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Abstract

In this paper we investigate the asymptotic behavior of the nonlinear Cahn-
Hilliard equation with a logarithmic free energy and similar singular free ener-
gies. We prove an existence and uniqueness result with the help of monotone
operator methods, which differs from the known proofs based on approximation
by smooth potentials. Moreover, we apply the Lojasiewicz-Simon inequality to
show that each solution converges to a steady state as time tends to infinity.
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1 Introduction and Main Results

The nonlinear Cahn-Hilliard equation

∂tc = ∆µ, µ = −∆c+ f ′(c), (1.1)

has been studied by several authors over the last years. This system describes the
dynamics of phase separation of a two-component mixture. Here c = c(t, x) is pro-
portional to the concentration difference of the two components and is often called
the order parameter of the system, e.g. the mass density, µ is the chemical poten-
tial, which accounts for mass transport in the system and f ′ is the derivative of a
function f , representing the physical potential, which characterizes the stable phases
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2 1 INTRODUCTION AND MAIN RESULTS

of the system (e.g. the pure phases of the mixture). To give a derivation of the
Cahn-Hilliard equation, we start with a free-energy functional of the form

E(c) =

∫

Ω

(
1

2
|∇c(x)|2 + f(c(x))

)
dx, (1.2)

where Ω ⊂ R
n, n ≤ 3, is a bounded domain with C3-boundary ∂Ω. Moreover, we

require that c is a conserved quantity, i.e.

d

dt

∫

Ω

c(t, x) dx = 0, (1.3)

for all t ≥ 0, with the associated conservation law ∂tc+ div~j = 0, where ~j is the flux
of the order parameter c. According to Visintin [20, Chapter V.6, p. 150] the flux is
given by

~j = −∇

(
δE

δc

)
,

where δE
δc

stands for the variational derivative of the functional (1.2) with respect to
c. This yields

µ :=
δE

δc
= −∆c+ f ′(c),

hence the equations (1.1). Note that for simplicity all physical constants are chosen
to be 1. In the next step we have to equip (1.1) with some boundary and initial
conditions. To ensure that c satisfies (1.3), we require ∂νµ = 0 on ∂Ω, where ∂ν is
defined in the sense of traces, i.e. ∂νc = ν ·∇c|∂Ω, where ν = ν(x) is the outer normal
at x ∈ ∂Ω. Since (1.1) is a fourth order system we will need an additional boundary
condition to obtain well-posedness. With a view on variations of E(c) the natural
boundary condition is ∂νc = 0 on ∂Ω. Hence we consider the problem

∂tc = ∆µ in Ω × (0,∞), (1.4)

µ = −∆c+ f ′(c) in Ω × (0,∞), (1.5)

∂νc = ∂νµ = 0 on ∂Ω × (0,∞), (1.6)

c|t=0 = c0 in Ω. (1.7)

The function f , also called homogeneous free energy, is often assumed to be a smooth
function in order to simplify the mathematical analysis. A famous example is the
so-called double-well potential f(s) = ((s− a)(s− b))2, which describes two stable
phases (s = a, b). Once we have a solution c = c(t, x) to (1.4)-(1.7) we would like to
conclude from the equations, that its range lies in the physical reasonable interval
[a, b]. Unfortunately one may not make use of a maximum principle since (1.1) is of
fourth order. A way out is the use of potentials satisfying the following assumption:
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Assumption 1.1 Let f : [a, b] → R be a continuous function, which is twice contin-
uously differentiable in (a, b), with

lim
s→a

f ′(s) = −∞, lim
s→b

f ′(s) = ∞,

and f ′′(s) ≥ −d for some d ≥ 0.

If f is defined on an interval [a, b], then we extend f(x) in (1.2) by +∞ if x /∈ [a, b].
Hence E(c) <∞ implies c(x) ∈ [a, b] for almost every x ∈ Ω.

The latter assumptions are motivated by the so-called regular solution model free
energy suggested by Cahn and Hilliard [3]:

f(c) =
θ

2
((1 + c) ln(1 + c) + (1 − c) ln(1 − c)) −

θc
2
c2, (1.8)

where θ, θc > 0, a = −1, b = 1. Here the logarithmic terms are related to the entropy
of the system. We note that f is convex if and only if θ ≥ θc. In this case the mixed
phase is stable. On the other hand, if 0 < θ < θc, the mixed phase is unstable and
phase separation occurs.

This logarithmic free energy (1.8) and its mathematical properties are the main
motivation for the present work. However, in the following analysis general homo-
geneous free energies f with the properties stated above can be treated. The main
observation is that, although f is in general non-convex, it can be considered as a
perturbation of a convex potential in the following way:

By the assumption we have the decomposition f(s) = φ(s)− d
2
c2 where φ : [a, b] →

R is continuous, convex and twice continuously differentiable in (a, b). This will be
the key point in the following analysis, which is based on a decomposition of the
associated operators in a monotone operator plus a Lipschitz perturbation. The
condition limc→a φ

′(c) = −∞, limc→b φ
′(c) = ∞ will keep the concentration difference

c in the (physical reasonable) interval [a, b] and ensures that the subgradient of the
associated functional is a single valued function with a suitable domain.

In the case that f is smooth on R, Elliott & Zheng [10] proved the existence
of global solutions to (1.4) in an L2-setting, with f(s) = (s2 − 1)2. Global well-
posedness of strong solutions of (1.4) with dynamic boundary conditions in the sense
of Lp has been shown by Prüss, Racke & Zheng [17] and Prüss & Wilke [18], whereas
in [18] they considered a more general case, namely the non-isothermal Cahn-Hilliard
equation with physical potentials of polynomial growth. In [17] the existence of a
uniform attractor has been proven if f(s) = (s2 − 1)2. Results on convergence of
solutions to steady states with the help of the Lojasiewicz-Simon inequality in case
of smooth potentials f can be found in Chill et. al. [6], Hoffmann & Rybka [15],
Prüss & Wilke [18], and Wu & Zheng [21].

Concerning the regular model free energy, existence and uniqueness of solutions
was first proven by Elliot and Luckhaus [9] in the case of a multi-component mix-
ture. An alternative proof in the case of a two-component mixture was given by
Debussche & Dettori [7]. Moreover, they proved existence of a global attractor as
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t→ ∞ and estimated its dimension in some cases. Further properties of the attrac-
tor were studied by Dupaix [8] and Miranville & Zelik [16]. Bonfoh [1] investigated
a generalized Cahn-Hilliard equation in an anisotropic medium with a logarithmic
potential. He used a variational approach to show existence and uniqueness of weak
solutions. Furthermore he proved the existence of finite dimensional attractors for
this system. Singular homogeneous free energies together with a degenerate mobility
where studied by Elliot & Garcke [11]. Finally, we want to mention the paper of
Garcke [12] in which he studied the Cahn-Hilliard equation with elastic misfit and
with a logarithmic potential. He proved existence, uniqueness in a special case, and
some regularity properties of weak solutions.

Our main result is that every solution c of (1.4)-(1.7) converges to a solution of
the stationary system/a critical point of E as t → ∞, provided that f is analytic
in (a, b). The proof is based on the Lojasiewicz-Simon inequality, which was already
applied successfully in the case of analytic potentials f : R → R (see the references
above). Moreover, we include a proof of existence of unique solutions, which is based
on monotone operator theory, and prove all necessary uniform estimates as t → ∞.
The first proof of existence by Elliot & Luckhaus [9] and all later approaches, known
to the authors, to variants of Cahn-Hilliard equations with a logarithmic potential
are based on first considering the system for suitably smoothed potentials and then
passing to the limit. In our approach the existence of unique solutions is shown
directly by solving an abstract Cauchy problem for a suitable Lipschitz perturbation
of a monotone operator, which is the subgradient of the convex part of the energy of
E(c) in H−1

(0) (Ω), cf. Section 2.1 below for the definition of H−1
(0) (Ω). Once the domain

of the subgradient is characterized, which is the most technical part, the existence of
unique solutions follows more or less directly from the general theory. We hope that
this method will be useful for further application to evolution problems with similar
singular potentials.

The definitions of the function spaces in the following are given in Section 2.1
below. The precise results are as follows:

THEOREM 1.2 (Global Existence, Uniqueness, Regularity)
Let f be as in Assumption 1.1 For every c0 ∈ H1(Ω) with E(c0) < ∞ there is a
unique solution c ∈ L∞(0,∞;H1(Ω)) of (1.4)-(1.7) with ∂tc ∈ L2(0,∞;H−1

(0) (Ω)),

µ ∈ L2(0,∞;H1(Ω)), satisfying

E(c(T )) +

∫ T

0

‖∇µ(t)‖2
L2(Ω) dt = E(c0) (1.9)

for all T > 0. Furthermore, it holds that

κc ∈ L∞(0,∞;H2(Ω)),

κφ′(c) ∈ L∞(0,∞;L2(Ω)),

κµ ∈ L∞(0,∞;H1(Ω)), and

κ∂tc ∈ L∞(0,∞;H−1
(0) (Ω)) ∩ L2(0,∞;H1(Ω)),
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where κ(t) =
(

t
1+t

) 1
2 . Finally, let Zm :=

{
c0 ∈ H1(Ω) : E(c0) <∞,

∫
Ω
c0(x) dx = m

}
,

m ∈ (a, b). Then the mapping Zm ∋ c0 7→ c(t) ∈ Zm is strongly continuous.

THEOREM 1.3 (Convergence to Equilibrium)
Let f be as in Assumption 1.1 and additionally let f be analytic in (a, b). Moreover,
let c0 ∈ H1(Ω) with E(c0) <∞ and let c be the solution due to Theorem 1.2. Then

lim
t→∞

c(t) = c∞ in H2r(Ω), r ∈ (0, 1),

where c∞ ∈ H2(Ω) satisfies c∞(Ω) ⊂ (a, b), φ′(c∞) ∈ L2(Ω) and c∞ is a solution of
the stationary system

−∆c∞ + f ′(c∞) = const. in Ω, (1.10)

∂νc∞|∂Ω = 0 on ∂Ω, (1.11)∫

Ω

c∞(x) dx =

∫

Ω

c0(x) dx. (1.12)

This paper is organized as follows. In Section 2 we introduce some basic notations
and function spaces. Then in Section 3 we prove a existence of unique solutions for
an evolution equation for a monotone operator plus a globally Lipschitz continuous
operator. This is done by applying well-known methods in the theory of monotone
operators. Section 4 is devoted to the computation of the subgradient of the func-
tional

F (c) =
1

2

∫

Ω

|∇c(x)|2 dx+

∫

Ω

φ(c(x)) dx

and characterize its domain, where φ is the function in the decomposition f(s) =
φ(s) − d

2
s2 (see Theorem 4.3 below). Combining the results of Sections 3 and 4 we

give the proof of Theorem 1.2 in Section 5. Finally, in Section 6 we show that each
solution c∞ of the stationary system (1.10)-(1.11) with the side condition (1.12) is
uniformly bounded with range in an interval [a + ε, b − ε] for some ε > 0. Using
this and the compactness of the ω-limit set, we show that the same is true for the
solution of the instationary system for sufficiently large time. Then we may extend f
to a smooth function f̃ on R and apply the Lojasiewicz-Simon inequality for smooth
potentials to show the convergence stated in Theorem 1.3, provided that f is analytic
in (a, b).

2 Preliminaries

For a set M the power set will be denoted by P(M). Moreover, we denote R
n
+ =

{x ∈ R
n : xn > 0} and R+ = R

1
+. If X is a Banach space and X∗ is its dual, then

〈f, g〉 ≡ 〈f, g〉X∗,X = f(g), f ∈ X∗, g ∈ X,

denotes the duality product. Moreover, if H is a Hilbert space (·, ·)H will denote its
inner product. In the following all Hilbert spaces will be real-valued and separable.



6 2 PRELIMINARIES

2.1 Function Spaces

We denote by Lp(Ω), 1 ≤ p ≤ ∞, the usual set of p-integrable/essentially bounded
functions f : Ω → R and denote by ‖ · ‖p ≡ ‖ · ‖Lp(Ω) its norm. Moreover, Hm(Ω),
m ∈ N, denotes the usual L2-Sobolev space of order m and Hm

0 (Ω) denotes the
closure of C∞

0 (Ω) in Hm(Ω).
Given f ∈ L1(Ω), we denote by

m(f) =
1

|Ω|

∫

Ω

f(x) dx

its mean value. Moreover, for m ∈ R we set

L2
(m)(Ω) := {f ∈ L2(Ω) : m(f) = m}

and P0f := f −m(f) denotes the orthogonal projection onto L2
(0)(Ω).

We define

H1
(0) = H1

(0)(Ω) =

{
c ∈ H1(Ω) :

∫

Ω

c(x) dx = 0

}

equipped with the inner product

(c, d)H1
(0)

(Ω) = (∇c,∇d)L2(Ω), c, d ∈ H1
(0)(Ω).

Then H1
(0)(Ω) is a Hilbert space because of Poincaré’s inequality. Moreover, let

H−1
(0) ≡ H−1

(0) (Ω) = H1
(0)(Ω)∗. Then the Riesz isomorphism R : H1

(0)(Ω) → H−1
(0) (Ω) is

given by

〈Rc, d〉H−1
(0)
,H1

(0)
= (c, d)H1

(0)
= (∇c,∇d)L2 , c, d ∈ H1

(0)(Ω),

i.e., R = −∆N is the negative Laplace operator with Neumann boundary conditions.
In particular, this means that we equip H−1

(0) (Ω) with the inner product

(f, g)H−1
(0)

= (∇∆−1
N f,∇∆−1

N g)L2 = (∆−1
N f,∆−1

N g)H1
(0)
.

This implies the useful interpolation inequality

‖f‖2
L2 = −(∇∆−1

N f,∇f)L2 ≤ ‖f‖H−1
(0)
‖f‖H1

(0)
for all f ∈ H1

(0)(Ω). (2.1)

Moreover, we embed H1
(0)(Ω) and L2

(0)(Ω) into H−1
(0) (Ω) in the standard way:

〈c, ϕ〉H−1
(0)
,H1

(0)
=

∫

Ω

c(x)ϕ(x) dx, ϕ ∈ H1
(0)(Ω).

Finally, we note that, if u ∈ H1
(0)(Ω) solves ∆Nu = f for some f ∈ L2

(0)(Ω) and ∂Ω

is C2, then it follows from standard elliptic theory that u ∈ H2(Ω) and u solves the
Laplace equation with Neumann boundary conditions in the strong sense:

∆u = f in Ω, (2.2)

∂νu|∂Ω = 0 on ∂Ω, (2.3)

where the second equation holds in the sense of traces.
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3 Evolution Equations for Monotone Operators

We refer to Brézis [2] and Showalter [19] for basic results in the theory of monotone
operators. In the following we just summarize some basic facts and definitions. Let
H be a real-valued and separable Hilbert space. Recall that A : H → P(H) is a
monotone operator if

(w − z, x− y)H ≥ 0 for all w ∈ A(x), z ∈ A(y).

Moreover, D(A) = {x ∈ H : A(x) 6= ∅}. Now let ϕ : H → R ∪ {+∞} be a convex
function. Then dom(ϕ) = {x ∈ H : ϕ(x) <∞} and ϕ is called proper if dom(ϕ) 6= ∅.
Moreover, the subgradient ∂ϕ : H → P(H) is defined by w ∈ ∂ϕ(x) if and only if

ϕ(ξ) ≥ ϕ(x) + (w, ξ − x)H for all ξ ∈ H.

Then ∂ϕ is a monotone operator and, if additionally ϕ is lower semi-continuous, then
∂ϕ is maximal monotone, cf. [2, Exemple 2.3.4].

The proof of Theorem 1.2 is based on the following result for the evolution problem
associated to Lipschitz perturbation of monotone operators.

THEOREM 3.1 Let H0, H1 be real-valued, separable Hilbert spaces such that H1 is
densely embedded into H0. Moreover, let ϕ : H0 → R∪{+∞} be a proper, convex and
lower semi-continuous functional such that ϕ = ϕ1 +ϕ2, where ϕ2 ≥ 0 is convex and
lower semi-continuous, domϕ1 = H1, and ϕ1|H1 is a bounded, coercive, quadratic
form on H1 and set A = ∂ϕ. Furthermore, assume that B : H1 → H0 is a globally
Lipschitz continuous function. Then for every u0 ∈ D(A) and f ∈ L2(0, T ;H0) there
is a unique u ∈ W 1

2 (0, T ;H0) ∩ L
∞(0, T ;H1) with u(t) ∈ D(A) for a.e. t > 0 solving

du

dt
(t) + A(u(t)) ∋ B(u(t)) + f(t) for a.a. t ∈ (0, T ), (3.1)

u(0) = u0. (3.2)

Moreover, ϕ(u) ∈ L∞(0, T ).

Proof: First of all, we show that

(y1 − y2, u1 − u2)H0 ≥ c‖u1 − u2‖
2
H1

for all yj ∈ A(uj), j = 1, 2. (3.3)

To this end, let ϕ̃ = ϕ|H1 , ϕ̃j = ϕj|H1 , j = 1, 2. Then ϕ̃ is a convex, proper, and
lower semi-continuous functional on H1 since domϕ ⊆ H1 and H1 →֒ H0. Moreover,
from the definition of a subgradient it immediately follows that D(∂ϕ) ⊆ D(∂ϕ̃) and
for every y ∈ ∂ϕ(u) there is a unique wy ∈ ∂ϕ̃(u) such that

(y, d)H0 = (wy, d)H1 for all d ∈ H1.
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Moreover, since ϕ̃1 is a bounded, coercive quadratic form on H1, ϕ̃1(u) = 1
2
(Lu, u)H1 ,

u ∈ H1, and therefore ∂ϕ̃1(u) = Lu and D(ϕ̃1) = H1, where L ∈ L(H) is self-
adjoint positive operator. Hence by [2, Corollaire 2.11, Chapter II] ∂ϕ̃(u) = ∂ϕ̃1(u)+
∂ϕ̃2(u) = Lu+ ϕ̃2(u). Thus, if yj ∈ A(uj), j = 1, 2,

(y1 − y2, u1 − u2)H0 = (wy1 − wy2 , u1 − u2)H1

= (L(u1 − u2), u1 − u2)H1 + (w′
y1
− w′

y2
, u1 − u2)H1

≥ c‖u1 − u2‖
2
H1
,

where w′
yj

= wyj
− Luj ∈ ∂ϕ̃2(uj), j = 1, 2. This proves (3.3).

Now let XT = L2(0, T ;H1). For a given v ∈ XT we define u = F (v) as the
solution of

d

dt
u(t) + A(u(t)) ∋ B(v(t)) + f(t) for almost all t > 0,

u(0) = u0,

which exists due to [19, Theorem 4.1A and Theorem 4.3, Chapter IV] and satisfies

ϕ ◦ u ∈ L∞(0, T ),
du

dt
∈ L2(0, T ;H0). (3.4)

Since ϕ(u(t)) ≥ ϕ1(u(t)) ≥ c‖u(t)‖2
H1

, we conclude that u ∈ L∞(0, T ;H1). Moreover,
if uj = F (vj), j = 1, 2, then

d

dt
(u1(t) − u2(t)) + y1(t) − y2(t) = B(v1(t)) − B(v2(t))

where yj(t) ∈ ∂ϕ(uj(t)). Hence taking the inner product with u1 − u2, integrating
w.r.t. s ∈ (0, t), and using (3.3) we obtain

sup
0≤s≤t

‖u1(s) − u2(s)‖
2
H0

+ c

∫ t

0

‖(u1 − u2)(s)‖
2
H1
ds

≤

∫ t

0

|(B(v1(s)) − B(v2(s)), u1(s) − u2(s))H0| ds

≤ Mt
1
2‖v1 − v2‖L2(0,t;H1)‖u1 − u2‖L∞(0,t;H0).

Thus we conclude
‖u1 − u2‖

2
XT

≤ CT‖v1 − v2‖
2
XT
,

where C > 0 is independent of T , u0, and f . Hence choosing 0 < T < C−1,
F : XT → XT is a contraction and there is a unique solution u ∈ XT of (3.1), which
is in W 1

2 (0, T ;H0) ∩L
∞(0, T ;H1) because of (3.4). Moreover, since ϕ ◦ u ∈ L∞(0, T )

and the constant C above is independent of u0 and f , the solution u can be extended
to an arbitrary large interval [0, T ], T > 0.
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4 Subgradients

In the following φ : [a, b] → R denotes a continuous function and we set φ(x) = +∞
for x 6∈ [a, b].

In this section we study the subgradient of the functional

F (c) =
1

2

∫

Ω

|∇c(x)|2 dx+

∫

Ω

φ(c(x)) dx (4.1)

first defined on L2
(m)(Ω), m ∈ (a, b), with

domF =
{
c ∈ H1(Ω) ∩ L2

(m)(Ω) : φ(c) ∈ L1(Ω)
}
.

We denote by ∂F (c) : L2
(m)(Ω) → P(L2

(0)(Ω)) the subgradient of F at c ∈ domF in

the sense that w ∈ ∂F (c) if and only if

(w, c′ − c)L2 ≤ F (c′) − F (c) for all c′ ∈ L2
(m)(Ω).

Note that L2
(m)(Ω) is an affine subspace of L2(Ω) with tangent space L2

(0)(Ω). There-
fore the standard definition of ∂F for functionals on Hilbert spaces does not apply.
But the definition above is the obvious generalization to affine subspaces of Hilbert
spaces.

First of all, we have:

Lemma 4.1 Let φ : [a, b] → R be a continuous and convex function. Then F defined
as in (4.1) is a proper, lower semi-continuous, convex functional.

Proof: It only remains to prove the lower semi-continuity. By adding a suitable
constant we can w.l.o.g. assume that φ ≥ 0. For this let ck ∈ L2

(m)(Ω) such that

ck →k→∞ c in L2(Ω). It suffices to consider the case lim infk→∞ F (ck) < ∞. Note
that after passing to a subsequence, we can assume that F (ck) ≤ C for all k ∈ N

and some C > 0. In particular, this implies that ck ∈ domF for all k ∈ N. Because
of φ(c) ≥ 0, there is a subsequence (again denoted by ck) such that ck ⇀k→∞ c∗ in
H1(Ω) and ck →k→∞ c∗ in L2(Ω) and almost everywhere in Ω. Since ck →k→∞ c in
L2(Ω), c = c∗ ∈ H1

(0)(Ω). Therefore the Lemma of Fatou yields

∫

Ω

φ(c(x)) dx ≤ lim inf
k→∞

∫

Ω

φ(ck(x)) dx ≤ C,

which proves that c ∈ domϕ and

F (c) ≤ lim inf
k→∞

F (ck)

since ‖∇c‖2
2 ≤ lim infk→∞ ‖∇ck‖

2
2.
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Corollary 4.2 Let φ and F be as in Lemma 4.1 and let m = 0 ∈ (a, b). Then ∂F
is a maximal monotone operator on H = L2

(0)(Ω).

Proof: Because of Lemma 4.1, this fact follows from Corollary 1.2 and Lemma 1.3
in [19, Chapter IV].

Now we state our main result on the following characterization of ∂F (c):

THEOREM 4.3 Let φ : [a, b] → R be a continuous and convex function that is twice
continuously differentiable in (a, b) and satisfies limx→a φ

′(x) = −∞, limx→b φ
′(x) =

+∞. Moreover, we set φ′(x) = +∞ for x 6∈ (a, b) and let F be defined as in (4.1).
Then

D(∂F ) =
{
c ∈ H2(Ω) ∩ L2

(m)(Ω) :

φ′(c) ∈ L2(Ω), φ′′(c)|∇c|2 ∈ L1(Ω), ∂νc|∂Ω = 0
}

and

∂F (c) = −∆c+ P0φ
′(c).

Moreover,

‖c‖2
H2(Ω) + ‖φ′(c)‖2

2 +

∫

Ω

φ′′(c(x))|∇c(x)|2 dx ≤ C
(
‖∂F (c)‖2

2 + ‖c‖2
2

)
(4.2)

for some constant C > 0 independent of c ∈ D(∂F ).

Before proving the lemma, we introduce some technical tools and simplifications.
First of all, if we replace c(x) by c̄(x) = c(x) − m and φ by φ̄(c) = φ(c + m),
we can assume w.l.o.g. that m = 0 ∈ (ā, b̄). Moreover, replacing φ(c) by φ̄(c) =
φ(c) + b1c(x) + b2, bj ∈ R, changes F only by an affine linear functional, for which
the subgradient is trivial. In this way, we may as well assume that φ′(0) = φ(0) = 0.
Furthermore, we define φ+(c) = φ(c) if c > 0, φ+(c) = 0 if c ≤ 0 and φ−(c) =
φ(c)−φ+(c). Then φ± : R → R∪{+∞} are convex functions, which are continuously
differentiable in (a, b).

In the following, we would like to evaluate the directional derivative of F (c) in
direction φ′(c). Formally, this implies the estimate of ‖φ′(c)‖2. But we cannot do
this directly due to the singular behavior of φ . Therefore we approximate φ′

+ (and
analogously φ′

−) from below by a sequence f+
n of smooth potentials as follows: Since

φ′ is continuous and monotone, φ′(0) = 0, and limc→b φ
′(c) = +∞, for every n ∈ N

sufficiently large there is some cn ∈ ( b
2
, b) such that φ′(cn) = n. Therefore we can

define

f+
n (c) =





φ′(c) for c ∈ [ b
2
, cn),

n+ φ′′(cn)(c− cn) for c ≥ cn,

0 for c ≤ 0.
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for c 6∈ (0, b
2
). Moreover, we can extend f+

n to R such that f+
n : R → R are

C1-functions with 0 ≤ f+
n ≤ φ′

+ and with first derivative bounded by Mn :=
sup0≤x≤cn φ

′′(x).
Since we have to work in the subspace L2

(0)(Ω), we will use “bump functions”
supported in suitable sets to correct the mean value of functions. For this let c ∈
H1

(0)(Ω) be fixed and let I ⊂ [a, b] be an interval such that |{c(x) ∈ I}| > 0. Then

we say that ϕ is a bump function supported in {c ∈ I} if ϕ ∈ H1(Ω)∩L∞(Ω), ϕ ≥ 0,
ϕ(x) = 0 if c(x) 6∈ I and if m(ϕ) = 1. Such a function can be constructed as follows:
Choose a smooth function ψ : R → [0, 1] with bounded first derivative such that

ψ(s) = 0 if s 6∈ I and ψ(s) > 0 else. Then ϕ(x) = ψ(c(x))
m(ψ(c))

has the stated properties.

Furthermore, we note that, if I = [a, a′] with a′ ∈ (a, b), then we can choose ψ such
that ψ′(s) ≤ 0. This implies that the constructed function ϕ has the property

(∇c,∇ϕ)L2(Ω) =
1

m(ψ(c))

∫

Ω

ψ′(c)|∇c|2 dx ≤ 0. (4.3)

Given such a bump function ϕ, we define Mϕ : L2(Ω) → H1(Ω) ∩ L∞(Ω) by

(Mϕf)(x) = m(f)ϕ, f ∈ L2(Ω).

Then f −Mϕf ∈ L2
(0)(Ω) and

‖Mϕf‖H1 ≤ C

∣∣∣∣
∫

Ω

f(x) dx

∣∣∣∣ for all f ∈ L2(Ω). (4.4)

Finally, we note that

|{c(x) − a ≥ t}| ≤
1

t

∫

Ω

(c(x) − a) dx =
|a||Ω|

t

for t > 0 since c ∈ L2
(0)(Ω). This implies that |{c < b

2
}| ≥ b

b+2|a|
|Ω| > 0. Hence the

interval I = [a, b
2
) is admissible for the construction of bump function supported in

{c ∈ (a, b
2
)}.

Proof of Theorem 4.3: Let c ∈ D(∂F ). We define c̃t(x), 0 < t ≤ 2
Mn

, x ∈ Ω, as
solution of

c̃t(x) = c(x) − tf+
n (c̃t(x)), (4.5)

which exists by the contraction mapping principle. Then c̃t(x) = c(x) if c(x) < 0
since f+

n (c̃t(x)) = 0 in this case. Moreover, 0 ≤ c̃t(x) = c(x) − tf+
n (c̃t(x)) ≤ c(x)

if c(x) ≥ 0. More formally, c̃t can be expressed in the form c̃t(x) = F n
t (c(x)),

where F n
t : [a, b] → [a, b] is a continuous differentiable mapping with F n

t (x) → x,
(F n

t )′(x) → 1 as t → 0+ uniformly in [a, b]. Hence c̃t ∈ H1(Ω) and c̃t →t→0 c in
H1(Ω) and almost everywhere.

Since c̃t(x) 6∈ L2
(0)(Ω) in general, we set ct = c̃t + tMϕ(f+

n (c̃t)), where ϕ is a

bump function supported in {c(x) < b
2
} with the property (4.3). Then ct ∈ L2

(0)(Ω).
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Furthermore, ct(x) = c̃t(x) and f+
n (ct(x)) = f+

n (c̃t(x)) if c(x) > b
2

and ct(x) = c̃t(x) +
tMϕ(f+

n (ct)) ∈ [a, 3
4
b] if c(x) ≤ b

2
and if 0 < t < b

4M ′

n
where M ′

n = sup0≤t≤b f
+
n (t)‖ϕ‖∞.

For short we write dt = Mϕ(f+
n (c̃t)).

Now we assume that w ∈ ∂F (c). Then

F (c) − F (ct) ≤ t(w, f+
n (c̃t) − dt)L2(Ω).

Moreover, if t > 0 is sufficiently small, then

F (c) − F (ct)

=

∫

Ω

(φ(c(x)) − φ(ct(x))) dx+ t(∇c,∇f+
n (c̃t))L2 − tm(f+

n (c̃t))(∇c,∇ϕ)L2

−
t2

2
‖f+

n (c̃t) − dt‖
2
L2

≥ t

∫

{c(x)> b
2
}

φ′(ct(x))f+
n (ct(x)) dx+ t

∫

{c(x)≤a
2
}

(φ(c(x)) − φ(c(x) + tdt)) dx

+

∫

{a
2
≤c(x)≤ b

2
}

(φ(c(x)) − φ(c̃t(x) + tdt)) dx

+t(∇c,∇f+
n (c̃t)) −

t2

2
‖f+

n (c̃t) − dt‖
2
L2

≥ t

∫

{c(x)> b
2
}

f+
n (ct(x))2 dx+ t(∇c,∇f+

n (c̃t)) −
t2

2
‖f+

n (c̃t) − dt‖
2
L2

+

∫

{a
2
≤c(x)≤ b

2
}

(φ(c(x)) − φ(c(x) + tdt)) dx,

where we have used that φ(c(x))−φ(ct(x)) ≥ φ′(ct(x))(c(x)− ct(x)) and ct(x) < c(x)
if c(x) > b

2
, φ′(ct(x)) ≥ f+

n (ct(x)) as well as (4.3) and φ(c(x)) − φ(c(x) + tdt(x)) ≥ 0
if c(x) ≤ a

2
and t ≤ a

2M ′

n
. Hence

(w, f+
n (c̃t) − dt)L2(Ω) ≥

∫

{c(x)> b
2
}

f+
n (ct(x))2 dx+ (∇c,∇f+

n (c̃t)) −
t

2
‖f+

n (ct) − dt‖
2
L2

+

∫

{a
2
≤c(x)≤ b

2
}

1

t
(φ(c(x)) − φ(c̃t(x) + tdt)) dx,

which yields for t→ 0

(w, f+
n (c) −Mϕ(f+

n (c)))L2(Ω) ≥

∫

{c(x)≥ b
2
}

f+
n (c(x))2 dx+ (∇c,∇f+

n (c))

+

∫

{a
2
≤c(x)≤ b

2
}

φ′(c(x))(f+
n (c(x)) −Mϕ(f+

n (c))) dx

due to limt→0 c̃t(x) = c(x) in H1(Ω) and almost everywhere and since φ(c) is contin-
uously differentiable in [a

2
, 3

4
b]. Now we observe that

(∇c,∇f+
n (c)) =

∫

Ω

(f+
n )′(c(x))|∇c(x)|2 dx ≥ 0
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and use that ‖Mϕ(f+
n (c))‖2 ≤ C‖f+

n (c)‖2 due to (4.4). Therefore

‖f+
n (c)‖2

L2(Ω) +

∫

Ω

(f+
n )′(c(x))|∇c(x)|2 dx

≤ C

(
‖w‖2

L2(Ω) +

∫

{a
2
≤c(x)≤ b

2
}

|φ′(c(x))|2 dx

)

≤ C ′

(
‖w‖2

L2(Ω) +

∫

Ω

|c(x)|2 dx

)

by Young’s inequality. Letting n→ ∞ we obtain

‖φ′
+(c)‖2

L2(Ω) +

∫

Ω

φ′′
+(c(x))|∇c(x)|2 dx ≤ C

(
‖w‖2

L2(Ω) + ‖c‖2
H1(Ω)

)
(4.6)

by Fatou’s lemma. By symmetry the same is true for φ− instead of φ+ and therefore
also for φ.

In particular, φ′(c) ∈ L2(Ω) implies c(x) ∈ (a, b) almost everywhere. Thus
|{c(x) ∈ (a + δ, b − δ)}| > 0 for sufficiently small δ > 0. Because of this, we can
use a bump function ϕ supported in {c(x) ∈ (a + δ, b − δ)} for some fixed δ > 0.
Moreover, let ψM : R → [0, 1], M ∈ N, be smooth functions such that ψM(s) = 0 if
|s| ≥ M + 1, ψM(s) = 1 if |s| ≤ M , and |ψ′

M(s)| ≤ 2. Set χM(x) = ψM(φ′(c(x))).
Then χM ∈ H1(Ω) and χM(x) = 0 if φ′(c(x)) ≥ M + 1. Moreover, χM →M→∞ 1
almost everywhere and in Lp(Ω), 1 ≤ p <∞, and

(∇c,∇(χMψ))L2(Ω) = (∇c, χM∇ψ)L2(Ω) +

∫

Ω

φ′′(c(x))|∇c(x)|2ψ(x)ψ′
M(φ′(c(x)) dx

for all ψ ∈ C∞(Ω). Since φ′′(c)|∇c|2 ∈ L1(Ω) due to (4.6) and ψ′
M(φ′(c(x)) →M→∞ 0

almost everywhere, we conclude

lim
M→∞

(∇c,∇(χMψ))L2(Ω) = (∇c,∇ψ)L2(Ω) for all ψ ∈ C∞(Ω). (4.7)

Now we define cMt = c− tχMψ + tMϕ(χMψ), ψ ∈ C∞(Ω), t > 0, M ∈ N.
Then cMt ∈ domF for sufficiently small t > 0 (depending on M) and

t(w, χMψ −Mϕ(χMψ)) ≥ F (c) − F (cMt )

=

∫

{φ′(c(x))≤M+1}

(
φ(c(x)) − φ(cMt (x))

)
dx+ t(∇c,∇(χMψ −Mϕ(χMψ)))L2

−t2‖∇(χMψ −Mϕ(χMψ))‖2
L2 .

Dividing by t and passing to the limit t→ 0, we conclude

(w, χMψ −Mϕ(χMψ))

≥

∫

Ω

φ′(c(x))(χMψ −Mϕ(χMψ)) dx+ (∇c,∇(χMψ −Mϕ(χMψ)))L2
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for all ψ ∈ C∞(Ω). Replacing ψ by −ψ, we obtain equality above. Finally, letting
M → ∞ we obtain

(w,ψ)L2(Ω) = (φ′(c), ψ)L2(Ω) + (∇c,∇ψ)L2(Ω) for all ψ ∈ C∞(Ω),m(ψ) = 0,

where we have used (4.7), (4.4), and

lim
M→∞

∫

Ω

χMψ dx = lim
M→∞

∫

Ω

(χM − 1)ψ dx = 0 if m(ψ) = 0.

Hence −∆Nc = w − P0φ
′(c) ∈ L2

(0)(Ω), where ∆N is the weak Neumann-Laplace

operator as above. Thus c ∈ H2(Ω) and c is the unique strong solution of (2.2)-
(2.3) with c = u and f = w − P0φ

′(c) and ‖c‖H2 ≤ C‖φ′‖2. Using this, (4.6), and
‖c‖2

H1 ≤ C‖c‖2‖c‖H2 , we obtain (4.2). Moreover, the previous observations imply
that ∂F (c) = −∆c+P0φ

′(c) is single-valued and the characterization of the domain.
This finishes the proof.

Corollary 4.4 Let F be defined as above and extend F to a functional F̃ : H−1
(0) (Ω) →

R ∪ {+∞} by setting F̃ (c) = F (c) if c ∈ domF and F̃ (c) = +∞ else. Then F̃ is

a proper, convex, and lower semi-continuous functional, ∂F̃ is a maximal monotone
operator with ∂F̃ (c) = −∆N∂F (c) and

D(∂F̃ ) = {c ∈ D(∂F ) : ∂F (c) = µ0 = −∆c+ P0φ
′(c) ∈ H1

(0)(Ω)}. (4.8)

Proof: The lower semi-continuity is proved in the same way as in Lemma 4.1. Then
the fact that ∂F̃ is a maximal monotone operator follows from Corollary 1.2 and
Lemma 1.3 in [19, Chapter IV].

First let c ∈ D(∂F̃ ) and let w ∈ ∂F̃ (c), i.e.,

(w, c′ − c)H−1
(0)

≤ F̃ (c′) − F̃ (c) for all c′ ∈ H−1
(0) (Ω). (4.9)

Now let µ0 = −∆−1
N w and choose c′ ∈ L2(Ω). Then

(µ0, c
′ − c)L2 = −(∇µ0,∇∆−1

N (c′ − c))L2 = (∇∆−1
N w,∇∆−1

N (c′ − c))L2

= (w, c′ − c)H−1
(0)

≤ F̃ (c′) − F̃ (c) = F (c′) − F (c)

for all c′ ∈ L2(Ω). Hence µ0 = −∆c + P0φ
′(c) ∈ D(∂F ). On the other hand,

µ0 = −∆−1
N w ∈ H1

(0)(Ω). This implies that ∂F̃ (c) = −∆N∂F (c) and

D(∂F̃ ) ⊆
{
c ∈ D(∂F ) : µ0 = −∆c+ P0φ

′(c) ∈ H1
(0)(Ω)

}
.

Conversely, let c ∈ D(∂F ) such that µ0 = −∆c + P0φ
′(c) = ∂F (c) ∈ H1

(0)(Ω). Then

one easily verifies that w = −∆Nµ0 satisfies (4.9) by the same calculations as above.
Hence c ∈ D(∂F ) and (4.8) is proved.
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5 Existence of Unique Solutions

First of all, we can assume w.l.o.g. that

m(c0) =
1

|Ω|

∫

Ω

c0 dx = 0. (5.1)

As in the previous section we can alway reduce to this case by a simple shift. Since
(5.1) implies that any solution of (1.4)-(1.5) as in Theorem 1.2 satisfies

d

dt

∫

Ω

c(x, t) dx =

∫

Ω

∆µ dx = 0,

we conclude m(c(t)) = 0 for almost all t > 0.
We will consider (1.4)-(1.7) as an evolution equation on H−1

(0) (Ω) in the following
way:

∂tc+ A(c) + Bc = 0, t > 0, (5.2)

c|t=0 = c0, (5.3)

where

〈A(c), ϕ〉H−1
(0)
,H1

(0)
= (∇µ,∇ϕ)L2 with µ = −∆c+ φ′(c)

〈Bc, ϕ〉H−1
(0)
,H1

(0)
= d(∇c,∇ϕ)L2 , ϕ ∈ H1

(0)(Ω),

and

D(A) =
{
c ∈ H2(Ω) : c(x) ∈ [a, b] for all x ∈ Ω, φ′(c) ∈ L2(Ω),

φ′′(c)|∇c|2 ∈ L1(Ω), µ = −∆c+ φ′(c) ∈ H1(Ω), ∂νc|∂Ω = 0
}

D(B) = H1
(0)(Ω) ⊂ H−1

(0) (Ω).

In other words
A(c) = ∆N(∆c− P0φ

′(c)), Bc = d∆Nc,

where ∆N : H1
(0)(Ω) ⊂ H−1

(0) (Ω) → H−1
(0) (Ω) is the Laplace operator with Neumann

boundary conditions as above, which is considered as an unbounded operator on
H−1

(0) (Ω).

In order to apply Theorem 3.1 we use that by Corollary 4.4 A = ∂F̃ is a maximal
monotone operator with F̃ = ϕ1 + ϕ2,

ϕ1(c) =
1

2

∫

Ω

|∇c(x)|2 dx, domϕ1 = H1
(0)(Ω),

ϕ2(c) =

∫

Ω

φ(c(x)) dx,

domϕ2 = domϕ = {c ∈ H1
(0)(Ω) : c(x) ∈ [a, b] a.e. in Ω}
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Obviously, ϕ1|H1
(0)

(Ω) is a bounded, coercive quadratic form on H1
(0)(Ω).

Proof of Theorem 1.2: We apply Theorem 3.1 to the choice H1 = H1
(0)(Ω), H0 =

H−1
(0) (Ω), f = 0, and ϕ1, ϕ2 as above, where we assume w.l.o.g. that φ(c) ≥ 0.

This gives the existence of a unique solution c : [0,∞) → H0 of (5.2)-(5.3) such that
c ∈ W 1

2 (0, T,H0) ∩ L
∞(0, T ;H1), ϕ(c) ∈ L∞(0, T ) for every T > 0 and c(t) ∈ D(A)

for almost all t > 0.
In order to prove (1.9), we use that

E(c(t)) = F̃ (c(t)) −
d

2
‖c(t)‖2

L2 .

Because of Lemma 4.3 in [19, Chapter IV], we have

d

dt
F̃ (c(t)) = (∂F̃ (c(t)), ∂tc(t))H−1

(0)
= −‖∂tc(t)‖

2
H−1

(0)

− (Bc(t), ∂tc(t))H−1
(0)
.

Moreover,

(Bc(t), c(t))H−1
(0)

= −d(∆Nc(t), ∂tc(t))H−1
(0)

= d(∇c(t),∇∆−1
N ∂tc(t))L2

= −d〈∂tc(t), c(t)〉H−1
(0)
,H1

(0)
= −

d

2

d

dt
‖c(t)‖2

L2

due to [22, Proposition 23.23] and ‖∂tc(t)‖H−1
(0)

= ‖∆Nµ(t)‖H−1
(0)

= ‖µ(t)‖H1
(0)

. Hence

integration on [0, T ] yields (1.9). In particular, (1.9) implies ∂tc = ∆Nµ ∈ L2(0,∞;H−1
(0) (Ω))

and c ∈ L∞(0,∞;H1
(0)(Ω)).

In order to derive the higher regularity, we apply ∂ht to (5.2) and take the inner
product with ∂ht c in H−1

(0) (Ω), where ∂ht f(t) = 1
h
(f(t+ h) − f(t)), t, h > 0. This gives

1

2
‖∂ht c(t)‖

2
H−1

(0)

+

∫ t

s

(∇∂ht c(τ),∇∂ht c(τ))L2 dτ

≤ d

∫ t

s

‖∂ht c(τ)‖2
L2 dτ +

1

2
‖∂ht c(s)‖

2
H−1

(0)

≤ C

∫ t

s

‖∂ht c(τ)‖H1
(0)
‖∂ht c(τ)‖H−1

(0)
dτ +

1

2
‖∂ht c(s)‖

2
H−1

(0)

because of
(∂ht A(c(τ)), ∂ht c(τ))H−1

(0)
≥ (∂ht c(τ), ∂ht c(τ))H1

and (2.1). Furthermore, since ∂tc ∈ L2(0,∞;H−1
(0) (Ω)), we have

‖∂ht c(s)‖H−1
(0)

≤
1

h

∫ s+h

s

‖∂tc(τ)‖H−1
(0)
dτ →h→0 ‖∂tc(s)‖H−1

(0)

for almost every s > 0 and ‖∂ht c‖L2(0,∞;H−1
(0)

) ≤ ‖∂tc‖L2(0,∞;H−1
(0)

). Hence ‖∂ht c‖L2(s,t;H1
(0)

)

and ‖∂ht c(t)‖H−1
(0)

are uniformly bounded in h > 0, t > 0 for all s > 0. On the other
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hand ∂ht c→h→0 ∂tc in L2(0,∞;H−1
(0) (Ω)). Thus the uniform bounds on ∂ht c yield that

∂tc ∈ L2(s,∞;H1
(0)(Ω)) ∩ L∞(s,∞;H−1

(0) (Ω)) for every s > 0.

In order to derive the estimate near t = 0, we apply again ∂ht to (5.2) and take
the inner product with t∂ht c, which gives

1

2
‖∂ht c(t)‖

2
H−1

(0)

+

∫ t

0

τ‖∂ht c(τ)‖H1
(0)
dτ ≤ C

∫ t

0

τ‖∂ht c(τ)‖2
L2 dτ

proceeding as above, yields t
1
2∂tc ∈ L2(0, 1;H1

(0)(Ω)) ∩ L∞(0, 1;H−1
(0) (Ω))

This implies κµ = κ∆−1
N ∂tc ∈ L∞(0,∞;H1

(0)(Ω)). Thus (4.2) yields κφ′(c), κ∇2c ∈

L∞(0,∞;H2(Ω)) since κ∂F (c) = κµ+ κdc ∈ L∞(0,∞;H1(Ω)).
It remains to prove the continuity c0 7→ c(t). To this end let cj0 ∈ Z0, j = 1, 2,

and let cj(t) be the unique solutions of (5.2) with initial values cj|t=0 = cj0. Then

∂t(c1 − c2) + A(c1) −A(c2) + B(c1 − c2) = 0.

Now multiplying the latter identity by c1 − c2 in H−1
(0) (Ω) we conclude

1

2

d

dt
‖c1(t) − c2(t)‖

2
H−1

(0)

+ (A(c1(t)) −A(c2(t)), c1(t) − c2(t))H−1
(0)

≤ −(B(c1 − c2), c1 − c2)H−1
(0)

≤ C‖c1(t) − c2(t)‖
2
L2 .

Using ‖w‖2
L2 ≤ ‖w‖H1

(0)
‖w‖H−1

(0)
≤ Cε‖w‖

2
H−1

(0)

+ ε‖w‖2
H1 and

1

C
‖c1(t) − c2(t)‖

2
H1

(0)
≤ (A(c1(t)) −A(c2(t)), c1(t) − c2(t))H−1

(0)
,

we derive

1

2

d

dt
‖c1(t) − c2(t)‖

2
H−1

(0)

+
1

C
‖c1(t) − c2(t)‖

2
H1 ≤ C‖c1(t) − c2(t)‖

2
H−1

(0)

.

Hence the Lemma of Gronwall implies

‖c1(t) − c2(t)‖
2
H−1

(0)

≤ e2Ct‖c10 − c20‖
2
H−1

(0)

,

which implies the strong continuity of c0 7→ c(t) w.r.t. to the H−1
(0) -norm. Finally,

since Z0 ∋ c0 7→ c(t) ∈ H2(Ω) is a bounded mapping, interpolation yields the conti-
nuity c0 7→ c(t) w.r.t. to the H1-norm. This finishes the proof.

6 Convergence to Equilibrium

Again we assume w.l.o.g. (5.1).
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From Theorem 1.1 it follows that c ∈ L∞(Jδ;H
2(Ω)) and ∂tc ∈ L2(Jδ;H

1(Ω)),
where Jδ := [δ, T ], T <∞ and δ ∈ (0, T ) may be arbitrarily small. Hence by Sobolev

embedding we obtain c ∈ C
1
2 (Jδ;H

1(Ω)) and interpolation yields c ∈ C(Jδ;H
2r(Ω))

for all r ∈ [0, 1). Observe that δ > 0 does not depend on the initial value c0. We set

Z ≡ Z0 = {z ∈ H1
(0)(Ω) : E(z) <∞},

and define a family of operators S := {S(t)}t>0 by

S(t) : Z → Z, S(t)c0 = c(t; c0), t ∈ R+.

Here c(t; c0) denotes the solution due to Theorem 1.1 with initial value c0 ∈ Z. In
the sequel we will use the abbreviation c(t) for the solution c(t; c0). The fact that
the range of S(t) is a subset of Z follows from the energy equation (1.9). By the
strong continuity of the mapping c0 7→ c(t) w.r.t. to the H1-norm, cf. Theorem 1.2 it
holds that S(t) ∈ C(Z;Z). Moreover, c(t) ⇀t→0 c0 in H1(Ω) since limt→0 c(t) = c0 in
H−1

(0) (Ω) and c(t) is uniformly bounded in H1(Ω). Together with limt→0 ‖u(t)‖H1 =

‖u0‖H1 due to (1.9) this implies limt→0 c(t) = c0 in H1(Ω). Combining this with

c ∈ C
1
2 (Jδ;H

1(Ω)), we see that S(.)z ∈ C([0,∞);Z). Hence S is a dynamical system
on Z in the sense of [4, Definition 9.1.1].

Furthermore, we define the ω-limit set ω(c0) by

ω(c0) =
{
z ∈ H2r(Ω) ∩ Z : ∃ (tn) ր ∞ s.t. c(tn) → z in H2r(Ω)

}
, (6.1)

where r ∈ [1/2, 1). The estimate κc ∈ L∞(0,∞;H2(Ω)) from Theorem 1.2 yields that
the orbit {c(t)}t≥δ is relatively compact in H2r(Ω), r ∈ [1/2, 1), therefore ω(c0) 6= ∅
and ω(c0) is connected (see for instance [4, Theorem 9.1.8]). Since the definition (6.1)
is equivalent to

ω(c0) =
⋂

s≥0

⋃

t≥s

{c(t)} =
⋂

s≥δ

⋃

t≥s

{c(t)},

it follows immediately that ω(c0) is compact in H2r(Ω) for each r ∈ [1/2, 1), since
ω(c0) is the intersection of a decreasing sequence of compact sets. Moreover, it follows
from relative compactness of the orbits and (6.1) that

lim
t→∞

dist(S(t)c0, ω(c0)) = 0 in H2r(Ω).

We call z ∈ Z a stationary point of S, if S(t)z ≡ z for all t ∈ R+ and the set of all
stationary points will be denoted by E . A function E : Z → R is called a Lyapunov
function for S, if E(S(t)z) ≤ E(z) for a.e. t ≥ 0 and all z ∈ Z. In addition E is a
strict Lyapunov function, if the identity E(S(t)z) = E(z) for all t ∈ R+ implies that
z is a stationary point.

Let us recall the energy functional from the introduction

E(c) =
1

2

∫

Ω

|∇c|2 dx+

∫

Ω

f(c) dx,
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where we take the space Z from above as the underlying domain of definition. Due
to the formula (1.9) it holds that E : Z → R is a strict Lyapunov function for S.
Following the lines of the proof of [4, Theorem 9.2.7] it holds that each z ∈ ω(c0) is
a stationary point and therefore ω(c0) ⊂ E and

lim
t→∞

dist(S(t)z, E) = 0 in H2r(Ω).

The first higher order estimate in Theorem 1.1 implies that c(t) ∈ H2(Ω) for a.e.
t > 0. Hence if z ∈ E , i.e. S(t)z = z for all t > 0, we have necessarily z ∈ H2(Ω)
and z is a solution of the stationary system. On the other hand, if z ∈ H2(Ω) ∩ Z
is a solution of the stationary system, then by uniqueness of solutions, S(t)z = z for
all t ≥ 0, hence z ∈ E . Therefore the set E is characterized by

E =
{
z ∈ H2(Ω) ∩ Z : z solves (1.10)-(1.12)

}
.

Note that by Sobolev embedding we have H2s(Ω) →֒ C(Ω), whenever s > n/4.

Proposition 6.1 For each u ∈ E there are constants Mj, j = 1, 2, such that

a < M1 ≤ u(x) ≤M2 < b,

for all x ∈ Ω. Moreover, for all u ∈ ω(c0), there are uniform constants M̃j, j = 1, 2,
such that

a < M̃1 ≤ ||u||∞ ≤ M̃2 < b,

provided that r ∈ (n/4, 1) in (6.1).

Proof: W.l.o.g. we may assume that a = −1 and b = 1 and we will only consider
the case that there is a point x0 ∈ Ω, s.t. u(x0) = 1.

First we assume that there is such a point x0 ∈ Ω with u(x0) = 1. Since u ∈ C(Ω)
and therefore limx→x0 f

′(u(x)) = ∞, we may use the stationary problem to find a
ball BR(x0) ⊂⊂ Ω, such that ∆u(x) ≥ 0 for a.e. x ∈ BR(x0). Since u(x) ∈ (−1, 1)
a.e. in Ω it holds that

1 = sup
x∈BR(x0)

u(x) = sup
x∈Ω

u(x) ≥ 0.

Now we are in a situation to apply the strong maximum principle, cf. Gilbarg and
Trudinger [14, Theorem 8.19], to conclude u(x) ≡ 1 for all x ∈ Ω, which contradicts
the fact that u(x) ∈ (−1, 1) for a.e. x ∈ Ω.

The next step is to take care of the points at the boundary ∂Ω ∈ C3. Assume
that there is a point x0 ∈ ∂Ω, s.t. u(x0) = 1. We choose a ball BR(x0) with radius
R and a C2-diffeomorphism

Φ: BR(x0) → V (z0) ⊂ R
n,
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which maps Ω ∩ BR(x0) onto R
n
+ ∩ V (z0) for some neighborhood BR(x0) of x0 and

which leaves the normal direction unchanged (see e.g. Giga [13, p. 318]), i.e.

∂zn
Θ(z)|zn=0 = ν(Θ(z))|zn=0, z ∈ V (z0),

where Θ := Φ−1. We denote by Θ∗ the operator

(Θ∗u)(z) = u(Θ(z)), z ∈ V (z0) ∩ R
n
+

and define furthermore, Θ∗ = (Θ−1)∗ as well as

v(z) = (Θ∗u)(z), z ∈ V (z0) ∩ R
n
+.

Since ellipticity of an operator is invariant under diffeomorphisms, it follows that the
transformed operator

Lv := Θ∗∆(Θ∗v)

is again elliptic. We extend the function v(z) = v(z′, zn), zn ≥ 0 to a function ṽ(z)
by reflection, i.e.

ṽ(z) = ṽ(z′, zn) =

{
v(z′, zn), zn ≥ 0,

v(z′,−zn), zn ≤ 0,

where z′ := (z1, ..., zn−1). Since ∆u(x) = f ′(u(x)) + const., x ∈ Ω, it holds that
∆u(x) ≥ M(R) for a.a. x ∈ BR(x0) ∩ Ω, with M(R) → ∞, as R → 0, due to
the continuity of u in Ω and the fact that f ′(s) → ∞, if s → 1. Obviously for the
transformed v we obtain Lv(z′, zn) ≥M(R) for a.a. z ∈ V (z0)∩R

n
+. Choosing R > 0

sufficiently small this yields Lṽ(z) ≥ 0 for a.a. z ∈ V (z0). Furthermore |ṽ(z)| ≤ 1
for all z ∈ V (z0) since |u(x)| ≤ 1 for all x ∈ BR(x0) ∩ Ω. By the construction of
the diffeomorphism Φ and by ∂νu|∂Ω = ∂nv|xn=0 = 0, the function ṽ is an element of
H2(V (z0)) and Lṽ(z) ≥ 0 for a.a. z ∈ V (z0), with v(z0) = 1. Therefore ṽ attains
its maximum at the interior point z0 ∈ V (z0). Hence again by the strong maximum
principle it follows that ṽ(z) ≡ 1 for all z ∈ V (z0), which is a contradiction.

The existence of the uniform constants M̃j in the second statement of the proposi-
tion is an immediate consequence of the compactness of ω(c0) in L∞(Ω) if r ∈ (n/4, 1).

Since the ω-limit set ω(c0) is compact in H2r(Ω), r ∈ (n/4, 1), there exists an
open set U ⊃ ω(c0), such that for all u ∈ U we have

a < M̃1 − ε < ||u||∞ < M̃2 + ε < b, ε > 0,

where M̃j, j = 1, 2, are the uniform constants from Proposition 6.1. Furthermore, it
follows from dist(c(t), ω(c0)) → 0 in H2r(Ω), as t → ∞, that there is a t∗ ≥ 0, with
c(t) ∈ U for all t ≥ t∗, provided that r ∈ (n/4, 1). Due to this fact, the singularities
of f and its derivatives play no longer any role in our investigations as we are only
interested in the behavior of the solution u(t), as t → ∞. Therefore we may alter
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the function f outside the interval Jε := [M̃1 − ε, M̃2 + ε] in such a way that for the
extension f̃ of f it holds that f̃ ∈ C3(R) and additionally |f̃ (j)(s)|, j = 1, 2, 3, are
uniformly bounded on R. Observe that f̃ |Jε

= f and f is analytic in (M̃1−ε, M̃2 +ε),
hence for each ϕ ∈ ω(c0) and by Proposition 6.1 there exists a neighborhood W of
ϕ(x), such that f is analytic in W . Now consider the functional Ẽ : V → R, defined
by

Ẽ(u) =
1

2

∫

Ω

|∇u|2 dx+

∫

Ω

f̃(u) dx,

where
V = H1

(0)(Ω) →֒ H = L2
(0)(Ω).

Observe that Ẽ|U∩V = E, where E is the energy functional from Theorem 1.1.
The first two Frechét derivatives of Ẽ read as follows.

〈Ẽ ′(u), h〉V ∗,V =

∫

Ω

∇u∇h dx+

∫

Ω

f̃ ′(u)h dx (6.2)

and

〈Ẽ ′′(u)h1, h2〉V ∗,V =

∫

Ω

∇h1∇h2 dx+

∫

Ω

f̃ ′′(u)h1h2 dx, (6.3)

for all u, h, hj ∈ V, j = 1, 2. We omit the proof of these formulas since the derivation
is a direct result of the properties of f̃ . Firstly, we make use of (6.2) to show that
each ϕ ∈ ω(c0) is a critical point of Ẽ.

〈Ẽ ′(ϕ), h〉V ∗,V =

∫

Ω

∇ϕ∇h dx+

∫

Ω

f̃ ′(ϕ)h dx

=

∫

Ω

∇ϕ∇h dx+

∫

Ω

f ′(ϕ)h dx

=

∫

Ω

(−∆ϕ+ f ′(ϕ))h dx

=

∫

Ω

(−∆ϕ+ P0f
′(ϕ))h dx = 0

for all h ∈ V . Hence the claim follows. Secondly, let A = −∆N : V → V ∗ and let A2

the part of A in H, i.e.,

D(A2) = {u ∈ V : Au ∈ H}

and A2u = Au for all u ∈ D(A2). Then as summarized in Section 2.1

D(A2) =
{
u ∈ H2(Ω) : ∂νu = 0 on ∂Ω

}
.

Fix u ∈ V and let h1 ∈ Ker Ẽ ′′(u). It follows from (6.3) that

Ah1 = −f̃ ′′(u)h1



22 6 CONVERGENCE TO EQUILIBRIUM

for all h1 ∈ Ker Ẽ ′′(u) and thus Ah1 ∈ H. Hence Ker Ẽ ′′(u) ⊂ D(A2).
Note that the embeddings V →֒ H and D(A2) →֒ H are compact, thus A and

A2 have compact resolvents in V ∗ and H, respectively. Furthermore, by (6.3), the
operator Ẽ ′′(u) and Ẽ ′′(u)|D(A2) are bounded perturbations of A and A2, respectively.

Now it follows from [6, Proof of Proposition 6.6] that Ker Ẽ ′′(u) is finite dimensional,
Rg Ẽ ′′(u) and Rg Ẽ ′′(u)|D(A2) are closed in V ∗ and H, resp., V ∗ is the direct orthogo-

nal sum of ker Ẽ ′′(u) and Rg Ẽ ′′(u), and H is the direct orthogonal sum of ker Ẽ ′′(u)
and Rg Ẽ ′′(u)|D(A2). To prove the validity of the Lojasiewicz-Simon inequality for

the functional Ẽ, we want to apply Chill [5, Corollary 3.11]. To this end we define
X = D(A2), Y = H, W = V ∗ and denote by P : V → V the continuous orthogonal
projection with RgP = ker Ẽ ′′(u). Since f is real analytic in Jε it holds that for
each ϕ ∈ ω(c0) the function Ẽ ′ is real analytic in a neighborhood of ϕ in X (see e.g.
[5, Proof of Corollary 4.6]). By the above considerations all the assumptions of [5,
Corollary 3.11] can be readily checked. This results in the following

Proposition 6.2 (Lojasiewicz-Simon inequality) Let c be the global solution of
(1.4)-(1.7) in the sense of Theorem 1.2 and suppose that ϕ ∈ ω(c0). Then there exist
constants θ ∈ (0, 1

2
], C, σ > 0 such that

|Ẽ(u) − Ẽ(ϕ)|1−θ ≤ C||Ẽ ′(u)||V ∗ ,

whenever ||u− ϕ||V ≤ σ.

Now we are in the position to prove Theorem 1.3:

Proof of Theorem 1.3: First of all we note that the functional Ẽ|ω(c0) = E|ω(c0) is
constant. This follows from (1.9) and the embedding H2r(Ω) →֒ L∞(Ω). We denote
this constant by Ẽ∞. By Proposition 6.2 the Lojasiewicz-Simon inequality holds for
each ϕ ∈ ω(c0). Hence, by compactness of the ω-limit set, we may choose finitely
many balls Bσi

(ϕi), such that

Ũ :=
N⋃

i=1

Bσi
(ϕi) ⊃ ω(c0)

and in every ball the Lojasiewicz-Simon inequality is valid. Therefore we are allowed
to pick uniform constants C > 0, θ ∈ (0, 1/2], such that

|Ẽ(u) − Ẽ∞|1−θ ≤ C||Ẽ ′(u)||V ∗ ,

for all u ∈ Ũ . Obviously, again by a compactness argument, there exists t̃ ≥ 0, so
that u(t) ∈ Ũ , whenever t ≥ t̃. Recall that there is an open set U ⊃ ω(c0) and a
time t∗ ≥ 0, such that

c(t,Ω) ⊆ Jε,

for all t ≥ t∗. Set t̄ = max{t∗, t̃}. After these preliminaries we define a function
H : [t̄,∞) → R+ by

H(t) = (Ẽ(c(t)) − Ẽ∞)θ.
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Since Ẽ|U∩V = E it holds by (1.9) that H is a non-increasing and nonnegative
function. We compute

−
d

dt
H(t) = −θ

d

dt
Ẽ(c(t))|Ẽ(c(t)) − Ẽ∞|θ−1

= −θ
d

dt
E(c(t))|Ẽ(c(t)) − Ẽ∞|θ−1

≥ C
‖∇µ(t)‖2

2

||Ẽ ′(c(t))||V ∗

. (6.4)

The term ||Ẽ ′(c(t))||V ∗ may be estimated as follows.

||Ẽ ′(c(t))||V ∗ = sup
||h||V ≤1

|〈Ẽ ′(c(t)), h〉V ∗,V |

= sup
||h||V ≤1

∣∣∣∣
∫

Ω

(−∆c(t) + f ′(c(t)))h dx

∣∣∣∣

= sup
||h||V ≤1

∣∣∣∣
∫

Ω

µ(t)h dx

∣∣∣∣ = sup
||h||V ≤1

∣∣∣∣
∫

Ω

P0µ(t)h dx

∣∣∣∣

≤ sup
||h||V ≤1

‖P0µ(t)‖2‖h‖2 ≤ C||∇µ(t)||2 sup
||h||V ≤1

||h||V = C||∇µ(t)||2.

Thus we obtain from (6.4) the estimate

−
d

dt
H(t) ≥ c||∇µ(t)||2.

Integrating the latter inequality from t̄ to ∞ yields ∇µ ∈ L1(R+;L2(Ω)) and by
equation (1.4) we obtain ∂tc ∈ L1(R+;H−1

(0) (Ω)). Therefore limt→∞ c(t) =: ϕ exists in

H−1
(0) (Ω) and by relative compactness the limit even exists in H2r(Ω). The fact that

ϕ is a solution of the stationary system has already been proven.
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