diam(A)

r
1
ρ
dρ ≤ c ln 1

dist(x,Λ)

for all δ > 0, which is an integrable function on Vr0 . Indeed, since the volume of
{x ∈ Vr0 : dist(x, Λ) ≤ ρ} is bounded by c min{ρ, r0}

2 by Assumption A1(iv) (cf. the
proof of Theorem 15 for details), we obtain

∫

Vr0

ln
1

dist(x, Λ)
dx =

∫

Vr0

∫ 1

dist(x,Λ)

1

ρ
dρ dx =

∫ 1

0

1

ρ

∫

Vr0

χdist(x,Λ)≤ρ dx dρ

≤ c

∫ 1

0

min{ρ, r0} dρ ≤ c.

(38)

Hence (∇S∂A)(δ)(g) is uniformly bounded by an integrable function on L1(Vr0) and
the assertion for (∇S∂A)(δ)(g) follows with Lebesgue’s convergence theorem.

Analogously the assertion for (∇S
(δ)
∂A )(g) can be shown. Recall that ∇η( |x−y|

δ
) ≤

c
δ
χ[δ/2,δ](|x − y|). Hence

∫
∂A\B(x,r)

g(y)
(
∇η( |x−y|

δ
)
)
N(x − y) dsy is zero if δ ≤ r and

thus is trivially bounded. For the cases r ≤ δ/2 and δ/2 ≤ r ≤ δ we obtain, since
r = 1

2
dist(x, Λ),

∫

∂A\B(x,r)

g(y)
(
∇η(

|x − y|

δ
)
)
N(x − y) dsy ≤

c

δ

{∫ δ

min{δ/2,r}
| ln r| dr if d = 2∫ δ

min{δ/2,r}
dr if d ≥ 3

≤

{
c ln 1

dist(x,Λ)
if d = 2

c if d ≥ 3
.

This is integrable on Vr0 by (38) if d = 2 and trivially else. 2

Note that g ∈ L∞(∂A) by Assumption A2. Hence the convergence of the gradient of
the single layer potential in L1(∂A) implies

lim
δ→0

∫

∂A

g(y)(∇S
(δ)
∂A )(g)(x − y) dsy = lim

δ→0

∫

∂A

g(y)(∇S∂A)(δ)(g)(x − y) dsy

=

∫

∂A

g(y)B∂A(g)(x − y) dsy,

(39)

which is a useful statement in, e.g., the context of magnetic forces [20, 22], cf. also the
remarks in the introduction.

4 Approximation of the gradient of solutions of the

Poisson equation

First we consider the approximation of the Newton potential VA(w) defined in (10).

Recall (14) for the definition of V
(δ)

A (w). The Newton potential VΩ\Γ(w) and its regu-

larization V
(δ)

Ω\Γ(w) are defined accordingly. Since Γ is a set of d dimensional Lebesgue
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measure zero, one might want to write VΩ\Γ(w) = VΩ(w). But we stick to the more
complicated notation as this reminds us of the definition of w = div M on R

d \(Γ∪∂Ω)
and the regularity assumptions on M , cf. Assumption A2. Furthermore, we set

(∇VΩ\Γ)(δ)(w)(x) =

∫

Ω\Γ

w(y)η(
|x − y|

δ
)∇N(x − y) dy =

∫

Ω\Γ

w(y)R(δ)(x − y) dy.

Proposition 12 Let Assumptions A1(i)–(ii) and A2 hold. Then

(∇V
(δ)

Ω\Γ)(w)(x) −→ ∇VΩ\Γ(w)(x) uniformly in x ∈ R
d as δ → 0,

(∇VΩ\Γ)(δ)(w)(x) −→ ∇VΩ\Γ(w)(x) uniformly in x ∈ R
d as δ → 0.

Proof: Let x ∈ R
d. By construction, 1 − η( |x−y|

δ
) is supported in the ball Bδ(x)

and its derivative has support in Bδ(x) \ Bδ/2(x). Moreover, |∇(1 − η( |x−y|
δ

))| ≤
c
δ
χBδ(x)\Bδ/2(x)(y). Hence

∣∣∣∇
((

1 − η(
|x − y|

δ
)
)
N(x − y)

)∣∣∣ ≤ c

δ
|N(x − y)|χBδ(x)\Bδ/2(x)(y) + |∇N(x − y)|χBδ(x)(y).

Since w is essentially bounded on Ω \ Γ by assumption, we obtain

|(∇VΩ\Γ)(w)(x) − (∇V
(δ)

Ω\Γ)(w)(x)|

≤ c

∫

Ω\Γ

∣∣∣∇
((

1 − η(
|x − y|

δ
)
)
N(x − y)

)∣∣∣ dy

≤
c

δ

∫

Bδ(x)\Bδ/2(x)

|N(x − y)| dy + c

∫

Bδ(x)

|∇N(x − y)| dy

≤

{
cδ| ln δ| if d = 2

cδ if d ≥ 3

uniformly for all x ∈ R
d for small δ > 0. This also yields that |∇VΩ\Γ(w)(x) −

(∇VΩ\Γ)(δ)(w)(x)| ≤ c
∫

Bδ(x)
|∇N(x − y)| dy converges uniformly. 2

Next we make use of the splitting of uΩ in uA +uB, cf. (6), and put together the above
results for the single layer potentials. Here we consider the integral representation of
the solution uΩ of Poisson’s equation (2)–(3).

Theorem 13 Let Assumptions A1 and A2 hold. Let uΩ be a solution of Poisson’s
equation (2) with transition condition (3) and let u

(δ)
Ω be its regularization analogously

to (13). Furthermore define (∇uΩ)(δ) correspondingly to (16), i.e.,

(∇uΩ)(δ)(x) =

∫

Ω\Γ

w(y)R(δ)(x − y) dy +

∫

Γ

g(y)R(δ)(x − y) dsy

+

∫

∂A\Γ

g(y)R(δ)(x − y) dsy +

∫

∂B\Γ

g(y)R(δ)(x − y) dsy.
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Then (∇u
(δ)
Ω ) as well as (∇uΩ)(δ) converge to

∇uΩ = ∇VΩ\Γ(w) + ∇SΓ(−[g]) + ∇S∂A\Γ(g−) + ∇S∂B\Γ(gν−

) in L1(Ω) (40)

and to

∇uΩ = ∇VΩ\Γ(w) + BΓ(−[g]) + B∂A\Γ(g−) + B∂B\Γ(gν−

) in L1(Γ ∪ ∂Ω)

as δ → 0. The convergence is uniform on compactly embedded subsets of the C1,α sub-
manifolds of Γ and ∂Ω. Moreover, the gradient in the tangential direction at x ∈ ∂Ω∪Γ
is continuous across the interface and is given by

(∇tanuΩ)±(x) = ∇tanVΩ\Γ(w)(x) + ∇tanSΓ(−[g])(x) + ∇tanS∂A\Γ(g−)(x)

+ ∇tanS∂B\Γ(gν−

)(x)

for almost every x ∈ ∂Ω∪Γ. The gradient in the normal direction jumps at the interface
and reads

(n · ∇uΩ)±(x) = (n · ∇VΩ\Γ)(w)(x) + (n · ∇SΓ)(−[g])(x) + (n · ∇S∂A\Γ)(g−)(x)

+ (n · ∇S∂B\Γ)(gν−

)(x)

for almost every x ∈ ∂Ω∪Γ. The inner and outer traces of the gradient of uΩ are given
by

(∇uΩ)±(x) = ∇VΩ\Γ(w)(x) + BΓ(−[g])(x) + B∂A\Γ(g−)(x) + B∂B\Γ(gν−

)(x)

∓
1

2





−[g](x)n(x) a.e. if x ∈ Γ

g−(x)n(x) a.e. if x ∈ ∂A \ Γ

gν−

(x)ν(x) a.e. if x ∈ ∂B \ Γ

.

Thus there holds

∇uΩ(x) =
1

2

(
(∇uΩ)+(x) + (∇uΩ)−(x)

)

=





[g](x)n(x) + (∇uΩ)−(x) a.e. if x ∈ Γ

−g−(x)n(x) + (∇uΩ)−(x) a.e. if x ∈ ∂A \ Γ

−gν−

(x)ν(x) + (∇uΩ)−(x) a.e. if x ∈ ∂B \ Γ

.

All the traces mentioned as well as the gradients of the potentials can be approximated
by the use of either smooth regularization.

Proof: By (6) and (9), the integral representation of uΩ reads

uΩ(x) = (uA + uB)(x)

= VΩ\Γ(w)(x) + SΓ(−[g])(x) + S∂A\Γ(g−)(x) + S∂B\Γ(gν−

)(x),
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where we assume as before that the standard normal to Γ is n. Similarly we have
formulae for u

(δ)
Ω , (∇u

(δ)
Ω ) and (∇uΩ)(δ). The statements in the theorem then follow

from Propositions 4 and 12 for the convergence in L1(Ω), and from Propositions 5
and 6 as well as Lemma 8, Lemma 11 and Corollary 10 for the convergence on the
boundaries. Note that these assertions hold analogously for the single layer potentials
SΓ(−[g]) and S∂B\Γ(gν−

) as well as for their gradients. 2

5 About the second gradient of a solution of Pois-

son’s equation

As already mentioned in the introduction, the second gradient of solutions of Poisson’s
equation is of interest for instance in the context of magnetic forces. There, a typical
expression is an integral over a bounded domain Ω of a vector-valued W 1,∞ function
M times the second gradient of a solution of Poisson’s equation, ∇H = −∇(∇u), i.e.,∫

Ω
(M(x) · ∇)H(x) dx. We prove existence of such expressions by showing that the

second gradient of u is an L1 function. This then also allows for instance to integrate
the previous integral by parts.

For a study of second derivatives of the Newton potential we use a well-known Lp

estimate, see, e.g., [8, Section 9.4] or [17, Chapter XI §11], to obtain the following
lemma. Though Γ is a set of d dimensional Lebesgue measure zero, we write L1(Ω \Γ)
to remind us of the regularity assumption on M and thus on w = − div M at the
interface Γ, cf. Assumption A2.

Lemma 14 Let Assumptions A1(i)–(ii) and A2 hold. Then

∇(∇VΩ\Γ)(w) ≡ ∇2
VΩ\Γ(w) ≡

(
∂i∂jVΩ\Γ(w)

)
i,j=1,...,d

∈ L1(Ω \ Γ).

Proof: Since Ω is a bounded domain, we have w ∈ Lp(Ω \ Γ), 1 < p < ∞, by
Assumption A2. Hence, a special case of the Calderon-Zygmund inequality, see, e.g.,
[8, Theorem 9.9], yields ∇2VΩ\Γ(w) ∈ Lp(Ω \Γ), which implies ∇2VΩ\Γ(w) ∈ L1(Ω \Γ)
by the boundedness of Ω. 2

The proof of the following theorem is in the line of corresponding assertions in [22,
Section 4] for d = 3 and a simpler geometric setting. Here we make use of Assump-
tion A1(iv) and Definition 1(iii) and have to bear in mind that the sets A and B do
not have to be nested, cf. Figure 3. In Remark 9(i) we noted that B∂A(g−)(x) =
∇S∂A(g−)(x) if x ∈ R

d \ ∂A, which holds similarly for BΓ(−[g]) and B∂B(gν−

). How-
ever, we stick to the Bs for brevity in the following theorem.
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Theorem 15 Let Assumptions A1 and A2 hold and assume that α = 1. Then

∇BΓ(−[g]), ∇B∂A(g−), ∇B∂B(gν−

) ∈ L1(Ω \ Γ).

Proof: First we consider ∇BΓ(−[g]). Let x ∈ Ω\Γ. Since Hd−1(∂A∩B(x, ρ)) ≤ cρd−1,
we have

∣∣(∇BΓ(−[g]))(x)
∣∣ ≤ c

∫

∂A

1

|x − y|d
dsy =

∫

∂A

( ∫ ∞

0

χ|x−y|<ρ
d

ρd+1
dρ

)
dsy (41)

= c

∫ ∞

dist(x,∂A)

d

ρd+1
Hd−1(∂A ∩ B(x, ρ)) dρ ≤ c

∫ ∞

dist(x,∂A)

1

ρ2
dρ

≤
c

dist(x, ∂A)
. (42)

We split Ω \ Γ into the following three sets, cf. Figure 3. Fix some 0 < r0 < 1 and
ε > 0 and denote by Λ the union of all the boundaries of the C1,1 submanifolds Vi of
∂(Ω \ Γ), cf. Definition 1. Then we set

(Ω \ Γ)(1) := {x ∈ Ω \ Γ : dist(x, ∂A) ≥ r1+ε
0 },

(Ω \ Γ)(2) := {x ∈ Ω \ Γ : r1+ε
0 ≥ dist(x, ∂A) ≥ dist(x, Λ)1+ε},

(Ω \ Γ)(3) := {x ∈ Ω \ Γ : dist(x, ∂A) ≤ dist(x, Λ)1+ε, dist(x, ∂A) ≤ r1+ε
0 }.

By (42) and the definition of (Ω\Γ)(1) we have
∫

(Ω\Γ)(1)
|(∇BΓ(−[g]))(x)| dx ≤ c

r1+ε
0

≤ c.

Γ
(Ω \ Γ)(2) ∩ B

(Ω \ Γ)(1) ∩ B

(Ω \ Γ)(3) ∩ A

(Ω \ Γ)(1) ∩ A

(Ω \ Γ)(3) ∩ B

(Ω \ Γ)(2) ∩ A

(Ω \ Γ)(3) ∩ A

∂B

∈ Λ

∂A

Figure 3: Sketch of the sets (Ω \ Γ)(1), (Ω \ Γ)(2) and (Ω \ Γ)(3) as defined in the proof
of Theorem 15. In this sketch we consider a geometric setting where (a portion of) Λ
happens to be in the relative boundary of Γ.

Next we estimate ∇BΓ(−[g]) integrated over (Ω\Γ)(2). The definition of (Ω\Γ)(2) and
(42) yield |(∇BΓ(−[g]))(x)| ≤ c

dist(x,Λ)1+ε for all x ∈ (Ω\Γ)(2). The volume of (Ω\Γ)(2)
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is bounded by the volume of {x ∈ Ω \ Γ : dist(x, Λ) ≤ r0}. The latter volume can
be estimated by cr2

0. Indeed, let Vi denote the C1,1 submanifolds as in Definition 1.
Then the volume of {x ∈ Ω \ Γ : dist(x, Λ) ≤ r0} is bounded by the finite sum of the
volumes of {x ∈ Ω \ Γ : dist(x, ∂Vi) ≤ r0}. These are in turn bounded by cr2

0 by the
neighbourhood estimate, cf. Definition 2. Thus, by similar estimates as in (41)–(42),

∫

(Ω\Γ)(2)

1

dist(x, Λ)1+ε
dx =

∫ ∞

0

1 + ε

ρ2+ε

∫

(Ω\Γ)(2)
χdist(x,Λ)<ρ dx dρ

≤ c

∫ r0

0

1 + ε

ρ2+ε
ρ2 dρ + c

∫ ∞

r0

1 + ε

ρ2+ε
dρ

= c
1 + ε

1 − ε
r1−ε
0 + c

1

r1+ε
0

≤ c,

which proves the integrability of ∇BΓ(−[g]) on (Ω \ Γ)(2).

It remains to show the integrability on (Ω \ Γ)(3). Let x ∈ (Ω \ Γ)(3) and set r =
min{dist(x, Λ), r0}. Then we obtain, similarly to the derivation of (42),

∣∣∣
∫

Γ\B(x,r)

[g](y)∇2N(x − y) dsy

∣∣∣ ≤ c

∫

Γ\B(x,r)

1

|x − y|d
dsy

≤ c

∫ ∞

r

1

ρ2
dρ ≤

c

r
≤

c

dist(x, ∂A)
1

1+ε

,

which is integrable on (Ω \ Γ)(3). Indeed, the coarea formula yields that the volume of
{x ∈ (Ω \ Γ)(3) : dist(x, ∂A) < ρ} is bounded by cρ for ρ < r1+ε

0 . Thus we have

∫

(Ω\Γ)(3)

1

dist(x, ∂A)
1

1+ε

dx =

∫

(Ω\Γ)(3)

∫ ∞

0

χdist(x,∂A)<ρ

1
1+ε

ρ
1

1+ε
+1

dρ dx

≤ c

∫ r1+ε
0

0

1

ρ
1

1+ε

dρ + c

∫ ∞

r1+ε
0

1

ρ
1

1+ε
+1

dρ

=
c

1 − 1
1+ε

r
(1+ε)(1− 1

1+ε
)

0 +
c

r
(1+ε) 1

1+ε

0

≤ c.

(43)

To finish the proof of the integrability on (Ω \ Γ)(3), we need to estimate the integral∫
Γ∩B(x,r)

[g](y)∇2N(x − y) dsy, which we write as

[g](x)

∫

Γ∩B(x,r)

∇2N(x − y) dsy +

∫

Γ∩B(x,r)

(
[g](y) − [g](x)

)
∇2N(x − y) dsy. (44)

This allows us to integrate the first term by parts. Before we do so, we consider the
second integral in (44). Recall that we assume α = 1 and that [g] is in C0,1 almost
everywhere, cf. Remark 3. Hence a similar estimate as in (42) yields that the second
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integral in (44) is bounded by a constant times

∫

Γ∩B(x,r)

1

|x − y|d−1
dsy ≤ c

∫ r

dist(x,ΓA)

1

ρd
ρd−1 dρ ≤ c ln

1

dist(x, Γ)
≤ c ln

1

dist(x, ∂A)
.

(45)

As this is bounded by dist(x, ∂A)−
1

1+ε , we obtain the integrability on (Ω \ Γ)(3) of the
second term in (44) by (43).

We next estimate the first term in (44), which takes some time. Without loss of
generality we assume that Γ ∩ B(x, r) is connected and contained in one of the C1,1

submanifolds Vi; otherwise apply the following arguments to each of the connected
components restricted to one of the C1,1 submanifolds.
We parameterize the boundary Γ ∩B(x, r) by a function ψ : R

d−1 → R
d, y′ 7→ ψ(y′) =

(y′, ψd(y
′)) = y such that either (i) there is a c̃ with 0 < c̃ < 1 and B(x′, c̃r) ⊂

ψ−1(Γ ∩ B(x, r)), where x′ is the orthogonal projection of x on R
d−1, or (ii) there is a

c̃ with 0 < c̃ < 1 and B(x′, c̃r) ∩ ψ−1(Γ ∩ B(x, r)) = ∅. (That is, we exclude the case
x′ ∈ ∂(ψ−1(Γ ∩ B(x, r)) by choosing an appropriate parameterization.) Case (ii) is of
interest when x ∈ (Ω \ Γ)(3) is close to the relative boundary ∂Γ; it is not needed in
the proofs of the statements for ∇B∂A(g−) and ∇B∂B(gν−

) below. If (ii) holds, we
always have |y′−x′| > c̃r. Since |x−ψ(y′)|d ≥ |x′− y′|d, then

∫
Γ∩B(x,r)

∇2N(x− y) dsy

is bounded by

∣∣∣
∫

ψ−1(Γ∩B(x,r))

∇2N(x − ψ(y′))Jψ(y′) dd−1y′
∣∣∣ ≤ c

∫ r

c̃r

ρ−dρd−2 dρ

≤
c

r
≤

c

dist(x, Γ)
1

1+ε

,
(46)

which is integrable on (Ω \ Γ)(3) by (43). If (i) holds, we split
∫

ψ−1(Γ∩B(x,r))
∇2N(x −

ψ(y′))Jψ(y′) dd−1y′ as follows:

∫

ψ−1(Γ∩B(x,r))\B(x′,c̃r)

∇2N(x − ψ(y′))Jψ(y′) dd−1y′

+

∫

B(x′,c̃r)

∇2N(x − ψ(y′))Jψ(y′) dd−1y′.

(47)

The first integral in (47) can be estimated similarly as in (46) and thus is also bounded

by c dist(x, Γ)−
1

1+ε . Hence it is integrable on (Ω \ Γ)(3) by (43).
Next we estimate the second integral in (47). To do so, we write ∇2N(x − ψ(y′))
in terms of tangential and normal derivatives. Let (t1, . . . , td−1, n) be an orthonormal
basis at ψ(y′), where n is the normal at ψ(y′) to ∂A. The normal is C0,1 on ∂A∩B(x, r)
and hence on Γ ∩ B(x, r). We denote the tangential and normal derivatives of N by
∇tiN = ti · ∇N , i = 1, . . . , d − 1, and ∇nN = n · ∇N , respectively.
Recall that N is a fundamental solution of Laplace’s equation, i.e., ∆N = 0. Hence
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∇2
nN = −

∑d−1
i=1 ∇2

ti
N . We therefore only need to consider second derivatives of the

form (∇ti∇n)N and (∇ti∇tj)N with i, j = 1, . . . , d − 1. By the product rule we have
(∇ti∇n)N = ∇ti(∇nN) − (∇N)∇tin and

(∇ti∇tj)N = ∇ti(∇tjN) − (∇N)∇titj, (48)

respectively. We write the tangential derivative in terms of y ′ so that we can make use
of Assumption A1. There is an invertible matrix (aij)i,j=1,...,d−1 such that ti(ψ(y′)) =
aik(y

′)∂kψ(y′). Since we assume here that Γ∩B(x, r) is piecewise C1,1, aik(·) is C0,1, as
is the tangent vector ti. Hence |∇titj| ≤ c almost everywhere. Thus the second term on
the right hand side of (48) is bounded by c|∇N |. Similarly we can bound (∇N)∇tin
by c|∇N |.
Next we write the first term on the right hand side of (48) in terms of y ′:

(
∇ti(∇tjN)

)
(x − ψ(y′)) =

(
aik(y

′)(∂kψ)(y′) · ∇(∇tjN)
)
(x − ψ(y′))

= −
(
aik(y

′)∂k(∇tjN)
)
(x − ψ(y′)).

Similarly we obtain ∇ti(∇nN)(x−ψ(y′)) = −
(
aik(y

′)∂k(∇nN)
)
(x−ψ(y′)). This allows

us to integrate by parts:
∫

B(x′,c̃r)

(∇ti(∇nN))(x − ψ(y′))Jψ(y′) dd−1y′

=

∫

B(x′,c̃r)

∂k

(
aik(y

′)Jψ(y′)
)
(∇nN)(x − ψ(y′)) dd−1y′

−

∫

∂B(x′,c̃r)

aik(y
′)(∇nN)(x − ψ(y′))Jψ(y′) dsd−2

y

(with ∂B(x′, c̃r) = {−|c̃r − x′|, |c̃r − x′|} if d = 2). Therefore we obtain for all d ≥ 2
by using the bounds |∂kaik(y

′)| ≤ c and |∂kJψ(y′)| ≤ c

∫

B(x′,c̃r)

∇2N(x − ψ(y′))Jψ(y′) dd−1y′

≤ c

∫

B(x′,c̃r)

|∇N(x − ψ(y′))| dd−1y′ + c

∫

∂B(x′,c̃r)

|∇N(x − ψ(y′))| dd−2sy′

≤

∫

B(x′,c̃r)

c

|x − ψ(y′)|d−1
dd−1y′ +

∫

∂B(x′,c̃r)

c

|x − ψ(y′)|d−1
dd−2sy′ .

Now we use again that x ∈ Ω \ Γ and thus |x − ψ(y′)| ≥ dist(x, Γ) ≥ dist(x, ∂A) > 0.
Hence the first integral is bounded by c ln 1

dist(x,∂A)
, which is integrable on (Ω \ Γ)(3),

see (45). Since |x − ψ(y′)| ≥ |x′ − y′|, the boundary integral can be estimated by∫
∂B(x′,c̃r)

c
|x′−y′|d−1 dd−2y′, which in turn is bounded by c rd−2

rd−1 = c
r
. Recall that r =

min{dist(x, Λ), r0} and x ∈ (Ω\Γ)(3). Hence r−1 ≤ dist(x, ∂A)−
1

1+ε , which is integrable
on (Ω \ Γ)(3), see (43). Hence ∇BΓ(−[g]) ∈ L1(Ω \ Γ).
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Finally, notice that |∇B∂A(g−)(x)| ≤
∫

∂A
1

|x−y|d
dsy. To show that the gradient of

B∂A(g−) is in L1(Ω \ Γ), we thus can proceed analogously as from (41) onwards. It
remains to prove that ∇B∂B(gν−

) ∈ L1(Ω \ Γ). This also can be shown analogously
to the above proof, but now we change the definitions of the sets (Ω \ Γ)(i), i = 1, 2, 3:
We replace dist(x, ∂A) with dist(x, ∂B) and then proceed as before. 2

Finally, we conclude that the second gradient of the solution of Poisson’s equation with
transition condition is in L1(Ω \ Γ).

Theorem 16 Let Assumptions A1 and A2 hold and assume that α = 1. Then

∇(∇uΩ) ∈ L1(Ω \ Γ).

Proof: This follows with Lemma 14 and Theorem 15 together with (40) and Re-
mark 9(i). 2
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