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Abstract

The elastic energy of a thin film Ωh of thickness h with displacement u is given by
the functional Eh(u) =

∫

Ωh

W (∇u) dx. We consider materials whose energy density W
is linearly frame indifferent and vanishes on two linearized wells which are compatible
in the plane but incompatible in the thickness direction. We prove compactness of
displacement sequences u(h) satisfying Eh(u(h)) ≤ Ch2 and show that the limiting
two-dimensional displacements can only have two different interface directions. Our
main result is the derivation of the Γ-limit of the functionals 1

h2 Eh as h → 0. It is
given by a weighted sum over the lengths of the interfaces.

1 Introduction

The study of solid-solid phase transitions in thin nonlinearly elastic films leads to func-
tionals of the form

Eh =

∫

Ωh

W (∇v(x)) dx, (1)

where Ωh = S × (−h
2 , h

2 ) is a cylindrical domain of thickness h, S ⊂ R
2 is a Lipschitz

domain, v : Ωh → R
3 is the elastic deformation, and W is a frame-indifferent free energy

density with n energy minima Fi, i.e. W (Fi) = 0 for i = 1, ..., n and W (RF ) = W (F ) for
all R ∈ SO(3) and all F ∈ R

3×3. In [8] Bhattacharya and James observed that for many
materials which undergo austenite-martensite phase transitions, the low-energy states of
very thin samples of material display a much richer variety of structures than bulk samples
made of the same material. The reason is that three dimensional compatibility requires
a plane on which two juxtaposed affine deformations coincide, i.e. that their gradients
be rank-one connected. In contrast, two dimensional compatibility is already satisfied if
there exists one in-plane vector on which the two deformations agree, so a rank-two con-
nection between the gradients suffices. Roughly speaking, this weakened two-dimensional
compatibility requirement is inherited by thin films with finite but small thickness h > 0.
This fact leads to the existence of many nontrivial low-energy states, including laminates,
tunnels and tents; see [8] for a detailed analysis.
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Recently, Chaudhuri and Müller [11] showed that nontrivial (in the sense that both phases
are present) thin-film deformations arise as limits of three dimensional thin film deforma-
tions whose energy (1) scales like h2. Their main result is that in the case of strongly
incompatible wells, there exists a positive constant c such that any sequence v(h) of thin-
film deformations converging to y in a suitable sense satisfies

lim inf
h→0

1

h2
Eh(v(h)) ≥ c inf{PerSU : U ⊂ U1, S \ U ⊂ U2},

where the sets U1, U2 denote the different phases. These two sets might not be disjoint
because they are related to the convex hulls of the corresponding energy wells. The scaling
h2 is interesting since it lies just between the membrane scaling and the plate scaling. The
derivation of the Γ-limit for this scaling remains open.
In this article we complete the picture for the analogous problem within the framework of
linearized elasticity, i.e. when the zero set of the energy density W consists of two linearized
wells. (Two-well materials in the linearly elastic setting have been studied e.g. in [20, 36],
and the Γ-limit of linearly elastic thin films and rods for single-well materials was derived
in [3] for the membrane and the plate scaling.) We obtain the same scaling law Eh ∼ h2

as in the nonlinear case, and moreover we prove compactness for low energy sequences
and derive the full Γ-limit of the functionals 1

h2 Eh as the film thickness h converges to
zero. Our compactness result ensures that the structure of possible limiting displacements
becomes rather restricted. Exploiting this fact, we will show that the functionals

Ih(u; S) =

{

1
h2

∫

S×(−h
2
, h
2
) W (∇u(x)) dx if u ∈ W 1,2(S × (−h

2 , h
2 ); R3)

+∞ otherwise

Γ-converge to

I0(w; S) =

{ ∫

J k(ν(x))dH1(x) if w ∈ A(S),
+∞ otherwise,

where the class A(S) of admissible limiting displacements is given in (24) below, J denotes
the jump set of sym ∇′w and ν denotes the normal to it, which by the compactness result
can only assume two values ν1 and ν2. The function k is a “surface tension” which depends
on the normal and which we define in (23) below. To state the precise result, let us write
v′ to denote the first two entries of v ∈ R

3 and let us call a domain S ⊂ R
2 strictly

star-shaped if there is z ∈ S such that for all z′ ∈ S̄ the open segment (z, z′) is contained
in S.

Theorem 1. Let A,B ∈ R
3×3 satisfy (i) through (iv) from Section 2, let W satisfy the

conditions (4) through (6) below and let S ⊂ R
2 be a bounded strictly star-shaped Lipschitz

domain. Then a Γ-type convergence

Ih(·; S)
Γ
→ I0(·;S)

holds in the following sense:

(i) Ansatz-free lower bound: Let w ∈ L2(S; R2), hn → 0 and let vn ∈ W 1,2(S × Ihn ; R3)
be such that

−

∫

(−hn
2

, hn
2

)
v′n dx3 → w in L2(S; R2).
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Then
lim inf
n→∞

Ihn(vn; S) ≥ I0(w; S).

(ii) Existence of recovery sequences: Let w ∈ L2(S; R2) and hn → 0. Then there is a
sequence vn ∈ W 1,2(S × (−hn

2 , hn
2 ); R3) such that

−

∫

(−hn
2

, hn
2

)
v′n dx3 → w strongly in W 1,2(S; R2)

and
lim

n→∞
Ihn(vn;S) = I0(w;S).

This theorem is complemented by the compactness result for low energy sequences stated
in Theorem 6 below.

The Γ-limit obtained in Theorem 1 has the same structure as that derived in [15]. The
reason for this is that the functionals Ih turn out to be related to singularly perturbed
functionals of the form

J (h)(u;S) =

∫

S
W̄ (∇u(x′)) + h2|∇2u(x′)|2 dx′. (2)

Starting with the classical work [32], the asymptotic behaviour of singularly perturbed
functionals has been extensively studied in the literature, but an important feature of
(2) is that the relevant quantity is the gradient of some function. A simplified case has
been addressed in [13], where frame indifference of W̄ is dropped altogether. Recently,
Conti and Schweizer were able to derive the Γ-limit of the functionals (2) both under the
assumption of linearized frame indifference [15] and under nonlinear frame indifference
[16] in two dimensions. One major task addressed below will be to make the relationship
between the original functionals (1) and the singularly perturbed functionals (2) precise
enough to apply some of their results.
It would be interesting to derive a similar Γ-convergence result as the one presented here
within the framework of fully nonlinear elasticity. This could lead to a Γ-limit of the form
∫

∂∗E k(ν(x))dH1 or some similar expression, where ν denotes the normal to the interface
and k : S1 → R is some “surface tension”. While the analogous problem for rods, studied in
[33] can be handled by standard arguments, for nonlinearly elastic thin films the situation
seems to be much more delicate.

This paper is organized as follows. In Section 2 we introduce the precise definitions and
reduce the problem to a canonical form. Then we prove a two-well analogue of Korn’s
inequality, Theorem 3, which applies to incompatible linear wells. Then we apply this
result to deduce the main compactness result Theorem 6. In Section 3 we obtain the
lower bound, Theorem 12, with the use of the compactness result and abstract scaling
arguments. Finally, in Section 4 we derive the upper bound by constructing appropriate
recovery sequences. This step relies on several interpolation arguments and on a rigidity
result for compatible wells in two dimensions provided by Conti and Schweizer in [15].
The proof of Theorem 1 closes this section.

Notation. We use the letter C to denote constants depending only on the domain and
on W . Within an expression the explicit value of C may change from line to line. We use
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the notation h → 0 to denote a sequence (hn) ⊂ R
+ which converges to zero as n → ∞.

A bar above a given 3×3-matrix denotes its upper left 2×2 submatrix, and in general we
use barred letters to denote 2 × 2 matrices. Primes on 3-vectors will denote the 2-vector
consisting of the first two entries, so in particular x = (x′, x3). For a matrix A we write
sym A = 1

2(A + AT ), skew A = 1
2(A − AT ) and |A| = |Tr(AT A)|, where Tr denotes the

trace.
By a subscript ,i we will denote the partial derivative with respect to the xi-variable.
By ∇′ we denote the in-plane gradient, that is ∇′w = (w,1|w,2). For h > 0 we set
Ih = (−h

2 , h
2 ). We use a dashed integral sign −

∫

to denote the average. Often we will
simply write {f = a} instead of {x ∈ S : f(x) = a}, and for U , V open and bounded,
the notation U ⊂⊂ V means that the closure Ū of U is contained in V . For a ∈ R the
notation [a] denotes the largest integer which is not greater than a.

2 Preliminaries and compactness

We consider the functional, defined for any Lipschitz domain U ⊂ R
2,

Ih(u; U) =

{ 1
h2

∫

U×Ih
W (∇u) if u ∈ W 1,2(U × Ih; R3)

+∞ otherwise.
(3)

Here W denotes the geometrically linear energy density which is assumed to satisfy the
following conditions:

W : R
3×3 → R is continuous. (4)

Linearized frame indifference: W (F ) = W (sym F ) for all F ∈ R
3×3. (5)

Quadratic growth and coercivity: c0W0(F ) ≤ W (F ) ≤ C0W0(F ). (6)

where c0, C0 are positive constants. Here we have introduced the standard energy density

W0(F ) = dist2(sym F, {A,B}),

where A and B are symmetric 3×3-matrices to be specified below. We define the reduced
functional

Ih
2D(w; U) =

{

∫

U
1
hW2D(∇′w) + h

∣

∣

∣∇′2w
∣

∣

∣

2
if w ∈ W 2,2(U ; R2)

+∞ otherwise
,

where W2D(F ) = dist2(sym F, {Ā, B̄}). We make the following assumptions on the wells
A and B:

(i) A and B are symmetric 3 × 3-matrices.

(ii) Incompatibility in bulk. rank(A − B + T ) ≥ 2 for all skew symmetric 3 × 3 matrices
T .

(iii) Compatibility in the plane. There exists a skew symmetric 2× 2 matrix T̄ such that
rank(Ā − B̄ + T̄ ) ≤ 1.
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(iv) Nondegeneracy. det(Ā − B̄) 6= 0.

Item (iii) is satisfied if and only if there exists t ∈ R such that

0 = det
(

Ā − B̄ +

(

0 t
−t 0

)

)

= det(Ā − B̄) + t2,

whence (iii) is equivalent to det(Ā − B̄) ≤ 0 with equality if and only if Ā and B̄ are
rank-one connected. Thus (iii) and (iv) together are equivalent to det(Ā − B̄) < 0. Table
11.1 in [6] shows that conditions (i) through (iv) are generically satisfied by real materials
(in a linearized framework).
Let us now reduce the set of all matrices satisfying (i)-(iv) to a canonical form. Let Ã, B̃
satisfy conditions (i) through (iv) but be arbitrary otherwise. Then there is an orthogonal
matrix R ∈ O(3) with Re3 = e3 such that

RT (B̃ − Ã)R = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 +
3

∑

i=1

µ̃i
ei ⊗ e3 + e3 ⊗ ei

2
,

where λi are the eigenvalues of the matrix B̄ − Ā and µ̃i are some real numbers. By
possibly choosing R differently (by interchanging the first two columns), we may assume
that λ1 ≥ λ2, so since det(Ā − B̄) < 0, we must in fact have λ1 > 0 > λ2. Let Q =

diag(|λ1|
− 1

2 , |λ2|
− 1

2 , 1) and set B̂ = QRT (B̃ − Ã)RQ. This gives B̂ = e1 ⊗ e1 − e2 ⊗
e2 +

∑3
i=1 µ̂i

ei⊗e3+e3⊗ei
2 , where µ̂i are related to µ̃i and λi. Now we can find a rotation

Q̂ ∈ SO(3) with eigenvector e3 such that

B = Q̂T B̂Q̂ = e1 ⊗ e2 + e2 ⊗ e1 +
3

∑

i=1

µi
ei ⊗ e3 + e3 ⊗ ei

2
(7)

for some µi ∈ R. Since the structural assumptions on the energy density W and on the
shape of the domain (i.e. strict star-shapedness with respect to the origin and a cylindrical
form S × Ih) are invariant under the transformations introduced above, we obtain

Lemma 2. If Theorem 1 is shown for the special pairs A,B given by A = 0 and B as in
(7), then it holds for all possible choices of A and B which satisfy conditions (i)-(iv).

2.1 Korn’s Inequality for two incompatible strains

In [24] Friesecke, James and Müller derived a nonlinear version of Korn’s inequality, which
was generalized to a two-well setting by Chaudhuri and Müller in [10]. A simpler proof
was later obtained in [19], where it is shown that in the case of two compact incompatible
wells the two-well estimate can be reduced to the corresponding one-well estimate. A
generalization of Korn’s inequality to the case of two incompatible linearized wells (which
are not compact) is provided by the following theorem. A related but non-quantitative
version of this result can be found in [20], compare also [36]. A related rigidity result for
compatible energy wells is proven in [15]. In that work the authors provide an example
which shows that no Korn-type rigidity like the one derived here can be expected in the
case of two compatible wells.
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Theorem 3. Let Ω ⊂ R
n be a bounded connected Lipschitz domain, n ≥ 2 and K =

(A + Skew) ∪ (B + Skew), where A and B are incompatible strains, i.e. (B − A) + Skew
does not contain rank-one matrices. Then there exists a positive constant C(Ω, A, B) with
the following property: For every u ∈ W 1,2(Ω; Rn), there exists an associated R ∈ K such
that

‖∇u − R‖L2(Ω;Rn×n) ≤ C(Ω, A, B)‖dist(∇u,K)‖L2(Ω;Rn×n).

This theorem will follow from the interior estimate provided by the following lemma.

Lemma 4. With assumptions as in Theorem 3 and U ⊂⊂ Ω Lipschitz and connected,
there is a constant C(U,Ω, A, B) such that the following holds: For every u ∈ W 1,2(Ω; Rn),
there exists an associated R ∈ K such that

‖∇u − R‖L2(U ;Rn×n) ≤ C(U,Ω, A, B)‖dist(∇u,K)‖L2(Ω;Rn×n).

Proof. By setting B̃ = B − A and applying the lemma to ũ(x) = u(x) − Ax we may
assume without loss of generality that A = 0. Define d(F ) = dist(F, {0, B}) and set
ε2 =

∫

Ω dist2(∇u,K). Notice that dist2(F, K) = d2(sym F ) for all F ∈ R
n×n. Denote

by P : R
n×n → R

n×n the orthogonal projection onto the orthogonal complement of
the subspace (span{B}) ⊕ Skew. By the incompatibility of the matrix B with the zero
matrix, the linear space (span{B}) ⊕ Skew intersects the cone of all rank-one matrices
only at zero. Thus we have |P (a ⊗ b)|2 > 0 for all a, b 6= 0. Hence, by continuity and
by compactness of the sphere, P satisfies the Legendre-Hadamard ellipticity condition
Λ|a|2|b|2 ≥ |P (a ⊗ b)|2 ≥ λ|a|2|b|2 for some λ, Λ > 0. Now let w ∈ W 1,2(Ω; Rn) be a weak
solution of the linear elliptic system with constant coefficients

div P (∇w) = 0 in Ω (8)

w = u on ∂Ω.

Set z = u − w. Then z ∈ W 1,2
0 (Ω; Rn) is a weak solution of div P (∇z) = div P (∇u).

Testing with z itself gives

∫

Ω
P (∇z) : ∇z =

∫

Ω
P (∇u) : ∇z ≤

(∫

Ω
|P (∇u)|2

) 1
2
(∫

Ω
|∇z|2

) 1
2

.

Since by ellipticity the left-hand side of the above inequality is greater than
∫

Ω λ|∇z|2 we
conclude

∫

Ω
|∇z|2 ≤ C

∫

Ω
|P (∇u)|2 = C

∫

Ω
dist2(sym ∇u, span{B}) ≤ Cε2.

Thus it remains to prove that there exists R ∈ K such that
∫

Ω |∇w(x) − R|2 dx ≤ Cε2,
where C is independent of w.
Denote by ew = 1

2

(

∇w + (∇w)T
)

the linear strain of w and let y ∈ Ω be such that
B(y, 2r) ⊂ Ω. By Korn’s inequality there is a C = C(n) (which by scaling invariance is
independent of r) and a skew symmetric matrix W such that

∫

B(y,2r)
|∇w − W |2 ≤ C

∫

B(y,2r)
|ew|

2. (9)
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Since by P (M) = P (sym M) we have P (W ) = 0, the mapping v(x) = w(x) − Wx is a
weak solution of

div P (∇v) = 0 in Ω

v = u − Wx on ∂Ω. (10)

By standard elliptic regularity for linear systems with constant coefficients (see e.g. [26]),
we obtain the inequality

∫

B(y,r)
|∇2v|2 ≤

C

r2

∫

B(y,2r)
|∇v|2 =

C

r2

∫

B(y,2r)
|∇w − W |2. (11)

We have |∇ew|
2 = 1

4

∑

i,j,k(wi,jk + wj,ik)
2 ≤ |∇2w|2. Hence by the choice of the matrix W

and since |∇2w|2 = |∇2v|2 on B(y, 2r), we conclude from (9, 11) that
∫

B(y,r)
|∇ew|

2 ≤
C

r2

∫

B(y,2r)
|ew|

2. (12)

This inequality holds for all y ∈ Ω with B(y, 2r) ⊂ Ω.

Set r0 = dist(U,∂Ω)
4 and assume for the moment that ε < 1. Covering Ū with finitely

many balls of radius 1
3 dist(U, ∂Ω) and applying (12) shows that

∫

U |∇ew|
2 is bounded by

a constant independent of u. Hence by Lemma 5 below with K1 = {0}, K2 = {B} applied
to the strain ew we obtain

min

{∫

U
|ew − B|2,

∫

U
|ew|

2

}

≤ C
(

∫

U
d2(ew)

∫

U
|∇ew|

2
) n

2(n−1)
+

∫

U
d2(ew) (13)

≤ C(ε2 + ε
n

n−1 ).

Now let us assume (the other case can be treated analogously) that B is the minority

phase, i.e. the set E = {x ∈ U : |ew(x) − B|2 ≤ ρ2}, where ρ = |B|
2 , satisfies |E| ≤ |{x ∈

U : |ew(x)|2 ≤ ρ2}|. In particular, this implies |E| ≤ |E \ U | by the choice of ρ. We have
ρ2|E| ≤

∫

U |ew|
2 by the definition of ρ and also ρ2|E| ≤ ρ2|U \ E| ≤

∫

U |ew − B|2. Thus
by (13), for all ε < 1 we have

|E| ≤ C1

(

ε
n

n−1 + ε2
)

(14)

for some constant C1 independent of u. Now we fix ε0 ∈ (0, 1) such that C1

(

ε
n

n−1

0 + ε2
0

)

<

|Br0 |
2 and assume from now on that ε ≤ ε0; the other case is treated at the end of this

proof. From (14) we deduce that |E| <
|Br0 |

2 . Our aim is to show that in fact

|E| ≤ Cε2 (15)

for a constant C independent of u. Using the scaling invariant Lemma 5 together with
(12) one can prove that for all x ∈ Ω and for all r > 0 such that B2r(x) ⊂ Ω

min
{

−

∫

Br(x)
|ew|

2,−

∫

Br(x)
|ew − B|2

}

≤ C

[

(

M(|ew|
2)(x)−

∫

Br(x)
d2(ew)

) n
2(n−1)

+ −

∫

Br(x)
d2(ew)

]

, (16)
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where M denotes the Hardy-Littlewood maximal function, M(f)(x) = supr>0 −
∫

Br(x) |f |.
Above and in the sequel we extend ew by zero outside Ω.

Claim #1. For D ≥ 8|B|, the set A∞ =
{

x ∈ Ω : M(|ew|
2)(x) ≥ D2

}

satisfies |A∞| ≤
Cε2.

In fact, M(|ew|
2) ≤ M(|ew|

2 − D2

2 )+ + D2

2 , whence x ∈ A∞ implies M(|ew|
2 − D2

2 )+(x) ≥
D2

2 . For D as assumed one can show that d2(ew) ≥ 1
4(|ew|

2 − D2

2 )+, whence A∞ ⊂
{

M(d2(ew)) ≥ D2

8

}

. Thus by the Hardy-Littlewood maximal theorem ([27] Chapter 4),

|A∞| ≤
∣

∣

{

M(d2(ew)) ≥ D2

8

}∣

∣ ≤ C
∫

Ω d2(ew), which proves Claim #1.

For almost every x ∈ E \ A∞ there is an rx ≤ r0 such that

|E ∩ Brx(x)|

|Brx(x)|
=

1

2
. (17)

This follows by continuity from the fact that the left-hand side converges to one as r → 0
and that it is not bigger than |E|

|Br|
, which is less than 1/2 for r > r0 by the choice of ε0.

In particular, B2rx(x) ⊂ Ω for every x as above, by the definition of r0.
By Vitali’s covering theorem we can choose countably many such xi ∈ E \ A∞ such that

|E \ A∞| ≤ C
∑

|Brxi
(xi)| (18)

with pairwise disjoint balls on the right-hand side. By (17), for every i we have

ρ2

2
≤

1

|Brxi
|
min

{

∫

Bri (xi)∩E
|ew|

2,

∫

Bri (xi)∩U\E
|ew − B|2

}

≤ C

[

(

−

∫

Bri (xi)
d2(ew)

) n
2n−2

+ −

∫

Bri (xi)
d2(ew)

]

,

where we have used (16) and the definition of A∞ in the second inequality. A simple
calculation shows that this implies |Bri(xi)| ≤ C

∫

Brxi
(xi)

d2(ew). Summing over i and

using disjointness of Brxi
(xi) and (18) we conclude that |E \A∞| ≤ Cε2, which by Claim

#1 implies (15) in the case ε ≤ ε0. But the case ε > ε0 is already covered by (14) by
enlarging the constant C1, which then depends on ε0. Thus (15) also holds in this case.
Using (15) we can finally estimate

∫

U
|ew|

2 =

∫

U\E
|ew|

2 +

∫

E
|ew|

2 ≤ C

[

∫

U\E
d2(ew) + |E| +

∫

E
d2(ew)

]

≤ Cε2.

The desired estimate now follows from Korn’s inequality. ¤

The proof of Theorem 3 is completed using a cube decomposition of Ω and applying a
weighted Poincaré inequality exactly as in the proof of Theorem 2 in [10]. We have used
the following

Lemma 5. Let n ≥ 2, Ω ⊂ R
n be a bounded Lipschitz domain and let K1,K2 be compact

disjoint subsets of R
n×n, K = K1 ∪K2. Then there is a constant C = C(K, Ω), such that
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for any F ∈ W 1,2(Ω; Rn×n)

min
i=1,2

∫

Ω
dist2(F, Ki) ≤ C(K, Ω)

(∫

Ω
dist2(F,K)

∫

Ω
|∇F |2

) n
2(n−1)

(19)

+ C(K, Ω)

∫

Ω
dist2(F,K). (20)

The proof is the same as that of Lemma 2.4 in [10], where one can replace ∇w throughout
by an arbitrary matrix-valued W 1,2-function F .

2.2 Compactness

The following theorem provides the compactness result which complements the Γ-
convergence result of Theorem 1. Its proof uses ideas from [11] and is rather different
from the usual Young-measure arguments applied, for example, in the compactness re-
sults of [22], [13], [15] or [16].

Theorem 6. Let S, A,B and K be as in Theorem 3, let h → 0 and suppose a sequence
u(h) ∈ W 1,2(Ωh; R3) satisfies

lim sup
h→0

1

h2

∫

Ωh

dist2(∇u(h),K) < ∞.

Set w(h)(x′) = −
∫

Ih

(

u(h)(x′, x3)
)′

dx3. Then there exist a subsequence (not relabelled) and

affine mappings f (h) : S → R
2 with skew symmetric gradient such that w(h) + f (h) con-

verges strongly in W 1,2(S; R2). Moreover, the limit function w0 satisfies sym ∇′w0 ∈
BV (S; {A,B}).

Proof. We introduce a piecewise constant approximation of the displacement ∇u(h)

using Theorem 3. Consider a lattice of squares Sa,h = a + (−h
2 , h

2 )2, a ∈ hZ
2, and let

S′
h =

⋃

Sa,h⊂S Sa,h. Now apply Theorem 3 to u(h) restricted to each cube a + (−h
2 , h

2 )3.

This yields a piecewise constant map R(h) : S′
h → K such that

∫

Sa,h×Ih

|∇u(h) − R(h)|2 ≤ C

∫

Sa,h×Ih

dist2(∇u(h),K). (21)

Define the piecewise constant map G(h) : S′
h → {A,B} by setting G(h)(x) = sym R(h)(x).

Let ε > 0 be sufficiently small (to be fixed below). We divide the family of squares Sa,h

into three different groups:

a ∈ A0 if and only if

∫

Sa,h×Ih

dist2(∇u(h),K) ≥ εh3.

If a /∈ A0, then the matrix G(h)(a) ∈ {A,B} is such that 1
h3

∫

Sa,h×Ih

∣

∣

∣
sym ∇u(h) −

G(h)(a)
∣

∣

∣

2
≤ Cε. This follows from (21) by the definition of G(h)(a). Now define

a ∈ A1 if and only if a /∈ A0 and G(h)(a) = A

a ∈ A2 if and only if a /∈ A0 and G(h)(a) = B.

9



For ε small enough, each square Sa,h belongs to exactly one of these three groups. Thus
the sets Ωh

i = int
(
⋃

a∈Ai
Sa,h

)

, i = 0, 1, 2 are disjoint and cover S′
h up to a Lebesgue null

set.
As in [11] one can prove that, for ε small enough, the following implication holds:

a ∈ Ai, a
′ ∈ Aj and Sa′,h is a neighbour of Sa,h =⇒ j ∈ {0, i}, (22)

that is, a square of type A1 can only have neighbouring squares of type A1 or A0, but
never of type A2 and the analogous statement holds with A1 and A2 swapped. But from
the definition of A0 and the scaling of the energy, the cardinality of A0 is of the order
1
h . Since the side-length of each square Sa,h is just h, this leads to the estimate (see [11])
H1(∂Ωh

1 \ ∂S) ≤ C. This implies that the characteristic functions χΩh
1

are bounded in

BV(S), whence they have a subsequence converging strongly in L1(S), hence (by interpo-
lation) in all Lp(S) with p < ∞. Since the cardinality of A0 is of the order 1

h , the area of
Ωh

0 is of the order h, whence χΩh
0
→ 0 in L1(R2). Hence we also have strong convergence

of χΩh
2
. Note that the respective limit functions χΩ1 and χΩ2 both belong to BV (S).

On the other hand G(h) = AχΩh
1
+BχΩh

2
+G(h)χΩh

0
. Let us extend G(h) by zero to all of S.

By the convergence χS′

h
→ 1 in L1(S) we obtain that G(h) → G strongly in L2(S; R2×2),

where G = χΩ1A + χΩ2B ∈ BV (S; {A,B}). By (21), the hypothesis on u(h) and Jensen’s

inequality we have
∫

S′

h
|sym ∇′w(h) −G

(h)
|2 ≤ Ch. Using G(h) = 0 on S \S′

h and applying

Jensen’s inequality again, we find
∫

S\S′

h
|sym ∇′w(h) − G

(h)
|2 ≤ C|S \ S′

h| + Ch.

We conclude that sym ∇′w(h) → Ḡ strongly in L2(S; R2×2). Since the subspace of sym-
metrized gradients is strongly closed in L2(S; R2×2), there is a w0 ∈ W 1,2(S; R2) such that
sym ∇′w0 = G ∈ BV (S; {A,B}). An application of Korn’s and of Poincaré’s inequalities
on S yield the claim. ¤

Remark. Let y(h)(x′, x3) = u(h)(x′, hx3) be the rescaled displacement defined on Ω =
S× (−1

2 , 1
2) and define the rescaled gradient by ∇hy = (∇′y

∣

∣

1
hy,3). Then the previous proof

in fact shows that sym ∇hy(h) → G strongly in L2(Ω; R3×3).

In [15], Proposition 2.2, the following characterization is provided for functions whose sym-
metrized gradient has bounded variation and is supported on two incompatible matrices
Ā, B̄.

Proposition 7. Let S ⊂ R
2 be a bounded Lipschitz domain. Let Ā, B̄ satisfy (iii), (iv)

from the beginning of Section 2, let ν1, ν2 be linearly independent solutions to Ā − B̄ +
t(e1 ⊗ e2 − e2 ⊗ e1) = a ⊗ νi, where a ∈ R

3 and t ∈ R, and let w ∈ W 1,2(S; R2) satisfy
sym ∇′w ∈ BV (S; {Ā, B̄}). Then the jump set J of sym ∇′w consists of countably many
disjoint segments whose endpoints belong to ∂S and which have normal directions ν1 or
ν2. In addition, ∇′w is constant on each connected component of S \ J .

Together with this proposition, Theorem 6 gives a good description of the admissible limit
functions.

10



3 Lower bound

In this section we prove that the limiting energy of any sequence v(h) is bounded from
below by the functional I0. From now on we assume that the matrices A and B satisfy
(i) through (iv) in Section 2. In view of Lemma 2 we will restrict the following analysis
to the canonical form of the matrices A and B given in Section 2, i.e. A = 0 and B as in
(7). This choice allows exactly two different normal directions orthogonal to each other:

Setting T1 =

(

0 −1
1 0

)

and T2 =

(

0 1
−1 0

)

we have B̄ + T1 = 2e2 ⊗ e1, giving the

normal ν1 = e1, and B̄ + T2 = 2e1 ⊗ e2, giving the normal ν2 = e2. Clearly T1 and T2 are
the only skew matrices T such that B + T is singular. For the rest of this article we set
K = Skew ∪ (B + Skew). Define the matrix-valued piecewise constant function

F±
i (x′) =

{

0 for ±x′ · νi < 0

B + Ti otherwise

and set w±
i (x′) = F±

i (x′)x′. Note that w±
i ∈ W 1,∞(S; R2). For open intervals J ⊂ R and

ε > 0 we define the quantities

F±
1 (J ; ε) =

(

Γ − lim inf
h→0

Ih
)

(w±
1 ; J × (−ε, ε))

= inf
{

lim inf
n→∞

Ihn(un; J × (−ε, ε)) : (hn, un) is admissible for F±
1

}

.

The quantities F±
2 are defined analogously, with (−ε, ε) × J replacing J × (−ε, ε). We

have used the following

Definition 8. Let J be an open interval and ε > 0. A pair of sequences (hn, un) is
admissible for F±

1 (J ; ε) if hn ∈ (0, 1), hn → 0,

un ∈ W 1,2(J × (−ε, ε) × Ihn ; R3)

and

−

∫

Ihn

u′
n dx3 → w±

1 in L2(J × (−ε, ε); R2).

Admissibility for F±
2 is defined analogously with w±

2 replacing w±
1 and with (−ε, ε) × J

replacing J × (−ε, ε) throughout.

We define

k(νi) = F+
i

(

(−
1

2
,
1

2
);

1

2

)

. (23)

Lemma 9. Let J ⊂ R be an interval, let i ∈ {1, 2} and let ε > 0. Then

F+
i (J ; ε) = F−

i (J ; ε) = k(νi) |J |.

Proof. As in [13] Lemma 4.3. (and later in [15] Lemma 3.2) one proves the lemma by
showing the following facts:

(i) F+
i (J ; ε) = F−

i (J ; ε) =: F(J ; ε).

11



(ii) Translation invariance: Fi(x
′ + J ; ε) = Fi(J ; ε).

(iii) Monotonicity: If J1 ⊂ J2 then Fi(J1; ε) ≤ Fi(J2; ε), and if δ > ε > 0, then Fi(J ; δ) ≥
Fi(J ; ε).

(iv) Homogeneity: If α > 0 then Fi(αJ ; αε) = αFi(J ; ε).

(v) Concentration: Fi(J ; ε) does not depend on ε > 0.

¤

Definition 10. An admissible sequence (un, hn) for F±
i ((−1

2 , 1
2); 1

2) is called a recovery
sequence for w±

i if

lim
n→∞

Ihn

(

un; (−
1

2
,
1

2
)2

)

= k(νi).

For given (hn) we will also call un a recovery sequence for w±
i if the condition of Definition

10 is satisfied. In Lemma 13 below we will show that there exist recovery sequences for
any given sequence hn → 0. As an immediate result of Lemma 9 (v) we obtain

Corollary 11. Let σ ∈ {+,−}, i ∈ {1, 2}, let (un, hn) be a recovery sequence for wσ
i on a

rectangle S = J1×J2 ⊂ R
2. Let Q ⊂ S be a rectangle covering the interface of wσ

i with two
sides parallel to it. Then the energy concentrates at the interface: limn→∞ Ihn(un;S\Q) =
0.

Now we define the set of admissible limiting functions as

A(S) =
{

w ∈ W 1,2(S; R2) : sym ∇′w ∈ BV (S; {0, B})
}

(24)

and the limiting functional

I0(w; S) =

{ ∫

J k(ν(x))dH1(x) if w ∈ A(S),
∞ otherwise.

(25)

Here J denotes the jump set of sym ∇′w, also called the phase interface, and ν denotes
the normal (the sign does not matter), which up to a sign can only assume the values
ν1 = e1 and ν2 = e2.

Theorem 12. (Lower bound.) Let S ⊂ R
2 be a bounded Lipschitz domain and w ∈

L2(S; R2). Then, for all hn → 0 and all un ∈ L2(S × Ihn ; R3) satisfying −
∫

Ihn
u′

ndx3 →

w in L2(S; R2) one has the lower bound

lim inf
n→∞

Ihn(un; S) ≥ I0(w; S). (26)

Proof. If the limes inferior on the left-hand side of (26) is infinite, then there is nothing
to prove. Otherwise, by passing to a subsequence (not relabelled) we may assume that the
sequence Ihn(un; S) converges, so in particular also lim supn→∞ Ihn(un; S) < ∞. After
passing to a further subsequence, the compactness result of Theorem 6 implies that there
is a sequence of skew-affine functions fn such that wn + fn → w0 in W 1,2(S; R2) for some

12



w0 ∈ A(S), where we have set wn = −
∫

Ihn
u′

n dx3. Since wn → w in L2(S; R2), we deduce

that fn converges in L2(S; R2), whence there is a skew matrix T and a vector c ∈ R
2

such that fn(x′) → c + Tx′ pointwise. Hence w = w0 − Tx′ − c and in particular we
have w ∈ A(S). By the strong W 1,2-convergence of both wn + fn and fn we also deduce
wn → w in W 1,2(S; R2).
The jump set of sym ∇′w consists of a countable union of disjoint segments Jk with normal
ν1 or ν2. The rest of the proof is similar to that of Proposition 3.1 in [15]: One covers
each Jk with a box, applies Lemma 9 to each box separately and uses the minimality of
F±

i . ¤

4 Upper bound

In this section we will show that for any admissible limit function w and for any given
sequence hn → 0 one can find a recovery sequence v(hn) whose vertical average converges
to w and whose thin-film energy converges to the limiting energy I0(w). As in [15] we will
first show that given any sequence hn → 0 one can find a sequence of test functions v±i,n
such that (hn, v±i,n) is a recovery sequence for w±

i in the sense of Definition 10. The rough
idea in the following proof is similar to that of Proposition 5.5 in [15]: One restricts the
recovery sequence furnished by Definition 10 to a cuboid with the right aspect ratio on
which both phases are used and on which the limiting energy is the same (up to scaling)
as in that of the original sequence and then one rescales it. Our argument is simpler than
that given in [15] and, moreover, it does not require the modification steps of Lemmas 15
and 16 below.

Lemma 13. Let S = (−1
2 , 1

2)2 be the unit square, σ ∈ {+,−}, i ∈ {1, 2} and let Hn → 0.
Then we have

k(νi) = inf
{

lim inf
n→∞

IHn(un; S) : un ∈ W 1,2(S × IHn ; R3)

−

∫

IHn

u′
ndx3 → wσ

i in L2(S; R2)
}

.

Proof. Clearly we must only prove the “≥”-inequality. Further, let us restrict to the case
σ = + and i = 1, so the interface normal is ν1 = e1 and the phase “0” is used on the left,
{∇′w+

1 = 0} = S ∩ {x1 < 0} and {∇′w+
1 = B̄ + T1} = S ∩ {x1 > 0}; the other cases are

similar.
First note that the infimum in the definition of k(νi) is attained, i.e. there is a se-
quence hn → 0 and vn ∈ W 1,2(S × Ihn ; R3) such that −

∫

Ihn
v′ndx3 → w+

1 in L2(S; R2)

and limn→∞ Ihn(vn; S) = k(ν1). Since after passing to subsequences this equality remains
valid, we may assume without loss of generality that hn ≪ Hn, so αn = Hn

hn
→ ∞. In the

sequel we will simply write h, H omitting their subindex n.

Set y
(n)
1 = 1

2αn
− 1

2 and y
(n)
m+1 = y

(n)
m + 1

αn
, m = 1, ..., [αn] − 1, and let S

(n)
m =

(−1
2 , 1

2)× (y
(n)
m − 1

2αn
, y

(n)
m + 1

2αn
). We will use notation and results from the proof of Theo-

rem 6. Define S
(n)
m,1 = S

(n)
m ∩Ωh

1 ∩{∇′w+
1 = 0} and S

(n)
m,2 = S

(n)
m ∩Ωh

2 ∩{∇′w+
1 = B̄ +T1}. It

follows from the proof of Theorem 6 that Ωh
1 → {∇′w+

1 = 0} and Ωh
2 → {∇′w+

1 = B +T1}

13



in the sense that the corresponding characteristic functions converge in L1. Now denote
by

Gn =

{

m = 1, ..., [αn] : |S
(n)
m,1| >

1

4αn
and |S

(n)
m,2| >

1

4αn

}

the index set of “good” stripes. We claim that the cardinality of Gn satisfies #Gn → ∞.
To prove this, first note that by the definitions

(

Ωh
1 ∩ {∇′w+

1 = 0}
)

∪
(

Ωh
2 ∩ {∇′w+

1 = B + T1}
)

⊂
(

S \

[αn]
⋃

m=1

S(n)
m

)

∪

[αn]
⋃

m=1

(S
(n)
m,1 ∪ S

(n)
m,1).

Taking measures on both sides we obtain

∣

∣

∣Ωh
1 ∩ {∇′w+

1 = 0}
∣

∣

∣ +
∣

∣

∣Ωh
2 ∩ {∇′w+

1 = B + T1}
∣

∣

∣ ≤
∣

∣

∣S \

[αn]
⋃

m=1

S(n)
m

∣

∣

∣ +
∣

∣

∣

[αn]
⋃

m=1

(S
(n)
m,1 ∪ S

(n)
m,2)

∣

∣

∣

≤
αn − [αn]

αn
+

[αn]
∑

m=1

(|S
(n)
m,1| + |S

(n)
m,2|).

Thus

∣

∣

∣
Ωh

1 ∩ {∇′w+
1 = 0}

∣

∣

∣
+

∣

∣

∣
Ωh

2 ∩ {∇′w+
1 = B + T1}

∣

∣

∣
≤

αn − [αn]

αn
+

∑

m/∈Gn

3

4αn
+

∑

m∈Gn

1

αn

≤
αn − [αn]

αn
+ [αn]

3

4αn
+

#Gn

αn
.

As n → ∞ the left-hand side converges to one, the first term on the right-hand side to
zero and the second term on the right-hand side to 3

4 , whence #Gn

αn
→ 1

4 . In particular
#Gn → ∞.
From this one can now deduce by a simple argument by contradiction that we can always
find one among these “good” stripes which, in addition, has low energy. Precisely, we have

lim sup
n→∞

(

min
m∈Gn

Ih(vn; S(n)
m ) −

1

αn
Ih(vn; S)

)

≤ 0. (27)

Now choose mn ∈ argminm∈Gn
Ih(v;S

(n)
m ) and set ŷn = ymn . Let σn = (− l

2αn
, l

2αn
)× (ŷn−

1
2αn

, ŷn+ 1
2αn

) with l > 1+ k(ν1)
k(ν2) fixed. Consider the mapping gn : x1 7→

∫

(x1,0)+σ χΩh
1
. Since

mn ∈ Gn, there are x1 < 0 (resp. x1 > 0) such that gn(x1) > |σn|
2 (resp. gn(x1) < |σn|

2 ).

Since gn is continuous, we conclude that there is some x̂n with gn(x̂n) = |σn|
2 .

Thus the rectangle Ŝn = (x̂n − l
2αn

, x̂n + l
2αn

) × (ŷn − 1
2αn

, ŷn + 1
2αn

) has low energy, and
it contains fifty percent of phase “0”. By the definition of A0 in the proof of Theorem 6,
the amount of high-energy-phase Ωh

0 ∩ Ŝn is controlled by the energy, whence its area is of
order o( h

αn
). This is negligible with respect to the area of Ŝn, which is of order α−2

n ≫ h
αn

.

Hence in the limit there are equal amounts of phases “0” and “B +T1” present in Ŝn, that
is

|Ωh
i ∩ Ŝn|

|Ŝn|
→

1

2
for i = 1, 2. (28)
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Now set Vn(x) = αnvn

(

x
αn

+ (x̂n, ŷn)
)

and S′ = (−l/2, l/2) × (−1
2 , 1

2). Then Vn ∈

W 1,2
(

S′ × (−Hn
2 , Hn

2 ); R3
)

and lim supn→∞ IHn(Vn; S′) ≤ k(ν1). By Theorem 6, there
is an affine mapping Fn with skew symmetric gradient such that Wn + Fn → W0 strongly
in W 1,2(S′; R2), where Wn = −

∫

IHn
V ′

ndx3 and W0 in A(S′). Application of Theorem 12

together with the upper bound on the energy implies that I0(W0; S
′) ≤ k(ν1). By the

geometry of S′ and by Proposition 7, W0 has either only interfaces with normal ν1 = e1

or only interfaces with normal ν2 = e2. If it had an interface of the latter type, however,
we would obtain the contradiction I0(W0;S

′) ≥ lk(ν2) > k(ν1), by the choice of l.
Thus W0 has only interfaces with normal ν1, and by the bound on the limiting energy
there can be at most one such interface. On the other hand, by construction, there are two
phases present in the limit. We conclude that W0 has exactly one interface with normal ν1.
By possibly reflecting the function Vn we may also assume that it has the right orientation,
i.e. phase “0” on the left. Further, by possibly adding the same affine function with skew
symmetric matrix to each Fn, we may assume that W0 = w+

1 . Indeed, notice that by (28)

the interface of W0 must be centered . Finally define Ṽn(x) = Vn(x) +

(

Fn(x′)
0

)

. This

sequence satisfies −
∫

IHn
Ṽ ′

n dx3 → w+
1 in L2(S; R2) and recovers the optimal limiting energy

k(ν1). ¤

Lemma 14. Let l, d > 0 and S = (−l, l) × (−d, d), i ∈ {1, 2}, σ ∈ {+,−}, h → 0 and
let v(h) ∈ W 1,2(S × Ih; R3) be a recovery sequence for wσ

i . Subdivide S into N ∈ N stripes
normal to the interface. Then for any stripe Sj we have

lim
h→0

Ih(v(h); Sj) =
1

N
lim
h→0

Ih(v(h); S) =
1

N
I0(wσ

i ; S)

Proof. The claim follows by noting that otherwise there would be one stripe Sj0 with
lower limiting energy, which would contradict the lower bound in Theorem 12, since
−
∫

Ih
(v(h))′ dx3 → wσ

i in W 1,2(Sj0 ; R
2). ¤

In a first modification step we will change the recovery sequence furnished by Definition
10 and Lemma 13 in such a way that its vertical averages become smooth away from the
interface.

Lemma 15. Let S = (−1
2 , 1

2)2, σ ∈ {+,−} and i ∈ {1, 2}, and let Q ⊂ S be a rectangle
covering the interface of wσ

i with two sides parallel to this interface. Then there exists
a recovery sequence u(h) ∈ W 1,2(S × Ih; R3) for wσ

i whose vertical averages w(h)(x′) =

−
∫

Ih
(u(h))′(x) dx3 and τ (h)(x′) = −

∫

Ih
u

(h)
3 (x) dx3 are smooth on S \ Q and satisfy

lim
h→0

Ih
2D(w(h); S \ Q) + h

∫

S\Q

∣

∣

∣
∇′2τ (h)(x′)

∣

∣

∣

2
dx′ = 0. (29)

Proof. If we only wanted to prove the existence of smooth recovery sequences, then we
could simply mollify each v(h) on a scale fine enough to ensure that the h-energy of the
mollified displacement is very close to that of the original one. To control the second term
in (29), however, one must take a mollification scale of order h (and not smaller). Hence
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Figure 1: The shaded region represents the interpolation layer.

we cannot approximate the value of Ih(v(h)) separately for each h, but only have control
up to a prefactor. This is why we mollify only away from the interface, and then we must
glue the smoothened mapping to the original one.
We will prove the statement for i = 1, σ = + only, the other cases being analogous. Recall
that w+

1 has one vertical interface with phase “0” to its left. Let v(h) be a recovery sequence
for w+

1 , so limh→0 Ih(v(h); S) = k(ν1). Fix a small a > 0 satisfying (−3a, 3a)×(−1
2 , 1

2) ⊂ Q
and set V = (−1

2 + a
2 ,−a

2 )× (−1
2 + a

2 , 1
2 −

a
2 ) and let U = (−1

2 +a,−a)× (−1
2 +a, 1

2 −a), so
we have U ⊂⊂ V ⊂⊂ {∇′w+

1 = 0} ∩ S. The situation is depicted in Figure 1. Instead of
mollifying in all space dimensions, which would lead to smoothened displacements defined
on a film of thickness smaller than h (which could then be rescaled), we prefer to mollify
slicewise in the plane and thus directly obtain displacements with smooth vertical averages
defined on the full plate thickness: Let ψ be a standard mollifier supported on (−1

2 , 1
2)2

and set ψh(x′) = 1
h2 ψ(x′

h ), which is supported on the h-square I2
h. Define the in-plane

convolution

ṽ(h)(x) =
(

ψh ∗ v(h)(·, x3)
)

(x′) = −

∫

I2
h

ψ(
y′

h
)v(h)(x′ − y′, x3)dy′,

which for h small enough is well defined on the set U × Ih. We have

∇ṽ(h)(x) =
(

ψh ∗ ∇v(h)(·, x3)
)

(x′). (30)

Let R(h) be the K-valued piecewise constant approximation of ∇v(h) introduced in the
proof of Theorem 6. Adopting the notation introduced there, we have V ⊂ S′

h for h small
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enough, so R(h) is defined everywhere on V . Using (30) we estimate
∫

U×Ih

|∇ṽ(h)(x) − R(h)(x′)|2dx

≤
C

h2

∫

spt ψh

dy′
∫

U×Ih

(

|∇v(h)(x′ − y′, x3) − R(h)(x′ − y′)|2

+ |R(h)(x′ − y′) − R(h)(x′)|2
)

dx

≤ C

∫

V ×Ih

W (∇v(h)). (31)

In the second step we have applied Jensen’s inequality and have added and subtracted
R(h)(x′ − y′). In the last step we used that ψh is supported on a h-square and applied the
estimate

∫

U
|R(h)(x′ + ζ) − R(h)(x′)|2 dx′ ≤ C

∫

V ×Ih

W (∇v(h)), (32)

which holds for all ζ ∈ R
2 with |ζ1|, |ζ2| ≤ h. The estimate (32) can be derived by

arguments similar to the first part of the proof of Theorem 4.1 in [24], with our Theorem
3 replacing their Theorem 3.1. By (31) and Corollary 11 we deduce

Ih(ṽ(h); U) ≤ CIh(v(h);V ) = o(1) (33)

Let w(h) = −
∫

Ih
(v(h))′ dx3, τ (h) = −

∫

Ih
(v(h))3 dx3 and w̃(h) = −

∫

Ih
(ṽ(h))′ dx3, τ̃ (h) =

−
∫

Ih
(ṽ(h))3 dx3. From Jensen’s inequality and (31) we easily deduce Ih

2D(w̃(h); U) ≤

CIh(v(h); V ). By (30) we have, for α ∈ {1, 2},

(∇ṽ(h)),α(x) =

∫

ψ,α(y′)
(

∇v(x′ − y′, x3) −∇v(x′, x3)
)

dy′,

where we have added a term which is zero by
∫

∇′ψh = 0. Taking squares, integrating

and arguing as in (31) we obtain that also h
∫

U

∣

∣

∣
∇′2τ̃ (h)(x′)

∣

∣

∣

2
dx′ ≤ CIh(v(h); V ).

For κ ∈ (0, a) let φ be a smooth cutoff function that decreases from one to zero within
the transition layer (−a − κ,−a) with ‖φ′‖∞ ≤ 2

κ . Consider the linear interpolation

u
(h)
κ (x) = v(h)(x) + φ(x1)(ṽ

(h)(x) − v(h)(x)). Since −
∫

Ih
(ṽ(h))′ dx3 → w+

1 in L2(U ; R2) and

the same for v(h), it follows that also −
∫

Ih
(u

(h)
κ )′ dx3 → w+

1 in L2(U ; R2). Moreover, the

energy of u
(h)
κ on the transition layer Th = (−a− κ,−a)× (−1

2 + a, 1
2 − a)× Ih is bounded

by

C

∫

Th

W0(∇u(h)
κ (x)) dx ≤ C

∫

Th

W0(∇v(h)) +
1

κ2

∣

∣

∣
ṽ(h) − v(h)

∣

∣

∣

2
+

∣

∣

∣
∇ṽ(h) −∇v(h)

∣

∣

∣

2
dx

≤
C

κ2

∫

Th

W0(∇v(h)) +
∣

∣

∣∇ṽ(h) −∇v(h)
∣

∣

∣

2
dx

≤
C

κ2

∫

V ×Ih

W (∇v(h)) dx. (34)

Here we have assumed, by possibly adding a constant c(h) to ṽ(h), that
∫

Th

(

ṽ(h)(x) −

v(h)(x)
)

dx = 0, so we could apply Poincaré’s inequality to estimate the term proportional
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to |ṽ(h) − v(h)|2 (as usual, the varying domain causes no problem: rescale the x3-variable
such that the rescaled mappings are all defined on the same domain T1 and apply the
Poincaré inequality to these mappings). Note that c(h) → 0, since w(h) and w̃(h) converge
to the same limit w+

1 in W 1,2(S; R2). In the last step in (34) we have used the fact that
by (31) both ∇v(h) and ∇ṽ(h) are L2-close to R(h) on U , whence they are close to each
other with the same bound

∫

V ×Ih
W (∇v(h)).

After applying the analogous construction to the right of the interface (adding a different
constant c(h) to the corresponding ṽ(h)), we are almost done. However, notice that u(h)

is not yet defined near the boundary of S. This minor technical objection is treated as
follows: Fix λ ∈ (8

9 , 1) and set S′ = λS. For small h the mapping u(h) is well defined on

S′ × Ih. By Lemma 14 and Corollary 11 we have that the sequence û(λh)(x) = λu(h)(x
λ) is

again a recovery sequence for w+
1 satisfying the statement of the lemma, and it is defined

on all of S × Iλh. ¤

Finally we will further modify the recovery sequence such that the resulting functions are
affine away from the interface. This is achieved via the two-step interpolation depicted in
Figure 2. In the first step the recovery sequence is modified in such a way that it uses
only one well away from the interface; namely the one which is being used by the limiting
mapping on that region. In a second step, it is further modified to become affine with
gradient in the corresponding well.

Lemma 16. Let S ⊂ R
2 be a rectangle with sides parallel to the coordinate axes and let

w ∈ A(S) have exactly one interface. Then, for any sequence h → 0 there is a sequence
v(h) ∈ W 1,2(S × Ih; R3) with

−

∫

Ih

(v(h))′dx3 → w strongly in W 1,2(S; R2)

and
lim
h→0

Ih(v(h); S) = I0(w;S).

Moreover, for any rectangle Q ⊂ S covering the interface with two sides parallel to it there
is h0 > 0 such that for h ≤ h0, the mapping v(h) is affine on each connected component of
S \ Q with ∇v(h) ∈ K.

Proof. Suppose we had shown the lemma for the special domain (−1
2 , 1

2)2 and the special
limiting displacement w+

1 . Now let S be as in the hypothesis and assume that the interface
of w has the same orientation as that of w+

1 ; the other cases are treated similarly. By
translation invariance we may assume without loss of generality that the interface of w
is given by {0} × (− l

2 , l
2). There exists δ ∈ (0, l

2) such that S′ = (−δ, δ) × (− l
2 , l

2) ⊂ S.

Let (v(h/l), h/l) be a recovery sequence for w+
1 with the additional properties stated in the

conclusion of the lemma. Defining v̂(h)(x) = lv(h/l)(x
l ), the sequence (v̂(h), h) is a recovery

sequence for ŵ(x) = lw+
1 (x

l ) on the set lS, By Lemma 9 and Corollary 11 the restriction

v̂(h)|S′×Ih
is a recovery sequence for ŵ|S′ = w|S′ + f , where f : R

2 → R
2 is affine with

sym ∇f = 0. Hence v̄(h)(x) = v̂(h)(x)−

(

f(x′)
0

)

is a recovery sequence for w|S′ which, by

construction, is affine away from the interface (in the precise sense stated in the conclusion
of the lemma). Hence now we can extend v̄(h) affinely to all of S × Ih to obtain a recovery
sequence with the claimed properties. Thus it suffices to prove the lemma for S = (−1

2 , 1
2)2
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2 1

ξ
h

−a/2−2a

Figure 2: The shaded regions represent the interpolation layers; their numbers correspond
to the steps in the proof.

and w = wσ
i . Again we do the construction only for w+

1 and only on the left side of the
interface; the other cases are similar.
We will first construct a recovery sequence for a fixed rectangle Q, and only in Step 3 we
will take a diagonal sequence which then satisfies the property stated in the conclusion
of this lemma. So fix a rectangle Q ⊂ S covering the interface with two sides parellel to
it and choose some a > 0 such that (−10a, 10a) × (−1

2 , 1
2) ⊂ Q. Let v(h) be a recovery

sequence for w+
1 as furnished by Lemma 15, whose vertical averages are smooth at a

distance a/3 from the interface. Set U = (−5a,−a
2 ) × (−1

2 , 1
2). We may assume without

loss of generality that h < a
100 , and by Corollary 11 we have Ih(v(h); U) = o(1).

Consider the vertical averages w(h)(x′) = −
∫

Ih
(v(h)(x))′dx3 and τ (h) = −

∫

Ih
v

(h)
3 (x)dx3. By

the strong convergence w(h) → w+
1 in W 1,2(S; R2) and since U ⊂ {∇′w+

1 = 0} we have
∫

U |∇′w(h)|2dx′ = o(1). Hence, using Lemma 15, we can write

Ih(v(h); U) + Ih
2D(w(h); U) + h

∫

U

∣

∣

∣∇′2τ (h)(x′)
∣

∣

∣

2
dx′ +

∫

U
|∇′w(h)(x′)|2dx′ = ηh, (35)

where ηh = o(1) as h → 0.

Step 1. Interpolation to a displacement with low one-well energy. Subdivide U into h-
squares as in the proof of Theorem 6. Let Gh = hZ ∩ (−2a,−a) and set Nh = #Gh. To
every ξ ∈ Gh define the column Zh(ξ) = (ξ − h

2 , ξ + h
2 ) × (−1

2 , 1
2). By definition of U and

since h < a
2 , the inclusion Zh(ξ) ⊂ U holds for all ξ ∈ Gh. We have

∑

ξ∈Gh

∫

Zh(ξ)
|∇′w(h)|2dx′ ≤

∫

U
|∇′w(h)|2dx′ ≤ ηh. (36)
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Let ρ ∈ (0, 1) (to be fixed later). Denote by G1
h the set of all ξ ∈ Gh with the property

that
∫

Zh(ξ)
|∇′w(h)|2dx′ ≤

ηh

[ρNh]
. (37)

One can easily check that by (36) the cardinality of G1
h is at least [(1−ρ)Nh]. Notice that

by (37) and since Nh ≤ a
h we have

∫

Zh(ξ)
|∇′w(h)|2dx′ ≤ Cηhh. (38)

Next, recalling notation and results from the proof of Theorem 6, by (35) the cardinality
of the set A0 ∩ U is of order o(1/h). Hence the set G2

h of all ξ ∈ Gh with the property
that Zh(ξ) does not contain any square of type A0 satisfies

1 ≥
#(G2

h)

Nh
≥

Nh − #A0

Nh
→ 1

as h → 0. Note that by (22) such columns must consist either only of squares of type A1

or only of squares of type A2. On the other hand, by the convergence χΩh
1
→ χ{∇′w+

1 =0},

the set G3
h of ξ ∈ Gh with the property that Zh(ξ) contains a square of type A1 satisfies

#G3
h

Nh
→ 1 as well.

Columns Zh(ξ) with ξ ∈ G3
h ∩ G2

h consist only of A1-squares. The reason for picking out
such a column ξ is that on it only the well A = 0 is used. More precisely, using that by
definition sym R(h) = 0 in an A1-type cube, and that Zh(ξ)×Ih is made up of such cubes,
using (21) and the definition of Ih we can estimate, for ξ ∈ G3

h ∩ G2
h,

∫

Zh(ξ)×Ih

|sym ∇v(h)(x)|2dx =

∫

Zh(ξ)×Ih

|sym ∇v(h)(x) − sym R(h)(ξ, x2)|
2dx

≤ Ch2Ih(v(h); U) ≤ Cηhh2. (39)

(One could gain one more power of h in this estimate by choosing a low-energy column
in analogy to the definition of G1

h, but this estimate will suffice.) Let J2 be the set of
all ξ ∈ (−2a,−a) satisfying the property (Ph) (defined in the statement of Lemma 19
in the Appendix) for w(h). Applying Lemma 19 on the domain (−2a,−a) × (−1

2 , 1
2), for

h small enough we have H1(J2) ≥ a
2 . For every ξ ∈ J2 there is a continuous function

w̃(h) ∈ W 1,2((−2a, ξ) × (−1
2 , 1

2); R2) satisfying w(h)(ξ, ·) = w̃(h)(ξ, ·) and

1

h

∫

(−2a,ξ)×(− 1
2
, 1
2
)
|sym ∇′w̃(h)|2dx′ ≤ C

(

Ih
2D(w(h); U) +

∫

U
|∇′w(h)|2dx′

)

≤ Cηh (40)

with C independent of ξ and h. (Strictly speaking, Lemma 19 provides mappings w̃(h)

with the above properties only on a connected component of (−2a, ξ) × (−1
4 , 1

4), i.e. on
a stripe of width one-half only. But by Lemmas 13 and 14 we could as well restrict the
following construction to the corresponding sub-stripe and then rescale uniformly, compare
the arguments at the beginning of this proof and the one at the end of the proof of Lemma
15. Thus, there is no loss of generality if we assume that w̃(h) are defined as just claimed,
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and it will avoid unnecesary additional notation.)
Define the thinner columns

Z ′
h(ξ) = (ξ −

h

4
, ξ) × (−

1

2
,
1

2
) (41)

and consider the neighbourhood J1 =
⋃

ξ∈
T3

i=1 Gi
h
(ξ − h

4 , ξ + h
4 ). of

⋂3
i=1 Gi

h. By choosing

ρ above large enough, we have H1(J1 ∩ (−2a,−a)) > 4a
9 . Since J2 ⊂ (−2a,−a) and

H1(J2) ≥
a
2 we conclude that, in particular, there is one ξh ∈ J1 ∩J2 with ξh ≥ −3a

2 . Note

that, in general, ξh /∈ Gh. The reason for taking h
4 instead of h

2 in the definition of J1 is
that this choice ensures that Z ′

h(ξh) ⊂ Zh(ξ) for some ξ ∈ ∩3
i=1G

i
h, by the definition of J1.

The property of w̃(h) using only one well is crucial, since it allows us to apply Korn’s
inequality in the plane to deduce the existence of a constant skew symmetric matrix
Wh ∈ R

2×2, given explicitly as

Wh = skew −

∫

Uh

∇′w̃(h)(x′) dx′, (42)

with the property that there is an affine mapping f (h) with gradient Wh and
∫

Uh

|w̃(h) − f (h)|2 + |∇′w̃(h) − Wh|
2dx′ ≤ C

∫

Uh

|sym ∇′w̃(h)|2dx′ ≤ Chηh. (43)

Here we have introduced the set

Uh = (ξh −
a

4
, ξh) × (−

1

2
,
1

2
), (44)

which satisfies Uh ⊂ [−7a
4 ,−a) × (−1

2 , 1
2) ⊂ U for all h, since ξh ∈ [−3a

2 ,−a). Notice that
in fact C in (43) is independent of h, because the constant appearing in Korn’s inequality
is invariant under translation of the domain. We claim that

Wh → 0 in R
2×2. (45)

Indeed, consider any subsequence. By the Trace Inequality and the fact that w̃ and w
agree on the line x1 = ξh we have
∫

(− 1
2
, 1
2
)

∣

∣

∣f (h)(ξh, x2)
∣

∣

∣

2
dx2 ≤C

∫

(− 1
2
, 1
2
)

∣

∣

∣f (h)(ξh, x2) − w̃(h)(ξh, x2)
∣

∣

∣

2
dx2 + C

∫

(− 1
2
, 1
2
)

∣

∣

∣w(h)(ξh, x2)
∣

∣

∣

2
dx2

≤C

∫

Uh

∣

∣

∣f (h) − w̃(h)
∣

∣

∣

2
+

∣

∣

∣Wh −∇′w̃(h)
∣

∣

∣

2
dx′

+ C

∫

Uh

∣

∣

∣
w(h)

∣

∣

∣

2
+

∣

∣

∣
∇′w(h)

∣

∣

∣

2
dx′,

which tends to zero by (43) and the convergence w(h) → w+
1 in W 1,2(S; R2). From this

one easily deduces (45) since Wh is skew symmetric.
Now we extend w̃(h) to a three-dimensional displacement ṽ(h) by defining

ṽ(h)(x) =

(

w̃(h)(x′)

τ (h)(x′)

)

+ x3







−τ
(h)
,1 (x′)

−τ
(h)
,2 (x′)

0






. (46)
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This displacement has good one-well energy on Uh × Ih, since by (35) and (40)
∫

Uh×Ih

|sym ∇ṽ(h)(x)|2 dx ≤ h3

∫

Uh

|∇′2τ (h)(x′)|2 dx′ + h

∫

Uh

|sym ∇′w̃(h)(x′)|2dx′

≤ Cηhh2. (47)

(Later we will repeat this construction on the other side of the interface. Then one must

replace the second summand in (46) by x3

(

µ2−τ
(h)
,1 (x′), µ1−τ

(h)
,2 (x′), µ3

)T
.) Now consider

the interpolation
u(h)(x) = v(h)(x) + φ(h)(x1)(ṽ

(h)(x) − v(h)(x)), (48)

where φ(h) denotes a smooth cutoff function that decreases from one to zero within the
interval (ξh − h

4 , ξh). We take h/4 here to make sure that we stay within the chosen
h-column. We claim that

∫

Uh×Ih

|sym ∇u(h)|2dx ≤ Cη̃hh2, (49)

where η̃h = ηh + |Wh|
2 converges to zero as h → 0.

To prove (49), recall that by (44) and (41) we have Z ′
h(ξh) ⊂ Uh. Now notice that u(h) =

ṽ(h) on
(

Uh × Ih

)

\
(

Z ′
h(ξh)× Ih

)

, whence by (47) we have
∫

(Uh\Z
′

h(ξh))×Ih
|sym ∇u(h)|2 ≤

Cηhh2. It remains to prove (49) on the interpolation layer Z ′
h(ξh). We make a standard

calculation to obtain
∫

Z′

h(ξh)×Ih

|sym ∇u(h)|2dx

≤ C

∫

Z′

h(ξh)×Ih

|sym ∇v(h)|2 + |sym ∇ṽ(h)|2 +
1

h2
|ṽ(h) − v(h)|2dx. (50)

The first term on the right-hand side is estimated by (39) - this is where the fact is used that
Z ′

h(ξh) ⊂ Zh(ξ) for some ξ ∈ G2
h∩G3

h, i.e. we are inside a column consisting only of squares
of type A1. By (47) the second term in (50) satisfies

∫

Z′

h(ξh)×Ih
|sym ∇ṽ(x)|2dx ≤ Cηhh2.

Let us estimate the third term in (50). Since
(

w(h)(x′)

τ (h)(x′)

)

= −

∫

Ih

v(h)(x)dx3 = −

∫

Ih

v(h)(x) + x3(∇
′τ (h)(x′))T dx3

and since w(h) = w̃(h) on a line, we can apply a Poincaré inequality (see e.g. [12] Theorem
6.1-8) to estimate the second term in the last step in (51) below. The first term in that
step is estimated by the usual Poincaré inequality in the x3-direction:

∫

Z′

h(ξh)×Ih

1

h2
|v(h)(x) − ṽ(h)(x)|2dx

≤
C

h2

∫

Z′

h(ξh)×Ih

∣

∣

∣
v(h)(x) + x3







τ
(h)
,1 (x′)

τ
(h)
,2 (x′)

0






−

(

w(h)(x′)

τ (h)(x′)

)

∣

∣

∣

2
+ |w(h)(x′) − w̃(h)(x′)|2dx

≤ C

∫

Z′

h(ξh)×Ih

∣

∣

∣
v

(h)
,3 (x) +







τ
(h)
,1 (x′)

τ
(h)
,2 (x′)

0







∣

∣

∣

2
+ |∇′w(h)(x′) −∇′w̃(h)(x′)|2dx (51)

22



To estimate the first term in (51), we observe that
(

τ
(h)
,1 (x′), τ

(h)
,2 (x′), 0

)

= ∇−
∫

Ih
v

(h)
3 (x) dx3,

so we have

∫

Z′

h(ξh)×Ih

∣

∣

∣v
(h)
,3 (x) +







τ
(h)
,1 (x′)

τ
(h)
,2 (x′)

0







∣

∣

∣

2
dx

≤ C

∫

Z′

h(ξh)×Ih

∣

∣

∣
v

(h)
,3 (x) −−

∫

Ih

v
(h)
,3 (x′, z)dz

∣

∣

∣

2
+

∣

∣

∣
−

∫

v
(h)
,3 (x′, z)dz + (∇−

∫

Ih

v
(h)
3 (x′, z)dz)T

∣

∣

∣

2
dx

≤ Cηhh2.

In the last step we have applied (39) again and the fact that, by the x3-independence of
R(h), by Jensen’s inequality and by (35),

∫

Z′

h(ξh)×Ih

∣

∣

∣
v

(h)
,3 (x) −−

∫

Ih

v
(h)
,3 (x′, z) dz

∣

∣

∣

2
dx

≤ C

∫

Z′

h(ξh)×Ih

|v
(h)
,3 (x) − R

(h)
3 (x′)|2 +

∣

∣

∣−

∫

Ih

R
(h)
3 (x′) − v

(h)
,3 (x′, z) dz

∣

∣

∣

2
dx

≤ Cηhh2.

The second term in (51) is bounded by

C

∫

Z′

h(ξh)×Ih

|∇′w(h)(x′)|2 + |∇′w̃(h)(x′) − Wh|
2 + |Wh|

2dx ≤ Cηhh2 + |Z ′
h(ξh) × Ih||Wh|

2

We have applied (45) and (38) multiplied by h, since here we are integrating over the
thickness on the left-hand side. This proves (49) and finishes the first interpolation step.

Step 2. Interpolation to an affine displacement. We apply Lemma 17 to the mapping u(h)

defined in (48) with Jh = (ξh − a
4 , ξh) instead of J , so Jh × (−1

2 , 1
2) = Uh. Instead of the

interpolation layer (t, t + a) for which Lemma 17 is stated, we consider the interpolation
layer (ξh−

3a
16 , ξh−

a
8 ). Notice that on the set Jh×(−1

2 , 1
2) in fact u(h) = ṽ(h), since we are to

the left of the first interpolation layer, compare Figure 2. Lemma 17 furnishes a mapping
ũ(h) which agrees with u(h) on the set {x ∈ S : x1 > ξh − a

8} and equals an affine function

f (h) with skew symmetric gradient T (h) on the set {x ∈ S : x1 < ξh − 3a
16} (the mapping

ũ(h) is at first not defined on {x1 < ξh − a
4}, but since it is affine on (ξh − 3a

16 , ξh − a
4 ) we

can extend it affinely). Moreover, ũ(h) satisfies

∫

Uh×Ih

|sym ∇ũ(h)(x)|2 dx ≤
C

a4

∫

Uh×Ih

|sym ∇u(h)(x)|2 dx.

Combining this with (49) we conclude that

Ih(ũ(h); S) → k(ν1). (52)

Step 3. Convergence. Now we apply Steps 1 and 2 with obvious modifications also on the
other side of the interface. Then we have shown the following: For any given rectangle Q ⊂

S as in the statement of this lemma, there exists a sequence ũ
(h)
Q satisfying Ih(ũ

(h)
Q ; S) →
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k(ν1), and each ũ
(h)
Q is affine with sym ∇ũ

(h)
Q = 0 on the left and sym ∇ũ

(h)
Q = B on the

right connected component of S \Q. Now set Qj = (−1
j , 1

j )× (−1
2 , 1

2). By Proposition 20
there exists a sequence jn → ∞ such that

lim sup
n→∞

Ihn(ũ
(hn)
Qjn

;S) = lim sup
j→∞

lim sup
n→∞

Ihn(ũ
(hn)
Qj

; S) = k(ν1). (53)

Theorem 6 implies that there exist skew affine mappings fn and w ∈ A(S) such that

w̄
(hn)
Qjn

+ fn → w strongly in W 1,2(S; R2), (54)

and by Theorem 12 and (53) the limiting function w satisfies I0(w;S) ≤ k(ν1). But by
(54) necessarily sym ∇′w = 0 to the left and sym ∇′w = B to the right of the x2-axis.
Hence by possibly adding the same skew affine mapping to each fn we may assume that

the convergence (54) holds with w = w+
1 , whence ũ

(hn)
Qjn

+

(

fn

0

)

is the sought-for recovery

sequence. ¤

Lemma 17. Let I and J be open bounded intervals and set U = J × I. There is a
constant C (invariant under translations of U) such that the following holds: For every
h ∈ (0, 1), for every ṽ(h) ∈ W 1,2(U × Ih; R3), for every t ∈ J and for every b ∈ (0, 1)
satisfying t + b ∈ J , there exists a skew symmetric matrix T (h) ∈ R

3×3, c(h) ∈ R
3 and

ũ(h) ∈ W 1,2(U × Ih; R3) such that ũ(h) = ṽ(h) on {x1 < t} and ũ(h) = T (h)x + c(h) on
{x1 > t + b} and such that

∫

U×Ih

|sym ∇ũ(h)|2dx ≤
C

b4

∫

U×Ih

|sym ∇ṽ(h)|2dx.

One can take

T (h) = skew −

∫

U×Ih

∇ṽ(h)(x)dx and c(h) = −

∫

U×Ih

ṽ(h)(x)dx. (55)

The analogous statements hold reversing the order of t and b or considering the well
B + Skew instead of Skew.

Proof. By Proposition 18 (ii) and Poincaré’s inequality the mappings f (h)(x) = T (h)x +
c(h) with T (h) and c(h) as in (55) satisfy

∫

U×Ih

|ṽ(h)(x) − f (h)|2 + |∇ṽ(h)(x) − T (h)|2dx ≤
C

h2

∫

U×Ih

|sym ∇ṽ(h)(x)|2dx. (56)

By Proposition 18 (iii) also

∫

U×Ih

|(ṽ(h))′(x) − (f (h))′(x)|2dx ≤ C

∫

U×Ih

|sym ∇ṽ(h)(x)|2dx. (57)

Fix a smooth cutoff function φ(x1) which decreases from one to zero within the interval
(t, t + b). Define the interpolation

ũ(h)(x) = f (h)(x) + φ(x1)(ṽ
(h)(x) − f (h)(x)) − x3φ

′(x1)(ṽ
(h)
3 (x) − f

(h)
3 (x))e1.
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Then

∇ũ(h)(x) = T (h) + φ(x1)(∇ṽ(h)(x) − T (h)) +

(

(ṽ(h) − f (h))′(x)
0

)

⊗ e1φ
′(x1)

+ (ṽ(h) − f (h))3(x)e3 ⊗ e1φ
′(x1) − (ṽ(h) − f (h))3(x)e1 ⊗ e3φ

′(x1)

− x3

(

φ′′(x1)(ṽ
(h) − f (h))3(x)e1 ⊗ e1 + φ′(x1)e1 ⊗ (∇ṽ

(h)
3 (x) − (T (h))T e3)

)

.

Upon taking the symmetric part of the above expression, the second line cancels and we
obtain

∫

U×Ih

|sym ∇ũ(h)|2 dx ≤ C

∫

U×Ih

|sym ∇ṽ(h)|2 +
1

b2
|(ṽ(h) − f (h))′|2 dx

+ h2

∫

U×Ih

(
1

b4
|ṽ(h) − f (h)|2 +

1

b2
|∇ṽ(h) − T (h)|2) dx,

since φ′ ∼ 1
b and φ′′ ∼ 1

b2
. The last term is controlled by (56) and the (ṽ(h) − f (h))′-term

is controlled by (57). ¤

Proof of Theorem 1. By Lemma 2 we must prove the theorem only for the special
case A = 0 and B as in (7). Statement (i) just rephrases the content of Theorem 12.
The proof of (ii) is similar to that of Proposition 5.1 in [15]. We sketch it here for the
convenience of the reader. First one recalls that by Proposition 7, w is piecewise affine
with straight interfaces Ji separating affine regions an with interface normal either equal
to e1 or to e2. By translation we may assume without loss of generality that S is strictly
star-shaped with respect to the origin. Thus strict star-shapedness implies that the scaled
domain ηS satisfies S̄ ⊂ ηS for any η > 1. Hence the restriction of wη(x) = ηw(x

η ) to S
is well defined. The limiting function wη|S only has finitely many intervals Ji, i = 1, ..., n,
which have a positive distance from each other. Moreover, each Ji can be covered by a
rectangle Ri with two sides parallel to Ji and with the other two sides lying outside S̄.
Moreover, the Ri can be chosen to be pairwise disjoint. Now Lemma 16 applied to Ri

furnishes a recovery sequence w
(h)
i with each w

(h)
i affine with gradient in K near those

sides ∂Ri which are parallel to the interface covered by Ri. Hence the each restriction

w
(h)
i |Ri can be affinely extended into the region S \ Ri. There are only finitely many

interfaces. Starting at one local recovery sequence, one can glue it to the local recovery
sequences of the neighbouring interfaces by adding affine functions with skew symmetric
gradient to them, so they agree identically with the first one away from their interfaces.
Then one proceeds inductively. The composite mapping v(h) obtained by this procedure is
a recovery sequence for wη|S . But as explained in [2] p. 3 this implies the limes superior-
part of Theorem 1, since wη|S → w in W 1,2(S) and I0(wη|S ; S) → I0(w; S) as η ↓ 1 (i.e.
mappings with finitely many interfaces are energy dense). ¤

5 Appendix

For a film of thickness h, the constant in the two-well Korn inequality derived in Theorem
3 deteriorates as h−2 as h tends to zero. The same is true for the classical Korn inequality,
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as is also shown in [3]. A combination of this latter result with a Poincaré estimate in
the thickness direction leads to (iii) in the following proposition, which was needed in the
proof of Lemma 17. Statement (ii) is Korn’s inequality for thin films as presented in [3].

Proposition 18. Let S ⊂ R
2 be a bounded Lipschitz domain and let A,B ∈ R

3×3 be such
that rank(A − B + F ) ≥ 2 for all skew-symmetric F ∈ R

3×3. Then there is a constant
C(S) such that for all h ∈ (0, 1) and for all v(h) ∈ W 1,2(S × Ih; R3) the following hold:

(i) There exists a matrix T (h) ∈ K such that

∫

S×Ih

|∇v(h)(x) − T (h)|2 dx ≤
C(S)

h2

∫

S×Ih

dist2(sym ∇v(h)(x), {A, B}) dx.

(ii) The estimate

∫

S×Ih

|∇v(h)(x) − T (h)|2 dx ≤
C(S)

h2

∫

S×Ih

|sym ∇v(h)(x)|2dx

holds for T (h) = skew −
∫

S×Ih
∇v(h)dx.

(iii) There exists c(h) ∈ R
2 such that

∫

S×Ih

|(v(h))′(x) − (T (h)x)′ − c(h)|2dx ≤ C(S)

∫

S×Ih

|sym ∇v(h)(x)|2 dx

for the same T (h) as in (ii).

Proof. The proof of (i) is analogous to that of Theorem 10 in [25], with Theorem 3
replacing their geometric rigidity theorem. Statement (ii) can be proven in the same way,
with Korn’s inequality for one well replacing their geometric rigidity theorem. Another
proof is given in [3] and [30]. Notice that if (ii) holds for some skew matrix, then it will
also hold for the special choice T (h) = skew −

∫

S×Ih
∇v(h)dx.

To prove statement (iii) set w(h)(x′) = −
∫

Ih
(v(h))′(x′, x3)dx3. From Korn’s inequality in the

plane and from Jensen’s inequality we obtain
∫

S

∣

∣

∣
∇′w(h)(x′) − T̄ (h)

∣

∣

∣

2
dx′ ≤ C

∫

S

∣

∣

∣
sym ∇′w(h)(x′)

∣

∣

∣

2
dx′ ≤

C

h

∫

S×Ih

|sym ∇v(h)|2 dx.

(58)

With c(h) = −
∫

S w(h)(x′) − T̄ (h)x′dx′ we obtain

∫

S×Ih

∣

∣

∣(v(h))′(x) − (T (h)x)′ − c(h)
∣

∣

∣

2
dx

≤ C

∫

S×Ih

∣

∣

∣
(v(h))′(x) − (T

(h)
3 )′x3 − w(h)(x′)

∣

∣

∣

2
+

∣

∣

∣
w(h)(x′) − T

(h)
x′ − c(h)

∣

∣

∣

2
dx,

where T
(h)
3 denotes the third column of T (h). The second term is estimated by applying

Poincaré’s inequality on S and then (58). To estimate the first term, notice that since the

integration domain is symmetric, we have w(h)(x′) = −
∫

Ih
(v′(x)− (T

(h)
3 )′x3) dx3. Applying
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Poincaré’s inequality in the x3-direction for almost every x′ and subsequently using (ii)
shows that the first term is controlled by

∫

S×Ih
|sym ∇v(h)|2. ¤

The following lemma is a corollary of Proposition 4.1 in [15]. Notice that their ε corre-
sponds to our h.

Lemma 19. Let l, d > 0, let U = (−l, l) × (−d, d), let Ā = 0 and B̄ = e1 ⊗ e2 + e2 ⊗ e1,
and let F̄ ∈ {Ā, B̄}. Given ρ ∈ (0, 1), there are constants η0, C0 > 0 such that for every
h ∈ (0, 1) and w ∈ W 2,2(U ; R2) with

Ih
2D(w; U) ≤ η0 and

∫

U
|sym ∇′w − F̄ |2 dx′ ≤ η0

the set of ξ ∈ (−l, l) satisfying property (Ph) for w has measure not smaller than l.
We say ξ ∈ (−l, l) satisfies property (Ph) for w ∈ W 2,2(U ; R2) if, denoting by U1, U2

the connected components of (−l, l) × (−d
2 , d

2) \ {x1 = ξ}, for each i = 1, 2 there exist
w̃i ∈ W 1,2

(

Ui; R
2
)

with w̃(ξ, ·) = w(ξ, ·) on (−d/2, d/2) and

1

h

∫

Ui

∣

∣

∣sym ∇′w̃i(x
′) − F̄

∣

∣

∣

2
dx′ ≤ C0

(

Ih
2D

(

w; U
)

+

∫

U
|sym ∇′w(x′) − F̄ |2dx′

)

An analogous result holds for lines of the form {x2 = ξ}.

Proof. Set η = Ih
2D(w; U)+

∫

U |sym ∇′w− F̄ |2 dx′. By Proposition 4.1 in [15] there exists
a Borel set Σ ⊂ (−l, l) with |Σ| ≥ l and such that for all ξ ∈ Σ there exists an affine
mapping wξ : R

2 → R
2 with sym ∇′wξ = F̄ and

‖w(ξ, ·) − wξ(ξ, ·)‖
2
H1/2((− d

2
, d
2
);R2)

≤ Chη.

By the properties of the H1/2-norm (see e.g. the appendix of [29] for a review), for i = 1, 2
there exist vi ∈ W 1,2(Ui; R

2) such that

∫

Ui

|∇′vi|
2 dx′ ≤ ‖w(ξ, ·) − wξ(ξ, ·)‖

2
H1/2((− d

2
, d
2
);R2)

and vi(ξ, ·) = w(ξ, ·)−wξ(ξ, ·) on (−d
2 , d

2) in the trace sense. Setting w̃i = vi + wξ we find

1

h

∫

Ui

|sym ∇′w̃i − F̄ |2 dx′ ≤
C

h

∫

Ui

|∇′vi|
2 + |sym ∇′wξ − F̄ |2 dx′ ≤ Cη

and w̃i(ξ, ·) = w(ξ, ·) on (−d
2 , d

2) in the trace sense. ¤

The following proposition is a standard diagonalization lemma, compare [4] Corollary 1.16.
or [9] Lemma 7.2.

Proposition 20. Let ak,j be a doubly indexed sequence of real numbers, k, j → ∞. Then
there exists a subsequence kj → ∞ such that

lim sup
j→∞

akj ,j = lim sup
k→∞

lim sup
j→∞

ak,j .
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