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Invertibility and non-invertibility in thin elastic structures

Peter Hornung
∗

Abstract

The nonlinear elastic energy of a thin film of thickness h is given by a func-
tional Eh. Friesecke, James and Müller derived the Γ-limits, as h → 0, of the
functionals h−αEh for α ≥ 3. In this article we study the invertibility proper-
ties of almost minimizers of these functionals, and more generally of sequences
with equiintegrable energy density. We show that they are invertible almost ev-
erywhere away from a thin boundary layer near the film surface. Moreover, we
obtain an upper bound for the width of this layer and a uniform upper bound on
the diameter of preimages. We construct examples showing that these bounds
are sharp. In particular, for all α ≥ 3 there exist Lipschitz continuous low
energy deformations which are not locally invertible.

1 Introduction

This article is motivated by the derivation of asymptotic thin-film theories from three
dimensional elasticity by Friesecke, James and Müller [7, 8]. To simplify the discus-
sion, in this introduction we will focus on plate theory, which was treated in [7]. One
of their results is that the asymptotic deformations - which describe deformations of
the mid-plane of the thin film - belong to the space of W 2,2-isometric immersions.
The starting point of our analysis, Theorem 2 below, shows that such mappings
are Bilipschitz on small subdomains. This raises the question to what extent three
dimensional (3D) thin-film deformations with low bending energy share this invert-
ibility property. More generally, we study this question for 3D deformations whose
bending energy density is equiintegrable, see Definition 1 below. This condition is
satisfied for recovery (or realizing) sequences in the language of Γ-convergence, i.e.
3D deformations v(h) that converge, as the thickness h of the plate converges to zero,
to a limiting 2D deformation v such that their energies converge as well,

1

h3
Eh(v(h)) →

(

Γ − lim
h→0

1

h3
E(h)

)

(v).

A particular kind of recovery sequences are almost minimizing sequences as defined
e.g. in [8].
Apart from the (local) invertibility of the limiting deformations, there is further
evidence suggesting that deformations with equiintegrable bending energy density
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might be invertible: The particular recovery sequences constructed in [7] are contin-
uously differentiable and have deformation gradients uniformly close to SO(3), so
they are locally invertible. Thus there always exist deformations with equiintegrable
bending energy density which are locally invertible. We also recall Pantz’ derivation
[15] of Kirchhoff’s plate theory, which uses John’s estimates [11]. These estimates
require local invertibility, whereas the derivation given in [7] does not need this a
priori assumption on the admissible deformations. One could hope to derive local
invertibility of recovery sequences a posteriori.

In view of Ball’s examples [2], it is not very surprising that one cannot expect point-
wise invertibility: We construct deformations with equiintegrable energy density
which are almost everywhere invertible, but not pointwise invertible. The other
example we give is more interesting: We construct Lipschitz continuous orientation
preserving deformations v(h) with equiintegrable energy density which are not locally
invertible on a nice simply connected set of positive volume near the film surface.
More precisely, for any given sequence of positive numbers εh with limh↓0 εh = 0
there exist v(h) and a set with volume of the order ε3

hh3 consisting of pairs of points
z̄h, z̃h with the same image v(h)(z̄h) = v(h)(z̃h). A fraction of these points satis-
fies |z̄h − z̃h| ≥ εhh. The deformed configuration contains a set of positive volume
consisting of points y whose preimage (v(h))−1(y) has diameter at least εhh. Our
construction only works near the boundary of the film, and the preimage diameters
cannot be increased from o(h) to O(h).
It turns out that this is necessarily so: Our main positive result, Theorem 3 below,
states that deformations with equiintegrable bending energy density are invertible
almost everywhere except for a boundary layer of width o(h) located near the sur-
face of the thin film. It also provides a uniform bound on the diameter of preimages,
which again is o(h). This can be interpreted as some “macroscopic invertibility”.
The examples mentioned earlier show that this theorem is optimal. While the almost
everywhere invertibility away from the boundary follows from topological arguments
and therefore requires det∇v(h) > 0, the bound on the diameter of preimages does
not need this extra hypothesis. In contrast to the assumptions made e.g. in [2] and
in [4], our Theorem 3 does not assume any a priori integral condition or prescribed
boundary behaviour of the admissible deformations. Their invertibility properties
are derived from smallness of the elastic energy alone. This is why the pathology
exhibited by the second example given in Section 5 cannot be excluded.
While in this introduction we have focussed on the bending energy case α = 3, in
the main text we derive similar results for all scalings α ≥ 3, and also here positive
result and counterexamples complement each other quantitatively. Moreover, all re-
sults presented here for thin films also apply to other thin elastic objects, like shells
or rods.

Notation. We write I := (−1
2 , 1

2) and Ih := (−h
2 , h

2 ). We also use the letter I
to denote the identity matrix. We denote the unit basis vectors in R

k by ei. For
z ∈ R

k we define zi := ei · z. We denote by z′ = (z1, z2) the in-plane components
of z = (z1, z2, z3) ∈ R

3. The symbol ∇′ denotes the in-plane gradient, and ∇hy :=
(∂1y, ∂2y, 1

h∂3y). When making statements about the measure of a set A ⊂ R
n, we

will always mean its n-dimensional Lebesgue measure, and we will denote it by |A|.
We do not relabel subsequences.
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2 Preliminaries

Throughout this article S ⊂ R
2 denotes a bounded Lipschitz domain. Define the

reference configuration of the thin film of thickness h > 0 as Ωh = S × (−h
2 , h

2 ). Set

Ω = S × (−1
2 , 1

2). A three dimensional deformation v(h) ∈ W 1,2(Ωh; R3) of this film
has the elastic energy

Eh(v(h)) =

∫

Ωh

W (∇v(h)(x)) dx, (1)

with a stored energy function W . As in [8] we assume that W is Borel measurable
with values in [0,∞] and that it satisfies

W ∈ C2 in a neighbourhood of SO(3), (2)

W (F ) = W (RF ) for all F ∈ R
3×3 and all R ∈ SO(3), (3)

W (F ) ≥ C dist2(F, SO(3)) and W (I) = 0. (4)

In addition, we will sometimes assume the following:

W (F ) ≥
1

C
|F |p − C for some C > 0, p > 3 and for all F ∈ R

3×3. (5)

W (F ) = ∞ if detF ≤ 0. (6)

Definition 1. Let hn → 0 and let vn ∈ W 1,2(Ωhn
; R3) be given. Then vn is said to

have α-equiintegrable energy density (with respect to hn) if the sequence

x′ 7→

∫ hn
2

−hn
2

W
(

∇vn(x′, x3)
)

hα
n

dx3

is equiintegrable in L1(S).

To motivate this definition, consider e.g. the case α = 3. It was shown in [7] that the
Γ-limit of h−3Eh is given by Kirchhoff’s functional, which we denote by I0. The set
of admissible limiting deformations, i.e. of those v : S → R

3 for which I0(v) < ∞,
agrees with

W 2,2
iso (S; R3) :=

{

u ∈ W 2,2(S; R3) : ∇u ∈ O(2, 3) a.e.
}

,

where O(2, 3) = {F ∈ R
3×2 : F T F = I}. A recovery sequence for some given

v ∈ W 2,2
iso (S; R3) is a sequence v(h) ∈ W 1,2(Ωh; R3) converging to v in W 1,2(S; R3) in

the sense of vertical averages and such that, in addition, limh→0
1
h3 Eh(v(h)) = I0(v).

By similar arguments as in [8] Section 7.2, one can prove that recovery sequences
have 3-equiintegrable energy density. For the case α > 3, recovery sequences play
the same role of providing the upper bound-part of the Γ-convergence result, i.e.
they satisfy [8] Theorem 3 (ii). For such sequences it is shown in [8] Section 7.2
that they have α-equiintegrable energy densities. An important kind of recovery
sequences are the α-minimizing sequences as defined in [8].
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3 Local injectivity of W
2,2 isometric immersions

The proof of the following theorem relies on arguments similar to those used in the
proof of Lemma 4.2.8 in [14].

Theorem 2. Let S ⊂ R
2 be a bounded Lipschitz domain. There exist constants

C0, c0 > 0 such that for each u ∈ W 2,2
iso

(S; R3) the following holds: There is a constant
δ0 > 0 such that whenever z̄, z̃ ∈ S satisfy |z̄ − z̃| ≤ δ0, then we have

c0 |z̃ − z̄| ≤ |u(z̃) − u(z̄)| ≤ C0|z̃ − z̄|. (7)

Proof. It is easy to see that there is L > 0 and a curve γ ∈ W 2,∞([0, L];S),
parametrized by arc length, such that γ(0) = z̄ and γ(L) = z̃, such that

L ≤ C0|z̄ − z̃|, (8)

where C0 only depends on S and such that

|γ′ · e1| ≥ c > 0 (9)

for some constant c depending only on S and an appropriate choice of coordinates.
In fact, if the segment z̄z̃ is contained in S then we can choose L := |z̄ − z̃|, choose
coordinates such that z̄ = 0 and z̃ = (L, 0) and define γ(t) := te1. If the segment z̄z̃
is not contained in S then the existence of coordinates and of γ as described above
follows from the Lipschitz property of S, provided that we choose δ0 small enough.
We leave the details to the reader.
For simplicity we invoke a result due to Kirchheim [12] (cf. also [13]) ensuring that
∇u ∈ C0(S; R3×2). So ∇u ∈ O(2, 3) is defined pointwise. The upper bound in (7)
follows from (8) by Jensen’s inequality and the fact that ∇u(x) preserves distances
for all x ∈ S. To prove the lower bound, define Φ(t, z) := γ(t)+(0, z). For simplicity
we extend u such that u ∈ W 2,2(R2; R3), see e.g. [16]. (Note, however, that u is an
isometry only on S, since this property is not necessarily inherited by the extension.
In fact, in general there is no extension preserving the isometry condition, see e.g.
[9].) Set M := 1

L

∫ L
0 ∇u(γ(t)) dt, define the function

h(t, z) := ∇u(Φ(t, z)) −
1

L

∫ L

0
∇u(Φ(s, z)) ds

and set ε := 1
L

∫ L
0 |h(t, 0)|2 dt. By scaling invariant versions of the Trace Inequality

and of Poincaré’s inequality we have (notice that
∫

[0,L]2 h = 0)

ε ≤ C
1

L2

∫

[0,L]2
|h(t, z)|2 dt dz + C

∫

[0,L]2
|∇h(t, z)|2 dt dz

≤ C

∫

[0,L]2
|∇h(t, z)|2 dt dz ≤ C

∫

Φ([0,L]2)
|∇2u(x)|2 dx,

since |det∇Φ(t, z)| = |γ′(t) · e1|. And by (9) this is uniformly bounded from below.
Since |∇2u|2 ∈ L1(R2) the value of ε can be made arbitrarily small by choosing
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δ0 small enough because then L is small by (8). Now dist2(M, O(2, 3)) ≤ |M −
∇u(γ(t))|2. Integrating over (0, L) and dividing by L this gives dist2(M,O(2, 3)) ≤ ε.
Hence, for all ε small enough, the singular values of M are greater than some positive
constant. Therefore we can estimate

c|z̄ − z̃|2 ≤
∣

∣

∣

∫ L

0
Mγ′(t) dt

∣

∣

∣

2

≤ C
∣

∣

∣

∫ L

0
(∇u(γ(t)) − M)γ′(t) dt

∣

∣

∣

2
+ C

∣

∣

∣

∫ L

0
∇u(γ(t))γ′(t) dt

∣

∣

∣

2

≤ C
(

L2ε + |u(z̄) − u(z̃)|2
)

.

By (8), for small ε we can absorb the first term on the right-hand side into the
left-hand side to obtain the lower bound in (7). ¤

4 Invertibility in thin elastic films

The main result of this section is the following theorem.

Theorem 3. Let α ∈ [3,∞), let W satisfy (2, 3, 4, 5). Let hn → 0 and let
vn ∈ W 1,2(Ωhn

; R3) have α-equiintegrable energy density. Then there exists δ > 0
such that the following holds: If S̃ ⊂ S is a Lipschiz subdomain with diam S̃ < δ
and if we set Ω̃hn

:= S̃ × Ihn
and

Ω̃ρ
hn

:= {x ∈ Ω̃hn
: dist(x, ∂Ω̃hn

) > ρhn
α/3},

then we have:

(i) There exists a sequence εn → 0 such that, for all n ∈ N,

sup
y∈vn(Ω̃hn)

diam(vn|Ω̃hn
)−1(y) ≤ εnhn

α/3 (10)

(ii) Assume, in addition, that (6) holds. Then there exists a sequence εn → 0 such
that, for all n ∈ N,

#{z ∈ Ω̃hn
: vn(z) = y} = 1 for almost every y ∈ vn(Ω̃εn

hn
). (11)

Moreover, for all y ∈ vn(Ω̃εn

hn
) the preimage (vn|Ω̃hn

)−1(y) is connected and has

zero volume.

Remarks.

(i) If α > 3 then one can take δ = ∞, S̃ = S and Ω̃hn
= Ωhn

. For α = 3,
easy examples show that the limiting deformations are in general not globally
invertible. So the same must be true for the corresponding 3D deformations.
But by Theorem 2 the limiting deformations are invertible on small subdo-
mains. This is why the constant δ appears in the statement of Theorem 3 and
why it must in general be finite if α = 3.
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(ii) The counterexamples in Section 5 show that the upper bounds on the diameter
of preimages (10) and on the width of the boundary layer in part (ii) of The-
orem 3 are sharp. They also show that the word “almost” cannot be omitted
from (11).

(iii) As e.g. in [2], [4] the coercivity assumption (5) on W restricts admissible
deformations to W 1,p, so cavitation is excluded. In [2] it was shown that
orientation preserving W 1,p-deformations whose boundary values agree with
those of a homeomorphism are one-to-one almost everywhere. In [4] the same
conclusion was obtained replacing the hypothesis on the boundary values by
an integral constraint on the Jacobian of the admissible deformations which
in our notation would read

∫

Ωhn
det∇vn ≤ |vn(Ωhn

)|. In contrast, Theorem 3

requires no such integral constraint and makes no assumptions on the boundary
values. It derives invertibility only from the hypothesis that the deformations
have α-equiintegrable energy density. Notice that Theorem 3 (i) does not even
require (6), i.e. the admissible deformations need not have positive Jacobian.
Accordingly, the conclusion is weaker than that in [2, 4]. In their setting, a
pathological behaviour as that of the second example given in Section 5 is
excluded.

(iv) Our hypotheses on the energy density do not imply existence of exact minimiz-
ers with nontrivial prescribed boundary data or under nonzero loads. However,
if such minimizers do exist, and if vn is a minimizer, then it is natural to ask
whether vn enjoys better invertibility properties than those obtained in Theo-
rem 3. Results for two dimensional deformations in [10] (see also [3]) suggest
that such minimizers might indeed be one-to-one, at least if one imposes addi-
tional conditions on the deformed configuration (and on the energy density).
Notice, however, that the hypotheses and the conclusions of Theorem 3 are
“asymptotic” in the sense that they apply to a sequence of deformations and
do not make sense for one single deformation. In contrast, the question about
exact minimizers is in fact a question about deformations of a fixed (bulk)
reference configuration.

The following two results are needed in the proof of Theorem 3 (i). While Lemma 4
only uses convergence of the deformations, leading to very little information about
invertibility properties, Proposition 5 exploits the important fact that energy con-
centration is excluded by equiintegrability.

Lemma 4. Let α ∈ [3,∞) and let W satisfy (2, 3, 4, 5). Let hn → 0 and let
vn ∈ W 1,2(Ωhn

; R3) be such that

lim sup
n→∞

1

h3
n

Ehn(vn) < ∞. (12)

Then there is a δ > 0 such that, for any sequences z̄n, z̃n ∈ Ωhn
satisfying |z̄′n− z̃′n| ≤

δ and vn(z̄n) = vn(z̃n), the convergence |z̄′n − z̃′n| → 0 holds. If lim 1
h3

n
Ehn(vn) = 0

then one can take δ = ∞.

Proof. Define yn(x′, x3) := vn(x′, hnx3) and x̄n := (z̄1
n, z̄2

n, 1
hn

z̄3
n) and x̃n :=

(z̃1
n, z̃2

n, 1
hn

z̃3
n). By the compactness of Ω̄ and the compactness result [7] Theorem 4.1
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there is a subsequence (not relabelled) hn → 0 and x̄0, x̃0 ∈ Ω̄ and ȳ ∈ W 2,2
iso (S; R3)

such that ∇yn → ∇ȳ strongly in L2(Ω; R3) and x̄n → x̄0, x̃n → x̃0. (Here we identify
ȳ with the mapping (x′, x3) 7→ ȳ(x′).) By (5) and (12), we have ‖∇yn‖Lp(Ω) ≤ C.
So by interpolation and by Poincaré’s inequality, after possibly adding a constant
to each yn we deduce that yn → ȳ in W 1,q(Ω; R3) for some q > 3. Hence yn → ȳ
uniformly on Ω̄. This implies 0 = yn(x̄n) − yn(x̃n) → ȳ(x̄′

0) − ȳ(x̃′
0). But since

|x̄′
0 − x̃′

0| ≤ δ, for δ small enough Theorem 2 implies that in fact x̄′
0 = x̃′

0. Thus
|x̄′

n − x̃′
n| → 0. Since this argument can be applied to any subsequence of the orig-

inal sequence x̃n, x̄n, it follows that the full sequence |x̄′
n − x̃′

n| converges to zero.
If lim 1

h3
n
Ehn(vn) = 0 then this argument is true for all δ since then ȳ is an affine

isometry by Theorem 6.1 in [7]. ¤

Proposition 5. Let α ∈ [3,∞) and let W satisfy (2, 3, 4, 5). Let hn → 0 and
let vn ∈ W 1,2(Ωhn

; R3) have α-equiintegrable energy density. Let δ be as in the
conclusion of Lemma 4. Then the following holds: For every pair of sequences z̄n,
z̃n ∈ Ωhn

satisfying |z̃n − z̄n| ≤ δ and vn(z̃n) = vn(z̄n) for all n, we have

lim
n→∞

|z̄n − z̃n|

h
α/3
n

= 0. (13)

Proposition 5 is a consequence of the following particular case:

Lemma 6. Proposition 5 is true for α = 3.

Proof. We write h instead of hn and v(h) instead of vn. Choose δ such that it
satisfies the conclusion of Lemma 4, so |z̃n − z̄n| → 0. If for all n large enough
z̃n = z̄n then the result is trivial, so let us assume that this is not the case. Passing
to subsequences (which we denote by an index j), we may assume that |z̃j − z̄j | > 0
for all j and that z̃′j and z̄′j converge to the same point z′ ∈ S̄. We choose coordinates
such that z′ agrees with the origin and such that

S ∩ (−ε1, ε1)
2 = {(x1, x2) ∈ (−ε1, ε1)

2 : x2 < τ(x1)} (14)

for some ε1 > 0 and some Lipschitz function τ : R → R. If z′ ∈ ∂S then such ε1

and τ exist because S is a Lipschitz domain. If 0 = z′ ∈ S then we choose ε1 > 0
such that (−ε1, ε1)

2 ⊂ S and set τ(t) := ε1 for all t. We may assume without loss
of generality that |z̄′j | + |z̃′j | < ε1

4 for all j.

For any sequence of positive numbers δj ↓ 0 define the mappings

Φ(j)(x′, x3) := (z̃′j + δjx
′, hjx3) (15)

and the rescaled deformations

w(j)(x) =
1

δj

(

v(hj)(Φ(j)(x)) − v(hj)(z̃′j , 0)
)

. (16)

Set q̃j := (Φ(j))−1(z̃j) and q̄j := (Φ(j))−1(z̄j). Assume that there is C2 ∈ R such
that for all j

|q̄′j | ≤
C2

2
, i.e. |z̄′j − z̃′j | ≤

C2δj

2
. (17)
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Then (after passing to subsequences) we have q̃j → q̃ and q̄j → q̄ for some q̄ ∈
BC2(0) × Ī and some q̃ ∈ {0} × Ī. In fact, by definition of Φ(j) we have q̃′j = q̃′ = 0
for all j. For t ∈ R define

τj(t) := min

{

1

δj

(

τ(z̃1
j + δjt) − z̃2

j

)

, 2C2

}

. (18)

Clearly Lip τj ≤ Lip τ for all j, so after extracting a subsequence the τj converge
uniformly on (−C2, C2) to a Lipschitz function τ∞. (Notice that the τj are uniformly
bounded from below because τj(0) > 0 by (14).) Define

Sj := {(x1, x2) ∈ (−C2, C2)
2 : x2 < τj(x1)}. (19)

Then
Φ(j)(Sj × I) ⊂ (S ∩ (−ε1, ε1)

2) × Ihj
for j large enough. (20)

In fact, one readily checks that if x2 < C2 then we have

x2 < τj(x1) ⇐⇒ e2 · Φ
(j)(x) < τ

(

e1 · Φ
(j)(x)

)

. (21)

And clearly Φ(j)((−C2, C2)
2 × I) = [z̃′j + (−δjC2, δjC2)

2] × Ihj
is contained in

(−ε1, ε1)
2 × Ihj

for large j. So (20) follows from (14) and (21).
Set τ̃k(t) := infj≥k τj(t) for all t ∈ R. It is easy to check that Lip τ̃k ≤ Lip τ .
Moreover, τ̃k converges uniformly to τ∞ on (−C2, C2) as k → ∞. Define

Qk := {(x1, x2) ∈ (−C2, C2)
2 : x2 < τ̃k(x1)}. (22)

Obviously Qk ⊂
⋂

j≥k Sj . Since z̄′j ∈ S ∩ (−ε1, ε1)
2 formula (14) implies z̄2

j <

τ(z̄1
j ). So q̄2

j < τj(q̄
1
j ) by (21) and by (17). Hence q̄2 ≤ τ∞(q̄1). Setting p2

k :=

min{q̄2, τ̃k(q̄
1) − 1

k )}, we therefore have p2
k → q̄2 because τ̃k(q̄

1) → τ∞(q̄1). Define
pk := (q̄1, p2

k, q̄
3). Since pk ∈ (−C2, C2)

2 × Ī by (17), we conclude

pk ∈ Qk × Ī for large k and pk → q̄ as k → ∞. (23)

(Notice that in general q̄′ /∈ Qk for any k.) Now set

Hj :=
hj

δj
(24)

and use ∇Hj
w(j)(x) = ∇v(hj)(Φ(j)(x)) and that Qk ⊂ Sj for all j ≥ k to find

1

H2
j

∫

Qk×I
W (∇Hj

w(j)(x)) dx ≤
C

h3
j

∫

Φ(j)(Sj×I)
W (∇v(hj)(x)) dx (25)

for all j ≥ k. Notice that Φ(j)(Sj × I) = Aj × Ihj
, where Aj ⊂ R

2 has area of the
order δ2

j . Thus 3-equiintegrability implies that the right hand side of (25) converges
to zero as j → ∞.

Claim #1. There is a subsequence such that supj∈N

|z̄j−z̃j |
hj

< ∞.
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Indeed, suppose the claim were false. Then every subsequence would satisfy h−1
j |z̄j−

z̃j | → ∞. Hence also
|z̄′j − z̃′j |

hj
→ ∞. (26)

We will show that this leads to a contradiction.
Set C2 := 2 and δj := |z̃′j − z̄′j |. Then δj ≥ hj > 0 for large j by (26). Making the

definitions (15, 16, 18, 19, 22, 24), we have that q̄′j ∈ S1 for all j (so (17) holds).
Moreover, Hj → 0 by (26) and (25) converges to zero. Combining boundedness of
(25) with the compactness result of [7] Theorem 4.1, we conclude that there is some
wk ∈ W 2,2

iso (Qk; R
3) such that (after possibly adding a constant to each w(j) and

passing to a subsequence)

w(j) → wk strongly in W 1,2(Qk × I; R3), (27)

where again we have identified wk(x
′) = wk(x

′, x3) for all x3 ∈ I. By the lower bound
provided in [7] Theorem 6.1 (i), since (25) even converges to zero we conclude that
wk is affine with gradient Lk ∈ O(2, 3). Hence we can write

wk(x
′, x3) = Lkx

′ + ck (28)

for some ck ∈ R
3. By (5) and boundedness of the right-hand side in (25) we have

∫

Sj×I
|∇w(j)|p ≤ C for all j. (29)

Hence by interpolation (27) implies that w(j) → wk strongly in W 1,q(Qk × I; R3) for
some q > 3. Thus w(j) → wk uniformly on Qk × I.
Let pk be as in (23). We estimate

|wk(q̃) − wk(pk)| ≤ |wk(q̃) − w(j)(q̃j)| + |w(j)(q̃j) − w(j)(q̄j)|

+ |w(j)(q̄j) − w(j)(pk)| + |w(j)(pk) − wk(pk)|. (30)

First observe that the second term vanishes by assumption. Since q̃, q̃j , pk ∈ Qk × I,
from uniform convergence we deduce that the first and fourth terms in (30) vanish
as j → ∞.
Since the Lipschitz constants of ∂Sj are bounded by a constant that is independent
of j (recall that Lip τj ≤ Lip τ for all j), Lemma 5.17 in [1] together with (29) implies
that there exists λ > 0 (independent of j and k) such that

|w(j)(q̄j) − w(j)(pk)| ≤
1

λ
|q̄j − pk|

λ. (31)

After passing to the limit j → ∞ in (30) we therefore conclude that

|q̃′ − p′k| = |wk(q̃) − wk(pk)| ≤
1

λ
|q̄ − pk|

λ (32)

for all k. The first equality holds because by (28) wk preserves distances after
projecting onto the plane. Letting k → ∞ in (32) and using (23), we deduce q̃′ = q̄′.
But q̃′ = (0, 0) and q̄′ ∈ S1. This contradiction proves Claim #1.
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Claim #2. No subsequence satisfies infj∈N

|z̄j−z̃j |
hj

> 0.

In fact, suppose the claim were false. Then, after passing to a further subsequence,
by Claim #1 there is a constant C1 such that

c1hj ≤ |z̄j − z̃j | ≤ C1hj . (33)

Set C2 := 2C1 and δj := hj . Making the definitions (15, 16, 18, 19, 22, 24), we see
that |q̄′j | ≤ C1, so (17) is satisfied. Moreover, Hj = 1 and (25) converges to zero.

Thus, for all k, we have that
∫

Qk×I dist2(∇w(j), SO(3)) converges to zero as j → ∞.

Theorem 3.1 in [7] yields a sequence of constant rotations R(j) ∈ SO(3) satisfying
∫

Qk×I |∇w(j) − R(j)|2 → 0 as j → ∞. Since ∇w(j) − R(j) is uniformly bounded

in Lp(Qk × I) by (5), by interpolation we conclude that there is q > 3 such that
∇w(j) − R(j) converges to zero in Lq(Qk × I). Thus by the continuous embedding
W 1,q ⊂ C0 and by the Poincaré inequality, there exist constants cj ∈ R

3 such
that w(j) + cj converge uniformly on Qk × I to a linear mapping wk with ∇wk :=
limj→∞ R(j) ∈ SO(3). (This limit exists after possibly passing to a subsequence.
We even have cj → 0 because w(j)(0) = 0 = wk(0), so in fact w(j) → wk uniformly
on Qk × I.) Since |q̃ − pk| = |wk(q̃) − wk(pk)| we conclude

|q̃ − pk| ≤ |wk(q̃) − w(j)(q̃j)| + |w(j)(q̄j) − w(j)(pk)| + |w(j)(pk) − wk(pk)|.

The right-hand side converges to zero by uniform convergence since by (23) both pk

and q̄j converge to q̄. But the left hand side converges to |q̃ − q̄|, which is nonzero
because |q̄j − q̃j | ≥ c1 for all j. This contradiction proves Claim #2.

Finally consider the full sequences z̃n, z̄n and suppose they violated (13) (with α =
3). Then there would exist subsequences and a positive constant c such that |z̃j −
z̄j | ≥ chj , contradicting Claim #2. ¤

Proof of Proposition 5. Assume that there were a subsequence satisfying

h
−α/3
j |z̄j − z̃j | ≥ c1 > 0 for all j ∈ N (34)

for some constant c1 > 0. Since α > 3 we have h−3
h Ehj (vj) → 0. So Lemma 6

applies with δ = ∞. It implies that h−1
j |z̄j − z̃j | → 0. Hence ĥj := 2|z̄j − z̃j | satisfies

ĥj <
hj

10
for large j. (35)

Since |z̃3
j − z̄3

j | ≤ |z̃j − z̄j | =
ĥj

2 and by (35), there exist aj ∈ R such that z̃3
j , z̄3

j ∈

(aj −
ĥj

2 , aj +
ĥj

2 ) ⊂ Ihj
for all j. Define v̂j : Ωĥj

→ R
3 by setting

v̂j(x
′, x3) := vj(x

′, x3 + aj) for all x′ ∈ S, x3 ∈ Iĥj
. (36)

Set x̃j := (z̃′j , z̃
3
j −aj) and x̄j := (z̄′j , z̄

3
j −aj). Then x̃j , x̄j ∈ Ωĥj

and v̂j(x̃j) = v̂j(x̄j)

for all j. Moreover, the sequence v̂j is 3-equiintegrable with respect to ĥj because
1
ĥ3

j

≤ C
hα

j
by (34), so

1

ĥ3
j

∫

I
ĥj

W (∇v̂j(x
′, x3)) dx3 ≤

C

hα
j

∫

Ihj

W (∇vj(x
′, x3)) dx3

10



for almost every x′ ∈ S because aj + Iĥj
⊂ Ihj

by definition of the aj . Applying

Lemma 6 to v̂j therefore implies that ĥ−1
j |z̄j − z̃j | = ĥ−1

j |x̄j − x̃j | → 0. (Notice that
now possibly δ < ∞, but we already know that |x̄j − x̃j | < hj < δ for large j.) This

contradicts the definition of ĥj . ¤

The following lemma will be used in the proof of Theorem 3 (ii).

Lemma 7. Let U ⊂ R
n be a bounded Lipschitz domain, let q > n, let K ⊂ U be

compact and connected and let F : Ū → R
n be continuous on Ū and one-to-one on

U . Then there exists an ε > 0 such that for all w ∈ W 1,q(U ; Rn) with det∇w > 0
almost everywhere and supx∈U |w(x) − F (x)| < ε one has

#{x ∈ U : w(x) = y} = 1 for almost every y ∈ w(K).

Proof. By [5] Sect. 6.2 Theorem 1, a function in W 1,q(U) is differentiable almost
everywhere. Since F is a homeomorphism, it is an open mapping by the Invariance
of Domain Theorem (cf. Theorem 3.30 in [6]). Thus F (U) is open and F (∂U) =
∂F (U). Now let K ⊂ U be compact and connected. Then F (K) is compact and
connected as well, and since F (K) ⊂ F (U) we have δ := dist(F (K), ∂F (U)) > 0.
Denote by Gε the ε-neighbourhood of F (K) and let w be as in the assumption. Then
clearly w(K) ⊂ Gε. Thus, for all ε < δ/4 we have dist(w(K), ∂F (U)) ≥ 2ε. By [6]
Theorem 2.3, together with ‖w−F‖∞ < ε this implies that for all y ∈ w(K) we have
y /∈ w(∂U) and since det∇w > 0 that their Brouwer degree satisfies d(w, U, y) = 1.
On the other hand, combining Theorem 5.27 (iii) and Theorem 5.30 in [6] and
recalling the positivity of the Jacobian, for every f ∈ L∞(Rn) one has

∫

Rn

f(y)N(y) dy =

∫

Rn

f(y)d(w,U, y) dy,

where N(y) := #{x ∈ U : w(x) = y}. Inserting f = χw(K) we deduce

∫

w(K)
N(y) dy = |w(K)|. (37)

Since clearly N(y) ≥ 1 for all y ∈ w(K), equation (37) implies the claim. ¤

Proof of Theorem 3. We omit the index n and write h instead of hn and v(h)

instead of vn. Let δ be as in the conclusion of Lemma 4. To simplify the notation
we write S instead of S̃ and Ωρ

h instead of Ω̃ρ
h.

Suppose that (i) did not hold. Then there would be an ε > 0, a subsequence h → 0
and a sequence yh ∈ v(h)(Ωh) with diam(v(h))−1(yh) > εhα/3 for all h. Hence for
all h there would be z̄h, z̃h ∈ (v(h))−1(yh) with |z̄h − z̃h| ≥ εhα/3, contradicting
Proposition 5. This proves (i).
Now set

Dh =
{

y ∈ v(h)(Ωh) : #{x ∈ Ωh : v(h)(x) = y} ≥ 2
}

.

Assume for contradiction that there were ε > 0 and a subsequence h → 0 such that
along it

|v(h)(Ωε
h) ∩ Dh| > 0 for all h. (38)
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Being Lipschitz, S satisfies the interior cone property for the cone C = {(x1, x2) :
x2 < (−Lip ∂S)|x1| and x2 > −1}. Set E = C × I, let Eε = {x ∈ E : dist(x, ∂E) >
ε}.
It is easy to see that for all x ∈ Ωε

h there exist Qh(x) ∈ SO(3) (with Qh(x)e3 = e3)
and ah(x) ∈ R

3 such that x ∈ ah(x)+hα/3Qh(x)(Eε). Since Ωε
h is a countable union

of compact sets this implies that there exist countable sets Σh ⊂ Ωε
h such that

Ωε
h =

⋃

x∈Σh

(

ah(x) + hα/3Qh(x)(Eε)
)

. (39)

Applying v(h) to both sides of (39) and using that Σh is countable, from (38) we
conclude that for all h there are constants ah ∈ R

3 and Qh ∈ SO(3) such that,
setting Φ(h)(z) := ah + hα/3Qhz, we have

|v(h)
(

Φ(h)(Eε)
)

∩ Dh| > 0 for all h. (40)

Now we claim that for all h small enough

#
{

x ∈ Φ(h)(E) : v(h)(x) = y
}

= 1 for almost every y ∈ v(h)
(

Φ(h)(Eε)
)

. (41)

In fact, define w(h)(x) = h−α/3v(h)(Φ(h)(x)). Since ∇w(h)(x) = ∇v(h)(Φ(h)(x))Qh,
by (3) we have

∫

E
W (∇w(h)) =

1

hα

∫

Φ(h)(E)
W (∇v(h)). (42)

By the equiintegrability hypothesis, the right-hand side converges to zero as h → 0.
As in the proof of Proposition 5, by Theorem 3.1 in [7], using (5), interpolating and
using embedding into continuous functions, we deduce (after passing to subsequences
and adding a constant to each w(h)) that there is a rigid motion F : R

3 → R
3 such

that w(h) → F uniformly on E. Since F is an affine isometry, Lemma 7 implies that,
for all h small enough, #{x ∈ E : w(h)(x) = y} = 1 for almost every y ∈ w(h)(Eε).
Since Φ(h) is bijective, the definition of w(h) implies (41).

Now by Theorem 3 (i), for small h and for all y ∈ v(h)
(

Φ(h)(Eε)
)

we have

(v(h))−1(y) ⊂ Φ(h)(E). Thus by the definition of Dh we deduce that #{x ∈ Φ(h)(E) :

v(h)(x) = y} ≥ 2 for all y ∈ Dh ∩ v(h)
(

Φ(h)(Eε)
)

. (In fact, y has at least two preim-

ages and all preimages must lie in Φ(h)(E).) Hence by (40) we obtain a contradiction
to (41). Thus there is no ε > 0 such that (38) holds. This finishes the proof of (11).
We will now show that for all y ∈ v(h)(Ωε

h), the set (v(h))−1(y) is connected.
The following argument is taken from [2]. Let y ∈ v(h)(Ωε

h) and suppose that
(v(h))−1(y) = M1 ∪ M2 for two nonempty sets Mi ⊂ Ωh with dist(M1,M2) > 0.
Then there exist two disjoint open neighbourhoods Vi ⊂ Ωh of Mi, i = 1, 2. Since
y /∈

⋃

i=1,2 v(h)(∂Vi), since det∇v(h) > 0 almost everywhere and since y ∈ v(h)(Ωε
h),

the Brouwer degree satisfies d(v(h), Vi, y) > 0. So d(v(h), Vi, p) > 0 for all p in
the (open) connected component U of R

3 \
⋃

i=1,2 v(h)(∂Vi) that contains y. Thus

U ⊂ v(h)(V1)∩v(h)(V2), so each point in U has at least two preimages. Hence by (11)
we must have |U∩v(h)(Ωε

h)| = 0. Since det v(h) > 0 almost everywhere, the preimage
of a null set is a null set, cf. Theorem 5.32 in [6]. Thus |(v(h))−1(U ∩ v(h)(Ωε

h))| = 0,
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i.e. |(v(h))−1(U)∩ (v(h))−1(v(h)(Ωε
h))| = 0. However, the latter set contains the open

set (v(h))−1(U)∩Ωε
h. And this set is nonempty, since (v(h))−1(y) ⊂ (v(h))−1(U) and

by the choice of y also (v(h))−1(y) ∩ Ωε
h 6= ∅. This contradiction proves connected-

ness of (v(h))−1(y). Finally, |(v(h))−1(y)| = 0 again follows from Theorem 5.32 in
[6]. ¤

5 Counterexamples to invertibility

For the following examples we assume without loss of generality that S contains the
origin.

First example. This is a modification of an example given in [2]. It shows that
the hypotheses of Lemma 7 do not imply pointwise invertibility. Application to thin
films will then show that (11) need not hold for every y ∈ v(h)(Ωε

h).
Let n ≥ 2, write x′ = (x1, ...., xn−1) and define the mapping u : R

n → R
n by setting,

for all x with |x′| ≤ 1,

ui(x) = xi for i = 1, 2, ..., n − 1

un(x) =

{

|x′|xn if |xn| ≤ 1
xn + (|x′| − 1) sgn xn if |xn| ≥ 1

and by setting u(x) = x for all x with |x′| ≥ 1. The mapping u is Lipschitz and
satisfies det∇u > 0 almost everwhere. Now set u(ε)(x) = εu(x

ε ). Then we have, for
|x′| ≤ ε,

|∇u(ε)(x) − I|2 =

{

x2
n + (1 − |x′|)2 if |xn| ≤ ε

1 if |xn| ≥ ε,
(43)

and for ε ≤ 1 this is uniformly bounded by two. Since for |x′| ≥ ε the left-
hand side is zero, setting Z = {x ∈ R

n : |x′| < 1, |xn| < 1} we conclude that
∫

Z |∇u(ε)(x)−I|q dx ≤ Cqε
n−1 for all q ∈ [1,∞). Thus ‖u(ε)−Id‖W 1,q(Z) ≤ Cqε

n−1
q .

Hence the hypotheses of Lemma 7 are satisfied, yet (u(ε)|Z)−1(0) = {x ∈ Z : x′ =
0, |xn| ≤ ε}.
Now let α ≥ 3, n = 3, h > 0 and Ωh = S×Ih. Choose a sequence εh of positive num-

bers with limh↓0 h
1−α

2 εh = 0 and define the thin-film deformations v(h) := u(εh)|Ωh
.

Then we have

∫

Ωh

|∇v(h)(x) − I|2 dx =

∫

Bεh
(0)

dx′

∫ h
2

−h
2

|∇v(h) − I|2dx3 ≤ Chε2
h.

Thus v(h) is an α-recovery sequence for the identity, each v(h) is Lipschitz with
det∇v(h) > 0 almost everywhere, but (v(h)|Ωh

)−1(0) = {x ∈ R
3 : x′ = 0, |xn| ≤ εh}.

Second example. This example shows that in general one cannot exclude that y
has more than one preimage in Ωh for all y in a subset of v(h)(Ωh) with positive
volume. By Theorem 3 (ii) this subset must be located near the boundary of Ωh.
More precisely, we will see that, given any α ≥ 3 and any sequence εh → 0, there
exists an α-recovery sequence v(h) for the identity such that v(h) ∈ W 1,∞(Ωh; R3),
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det∇v(h) > 0 almost everywhere and v(h) agrees with the identity outside a half-
ball of radius εhhα/3. Moreover there is a simply connected set Dh ⊂ Ωh (a half
ball of radius 1

2εhhα/3, in fact) such that |Dh| ∼ ε3
hhα and #(v(h))−1(y) = 2 for all

y ∈ v(h)(Dh). In addition, diam(v(h))−1(y) ≥ εh

4 hα/3 for all y in a subset of v(h)(Dh)
with volume of the order ε3

hhα. Thus the scalings given in Theorem 3 (i) and (ii)
are sharp.
To construct such v(h), let g : R → R denote the hat function,

g(t) =

{

1 − |t| if |t| ≤ 1
0 otherwise

and define Φ : R
3 → R

3 by Φ(x) = (x1, x2, x3+g(|x′|)). Define the mapping f(x1, x2)
in polar coordinates r ≥ 0, ϕ ∈ [0, 2π), by

f(r cos ϕ, r sinϕ) =

{

(r cos 3ϕ, r sin 3ϕ) if ϕ ∈ [0, π]
(r cos ϕ, r sinϕ) if ϕ ∈ (π, 2π).

We define f̃ : R
3 → R

3 by f̃(x) = (x1, f(x2, x3)), which is Lipschitz because so is
f . Thus the mapping w = Φ−1 ◦ f̃ ◦ Φ from the lower half-space {x ∈ R

3 : x3 < 0}
into R

3 is Lipschitz as well. Let εh → 0 as h → 0. Then εhh ≤ h
2 for small h, so the

deformations

v(h)(z) := εhhα/3w

(

z1

εhhα/3
,

z2

εhhα/3
,
z3 −

h
2

εhhα/3

)

,

are well defined on Ωh, they are Lipschitz, their Lipschitz constant is independent
of h and det∇v(h) > 0 almost everywhere. It is easy to see that they have the
properties mentioned above. Moreover, they agree with the identity outside the set
on which they are two-to-one.
Finally let us show that the v(h) satisfy limh→0

1
hα Eh(v(h)) = 0 for any stored energy

function W satisfying the conditions (2) through (4). In fact, due to the behaviour
of W near SO(3), to every bounded set in M ⊂ R

3×3 there corresponds a con-
stant C such that W (F ) ≤ C dist2(F, SO(3)) for all F ∈ M. Since the sequence
‖∇v(h)‖L∞(Ωh) is uniformly bounded, we can use this to estimate

1

hα

∫

Ωh

W (∇v(h)) dx ≤ C
1

hα

∫

Ωh

|∇v(h) − I|2 dx ≤ Cε3
h. (44)
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