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Abstract

This paper investigates magnetic 180 degree domain walls in thin
wires. It establishes a crossover between two scaling regimes for the
energy as a function of the radiusR. For small radii the optimal scaling
can be realized by a transverse wall for which the magnetization is
constant on each cross section. For large radii a vortex wall yields
the optimal scaling. Moreover we show that for R → 0 the energy
minimization problem Γ-converges to a local, one dimensional problem
where the energy is given by π‖∂xm‖2

L2(R) + π
2 ‖my‖2

L2(R).

1 Introduction

1.1 Motivation from physics

In the last years several groups have succeeded in the production and in-
vestigation of magnetic wires with less than 100 nm diameter. Arrays of
such magnetic nanowires are in consideration as future high density stor-
age devices [AXF+05]. The time necessary to change the magnetization of
a nanowire is directly related to the writing and reading speed of such a
device. Therefore it is important to understand the reversal process of mag-
netic nanowires. It is known that the reversal of the magnetization starts
at one end of the wire and then a domain wall separating the already re-
versed part from the not yet reversed part is propagating through the wire.
However, there are few experimental results about the speed of the wall
[AAX+03, BNK+05, HG95, NTM03] and there are no experimental results
about the form of the wall.

In numerical simulations of the magnetic reversal process of nanowires, sev-
eral groups, e.g. [FSS+02, HK04, WNU04], have observed two different re-
versal modes. These modes depend on the wire thickness and correspond
to very different switching speeds. For thin wires the transverse mode is
observed: the magnetization is constant on each cross section, rotating and
moving along the wire (Figure 1). For thick wires the vortex mode is ob-
served: the magnetization is approximately tangential to the boundary and
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forms a vortex which moves along the wire. (Figure 2). In some simulations,
when looking more closely, one can see additional effects like the periodic
creation and annihilation of singularities [HK04]. The vortex mode is much
faster than the transverse mode.

For nickel the transition from the transverse mode to the vortex mode occurs
at a radius of about 25 nm.

Figure 1: Transverse Mode: longi-
tudinal section and cross section

Figure 2: Vortex Mode: longitudi-
nal section and cross section

Forster et al. [FSS+02] suggest that the reversal modes correspond to mini-
mizers of the static energy functional. In this work we investigate the static
energy functional and show a crossover in the scaling of the energy as a
function of the radius. This crossover corresponds to the change from the
scaling of the energy of transversal walls to the scaling the energy of the
vortex walls.

1.2 The model

We work in the framework of micromagnetism. This is a mesoscopic contin-
uum theory that assigns a nonlocal nonconvex energy to each magnetization
m from the domain Σ to the sphere S

2 ⊂ R
3. If necessary, m is extended by

zero outside Σ. Experimentally observed ground states of the magnetization
correspond to minimizers of the micromagnetic energy functional

E(m) :=
∫

Σ
A |∇m|2︸ ︷︷ ︸

exchange energy

+
∫

R3

Kd |∇u|2︸ ︷︷ ︸
stray field energy

+ Ean(m)︸ ︷︷ ︸
anisotropy energy

−
∫

Σ
h ·m.︸ ︷︷ ︸

external field energy

Here h is the external field and u is the weak solution of ∆u = divm in
R

3, i.e., ∇u = H(m) is the projection of m on gradient fields. We refer to
[DKMO05, HS00] for a general discussion of the micromagnetic model.
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In this paper we study static domain walls, so the external field h is zero.
We additionally assume that the material is magnetically soft, i.e., without
anisotropy. The wire is represented by

Σ := Σ(R) := R ×DR := R ×
{
y ∈ R

2 : |y| < R
}
.

The magnetization m : Σ → S
2 has the components mx,my1 ,my2 , where mx

is the component in direction of the wire. To simplify the calculations, we
measure distances in multiples of the characteristic length

√
A
Kd

, also called
the exchange length or the Bloch line width, and energies as multiples of√

A3

Kd
. In these units the energy E is

E(m) := E(m,R) := Eex(m) + EH(m) :=
∫

Σ
|∇m|2 +

∫
R3

|∇u|2,

where u is again the weak solution of ∆u = divm. We define the admissable
set

M := M(R) := {m : Σ(R) → S
2 | E(m) <∞}.

We are interested in magnetizations with a 180 degree domain wall, so we
would like to consider a subset Ml of M with limx→−∞m(x, ·) = −�ex and
limx→∞m(x, ·) = �ex. Initially it is not clear in which sense the limits should
to be understood. However, in Section 4 the set M will be characterized in
the following way.

Theorem 1. Set

χ : R → [−1, 1], x �→
{
x if |x| < 1
sign(x) otherwise.

A function m : Σ → S
2 is in M if and only if one of the four maps m± �ex,

m± χ�ex is in H1(Σ).

This motivates the definition

Ml := Ml(R) := {m ∈ M(R) | m− χ�ex ∈ H1(Σ)}.

To study transverse walls and vortex walls, we consider the following re-
stricted classes of admissible maps

T := T (R) := {m ∈ M(R) | m is constant on each cross section},

V := V(R) :=

{
m ∈ M(R)

∣∣∣∣∣ my(x, y1, y2) is parallel to (−y2, y1)
and |my| depends only on x, |y|

}
,

Tl := Tl(R) := T (R) ∩Ml(R), Vl := Vl(R) := V(R) ∩Ml(R),
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and the infima of the energies

EMl
(R) := inf

m∈Ml(R)
E(m), ETl

(R) := inf
m∈Tl(R)

E(m), EVl
(R) := inf

m∈Vl(R)
E(m).

To get an idea why transverse walls are energetically favorable in thin wires
and vortex walls are energetically favorable in thick wires we rescale and set
mk(x, y) := m(kx, ky). Then

E(mk) =
∫

Σ(kR)
|∇mk|2 +

∫
Σ(kR)

mk ·H(mk) = kEex(m) + k3EH(m).

This calculation suggests that for small radii the biggest contribution to the
energy is the exchange energy Eex whereas for big radii the magnetostatic
energy becomes important. In order to reduce the magnetostatic energy,
it is favorable to avoid surface charges like in the vortex wall. In order to
reduce exchange energy, it is favorable to have constant magnetization on a
cross section like in the transverse wall. In this work we will investigate this
idea in more detail.

1.3 The main results

We discuss the question of existence of optimal wall profiles, the scaling of
the energy and the shape of the optimal wall profile.

Theorem 2 (Existence). For each radius R > 0 there exist minimizers of
the energy E in Ml(R), Tl(R) and Vl(R).

The energy of the optimal wall profile scales like ETl
when the radius goes

to zero and scales like EVl
for radius to infinity.

Theorem 3 (Energy scaling). There exist constants c, C such that

for R < 2 : cR2 ≤ EMl
(R) ≤ ETl

(R) ≤ CR2,

for R > 2 : cR2
√

ln(R) ≤ EMl
(R) ≤ EVl

(R) ≤ CR2
√

ln(R).

Neither ETl
nor EVl

has the optimal scaling in the opposite regime: There
exists a constant c̃ such that for all R ∈ R

+ we have

ETl
(R) ≥ c̃R

8
3 and EVl

(R) ≥ c̃R.

This shows that the transverse wall is energetically favorable for small radii
and the vortex wall is energetically favorable for big radii. However, the
constants are not sharp enough to get good estimates for the critical radius
where the crossover occurs.
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Now we come to the optimal wall profile. To capture the essence of the en-
ergy minimizing problem for small radii, we use the notion of Γ-convergence
as described in [DM93]. We rescale the energy E by a factor of 1

R2 and
rescale the maps m : Σ → S

2 to ḿ : R ×D1 → S
2, (x, y) �→ m(x, y

R ).

In the limit we get a reduced problem where the admissible functions are
maps from R to S

2 and where the energy simplifies to

Ered(m) = π‖∂xm‖2
L2(R) +

π

2
‖my‖2

L2(R).

The minimizer mmin of the reduced problem exists and is unique up to
translation and rotation. Its energy is

√
8π, its profile is that of a Bloch

wall, i.e.,

mmin =

⎛
⎝tanh

(
x√
2

)
,

1

cosh
(

x√
2

) , 0
⎞
⎠ .

Since Γ-convergence implies the convergence of minimizers as well as con-
vergence of the minimal energies, we can conclude that for small radii mini-
mizers of E are almost constant on the cross section and have a profile that
resembles a Bloch wall. Their energy can be approximated by

√
8πR2.

For R � 1 we do not know the shape of minimizer. However, we have
example functions in Vl whose energies have the optimal scaling. They have
a square root type singularity and the width of their transition regions scales
like R2

√
ln(R). The latter is in contrast to the regime R 
 1 where the

thickness of the transition region of the optimal walls is of order 1.

1.4 Outline of the paper

In this paper we often exploit the close connection between the full problem,
the reduced one-dimensional problem and the full problem restricted to T ,
the functions that are constant on each cross section. Therefore we do not
prove the results in the same order as they are stated above.

Since the main difficulty in analyzing the functional E consists in finding
good estimates for the stray field energy EH , we start by collecting some
general results about the stray field in Section 2.

In Section 3, we study the restricted class of transverse walls. We estab-
lish a lower bound for ETl

and show, that the transverse component of the
magnetization is bounded by the energy. As a corollary we obtain a char-
acterization of the set T similar to Theorem 1. In this section we use the
representation of the stray field energy via a Fourier multiplier. The calcu-
lations regarding the Fourier multiplier can be found in Section 8.

In Section 4, we use the characterization theorem for transverse walls to
show Theorem 1 and the existence of minimizers of the energy in Ml.
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In Section 5, we investigate the case of small radii. We establish the energy
scaling of EMl

∼ ETl
∼ R2 and find the Γ-limit for R→ 0.

In Section 6, we find the lower bound EMl
≥ cR2

√
ln(R) for all R that are

large enough.

In Section 7, we calculate upper and lower bounds for EVl
with elementary

methods. In particular we get the estimates EVl
≤ CR2

√
ln(R) for all

R ≥ 2 and EVl
≥ CR for all R ∈ R

+. Combining the first estimate with the
result of Section 6, we see that EMl

(R) scales like EVl
(R) ∼ R2

√
ln(R) for

R→ ∞.

1.5 Definitions and notation

We will use the following conventions. The letter p denotes a point in R
3

and has the components p = (x, y1, y2) = (x, y). A map f with values in R
3

has the components f = (fx, fy1 , fy2). We write fy for (0, fy1 , fy2), i.e., we
view fy as a map to {0} × R

2. For finite and infinite cylinders we use the
symbols Σl := [−l, l]×DR and Σ := R×DR, for the characteristic function
of a set Ω we use 11Ω. Moreover, generalizing the definition in Theorem 1,
we define the functions

χc+

c− : R → R, x �→ csign(x) min(1, |x|)�ex, χ := χ1
−1.

Now let m be a function Σ → R
3. The divergence of m consists of two

parts: the body charges ρ in the interior of the cylinder and the surface
charges σ, the divergence from the normal component of the magnetization
on the surface,

ρ(p) =

{
− divm(p) if p ∈ Σ
0 otherwise

, σ(p) = m · �eν for all p ∈ ∂Σ.

The map u is by definition a weak solution of

∆u = divm, in R
3, (1)

if and only if ∇u ∈ L2(R3) and∫
R3

∇u∇η =
∫

Σ
ρη +

∫
∂Σ

ση, for all η ∈ C∞
c (R3). (2)

This defines u only up to a constant. We can remove this ambiguity by
requiring u ∈ L6(R3). Note that there is a constant C such that for all
functions f : R

3 → R the inequality ‖f − c‖L6(R3) ≤ C‖∇f‖L2(R3) holds for
some c ∈ R if the right hand side exists.

6



We can decompose u and define uρ, uσ as those maps in L6(R3) that satisfy∫
R3

∇uρ∇η =
∫

Σ
ρη for all η ∈ C∞

c (R3), (3)∫
R3

∇uσ∇η =
∫

∂Σ
ση for all η ∈ C∞

c (R3). (4)

Finally we set

Eρρ(m) :=
∫

R3

|∇uρ|2, Eσσ(m) :=
∫

R3

|∇uσ|2, Eρσ(m) :=
∫

R3

∇uρ·∇uσ.

Then we have EH(m) = Eρρ(m) +Eσσ(m) + 2Eρσ(m).

A special case are functions m : Σ → R
3, that are constant on each cross

section. To simplify notation we will often describe such functions by
maps m̃ : R → R

3. For a map f : R → R
3 we therefore define fΣ : Σ →

R
3, (x, y) �→ f(x) and

E(f) := E(fΣ), Eρρ(f) := Eρρ(fΣ)

Eσσ(f) := Eσσ(fΣ), Eρσ(f) := Eρσ(fΣ).

2 The stray field energy

Since we are not working on a finite domain, it is initially not clear under
which conditions the solution u of the equation ∆u = divm exists and ∇u
has a finite L2 norm. An particularly simple case is the case whenm ∈ L2(Σ)
since then ‖∇u‖L2(R3) ≤ ‖m‖L2(Σ). We will reduce the general case to this
situation. We define the set

A :=
{
m : Σ → R

3| ∃c−, c+ ∈ R such that m− χc+

c− ∈ H1(Σ)
}
.

Lemma 4 below states that, for all m ∈ A, Equation (1) has a weak solution
and that for such m the stray field energy EH(m) is finite. Later we will
show that M is a subset of A.

We define the maps G and Ki : R
3 → R, i ∈ {1, 2, 3}, by setting

G(p) :=
1

4π|p| , Ki(p) := ∂iG = − 1
4π

pi

|p|3 .

Lemma 4. For m ∈ A define the maps u, uρ, uσ : R
3 → R by setting

uρ(p) :=
∫

Σ
G(p−p′)ρ(p′) dp′, uσ(p) :=

∫
∂Σ
G(p−p′)σ(p′) dp′, u = uρ+uσ.

(5)
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Then the following statements hold.

(i) The map u is a weak solution of (1), ∇u is in L2(R3) and we have

∇uρ(p) =
3∑

i=1

∫
Σ
Ki(p−p′)ρ(p′)�ei dp′, ∇uσ(p) =

3∑
i=1

∫
∂Σ
Ki(p−p′)σ(p′)�ei dp′.

(ii) The map uρ is continuous, contained in H2
loc(R

3) and a strong solution
of

∆uρ = ρ. (6)

The map uσ is also continuous and its restriction to R
3 \ ∂Σ is arbitrarily

often differentiable. We have

∆uσ = 0 in R
3 \ ∂Σ, (7)

lim
y→y0
y∈Σ

∂ruσ − lim
y→y0
y �∈Σ

∂ruσ = −σ(y0) for y0 ∈ ∂Σ. (8)

(iii) The map u is in L2(Σ) and in L2(∂Σ). We have∫
R3

|∇u(p)|2 dp =
∫

Σ
u(p)ρ(p) dp +

∫
∂Σ
u(p)σ(p). (9)

Proof. The proof uses standard techniques, for details see [Küh].

For some function m ∈ A the following Lemma gives a bound on Eρρ(m) .
Note that for all m ∈ T and all m ∈ V the condition “divmy = 0 in Σ” is
fulfilled.

Lemma 5. If m ∈ A with ∂xmx ≥ 0 and divmy = 0 in Σ then

Eρρ(m) ≤ 2π2(c+ − c−)2R3.

Proof. In this case ρ = ∂xmx and we calculate

Eρρ(m) =
∫

DR

∫
R

uρ(x, y) ∂xmx(x, y) dx dy

=
∫

DR

∫
DR

∫
R

∫
R

∂xmx(x, y) ∂xmx(x′, y′)√
(x− x′)2 + |y − y′|2

dx′ dx dy′ dy

≤
∫

DR

∫
DR

(c+ − c−)2

|y − y′| dy′dy ≤ πR2(c+ − c−)2
∫ R

0
2π dr.

The following lemma concerns convergence in L2
loc(Σ), which, by definition,

coincides with convergence in all L2(Σl), l ∈ N.
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Lemma 6. For f , gn ∈ A∩L∞(Σ) (n ∈ N) let uf , ugn be the weak solutions
of (1) for m = f , m = gn, respectively. We assume that uf exists, ∇uf ∈
L2(R3) and E(gn), ‖(gn)y‖2

L2(Σ) as well as ‖gn‖L∞(Σ) are uniformly bounded
by some constant M .

(i) If (gn)n∈N converges to zero in L2
loc(Σ) then

∫
R3 ∇uf∇ugn converges to

zero, too.

(ii) If (gn)n∈N converges in L2
loc(Σ) to g0 ∈ A ∩ L∞(Σ) then EH(g0) ≤

lim infn→∞EH(gn).

Proof. To prove the first part we have to estimate the interaction between
the stray field of different parts of the magnetization and show that this
interaction decays fast enough. For details see [Küh]. The second part is an
immediate consequence of the first one.

3 Transverse walls

In this section we investigate functions that are constant on the cross section.
To simplify notation, we describe such functions by maps from R to R

3.
In particular we will view the functionals E, Eρρ, Eσσ and Eρσ also as
functionals on {f : R → R

3} as described in subsection 1.5. The following
lemma simplifies the calculation of EH .

Lemma 7. If m : Σ → R
3 is constant on each cross section and E(m) < 0

then the following equalities hold:
(i) Eρσ(m) = 0,
(ii) Eσσ(m) = Eσσ(my1�ey1) + Eσσ(my2�ey2).

Proof. Since ρ is independent of y, the map uρ is rotationally symmet-
ric and since σ(x, y) = −σ(x,−y) we have uσ(x, y) = −uσ(x,−y). Thus∫

R3 ∇uρ∇uσ = 0. The same type of symmetry argument works for (ii).

So the energy of a map m : R → R
3 is given by

E(m) = πR2‖∂xm‖2
L2(R) + Eσσ(m) + Eρρ(m).

In this section we establish for ETl
an upper bound and two different lower

bounds. First we show that there exists a constant C(R) such that for all
m ∈ Tl the energy E(m) is bounded from below by C(R)‖my‖2

L2(Σ). This
implies the characterization theorem for T . Second we combine this first
lower bound with an estimate for Eρρ to get a lower bound for ETl

.

To get the estimates, we use the representation of the stray field energy via
a Fourier multiplier. The derivation of the Fourier multiplier can be found
in Section 8.
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All Fourier transforms in this paper refer only to the first agrument, we will
still denote them by f̂ := F(f). Moreover, we choose the constants in a way
that ‖f(·, a)‖L2 = ‖f̂(·, a)‖L2 .

When we apply the Fourier transform to the defining partial differential
equations for uρ and uσ, for every ξ ∈ R we get ordinary differential equa-
tions that can be solved explicitly. Of course, this only works when m
is constant on the cross section. Using the explicit representation of the
Fourier transforms of ûρ and ûσ, we get the Fourier multipliers. The follow-
ing lemma summarizes their properties. The Fourier multipliers involve the
modified Bessel functions I1 and K1. For a definition and for properties of
these functions see Section 8.

Theorem 8 (Estimates via Fourier multipliers).
(i) For my ∈ L2(R, {0} × R

2) we have

Eσσ(my) = R2

∫
R

|m̂y(ξ)|2g(ξR) dξ := R2

∫
R

|m̂y(ξ)|2 πK1(|ξR|)I1(|ξR|) dξ

In particular, g is a smooth function, monotone decreasing in |t| with g(0) =
π
2 . Moreover, we have the inequalities

1 ≤ g(t) ≤ π

2
for |t| ≤ 1 and

1
t

≤ g(t) ≤ π

2t
for |t| ≥ 1.

(ii) Let mx : R → R be a map such that ρ := ∂xmx is in L2(Σ). We have

Eρρ(mx�ex) = R4

∫
R

|ρ̂(ξ)|2h(ξR) dξ

:= R4

∫
R

|ρ̂(ξ)|2 π

|ξR|2 (1 − 2I1(|ξR|)K1(|ξR|)) dξ.

In particular, h is a smooth function with

π

2
≤ π

2
| ln(t)| ≤ h(t) ≤ π| ln(t)| for t ≤ 1

2
and

0.4
t2

≤ h(t) ≤ π

t2
for t >

1
2
.

As a Corollary of (i) we directly get an upper bound on ETl
.

Corollary 9. We have ETl
≤

√
8π R2 + 2π2R3.

Proof. Let mred be the minimizer of Ered := π
(
‖∂xm‖2

L2(R) + 1
2‖my‖2

L2(R)

)
in Tl. This minimizer can be calculated explicitely (cf. Lemma 21 below). It
is monotone increasing and we have Ered(mred) =

√
8π. So the combination

of Theorem 8 (i) and Lemma 5 yields the estimate.
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We use Theorem 8 now to bound the L2-norm of my from below.

Lemma 10. Let my : R → {0} × R
2 be a map with |my| ≤ 1 for which

Eσσ(m) + ‖∂xmy‖2
L2(Σ) is finite. Then ‖my‖L2(R) is finite and

Eσσ(m) + ‖∂xmy‖2
L2(Σ) ≥ ‖my‖2

L2(R) · min{R2, 2R
4
3 }. (10)

Proof. First, we assume that ‖my‖L2(Σ) is finite. In this case we can apply
the estimate from Theorem 8 (i) and the equality ‖ξm̂y‖L2(Σ) = ‖∂xmy‖L2(Σ).

Since minξ∈R

(
R
|ξ| + πR2ξ2

)
≥ 2R

4
3 we have

Eσσ(m) + ‖∂xmy‖2
L2(Σ)

≥
∫ 1/R

− 1
R

R2 |m̂y(ξ)|2 dξ +
∫

R\[− 1
R

, 1
R

]

(
R

|ξ| + πR2ξ2
)
|m̂y(ξ)|2 dξ

≥
∫ 1/R

− 1
R

R2|m̂y(ξ)|2 dξ + int
R\[− 1

R
, 1
R

]2R
4
3 |m̂y(ξ)|2 dξ

≥ ‖my‖2
L2(R) · min

{
R2, 2R

4
3

}
.

In order to treat the general case, we fix some number k > 0 and decompose
R in three subsets

I1 := [−k, k], I2 := ([−k−1,−k]∪[k, k+1]), I3 := (]−∞, k−1]∪[k+1,∞[).

Set mi
y := my11Ii , and define ui as the corresponding solution of (4). Then

Eσσ(m) = ‖∇u1 +∇u2 +∇u3‖2
L2(R3). A direct calculation shows that there

is a constant C(R) such that Eσσ(m) ≥ 1
2‖∇u1‖2

L2(R3) − C(R). For details
see [Küh]. The support of m1

y is bounded, so we can calculate

Eσσ(m) + ‖∂xmy‖2
L2(Σ) ≥ 1

2

(
‖∂xmy‖2

L2(I1) + ‖∇u1‖2
L2(R3)

)
− C(R)

≥ 1
2
‖my‖2

L2([−k,k]) min{R2, 2R
4
3} − C(R).

Since k was arbitrary, Eσσ(m)+‖∂xmy‖L2(Σ) can only be finite if ‖my‖L2(R)

is finite.

Corollary 11. A map m : Σ → S
2 is in T if and only if m is constant

on each cross section and one of the four functions m ± �ex, m ± χ�ex is in
H1(Σ).

Proof. If one of the four functions m± �ex, m± χ�ex is in H1(Σ), then m is
in A as defined in Section 2. So, according to Lemma 4 (i), EH(m) is finite,
and thus E(m) is finite.
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To show the other implication we assume that m ∈ T . Then Eex(m) is
finite, therefore ∇m is in L2(Σ). Moreover we have

‖1 − |mx|‖2
L2(R) ≤ ‖1 −m2

x‖L1(R) = ‖m2
y‖L1(R) = ‖my‖2

L2(R).

So either one of the four functions m ± �ex, m ± χ�ex is in H1(Σ) or mx

oscillates infinitely often between +1 and −1. In the latter case we have an
infinite sequence of disjoint intervals (In)n∈N such that mx(In) = [−1

2 ,
1
2 ] for

all n ∈ N. But by assumption both

E(m) ≥ Eex(m) ≥
∞∑

n=1

1
|In|

and

E(m) ≥ Eσσ(m) + ‖∂xmy‖2
L2(Σ) ≥ ‖my‖2

L2(R) min
{
R2, 2R

4
3

} ∞∑
n=1

1
4
|In|

have to be finite. This is impossible.

The following lemma concerns monotone increasing rearrangement as de-
fined in [Alb00]. One result in that article is the decrease of a certain energy
functional under monotone increasing rearrangement. We apply this result
to the functional Eρρ.

Lemma 12. Let f : R → R be a map such that f −χ ∈ H1(R) and let fmon

be the monotone increasing rearrangement of f as defined in [Alb00]. Then
Eρρ(f�ex) ≥ Eρρ(fmon�ex).

Proof. Let u be the weak solution of ∆u = (∂xf)11DR
and set G : R

3 → R,
p �→ 1

4π|p| , as before. Then

Eρρ(f�ex) =
∫

Σ
f∂xu =

∫
Σ
f(x) ∂x

(∫
Σ
G(p − p′) ∂x′f(x′) dp′

)
dp.

First, assume f − χ ∈ C∞
c (R) and integrate by parts carefully. For details

of the calculation see [Küh]. Then

Eρρ(f�ex) =
1
2

∫
R

∫
R

(
f(x) − f(x′)

)2
h(x− x′) dx′ dx,

where
h(x) :=

∫
DR

∫
DR

∂xxG(x, y − y′) dy′ dy

is a positive, integrable function. Thus we are in a situation where we can
apply [Alb00, Theorem 2.11] and get Eρρ(f�ex) ≥ Eρρ(fmon�ex).

When f − χ ∈ H1(R) we use an approximation argument. In [Cor84] it is
shown that symmetric rearrangement is continuous in H1(R). This result
can be easily generalized to the case of monotone increasing rearrangement.

12



We use the preceeding lemma to estimate Eρρ from below.

Lemma 13. Let mx : R → [−1, 1] be a function such that one of the four
functions mx ± 1, mx ± χ is in H1(R). Then

Eρρ(mx�ex) ≥ min

{
4
3

R4

‖1 −m2
x‖L1(R)

,
1
3
R3

}
.

In particular, for m ∈ T we have

Eρρ(m) ≥ min

{
4
3

R4

‖my‖2
L2(R)

,
1
3
R3

}
.

Proof. We assume that mx is monotone increasing, since monotone increas-
ing rearrangement of mx decreases Eρρ(mx�ex). The estimates for Fourier
multiplier in Theorem 8 (ii) yield

Eρρ(mx�ex) ≥ π

2
R4

∫ 1
2R

− 1
2R

ρ̂2(ξ) dξ.

We set c := min
{

ρ̂(0)
‖∂ξ ρ̂‖L∞(R)

, 1
2R

}
. Then

Eρρ(mx�ex) ≥ π

2
R4

∫ c

−c

(
ρ̂(0) − ‖∂ξ ρ̂‖L∞(R)|ξ|

)2
dξ

≥ πR4

∫ c

0

(
ρ̂(0) − ρ̂(0)

c
ξ

)2

dξ

=
π

3
R4ρ̂(0)2c = min

{
π

3
R4 ρ̂(0)3

‖∂ξρ̂‖L∞(R)
,
π

6
R3 ρ̂(0)2

}
.

We calculate
ρ̂(0) =

1√
2π

∫
R

ρ =
2√
2π
.

For all t > 0 we have∫ t

−t
|ρ(x)x| dx = tmx(t) − tmx(−t)) −

∫ t

−t
|mx(x)| dx

≤
∫ t

−t
1 − |mx(x)| dx ≤

∫ t

−t
1 −mx(x)2 dx.

In the limit t→ ∞ we get

‖∂ξρ̂‖L∞(R) ≤ 1√
2π

‖xρ‖L1(R) ≤ 1√
2π

‖1 −m2
x‖L1(R),

13



thus

Eρρ(mx�ex) ≥ min

{
4
3
R4 1

‖1 − |mx|2‖L1(R)
,

1
3
R3

}

Combining Lemma 10 and Lemma 13 we get a lower bound for ETl
.

Theorem 14. We have ETl
≥ min

{
1
3R

3, 3R
8
3

}
.

Proof. For all m ∈ Tl we have

E(m) = π‖∂xm‖2
L2(R) + Eσσ(m) + Eρρ(m)

≥ ‖my‖2
L2(R) min

{
R2, 2R

4
3

}
+ min

{
4
3

R4

‖my‖L2(R)
,

1
3
R3

}

≥ min

{
2

√
4
3
R3, 2

√
8
3
R

8
3 ,

1
3
R3

}
≥ min

{
3R

8
3 ,

1
3
R3

}
.

4 The characterization theorem for Ml and the
existence of minimizers

We first show an estimate for ‖my‖L2(Σ). We setm(x) := 1
|DR|

∫
DR

m(x, y) dy
and m̃(x, y) := m(x, y) − m(x). We use the estimates from Section 3 to
bound ‖my‖L2(Σ) and use the exchange energy to bound ‖m̃y‖L2(Σ).

Lemma 15. There exist constants C1, C2 that depend only on R such that

‖my‖2
H1(Σ) ≤ C1E(m), ‖σ‖2

L2(∂Σ) ≤ C2E(m)

Proof. Since
∫
DR

m̃(·, y) dy ≡ 0 we have

Eex(m) = Eex(m) + Eex(m̃) + 2
∫

R

(∂xm(x)) ∂x

(∫
DR

m̃(x, y) dy
)
dx

= Eex(m) + Eex(m̃).

For almost all x ∈ R the map ∇ym(x, ·) is in L2(DR). Using the Poincaré
inequality we get ‖m̃y(x, ·)‖2

L2(DR) ≤ 16R2‖∇ymy(x, ·)‖2
L2(DR) almost every-

where. Integration over x yields

EH(m̃) ≤ ‖m̃‖2
L2(Σ) ≤ 16R2‖∇ym‖2

L2(Σ) ≤ 16R2E(m), (11)

14



thus

E(m) ≤ Eex(m) + 2EH(m̃) + 2EH(m) ≤ (32R2 + 2)E(m) <∞.

Using (11) and Lemma 10 we get the estimate

‖my‖2
L2(Σ) ≤ 2

(
‖m̃y‖2

L2(Σ) + ‖my‖2
L2(Σ)

)
≤ 32R2E(m) +

2E(m)
c1

≤
(

32R2 +
64R2 + 4

c1

)
E(m)

where c1 = min{R2, 2R
4
3 } which implies the first statement. The second

statement is a consequence of the trace estimate for Sobolev spaces.

Like in Corollary 11, this estimate implies directly the characterization of
maps m : Σ → S

2 with finite energy.

Theorem 16. A map m : Σ → S
2 is in M if and only if one of the four

functions m± �ex, m± χ�ex is in H1(Σ).

We use this result to show the existence of minimizers.

Theorem 17. For every R > 0 there exist minimizers of E in Ml, Tl and
Vl.

Proof. We use the direct method to find a minimizer in Ml. Let (mn)n∈N be
a minimizing sequence in Ml. Since the problem is invariant under transla-
tions we can choose the functionsmn in a way thatmn

x(0) = 0 andmn
x(x) ≤ 0

for x ≤ 0. The energy E(mn) is bounded, therefore ‖∇mn‖L2(Σ) is bounded.
So there is a map mlim : Σ → S

2 and a subsequence, denoted with (mn)n∈N

as well, such that ∇mn converges weakly to ∇mlim in L2(Σ) and mn con-
verges strongly to mlim in L2

loc(Σ). Then in particular mlim
x (0) = 0. The

functional Eex is lower semicontinous with respect to weak L2 convergence
of (∇mn)n∈N, and the functional EH is lower semicontinous with respect to
convergence in L2

loc(Σ) (Lemma 6). Thus E(mlim) ≤ lim infn→∞E(mn) and
we only have to show mlim ∈ Ml. Since E(mlim) is finite and mlim

x ≤ 0 for
x ≤ 0 we have that either mlim ∈ Ml or mlim + �ex ∈ H1(Σ).

We now assume mlim+ex ∈ H1(Σ) in order to show by contradiction mlim ∈
Ml. The proof will be in the spirit of concentration compactness: If the
sequence (mn)n∈N converges to a map mlim �∈ Ml the maps mn “split” into
two parts. We show that the sum of the energies of the parts is strictly
greater than the energy that can be obtained when the splitting does not
occur.

Clearly E(mlim) > 0. Indeed, if E(mlim) is zero, mlim has to be constant on
Σ with mlim

y ≡ 0 (Lemma 15). Thus mlim ≡ �ex or mlim ≡ −�ex. This is in
contradiction to mlim

x (0) being zero.
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In the case m + �ex ∈ H1(Σ) we can construct sequences of maps (gn)n∈N

and (hn)n∈N with the following properties:

1. gn ∈ Ml, (gn)n∈N converges to −�ex in L2
loc(Σ), E(gn) is uniformly

bounded.

2. (hn)n∈N converges to mlim in L2(Σ).

3. limn→∞
∫
Σ ∇gn · ∇hn = 0.

4. mn = gn + hn + �ex.

We give an explicit construction of (gn)n∈N and (hn)n∈N below, as the last
part of the proof.

Let ugn , uhn be weak solutions of (1) for m = gn, m = hn respectively.
Then ∇ugn = ∇ugn+�ex

and, using Lemma 6, we get∣∣∣∣
∫

R3

∇ugn∇uhn

∣∣∣∣ ≤
∣∣∣∣
∫

R3

mlim · (∇ugn)
∣∣∣∣+∥∥∥hn −mlim

∥∥∥
L2(Σ)

√
EH(gn) →

n→∞
0.

Therefore

lim
n→∞

E(mn) = lim
n→∞

(E(hn) + E(gn)) ≥ E(mlim) + EMl
> EMl

.

This is a contradiction to (mn)n∈N being a minimizing sequence in Ml.

The limit of a sequence whose elements are all in T , V, respectively, is in
that class, too. Therefore we can find minimizers in Tl and Vl in exactly the
same way as we have found minimizers in Ml.

Construction of (gn)n∈N and (hn)n∈N. Since ‖∇mn‖L2(Σ) is uniformly bounded
and (mn + �ex)n∈N converges in L2

loc(Σ) to a map mlim + �ex ∈ H1(Σ) there
exists a sequence ln → ∞, such that

‖mn(−ln, ·)+�ex‖H1(DR)+‖mn(ln, ·)+�ex‖H1(DR)+‖mn−mlim‖L2(Σln ) →
n→∞

0.

Then, in view of the Sobolev embedding H1(R2) ↪→ L∞(R2), the sequence(
‖mn(−ln, ·) + �ex‖L∞(DR) + ‖mn(ln, ·) + �ex‖L∞(DR)

)
n∈N

converges to zero as well. We set

gn(x, y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mn(x, y) if x ∈ R \ [−ln, ln],
−�ex if x ∈ [−ln + 1, ln − 1],
αn(x)
|αn(x)| if x ∈ [−ln,−ln + 1],
βn(x)
|βn(x)| if x ∈ [ln − 1, ln],

hn := mn − gn − �ex,
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where

αn(x, y) := (ln + x) (−�ex) + (−ln − x+ 1)mlim(−ln, y),
βn(x, y) := (1 + x− ln) (−�ex) + (−x+ ln)mlim(ln, y).

Then 1. and 4. are shurely fulfilled and limn→∞ ‖gn + �ex‖H1(Σln\Σln−1) = 0.
On (Σ \ Σln) ∪ Σln−1 either ∇gn ≡ 0 or ∇hn ≡ 0. Since ‖∇mn‖L2(Σ) is
uniformly bounded we have

lim
n→∞

∫
Σ
∇gn · ∇hn = lim

n→∞

∫
Σln\Σln−1

∇gn · (∇mn −∇gn) = 0.

Moreover,

lim
n→∞

∥∥∥hn −mlim
∥∥∥2

L2(Σ)

≤ lim
n→∞

(∥∥∥mn −mlim
∥∥∥2

L2(Σln−1)
+
∥∥∥mlim + �ex

∥∥∥2

L2(Σ\Σln )

+
∥∥∥mn − gn − �ex −mlim

∥∥∥2

L2(Σln\Σln−1)

)

≤ lim
n→∞

(∥∥∥mn −mlim
∥∥∥2

L2(Σln )
+
∥∥∥mlim + �ex

∥∥∥2

L2(Σ\Σln )

+ ‖gn + �ex‖2
L2(Σln\Σln−1)

)
= 0.

Thus the maps gn and hn maps have the required properties 1. to 4..

5 Energy scaling and Γ-convergence for R → 0

In this section we look at sequences of radii that converge to zero. We prove
that 1

R2E(m) Γ-converges to a reduced, one dimensional problem whose
minimizer can be calculated explicitly. Γ-convergence implies in particular
convergence of the minimal energies. Therefore we do not only get the
estimate cR2 ≤ EMl

≤ CR2 for all R ≤ R0 and some fixed c, C,R0 > 0 but
we moreover know that for R0 → 0 the constants c, C both converge to the
minimal energy of the reduced problem. In our case this energy is

√
8π.

In this section make implicit dependences on the radius R explicit. Instead
of Σ we write Σ(R), instead of E(m) we write E(m,R), etc. In this section
we show how the variational problem we considered so far converges to a
reduced variational problem where the magnetization depends only on the
x-coordinate and where the nonlocal part of the energy EH reduces to a
local term.
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Definition 18. (i) The admissible set for the full variational problem for
R ∈ R

+ is
M(R) =

{
m : Σ(R) → S

2| E(m,R) <∞
}
.

For each admissible function m ∈ M(R) we set

ḿ : Σ(1) → S
2, ḿ

(
x,
y

R

)
:= m(x, y).

After rescaling, the energy functional of the full variational problem is

1
R2

E(m,R) =
∫

Σ(1)

(
|∂xḿ(p)|2 +

1
R2

|∇yḿ(p)|2
)
dp+

1
R2

EH(m,R).

(ii) The energy functional for the reduced variational problem is

Ered(m) := π‖∂xm‖2
L2(R) +

π

2
‖my‖2

L2(R).

The admissible set is

M(0) = {m : R → S
2| Ered(m) <∞}.

(iii) We use the following notion of convergence: Let (Rn)n∈N be a sequence
of positive numbers that converges to zero, let mn ∈ M(Rn) and let m0 ∈
M(0). We say the sequence (mn)n∈N converges to m0 if

• ∇yḿ
n converges to 0 strongly in L2(Σ(1)) and

• ∂xḿ
n converges to ∂xm

0 weakly in L2(Σ(1)) and

• ḿn converges to m0 strongly in L2
loc(Σ).

Theorem 19. The reduced variational problem (Definition 18 (ii)) is the Γ-
limit of the full variational problem (Definition 18 (i)) under the convergence
stated in Definition 18 (iii). This means

• Compactness: Let (Rn)n∈N be a sequence of positive numbers converg-
ing to zero, let mn ∈ M(Rn) and let (E(mn, Rn))n∈N be bounded.
Then there exists a subsequence of (mn)n∈N which converges in the
sense of Definition 18 (iii) to some m0 ∈ M(0).

• Lower semicontinuity: For every convergent sequence (mn)n∈N (mn ∈
M(Rn)) with limit m0 ∈ M(0) we have

Ered(m0) ≤ lim inf
n→∞

1
R2

n

E(mn, Rn).
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• Construction: For each m0 ∈ M(0) and each sequence (Rn)n∈N of
positive numbers converging to zero there is a sequence (mn)n∈N with
mn ∈ M(Rn) such that

Ered(m0) = lim
n→∞

1
R2

n

E(mn, Rn).

To show Theorem 19 we need the following lemma.

Lemma 20. For all m ∈ T (R) we have

lim
R→0

1
R2

Eσσ(m,R) =
π

2
‖my‖2

L2(R)

lim
R→0

1
R2

Eρρ(m,R) = 0.

Proof. Let g and h be as in Theorem 8. Then the estimates for g imply
1

R2Eσσ(m,R) ≤ π
2 ‖my‖L2(R) and for all t > 0 we have

lim
R→0

1
R2

Eσσ(m,R) ≥ lim
R→0

∫ t

−t
|m̂y(ξ)|2 g(|ξR|) dξ =

π

2
‖m̂y‖2

L2([−t,t]),

thus 1
R2Eσσ(m,R) = π

2 ‖my‖2
L2(R).

To show the second statement we note that, since Eρρ is finite,
∫ 1
−1 |ρ̂(ξ)|2 | ln(ξ)| dξ

is finite as well (Theorem 8). Thus we can estimate Eρρ as follows.

lim
R→0

1
R2

Eρρ(m,R)

≤ lim
R→0

(
πR4

∫ 1
2R

− 1
2R

−|ρ̂(ξ)|2 ln(|ξR|) dξ + πR4(2R)2
∫

R\[− 1
2R

, 1
2R

]
|ρ̂(ξ)|2 dξ︸ ︷︷ ︸

→0

)

= lim
R→0

πR4

(
− ln(R)

∫ 1
2R

− 1
2R

|ρ̂(ξ)|2 dξ +
∫ 1

−1
−|ρ̂(ξ)|2 ln(|ξ|) dξ

+
∫ −1

− 1
2R

−|ρ̂(ξ)|2 ln(|ξ|) dξ︸ ︷︷ ︸
<0

+
∫ 1

2R

1
−|ρ̂(ξ)|2 ln(|ξ|) dξ︸ ︷︷ ︸

<0

)

≤ 0.

Proof of Theorem 19. We have to check the three properties of Γ-convergence:
compactness, lower semicontinuity and construction.

Showing compactness and constructing a suitable sequence is easy. If 1
R2

n
E(mn, Rn)

is bounded, then ∇yḿ
n converges to zero in L2(Σ(1)) and ‖∂xḿ

n‖L2(Σ(1)) is
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bounded. Thus we can find a subsequence, denoted with (mn)n∈N as well,
which converges in the sense of Definition 18 (iii) to a map m0 : R → S

2 with
E0(m) < ∞. Thus we have shown compactness. Moreover Lemma 20 en-
sures that for a sequence (Rn)n∈N converging to zero and m0 ∈ M(0) we can
construct a recovery sequence by setting mn : Σ(Rn) → S

2, (x, y) �→ m0(x).

To show lower semicontinuity let (mn)n∈N, mn ∈ M(Rn) be a sequence that
converges in the sense of Definition 18 to some mlim : R → S

2. Without loss
of generality we can assume Rn <

1
4 and that 1

R2
n
E(mn) is bounded by some

number M ≥ 1. We split mn as in Section 4 into m = m+ m̃. The Poincaré
inequality yields

EH(m̃) ≤ ‖m̃n‖2
L2(Σ(Rn)) ≤ 16R2

n‖∇ym̃‖2
L2(Σ(Rn)) ≤ 16R4

nM.

Using this estimate we can calculate

1
R2

n

EH(mn, Rn) ≥ 1
R2

n

(
EH(mn, Rn) − 2

√
EH(mn, Rn)EH(m̃n, Rn)

)
≥ 1

R2
n

(
Eσσ(mn, Rn) − 2

√
2EH(m) + 2EH(m̃)

√
EH(m̃)

)
≥ 1

R2
n

Eσσ(mn, Rn) − 3
(
Rn

√
M + 4R2

nM
)

4M

≥ 1
R2

n

Eσσ(mn, Rn) − 24MRn.

To bound Eσσ(mn, Rn) from below we use the Fourier multiplier of Theorem
8 and fix some arbitrary t > 0.

Eσσ(mn, Rn) =
∫

R

g(Rnξ) m̂
n
y (ξ)2 dξ

=
∫

R

g(Rnξ)
(
m̂lim

y (ξ)2 + (m̂n
y −mlim

y )2 + 2m̂lim
y (ξ)

(
m̂

n
y (ξ) − m̂lim

y (ξ)
))

dξ

≥
∫ t

−t
g(Rnt) m̂lim

y (ξ)2 dξ − 2g(0)
∣∣∣∣
∫

R

m̂lim
y (ξ)

(
m̂lim(ξ) − m̂

n
y (ξ)
)
dξ

∣∣∣∣
=
∫ t

−t
g(Rnt) m̂lim

y (ξ)2 dξ − π

∣∣∣∣
∫

R

mlim
y (x)

(
mlim

y (x) −mn
y (x)

)
dx

∣∣∣∣
Since

1
R2

(
Eσσ(my) + ‖∂xmy‖2

L2(Σ(Rn))

)
≤ 1

R2
n

E(mn, Rn) + 24MRn

is bounded, ‖mn
y‖L2(R) is bounded (Lemma 10). Thus mn

y converges weakly
tomlim

y and we have the estimate limn→∞Eσσ(mn, Rn) ≥ g(0)‖mlim‖2
L2([−t,t])

for all t > 0. Letting t tend to infinity we can conclude

lim
n→∞

1
R2

n

EH(mn, Rn) ≥ lim
n→∞

Eσσ(mn, Rn) ≥ π

2
‖mlim‖2

L2(R).
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Moreover, we shurely have

lim
n→∞

1
R2

Eex(mn) ≥ lim
n→∞

π‖∂xmn‖2
L2(R) ≥ π‖∂xm

lim‖2
L2(R),

so limn→∞
1

R2
n

(EH(mn, Rn) + Eex(mn, Rn)) ≥ Ered(mlim), as claimed.

We now determine the minimizer of the reduced problem.

Lemma 21. The minimizer of Ered is unique up to translation and rotation.
It is given by

mmin : R → S
2, x �→ (tanh(x), cosh(x)−1, 0)

and its energy is
√

8π.

Proof. To find minimizers of Ered we parameterize m by the angle θ : Σ →
[0, 1] and set mx = − cos(πθ). Using the Modica Mortola trick, we get

Ered(m) ≥ π

∫
R

(π∂xθ)2 +
1
2

sin2(πθ) ≥ π

∫
R

√
2π | sin(πθ) ∂xθ| ≥

√
8π.

Assume that |∇m| = π|∇θ|, i.e., that the direction my does not change.
Then the first inequality is an equality. Assume moreover that θ is a mono-
tone increasing solution of

∂xθ =
1√
2π

sin(πθ), (12)

then the second inequality is an equality. Such a map is unique up to
translation and rotation and we have

θmin(x) =
2
π

arctan
(
e

x√
2

)
=

2
π

arccos

(
1√

1 + e
√

2x

)
,

mmin(x) =
(
− cos

(
πθmin

)
, sin

(
πθmin

)
, 0
)

=

⎛
⎝tanh

(
x√
2

)
,

1

cosh
(

x√
2

) , 0

⎞
⎠ .

Theorem 22. Let mmin be as in Lemma 21. For each positive sequence
(Rn)n∈N converging to zero and each sequence of minimizers mn ∈ Ml(Rn)
the rescaled energy 1

R2
n
E(mn, Rn) converges to

√
8π. Moreover, there is a

sequence of translations T n such that a subsequence of (T n(mn))n∈N con-
verges, up to a rotation, to mmin in the sense of Definition 18 (iii).
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Proof. For Γ-limits, the following statement is true [DM93, Corollary 7.17,
p.78]: Let (rn)n∈N be a sequence converging to zero and let mn be the
minimizer of the full problem for rn. Then every accumulation point of
(mn)n∈N is a minimizer of the reduced problem. Moreover the full energy
of mn converges to the reduced energy of m. This statement implies the
theorem directly.

6 A lower bound for the energy scaling for R → ∞

In this section we look at the scaling of EMl
for big radii. We find a lower

bound, which will be complemented by an upper bound on EVl
in the next

section. To simplify the calculations, instead of the functional E we consider
the functional

I : M(1) × R
+ → R, I(m,R) := Eex(m) +R2EH(m).

Then we have for all m ∈ M(1) the relation E(mR, R) = RI(m,R), where
mR := m(Rx,Ry).

Theorem 23. There are constants C, R0 ∈ R
+ such that for all R ≥ R0

inf
m∈Ml(1)

I(m,R) ≥ CR
√

ln(R), i.e., EMl
≥ CR2

√
ln(R).

Proof. Let R ≥ R0 := 2e and let m be a minimizer of I(·, R). We define

m : R → R
3, x �→ 1

|D1|

∫
D1

m(x, y) dy, m : R → R
3, x �→ 1

R

∫ R
2

−R
2

m(x+t) dt,

a := sup
{
x ∈ R : mx(x) ≤ − 1√

2

}
, b := inf

{
x > a : mx(x) ≥

1√
2

}
,

and set m̃ := m−m, d := b− a. We have d ≥ R
2 since otherwise

mx(b) −mx(a) =

(
1
R

∫ b+ R
2

b
mx

)
−
(

1
R

∫ a

a−R
2

mx

)

≤ 1
2

+
1
2
<

2√
2

= mx(b) −mx(a).

We distinguish three different cases.

Case 1: Eex ≥ d
200 . We use a test function to show EH ∼ ln(d)

d and com-
plement the estimate with the lower bound on the exchange energy. We
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define

φ′1 : R → R, x �→ 1
R

11[a−R
2

, a+ R
2 ](x) −

1
R

11[b−R
2

, b+ R
2 ](x),

φ1 : R → R, x �→
∫ x

−∞
φ′2(t) dt,

ψ1 : R
2 → R, y �→ 11D1(y) + 11Dd\D1

(y)
ln (d/|y|)

ln(d)
.

Then
‖φ1‖2

L2(R) ≤ d, ‖φ′1‖2
L2(R) ≤ 2

R

‖∇yψ1‖2
L2(R2) =

∫ d

1

2πr
ln(d)2 r2

dr =
2π

ln(d)
,

‖ψ1‖2
L2(R2) =

∫ d

1
2πr

(
ln(1

rd)
ln(d)

)2

dr =
2πd2

ln(d)2

∫ 1

1
d

r ln(r)2 dr ≤ πd2

2 ln(d)2
.

Let u be the weak solution of ∆u = divm. Then we have for all differentiable
functions f : R

3 → R the equality
∫
Σm · ∇f =

∫
R3 ∇u · ∇f . So we can

calculate
√

2π = π
(
mx(a) −mx(b)

)
=
∫

Σ
mx φ

′
1 ψ1

=
∫

Σ
mx φ

′
1 ψ1 + φ1 (∇yψ1) ·my =

∫
Σ
∇(φ1 ψ1) · ∇u

≤
√

‖φ′1‖2
L2(R)

‖ψ1‖2
L2(R2)

+ ‖φ1‖2
L2(R)

‖∇yψ1‖2
L2(R2)

‖∇u‖L2(R3)

≤
√
π

R

d2

ln(d)2
+

2πd
ln(d)

‖∇u‖L2(R3).

Since d ≥ 1
2R ≥ e and Eex ≥ d

200 we have

I(m,R) ≥ inf
d≥R

2

(
d

200
+R2

(
1

2πR
d2

ln(d)2
+

d

π ln(d)

)−1
)

≥ 1
2

min

{
inf

d≥R
2

(
d

200
+ 2πR3 ln(d)2

d2

)
, inf

d≥R
2

(
d

200
+ πR2 ln(d)

d

)}

≥ 1
2

min

⎧⎨
⎩ inf

d≥R
2

⎛
⎝ d

200
+ 2πR3 ln

(
R
2

) 3
2

d2

⎞
⎠ , inf

d≥R
2

(
d

200
+ πR2 ln

(
R
2

)
d

)⎫⎬
⎭

=
1
2

min

{
3
20

( π
10

) 1
3
R

√
ln
(
R

2

)
, 2
√

π

200
R

√
ln
(
R

2

)}

≥ 1
40
R
√

ln(R).
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Case 2: Eex <
d

200 and ‖m̂y‖2
L2(Σ) ≥

1
5d. We prove a bound on ‖m̂y‖L2([−1,1])

and use Theorem 8 (i). For the Fourier transform m̂y and the Fourier
transform of the derivative ξ m̂y we have the inequality

‖ξ m̂y‖2
L2(Σ) ≤ 1

200
d ≤ 1

40
‖m̂y‖2

L2(Σ),

so ‖m̂y(ξ)‖2
L2[−1,1] ≥

(
1 − 1

40

)
‖my‖2

L2(R). Using 8 (i) we get

Eσσ(my) ≥ ‖m̂y(ξ)‖2
L2[−1,1] ≥ 0.195 d.

The Poincaré inequality yields ‖m̃‖2
L2(Σ) ≤

16
200d, thus

I(m,R) ≥ R2EH(m) ≥ R2
(√

EH(m) − ‖m̃‖L2(Σ)

)2

≥ R2d(
√

0.195 −
√

0.08)2 ≥ 1
40
R2d ≥ 1

80
R3.

Case 3: Eex < d
200 and ‖my‖2

L2(Σ) ≤ 1
5d. First we show that

∫ b+ R
2

a−R
2

m2
x is

large. For all x ∈ R we have

1 =
1
π

∫
D1

|m(x) + m̃(x, y)|2 dy = |m(x)|2 +
1
π
‖m̃(x, ·)‖2

L2(D1).

Since ‖m̃‖2
L2(Σ) ≤

16
200d, in particular

∫ b+ R
2

a−R
2

m2
x ≥ R+d− 1

π
‖my‖2

L2(Σ)−
1
π
‖m̃‖2

L2(Σ) ≥ R+d− d

5π
− 16d

200π
≥ R+0.9d.

Thus there is at least one x0 ∈ [a, b] such that
∫ x0+

R
2

x0−R
2

m2
x ≥ 0.9R. We

proceed similar to Case 1. We set

φ′2 : R → R, x �→ 1
R

11[x0−R
2

, x0+ R
2

](x) (mx(x) −mx(x0)),

φ2 : R → R, x �→
∫ x

−∞
φ′2(t) dt,

ψ2 : R
2 → R, y �→ 11D1(y) + 11DR\D1

(y)
ln (R/|y|)

ln(R)
.

Then

|φ′2| ≤
2
R
, φ2 ≡ 0 on R \

[
x0 −

R

2
, x0 +

R

2

]
, |φ2| ≤ 1.
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‖∇yψ1‖2
L2(R2) =

2π
ln(R)

, ‖ψ1‖2
L2(R2) ≤ πR2

2 ln(R)2
.

We have

π (0.9 − 0.5) ≤ π

R

∫ x0+
R
2

x0−R
2

mx(x)2 −mx(x0)2 dx

=
π

R

∫ x0+ R
2

x0−R
2

mx(x) (mx(x) −mx(x0)) dx

=
∫

Σ
mxφ

′
2 ψ2 =

∫
Σ
m · ∇(φ2ψ2) =

∫
R3

∇u · ∇(φ2ψ2)

≤
√

‖φ′2‖2
L2(R)

‖ψ‖2
L2(R2)

+ ‖φ2‖2
L2(R)

‖∇yψ‖2
L2(R2)

‖∇u‖L2(R3)

≤
√

2πR
ln(R)2

+
2πR
ln(R)

‖∇u‖L2(R3) ≤
√

4π
R

ln(R)
‖∇u‖L2(R3).

Thus

I(m,R) ≥ R2‖∇u‖2
L2(R3) ≥ π0.42

4
R ln(R) ≥ 1

10
R ln(R).

In all three cases we have the inequality I(m,R) ≥ 1
40 R

√
ln(R) for R ≥

2e.

7 The vortex wall - an example of a set of func-
tions with low energy for big radii

In this section we show upper and lower bounds for the energy EVl
. We see

that for large radii the upper bound has the same scaling as the lower bound
for EMl

. This shows that this scaling is indeed optimal and that for large
radii the energy of the minimizers in Vl is at most a constant factor larger
than the energy of the minimizers in Ml. For small radii EVl

scales like R
and is thus much larger than EMl

∼ ETl
∼ R2.

Because of the symmetry of the functions m ∈ V, we use spherical coordi-
nates x, r, φ in the domain and polar coordinates θ : Σ → [0, 1], γ : [0, π] in
the image,

p =

⎛
⎝ x

y1

y2

⎞
⎠ =

⎛
⎝ x

r cosφ
r sinφ

⎞
⎠ , m =

⎛
⎝ mx

my1

my2

⎞
⎠ =

⎛
⎝ − cos(πθ)

sin(πθ) cos γ
sin(πθ) sin γ

⎞
⎠ .

For m ∈ V we have γ = φ+ π
2 , so m is uniquely determined by the angle θ.

The exchange energy is

‖∇m‖2
L2(Σ) =

∫
Σ

1
|y|2 sin2(πθ(p)) + (π ∂xθ(p))2 + (π∇yθ(p))2 dp.

25



7.1 Bounds on EVl
for small radii

The following Theorem gives upper and lower bounds for EVl
that are valid

for all R > 0. However, they are reasonably sharp only for small R.

Theorem 24. We have

8π R ≤ EVl
≤ 12π R+ 2π R3.

Proof. Set

E1(θ) :=
∫

Σ
π2(∂xθ)2 +

1
r2

sin2(πθ),

Using the Modica Mortola trick, we find for all functions θ : Σ → [0, 1] with
limx→−∞ θ(x, y) = 0 and limx→∞ θ(x, y) = 1

E1(θ) ≥
∫

Σ

2π
r
| sin(πθ) ∂xθ| ≥

∫ R

0

∫ ∞

−∞
4π ∂x(cos πθ) dx dr = 8π R.

(13)
In particular we have E(m) ≥ 8πR for all m ∈ Vl.

A function θ fulfills equation (13) with equality if and only if it is a monotone
increasing solution of

∂xθ =
1
πr

sin(πθ).

This solution is unique up to translation. It is given by

θ1(x, r) :=
2
π

arctan(e
x
r ).

Let m1 ∈ Vl be the magnetisation corresponding to θ1. We calculate E(m1).
Since

|∂rθ1(x, r)| =
2x e−

x
r

πr2 (1 + e−
2x
r )

≤ 2x
πr2

e
−|x|

r ,

we have

∫
Σ
π2(∂rθ1)2 ≤

∫ R

0

∫ ∞

−∞
2π3r

(
2x e

−|x|
r

πr2

)2

= 4π R.

Finally, using Lemma 5, we get

EVl
≤ E(m1) ≤ E1(θ1) +

∫
Σ
π2(∂rθ1)2 + Eρρ(m) ≤ 12πR + 8π2R3.
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7.2 An upper bound on EVl
for big radii

In this subsection we use a family of maps mR
α ∈ Vl(R) and show that for

an appropriate choice of α and large R we have the estimate E(mR
α ) ≤

C R2
√

ln(R).

First, we estimate an integral over a cylindrical surface.

Lemma 25. For r, l ∈ R
+, with l ≥ r, and p := (x, y) with |y| ≥ r and

Zr,l :=
{
(x′, y′) ∈ [−l, l] × ∂Dr

}
we have ∫

Zr,l

1
|p− p′|dp

′ ≤ 2π2r

(
1 + ln

(
1
r
l

))
.

Proof. The Lemma is shown by direct calculation, for details see [Küh].

We now set

θα : R ×D1 → R θα(x, r) :=

⎧⎪⎨
⎪⎩

0 if x < −α
√
r

0.5 + x
2α

√
r

if − α
√
r ≤ x ≤ α

√
r

1 if x > α
√
r,

let mα ∈ Vl(1) be the rotationally symmetric magnetization corresponding
to θα and define mR

α : Σ(R) → S
2, (x, y) �→ mα

(
x
R ,

y
R

)
. See Figure 7.2 for

a plot of θ1. Note that mR
α has a square root type singularity and that the

size of the transition region is Rα.

Theorem 26. For R ≥ e and α0 := R
√

ln(R) we have

EVl
≤ E(mR

α0
) ≤ 38R2

√
ln(R).

Proof. Let I be as in Section 6,

I : M(1) × R
+ → R, I(m,R) := Eex(m) +R2EH(m).

Then E(mR
α , R) = RI(mα, R). First, we estimate I(mα) for general α ≥ 1

and then choose a suitable α0. According to Lemma 4 we have

Eρρ(mα) =
∫

Σ
uα(p)ρα(p) dp =

∫
Σ

∫
Σ

ρα(p)ρα(p′)
4π|p− p′| dp′ dp

=
1
2π

∫
Σ

∫ |y|

0

∫
∂Dt

∫
R

ρα(x′, y′) ρα(p)
|(x′, y′) − p| dx′ dy′ dt dp.

Since ρα = divmα = ∂x(mα)x, we have

ρα(x′, r′) =

⎧⎨
⎩

π

2α
√

|y′|
sin
(

πx′

2α
√

|y′|

)
≤ π

2α
√

|y′|
if |x′| < α

√
|y′|

0 otherwise.
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Figure 3: Contour plot of the function θ1

Using this estimate and applying Lemma 25 with l = α
√
r′ yields

Eρρ(mα) ≤ 1
2π

∫
Σ
ρα(p)

∫ |y|

0

∫
∂Dr′

∫ α
√

r′

−α
√

r′

π

2α
√
r′

1
|(x′, y′) − p| dx

′ dy′ dr′ dp

≤ 1
2π

∫
Σ
ρα(p)

∫ |y|

0

π

2α
√
r′

2π2r′
(

1 + ln

(
α
√
r′

r′

))
dr′ dp

=
π2

2α

∫
Σ
ρα(p)

∫ |y|

0

√
r′
(
1 + ln(α) − ln(

√
r′)
)
dr′ dp

≤ π2

2α

∫
Σ
ρα(p)(2 + ln(α)) dp ≤ π3

α
(2 + ln(α)).

The exchange energy is

Eex(mα) =
∫

Σ
π2(∂xθα)2 + π2(∇yθα)2 +

1
r2

sin2(πθα) dp

=
∫ 1

0
2πr
∫ α

√
r

−α
√

r

π2

4α2r
+ π2

( x
4α

r−
3
2

)2
+

1
r2

sin2

(
πx

2α
√
r

)
dx dr

=
∫ 1

0

π3

α

√
r +

π3

8α2
r−2 2α3√r3

3
+

2πα
√
r

r
dr

=
2π3

3α
+
π3α

6
+ 4πα.
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For R > e we choose α := R
√

lnR. Then ln(α) ≤ 2 ln(R) and

Eρρ(mα) ≤ π3

R
√

ln(R)
(2 + 2 ln(R)) ≤ 4π3

e2
R
√

ln(R) ≤ 17R
√

ln(R),

Eex(mα) ≤ 2π3

3R
√

ln(R)
+
(
π3

6
+ 4π

)
R
√

ln(R) ≤ 21R
√

ln(R)

Thus
I(mα, R) ≤ 38R

√
ln(R), E(mR

α ) ≤ 38R2
√

ln(R).

8 The Fourier multiplier

For functions that are constant on the cross section, we use a partial Fourier
transform to find estimates for Eσσ and Eρρ. As in section 3, we view E,
Eρρ and Eσσ not only as functionals on M but also on {f : R → R

3}.
As before we apply the Fourier transformation only to the first argument of
a function. For all functions f : R × A → R

n for which f(·, a) lies in L1(R)
for all a ∈ A, we define

f̂(ξ, a) := F(f)(ξ, a) :=
1√
2π

∫ ∞

−∞
f(x, a)e−iξx dx.

We generalize this formula in the usual way to functions f with f(·, a) ∈
L2(R). With the above normalization we have ‖f(·, a)‖L2 = ‖f̂(·, a)‖L2 . We
denote the inverse Fourier transform of a map g : R×A→ R

n by F−1(g) = ǧ.

We now formally Fourier transform the defining equations for u. In cylin-
drical coordinates the formal Fourier transform of equation (7) and (8) is

−ξ2vσ + ∂rrvσ +
1
r
∂rvσ +

1
r2
∂φφvσ = 0 if r �= R (14)

lim
r↘R

∂rvσ(ξ, r, φ) − lim
r↗R

∂rvσ(ξ, r, φ) = −σ̂(ξ,R, φ), (15)

the formal Fourier transform of equation (6) in cylindrical coordinates is

−ξ2v + ∂rrvρ +
1
r
∂rvρ +

1
r2
∂φφvρ = ρ̂. (16)

The next Lemma clarifies in which sense vσ and vρ are the Fourier transforms
of uσ and uρ, and allows us to calculate Eρρ and Eσσ in Fourier space.

Lemma 27. Let f : {(ξ, y) ∈ R × R
2} → R be a function such that for all

y ∈ R
2 the map f(·, y) is in L2(R), and let g : {(x, y) ∈ R × R

2} → R be
such that for all y ∈ R

2 we have g(·, y) = F−1(f(·, y)).
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If ξf ∈ L2(R3) and ∇yf ∈ L2(R3) then, in the sense of equality in L2(R3),
∂xg = F−1(iξ f) and ∇yg = F−1(∇yf). In particular we have

‖∇g‖2
L2(R3) = ‖ξf‖2

L2(R3) + ‖∇yf‖2
L2(R3).

If ξf �∈ L2(R3) or ∇yf �∈ L2(R3) then ∇g �∈ L2(R3).

Proof. The methods of the proof are standard, details can be found in [Küh].

In the next lemma and the subsequent corollary we will determine the
Fourier transform of uσ. We use Bessel functions to solve the differen-
tial equations (14) and (15). Let Ik and Kk denote the modified kth Bessel
functions

Ik(x) = e
−πki

2 Jk(ix), Kk(x) =
πi

2
e

πi
2 H

(1)
k (ix),

where Jk is the kth Bessel function of first kind and H
(1)
k is the kth Hankel

function of first kind. In particular both, Ik and Kk, are solutions of the
differential equation

r2∂rru+ r∂ru− (r2 + k2)u = 0.

The function Ik is continuous in zero and Kk vanishes at infinity.

Lemma 28. Let my : R → {0} ×R
2 be a map, set mκ := my ·�eκ where κ is

the angle between the unit vector �eκ and �ey1 , and set

vκ : R × R
+ × [0, 2π[→ R,

(ξ, r, φ) �→
{
m̂κ(ξ)R K1(|ξ|R) I1(|ξ|r) cos(φ− κ) if r ≤ R

m̂κ(ξ)R I1(|ξ|R)K1(|ξ|r) cos(φ− κ) if r > R
(17)

If my is square integrable with my = mκ�eκ, then for all ξ ∈ R the map vκ(ξ, ·)
is continuous in R

2, differentiable in R
2\∂DR and fulfills the equations (14)

and (15).

Proof. Simple calculation shows that vκ is fulfills the equation (14) for r �= R
and is continous at r = R. Using the differention rules for Bessel functions
and the identity

K1(t)(I0(t) + I2(t)) + I1(t)(K0(t) +K2(t)) =
2
t

(18)

we see that (15) is fulfilled.

30



Corollary 29. Let the notation be as in Lemma 28 and set v := v0 +
vπ. For all my ∈ L2(R, {0} × R

2) the map v(ξ, ·) is continuous in R
2 and

differentiable in R
2 \ ∂DR. The map v fulfills the equations (14) and (15).

Moreover v(·, y) is in L2(R) for all y ∈ R
2 and both ξv and ∇yv are in

L2(R3). The map u := v̌ fulfills (4) and we have

Eσσ(my) =
∫

R3

|∇yv0|2 + ξ2|v0|2 +
∫

R3

|∇yvπ|2 + ξ2|vπ|2. (19)

Proof. Note that Eσσ(v) = Eσσ(v0) + Eσσ(vπ) (Lemma 7 (ii)). The state-
ments now follow from Lemma 28 and direct calculation.

We now use the explicit representation of ûσ to find upper and lower bounds
on the Fourier multiplier of Eσσ.

Proof of Theorem 8 (i). Using the notation of Lemma 28 we define

Gin(κ, ξ) :=
∫ R

0

∫ 2π

0
r|ξvκ|2 + r|∂rvκ|2 +

1
r
|∂φvκ|2 dφ dr

= |m̂κ(ξ)|2R2ξ2K1(|ξ|R)2
∫ R

0

∫ 2π

0
cos2(φ− κ) r(

1
4
(I0(|ξ|r) + I2(|ξ|r))2 + I1(|ξ|r)2

)
+ sin2(φ− κ)

1
rξ2

I1(|ξ|r)2 dφ dr

= |m̂κ(ξ)|2R2ξ2K1(|ξ|R)2
∫ R

0
πr

(
1
2
I0(|ξ|r)2 + I1(|ξ|r)2 +

1
2
I2(|ξ|r)2

)
dr

= R2|m̂κ(ξ)|2 π
2
|ξ|R K1(|ξ|R)2 (I0(|ξ|R)I1(|ξ|R) + I1(|ξ|R)I2(|ξ|R))

Here we have used the recurrence relations for Bessel functions and the
equalities

∂t(tI0(t)I1(t)) = tI0(t)2 + tI1(t)2, ∂t(tI1(t)I2(t)) = tI1(t)2 + tI2(t)2

Similarly we can prove

Gout(κ, ξ) :=
∫ ∞

R

∫ 2π

0
r|ξvκ|2 + r|∂rvκ|2 +

1
r
|∂φvκ|2 dφ dr

= R2|m̂κ(ξ)|2 π
2
|ξ|R I1(|ξ|R)2 (K0(|ξ|R)K1(|ξ|R) +K1(|ξ|R)K2(|ξ|R)) .

Thus we have Eσσ(my) = R2
∫

R
|m̂y(ξ)|2g(ξR) dξ with

g(t) :=
π

2
|t|K1(|t|)I1(|t|) (K1(|t|)(I0(|t|) + I2(|t|)) + I1(|t|)(K0(|t|) +K2(|t|)).

Now (18) yields g(t) = πK1(|t|)I1(|t|).
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We now consider Eρρ. Again we first give an explicit representation of ûρ

and then find estimates for the Fourier multiplier.

Lemma 30. Let mx : R → R be a function such that ρ := ∂xmx is in L2(Σ)
and set

v : R × R
+ × [0, 2π[→ R,

(ξ, r, φ) �→
{

ρ̂
ξ2 (|ξR|K1(|ξ|R) I0(|ξ|r) − 1) if r ≤ R
ρ̂
ξ2 |ξR| I1(|ξ|R)K0(|ξ|r) if r > R

(20)

Then v(ξ, ·) is continuously differentiable and v is a solution of (16). The
map v(·, y) is in L2(R) for all y ∈ R

2. If both ξv and ∇yv are in L2(R3), the
map u := v̌ is a solution of (6) and we have Eρρ(mx �ex) =

∫
R

∫
R2 ξ

2|v|2 +
|∇yv|2 dy dξ. Otherwise Eρρ(mx) is infinite.

Proof. Simple calculation shows that v is is a solution of (16) for r �= R and
continuous at r = R. To see that ∂rv is continous at r = R we use the differ-
ention rules for Bessel functions and the identity I0(t)K1(t)+K1(t)I0(t) = 1

t .

Proof of Theorem 8 (ii). Using the notation of Lemma 28 we define

Hin(ξ) :=
∫ R

0
2πr
(
|∂rv(ξ, r)|2 + |ξv(ξ, r)|2

)
dr

= R2 ρ̂(ξ)
2

ξ2
2π
∫ R

0
r

(
ξ2K1(|ξ|R)2I1(|ξr|)2 +

(
ξK1(ξR)I0(|ξr|) −

1
R

)2
)
dr

= R4ρ̂(ξ)2
2π

(ξR)2

(
|ξ|RK1(|ξ|R)2I1(|ξ|R)I0(|ξ|R) − 2K1(ξR)I1(|ξ|R) +

1
2

)
Hout(ξ) :=

∫ ∞

R
2πr
(
|∂rv(ξ, r)|2 + |ξv(ξ, r)|2

)
dr

= R2ρ̂2 2πI1(|ξR|)2
∫ ∞

R

(
rK1(|ξr|)2 + rK0(|ξr|)2

)
dr

= R4ρ̂2 2π
|ξ|R I1(|ξ|R)2K0(|ξ|R)K1(|ξ|R)

Thus we have Eρρ(mx�ex) = R4
∫

R
|m̂y(ξ)|2h(ξR) dξ with

h(t) := 2π
(

1
2t2

+K1(|t|)I1(|t|)
(

1
|t|I0(|t|)K1(|t|) +

1
|t|I1(|t|)K0(|t|) −

2
t2

))
=

π

t2
(1 − 2K1(|t|)I1(|t|)) .
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