Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

Hierarchical Matrix Techniques for a Domain
Decomposition Algorithm

by
Jeffrey Ovall

Preprint no.: 61 2006

Hierarchical Matrix Techniques for a Domain
Decomposition Algorithm

JEFFREY S. OVALL*

July 11, 2006

Abstract

In this paper we investigate the effectiveness of hierarchical matrix techniques
when used as the linear solver in a certain domain decomposition algorithm. In
particular, we provide a direct performance comparison between an algebraic
multigrid solver and a hierarchical matrix solver which is based on nested dis-
section clustering within the software package PLTMG.

AMS Subject Classifications: 65F10, 65F30, 65F50, 656N30, 656N55
Keywords: hierarchical matrices, domain decomposition, finite elements, nested dis-
section

1 Introduction

The purpose of this paper is see how the current state of the art in H-matrix techniques
compares with an established algebraic multigrid solver in the context of a domain
decomposition algorithm. These comparisons are done within the software package
PLTMG [1], which has been modified so that it can use linear solution techniques
available in the H-Matrix Library (http://www.hlib.org) in addition to its native
multigrid/cg linear solver. The problems under consideration arise from piecewise
linear finite elements for second order linear elliptic PDEs in two spatial dimensions.
Because the relevant theory has been developed and presented elsewhere (we will give
references), here we will give only brief descriptions of the aspects of these ideas which
are important to the present discussion.

The remainder of this paper is structured as follows. In Section 2 we describe
the Bank-Holst parallel adaptive meshing paradigm and a domain decomposition
algorithm which was designed with this paradigm in mind. We describe the multigrid
and hierarchical linear solvers which we compare within the domain decomposition
algorithm in Section 3. Numerical comparisons are provided in Section 4, followed by
a few concluding remarks in Section 5.

*Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany.

2 The Bank-Holst Parallel Paradigm and the Bank-
Lu Domain Decomposition Algorithm

The Bank-Holst parallel adaptive meshing paradigm, presented in detail in [2, 3], was
designed to keep communication costs low between nodes in a cluster and to take
advantage of existing sequential adaptive software such as PLTMG without the need
for extensive investment in recoding for use in a parallel environment. We describe it
in brief:

Step 1: Load Balancing. A “small” problem is solved on a coarse mesh, and
a posteriori error estimates are used to partition the mesh into p subdomains,
one for each processor. Each subdomain has approximately the same estimated
error, although subdomains may vary considerably in terms of size and numbers
of elements.

Step 2: Adaptive Meshing. Each processor is provided the complete coarse
mesh and instructed to sequentially solve the entire problem, with the stip-
ulation that its adaptive refinement should be limited largely to its assigned
subdomain. The target number of elements and grid points for each problem
is the same. At the end of this step, the mesh on each processor is regularized
at the boundary of its assigned subdomain (its “fine” region) so that a global
fine mesh formed by piecing together the fine portions of the meshes on each
processor would be conforming.

Step 3: Global Fine Solution. An initial guess for the global fine solution is
formed from the fine portions of solutions computed on each processor. We note
that this initial guess is multi-valued along the interfaces between subdomains.
The final finite element solution is computed using the domain decomposition
solver described below.

The domain decomposition algorithm, developed by Bank and Lu with the same
philosophy of keeping communication costs low and taking advantage of existing se-
quential software, is described in detail in [4]. There is a natural saddle point for-
mulation of the global fine problem based on a mortar finite element discretization
(formally an additive Schwarz method). Local versions of this system can be formu-
lated on each processor, and then reduced “by hand” to systems involving the local
stiffness matrices which are already computed on each processor. The right-hand side
of the local system on a given processor involves residuals associated with the inte-
rior of its assigned subdomain and the global interface between all subdomains. Part
of this interface residual is computed locally, but the rest of it is communicated via
MPI from the other processors. An iteration of the domain decomposition procedure
involves solving the local system, updating the global fine solution, and recomputing
and exchanging the interface residuals. The key point for our discussion is that po-
tentially several systems involving the same stiffness matrix must be solved on each
Processor.

3 The Linear Solvers

The algebraic multigrid solver under consideration is that of Bank and Smith [5]. Our
comparisons are with the implementation of this linear solver in PLTMG. We will not
discuss the details of the solver here, but merely state a few pertinent points helpful for
those who already have a general familiarity with such solvers. The multigrid iteration
is used as a preconditioner for a composite step conjugate gradient or biconjugate
gragient iteration - depending on the whether the stiffness matrix is symmetric or
not. The smoother used in each multigrid step is an ILU-factorization with drop
tolerance. The various parameters have been tuned with an eye toward robustness.
The multigrid iteration in combination with the CG iteration is what we refer to as
the AMG solver in Section 4.

Because hierarchical matrix (or H-matrix) techniques are not yet as widely known
as multigrid techniques, we give some of the basic ideas before discussing how we
specifically use them here. Some of the key papers which lay much of the theoretical
and practical foundations are [6, 11, 12, 14, 13]. For a fairly recent systematic treat-
ment of the motivations, theory, applications and technical details of algorithms we
refer the reader to [7]. A hierarchical matrix is so-called because it possesses a hier-
archical block structure. This hierarchy is determined by one of various techniques
for generating a tree such that its root consists of indices for all of the degrees of
freedom, and at each subsequent level of the tree the sons of a given node represent
a splitting of the father’s index set. Various strategies exist for splitting the index
sets at each level of the tree, and these are referred to in the literature as clustering
techniques. The tree is called a cluster tree and the nodes are called clusters. The
actual hierarchical matrix consists of relatively small dense matrix blocks which are
stored in full matrix format, and relatively large matrix blocks which are either sparse
in the usual sense or data-sparse in the sense that they can be well-approximated by
an outer product of low-rank matrices, M = R;RY where R; € R™** R, ¢ R*"*F
rank(R;) = rank(R2) = k < min(m, n). In fact, the large low-rank blocks are stored
in precisely this format. Computations such as matrix inversion and triangular fac-
torization are performed in a way that preserves this structure, with almost linear
complexity.

The general strategy of nested dissection for producing an efficient ordering of a
sparse stiffness matrix was introduced by Alan over 30 years ago [10] and has been
investigated in the context of sparse or incomplete LU-factorizations (see [9] and the
references therein, for example). The idea is to decouple the domain € into two
subdomains €1, 25 by an interface I" so that the basis functions associated with
vertices in one subdomain are supported outside of the other. For piecewise linear
elements in R2, the interface is a curve. Unknowns associated with ©; are numbered
first, then 25 and finally I'. This procedure is done recursively on the subdomains until
there is some suitably small number of unknowns associated with each subdomain at
that level of dissection. Le Borne, Grasedyck, and Kriemann [15, 8] have modified
this strategy slightly for use in the H-matrix framework, and have also investigated
the performance of triangular factorizations in this context. The difference for the
‘H-matrix version is that interface clusters are also split, so that blocks of the stiffness

IURTEN

Figure 1: At left, the first four levels of a nested dissection cluster tree - circles
represent (sub)domain clusters and squares represent interface clusters. At right,
the structure of the corresponding hierarchical matrix - empty regions represent zero
blocks and shaded regions represent blocks which are low rank blocks or full matrix
blocks (if they are sufficiently small), or have additional hierarchical structure.

matrix associated with interface unknowns can be treated hierarchically - allowing
for a more data-sparse representation. The first few levels of a cluster tree based
on nested dissection are shown in Figure 1, together with the hierarchical matrix
structure at that level of resolution.

In principle the method of splitting a (sub)domain is arbitrary, but storage re-
quirements and performance of algorithms are reduced if, for example, the number of
interface unknowns is large with respect to the number of unknowns in either of its
associated subdomains. The strategy chosen for this paper is based on the fact that,
on each processor, its assigned subdomain will be refined much more heavily than the
rest of the domain. So our first partition separates this subdomain from the rest of
the domain. Under the (perhaps fragile) assumption that the meshes within both sub-
domains are quasi-uniform, all subsequent partitions are done based on geometrically
bisecting the subdomain in either the z- or y-direction, in whichever one the length
of the subdomain is larger. In Section 4 the linear solution technique labelled H LU
uses an ‘H-LU or Cholesky factorization under this clustering as a preconditioner for
GMRES.

4 Numerical Experiments

In this section we present numerical experiments on three test problems, thereby
demonstrating the general usefulness of the H LU-solvers in the domain decomposition
algorithm. Experiments are done on a cluster of Dual AMD Opteron 250s with 2.4
GHz CPU clock rate, 4GB RAM and a 2x Gigabit Ethernet interconnect. For each of
the three problems two series of experiments are done. The average processor times
(wall time, in seconds) for the global domain decomposition solver are reported in
Table 1. In the first series of experiments the problem is solved on a “coarse” mesh
of 10 thousand vertices and error estimates are used to partition the domain into

p=2,4, 8, 16 and 32 subdomains. Then each of the p processors continues to solve
and adaptively refine (primarily in its assigned subdomain) until a final mesh size N
of 100 thousand vertices are reached (before mesh regularization at the interfaces).
In the second series of experiments, the number of processors is held fixed at 16, and
the size of the coarse problem varies between 5 and 25 thousand; then each processor
continues until the problem size is increased by a factor of 10. We are interested in
how the solve times of both approaches compare with each other and how they scale
with respect to p and N.

We now describe the three test problems. The Simple Problem is to solve
—Au = f, on the unit square with zero Dirichlet conditions on all four edges, and
right-hand side chosen so that the solution is u = (1 —z)y(1 —y). The Convection-
Reaction-Diffusion Problem is to solve —2(ugy + gy + Uyy) + Uz +uy +3u = f
on the square (0,7) x (0,7), with zero Dirichlet conditions on the top and bottom
of the square and Neumann conditions on the left and right. The right-hand side
and Neumann conditions are chosen to match the solution u = e*sin2y. The Lake
Superior Problem is to solve —Awu = 1, with zero Dirichlet conditions on a domain
shaped like Lake Superior. The domain has six holes corresponding to six islands in
the lake. The three domains are pictured in Figure 2 together with their partitions into
16 subdomains based on error estimates computed on a coarse mesh of 10 thousand
unknowns.

For a fixed number of processors, there is roughly a linear relation between the
target problem size N and the actual problem size after interface regularization on
each processor. This is due to the fact that the change (increase) in the total number of
unknowns on a given processor due to the interface regularization is small compared to
the target number of unknowns - in fact, we expect the number of interface unknowns
on a given processor before regularization to be on the order of /N and that this
relation should also hold upon regularization. Therefore, the approximate square root
scaling of solution time with respect to p and the approximate linear scaling with
respect to IV seen in Table 1 for both AMG and HLU are optimal. Additionally, we
note that the solve times for HLU tend to be slightly better.

5 Conclusions

We have demonstrated that H-matrix techniques based on a nested dissection dissec-
tion clustering can be competitive with algebraic multigrid methods in the context of
the domain decomposition solver described in Section 2. The original motivation for
the comparison was that, on each processor, the stiffness matrix remains the same
at each iteration of the DD algorithm for linear problems. So although the set-up
cost for the H — LU preconditioner is larger than that for the AMG preconditioner,
the solve time for each right-hand side is less. Therefore, the set-up cost might be
ameliorated over several DD iterations. In fact, for the problems considered here, no
more than three DD iterations were ever necessary for convergence. This bodes well
for problems where more iterations are necessary - perhaps in cases where subdomains
which are well-separated are nevertheless more strongly coupled due to convection.

Figure 2: The three test problems each partitioned into 16 subdomains based on error
estimates computed on a coarse mesh of 10 thousand unknowns. Clockwise: Simple,
Convection-Reaction-Diffusion, Lake Superior.

Table 1: Average processor time of DD solve (in seconds) with respect to number of
processors/subdomains.

\ | p | 2 4 8 16 32 |

Simple AMG | 13.36 15.08 15.61 17.61 18.06
HLU |11.74 1237 14.44 1598 15.39

Conv-React-Diff | AMG | 17.42 18.49 18.42 20.10 20.65
HLU | 14.06 1537 16.44 1821 19.19

Lake Superior | AMG | 878 9.25 11.56 12.91 14.10
HLU | 895 9.03 11.07 12.06 12.60

| | N [50k 100k 150k 200k 250k |

Simple AMG | 7.69 17.61 29.86 42.55 50.44
HLU | 754 1598 24.61 32.57 41.50

Conv-React-Diff | AMG | 8.38 19.28 3222 47.95 57.83
HLU | 875 1821 2892 38.12 51.33

Lake Superior | AMG | 542 12.71 22.11 29.39 38.97
HLU |6.27 12.06 1853 25.71 32.17

We thank Lars Grasedyck and Ronald Kriemann for very helpful discussions con-
cerning nested dissection in the context of H-matrices, and for assistance with the
use of the H-matrix Library. We also thank Wolfgang Hackbusch for the suggestion
of developing an H-matrix based domain decomposition algorithm for use within the
Bank-Holst paradigm. This paper introduces one realization of this goal - one which
requires little adjustment of existing software.

References

[1] R. E. Bank. PLTMG: A software package for solving elliptic partial differential
equations, users’ guide 9.0. Technical report, University of California, San Diego,
2004.

[2] R. E. Bank and M. Holst. A new paradigm for parallel adaptive meshing algo-
rithms. STAM J. Sci. Comput., 22(4):1411-1443 (electronic), 2000.

[3] R. E. Bank and M. J. Holst. A new paradigm for parallel adaptive meshing
algorithms. STAM Review, 45(2):291-323, 2003.

[4] R. E. Bank and S. Lu. A domain decomposition solver for a parallel adaptive
meshing paradigm. SIAM J. Sci. Comput., 26(1):105-127 (electronic), 2004.

[5] R. E. Bank and R. K. Smith. Mesh smoothing using a posteriori error estimates.
SIAM J. Numerical Analysis, 34:979-997, 1997.

[6]

[10]

[11]

[12]

[13]

[14]

[15]

M. Bebendorf and W. Hackbusch. Existence of H-matrix approximants to the
inverse FE-matrix of elliptic operators with L°°-coefficients. Numer. Math.,
95(1):1-28, 2003.

S. Borm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Lecture Note
21 of the Max Planck Institute for Mathematics in the Sciences, 2003.

S. L. Borne, L. Grasedyck, and R. Kriemann. Parallel black box domain decom-
position based H-LU preconditioning. Math. Comp., submitted Jan. 2005.

I. Brainman and S. Toledo. Nested-dissection orderings for sparse LU with partial
pivoting. SIAM J. Matriz Anal. Appl., 23(4):998-1012 (electronic), 2002.

A. George. Nested dissection of a regular finite element mesh. STAM J. Numer.
Anal., 10:345-363, 1973. Collection of articles dedicated to the memory of George
E. Forsythe.

L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices.
Computing, 70(4):295-334, 2003.

W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I. Introduction
to H-matrices. Computing, 62(2):89-108, 1999.

W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic: general
complexity estimates. J. Comput. Appl. Math., 125(1-2):479-501, 2000. Numeri-
cal analysis 2000, Vol. VI, Ordinary differential equations and integral equations.

W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. II. Appli-
cation to multi-dimensional problems. Computing, 64(1):21-47, 2000.

S. LeBorne, L. Grasedyck, and R. Kriemann. Domain-decomposition based H-
lu preconditioners. In 16th International Conference on Domain Decomposition
Methods, Lecture Notes in Computational Science and Engineering, New York,
to appear. Springer Verlag.

