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Abstract

We consider symmetric hypothesis testing in quantum statistics, where the hypotheses
are density operators on a finite-dimensional complex Hilbert space, representing states
of a finite quantum system. We prove a lower bound on the asymptotic rate exponents of
Bayesian error probabilities. The bound represents a quantum extension of the Cherno=
bound, which gives the best asymptotically achievable error exponent in classical discrim-
ination between two probability measures on a finite set. In our framework the classical
result is reproduced if the two hypothetic density operators commute.
Recently it has been shown elsewhere [1] that the lower bound is achievable also in

the generic quantum (noncommutative) case. This implies that our result is one part of
the definitive quantum Cherno= bound.

1 Introduction

One typical problem in hypothesis testing is to decide between two equiprobable hypotheses,
say j0 and j1, where j“ assumes that the observed data are generated by an i.i.d. process
with law r“, “ = 0] 1. In the classical setting r0] r1 are probability measures on a measurable
space, the sample space. One discriminates between them by means of test functions, which
are nonnegative measurable functions on the fl-fold product sample space. An error occurs
if according to the given decision rule based on the value of the test function, one accepts
hypothesis j0 while the data are generated with law r1, or vice versa.

If one declares one of the hypotheses to be the null hypothesis and the other one the
alternative, then errors occuring while the null hypothesis is true are called of first kind,
otherwise of second kind. Due to Stein’s lemma there exist test functions maintaining a given
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upper bound - on the error probability of first kind such that the probability of error of the
second kind decreases to 0 with the optimal asymptotic rate exponent equal to the Kullback-
Leibler distance from the null hypothesis to the alternative. Sanov’s theorem extends this
result to the case where instead of a single measure r0, a family , of measures is associated
with the null hypothesis. Then the negative Kullback-Leibler distance from the set , to r1
gives the minimal asymptotic error exponent, [17], see also [6].

In symmetric hypothesis testing one treats the errors of first and second kind in a symmetric
way. We will focus here on the Bayesian error probability, which is the average of the two
kinds of error probabilities. It is minimized by the likelihood ratio test and vanishes expo-
nentially fast as the sample size fl tends to infinity. The corresponding optimal asymptotic
rate exponent is equal to the Cherno= bound

inf
0C¶C1

log

Z
†1R¶
0 (C)†¶

1(C)8(£C) (1)

pertaining to probability measures r0 and r1 with respective densities †0 and †1 (wrt dom-
inating measure 8 = r0 + r1). These results go back to papers by Cherno= and Hoe=ding,
[5, 10]. Chentsov and Morozova [4] present a thorough and illuminating discussion of the
Cherno= bound, relating it to the di=erential geometry of statistical inference.

If the data are obtained from quantum systems then one has to replace probability measures
by quantum states, i.e. by normalized positive linear functionals on an appropriate algebra
of observables. In the present paper this is assumed to be the algebra of linear operators on
a finite-dimensional complex Hilbert space. One discriminates between two states <0 and <1
by means of quantum tests, which are defined as positive operator valued measures on fl-fold
tensor products of the algebra of observables of a single quantum system. Here we employed
the standard language of quantum mechanics; throughout the paper however we will utilize
an elementary and accessible mathematical framework based on complex linear algebra only.
It will become apparent that quantum tests are analogs of test functions defined on finite
sample spaces and their fl-fold products.

While the basic problems in nonsymmetric quantum hypothesis testing (pertaining to --
tests) were solved in [9], [15] and [3] by obtaining quantum versions of Stein’s lemma and
Sanov’s theorem, the case of discrimination (or equally weighted hypotheses) has not yet
received full teatment. Although quantum tests minimizing the generalized Bayesian error
probabilities were constructed about 30 years ago by Helstrom and Holevo in [8, 11], a closed
form expression for the optimal asymptotic quantum error exponent similar to the classical
Cherno= distance remained an open problem. A reason has been that there is no obvious
canonical way to extend (1) to a quantum setting. On the very formal level, due to non-
commutativity e=ects, there are di=erent non equivalent ways of generalizing the distance. In
[15] Ogawa and Hayashi list three candidates for the optimal quantum rate exponent, relying
on three di=erent extensions of the target function in the variational formula (1). However,
two of these candidate expressions are not well defined if the hypotheses are not faithful
states, i.e. if the associated density operators do not have full rank.

Recently the problem of symmetric quantum testing was treated by Kargin [12], with partial
progress towards the definitive Cherno= bound. Lower and upper bounds on the optimal
error exponent in terms of fidelity between the two density operators were given; the lower
bound was shown to be sharp in the case that one of the density operators has rank one (i.
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e. represents a pure quantum state). We remark that fidelity is a notion of distinguishability
between density operators which is frequently used in quantum information theory, see e.g.
[13].

Our main result, which we formulate rigorously in Section 2, states that inf0C¶C1 log Tr
£

<1R¶
0 <¶

1

¤

is a lower bound on the general asymptotic error exponent, <0 and <1 being density operators
replacing the probability densities †0 and †1 of the classical setting. We remark that our
quantum bound coincides with one of the three candidates for a quantum Cherno= bound
discussed in [15]. We prove the main theorem in Section 3. Recently, Audenaert et al.
have shown in [1] that in accordance with our conjecture stated in a previous version of
the present work, [14], the lower bound is indeed achievable. This justifies to refer to it as
quantum Cherno= bound.

2 Mathematical setting and the main theorem

For an elementary introduction to quantum statistics with physical background, see Gill
[7]. We will describe here only the formalism for the simplest possible nonclassical setup
of discrimination between two hypotheses. A density matrix < is a complex, self-adjoint,
positive, £ × £ matrix satisfying the normalization condition Tr [<] = 1, where Tr [·] is the
trace operation. Here "positive" means nonnegative definite. We identify a density matrix
with a state of a quantum system; we also use "matrix" and "operator" interchangeably. The
two hypotheses are described by two states j0 : < = <0, j1 : < = <1. Decisions are made
using a test ·] which is a complex self-adjoint positive £×£ operator satisfying the inequality
· 6 1. Here 1 is the unit matrix and 6 is in the sense of matrix order, i.e. 1"·fl is positive
(nonnegative definite). In particular, projection operators are tests. Applying the test to a
state < the experimenter or observer creates a random variable taking values in the spectrum
(set of eigenvalues) of · ; the expectation of this random variable is Tr[<·]. Thus a test gives
a r.v. with at most £ possible values in [0] 1]. In line with the usual understanding of a
randomized test, these values are interpreted as a conditional probability of rejecting the null
hypothesis j0. Then Tr[<·] is the overall probability of rejecting j0 when < is the true state.
Accordingly, Tr [<0·] is the error probability of first kind and Tr[(1" ·)<1] = 1"Tr [<0·]
is the error probability of second kind. When both <0, <1 and also · are diagonal matrices
then the setup reduces to the classical testing problem for two probability measures on an
appropriate index set ,, |,| = £ given by <0, <1 respectively. The same is true when <0,
<1 have the same set of eigenvectors; then <0, <1 are said to commute (commutative case).
In this sense, commuting states describe the classical discrimination problem between two
probability measures on a finite sample space ,, as a special case of the present quantum
setting.

A pure state is given by a density matrix which has rank 1, which means it is a projection
onto a subspace of (complex) dimension one. We will also use the following notation: we set
H = C£, with the understanding that H can be any £-dimensional complex Hilbert space,
and we write B(H), B(H(fl) for the set of complex £×£ or £fl×£fl matrices, respectively. In
the bra-ket notation, |„i and h„| denote a vector in H and its dual vector with respect to the
scalar product in H (essentially a column and a row vector). A one dimensional projection
onto a subspace of H spanned by a unit vector „ may be written as |„ih„|. It is a density
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operator of a pure state.

The above describes the basic setup where the finite dimension £ is arbitrary. We consider
the quantum analog of having fl i.i.d. observations. For this, the two hypotheses are assumed
to be <(fl

0 and <(fl
1 for two basic £-dimensional states <0, <1, where <(fl is the fl-fold tensor

product of < with itself. (Recall that the tensor product ~,¡ of two matrices is a matrix which
consists of blocks ~“«¡, arranged according to the indices “] «. Thus <(fl

0 is a £fl× £fl matrix.)
The tests ·fl now operate on the states <(fl

0 and <(fl
1 , i.e. their dimension is £fl×£fl, but they

need not have tensor product structure. The corresponding Bayesian error probability is

g··(·fl) :=
1

2
Tr
£
(·fl<(fl

0 + (1" ·fl)<
(fl
1 )

¤

=
1

2

¡
1"Tr

£
·fl(<

(fl
1 " <(fl

0 )
¤¢

¥

The optimal hypothesis tests minimizing the error probability are known to be the Holevo-
Helstrom hypothesis tests, [11, 8]. They are given for each fl T N by the projections

'vfl := supp (<
(fl
1 " <(fl

0 )+]

where supp ~ denotes the support projection of a linear operator ~ and ~+ means the positive
part of a self-adjoint operator ~. Thus if ~ =

P
“ 7“g“ is the the spectral decomposition using

projections g“ then ~+ :=
P

7“`0
7“g“ and supp~+ =

P
7“`0

g“. Indeed we have for an
arbirtrary test operator in B(H(fl)

g··(·fl) =
1

2

¡
1"Tr

£
·fl(<

(fl
1 " <(fl

0 )
¤¢

7 1

2

¡
1" sup{Tr

£
·̃(<(fl

1 " <(fl
0 )

¤
: ·̃ T B(H(fl) test}

¢

=
1

2

¡
1" sup{Tr

£
'(<(fl

1 " <(fl
0 )

¤
: ' T B(H(fl) projection}

¢

=
1

2

¡
1"Tr

£
'vfl(<

(fl
1 " <(fl

0 )
¤¢

=
1

2

µ
1" 1

2
k<(fl
1 " <(fl

0 k1

¶

where k~k1 =Tr[~+] + Tr[~+ " ~] is the generalization of the n1-norm. Note that the last
line above gives an exact closed form expression of the best error probability for every fl, but
its asymptotics as fl CS (rate of exponential decay) is the subject of the present paper.

The Holevo-Helstrom tests 'vfl are non-commutative generalizations of the likelihood ratio
tests: if the hypotheses j0 and j1 correspond to commuting density operators <0 and <1
then for all fl T N the Holevo-Helstrom projections 'vfl commute with <(fl

0 and <(fl
1 , too.

The density operators <“ may be completely specified by their eigenvalues forming discrete
probability measures r“, “ = 0] 1 on an appropriate index set ,, |,| = £ for the mutually
commuting spectral projectors on H. For each fl T N the set of eigenvalues of the tensor
product <(fl

“ , “ = 0] 1, corresponds to the respective product measure r fl
“ :=

Qfl
«=1 r“ on

the cartesian product ,fl := ×fl
“=1, while the Holevo-Helstrom projection 'vfl generalizes the

indicator function 7vfl = 1{†
fl
1 " †fl

0 ` 0} on ,fl, which is the well known maximum likelihood
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decision. Here †“ denote the probability densities of the laws r“. Define the classical error
probability g··(7) of a test function 7 (0 6 7 6 1) by

g··(7) =
1

2
(gr07+gr1(1" 7)) ¥ (2)

As already mentioned in the Introduction the Bayesian error probability g··(7vfl) vanishes, as
fl CS, with a minimal asymptotical rate exponent equal to the Cherno= bound 0(r0] r1):

lim
fl[A

1

fl
logg··(7vfl) = 0(r0] r1) := inf

0C¶C1
log
X

»l“
†1R¶
0 (»)†¶

1(»)¥ (3)

We remark that X

»l“
†1R¶
0 (»)†¶

1(») =: c(¶)] ¶ T [0] 1]] (4)

represent the normalization factors of the parametric family of probability measures

†¶(») :=
1

c(¶)
†1R¶
0 (»)†¶

1(»)] » T ,¥

The family is called a Hellinger arc in the literature. It interpolates between †0 and †1 if their
supports f0] f1 4 , coincide. Otherwise †¶, ¶ T [0] 1], is discontinuous (in the Euclidian
metric of R|“|) at the endpoints ¶ = 0] 1 such that over the open parameter interval (0] 1) it
represents an interpolation between the densities of the conditional probablities s0 := r0(·|d)
and s1 := r1(·|d), where d := f0 ̃f1.

There is an equivalent expression for the Cherno= bound (3) in terms of the KL-distance
(relative entropy):

0(r0] r1) = inf
¶l[0]1]

¡
"(1" ¶)m(s¶ks0)" ¶m(s¶ks1) + log ;1R¶

0 ;¶
1

¢
] (5)

where s¶ denotes the conditional probability r¶(·|d), for ¶ T [0] 1], and ;“ := r“(d), for
“ = 0] 1. Observe that if the supportsf0 andf1 coincide, i.e. d = ,, then the target function
in (5) -we will refer to it asj(¶) in the sequel- becomes simply"(1"¶)m(r¶kr0)"¶m(r¶kr1).
What is remarkable is that in this case we have

0(r0] r1) = "m(r=kr0) = "m(r=kr1)]

where the parameter = T [0] 1] is uniquely defined by the second equality above. In the
generic case of possibly di=erent supports a modified version of the above formula is valid.
One distinguishes two cases: if there exists a = T (0] 1) such that j 0(=) = 0, which is
equivalent to m(s=ks0)"m(s=ks1) = log (;0_;1), then

0(r0] r1) = "m(s=kr0) + log ;0 = "m(s=kr1) + log ;1¥

Otherwise, the infimum in (5) is attained either at ¶ = 0 or at ¶ = 1 and the corresponding
values of the Cherno= bound are log ;0 and log ;1.

The identity (5) and the other claims in the above paragraph follow from (25) in the Appen-
dix and attendant reasoning. To our knowledge, no quantum generalization of (5) has yet
been found.

5



In the following theorem we formulate the classical result (3) for the general case of probabil-
ity measures r0, r1 on an arbitrary measurable space (,](), not necessarily finite. Consider
the Bayesian error probability of discrimination between r0] r1 by means of test functions
0 6 7 6 1:

# (r0] r1) := inf
7 test function

g··(7)¥ (6)

where g··(7) is given by (2). Let 7v be the maximum likelihood test function 7v = 1{†1 "
†0 ` 0} on , in terms of densities †0, †1 for some dominating measure 8. It is well known
that # (r0] r1) can be expressed as

# (r0] r1) = g··(7v) =
1

2

Z
min (†0] †1) £8¥ (7)

Theorem 2.1 Let r0] r1 be two probability measures on (,](). For product measures r fl
0 ]

r fl
1 corresponding to fl i.i.d. observations C1] ¥ ¥ ¥ ] Cfl all having law r0 or r1, the Bayesian
error probability satisfies

lim
fl[A

flR1 log # (r fl
0 ] r fl

1 ) = inf
0C¶C1

log

Z
†¶
1†
1R¶
0 £8 (8)

where †“ = £r“_£8, “ = 0] 1, 8 := r0 + r1.

For strictly positive †0 and †1 with †0 6= †1 the proof can be found in the literature, cf. e.g.
[4], p. 164, or for finite sample space in [6], p. 312. For completeness, we present a proof
for the general case of possibly di=erent support of r0] r1 in the Appendix. Indeed if r0] r1
have the same support then the function c(¶) =

R
†¶
1†
1R¶
0 £8 is analytic and strictly convex,

hence a minimizer = T [0] 1] of c(¶) exists and the infimum is in fact a minimum. However,
if the supports are di=erent then c(¶) may be discontinuous at the endpoints of the interval
[0] 1]. Hence a minimizer need not exist and the r.h.s. in (8) is only an infimum. The proof
of our main theorem, Theorem 2.2 below, uses the above classical result for the general case
of possibly di=erent support.

We intend to investigate the asymptotic behavior of the Bayesian error probability in the
case where the hypotheses are quantum states on B(H), where dimH = £ ^ S. In order to
derive the optimal asymptotic rate exponent we replace the target function in the variational
formula (3) or (8), which defines the classical Cherno= bound, by

ĉ(¶) := Tr
£
<1R¶
0 <¶

1

¤
] ¶ T [0] 1]¥

Our main theorem, formulated below, confirms that the logarithm of the infimum of ĉ(¶)
over [0] 1] gives a lower bound on the optimal quantum error exponent.

Theorem 2.2 [Quantum Cherno= Lower Bound] Let <0] <1 be two density operators repre-
senting quantum states on a finite-dimensional complex Hilbert space H. Then any sequence
of test projections 'fl T B(H(fl), fl T N, satisfies

lim inf
fl[A

1

fl
logg··('fl) 7 inf

0C¶C1
logTr

£
<1R¶
0 <¶

1

¤
¥ (9)
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We point out that indeed ĉ(¶) represents the proper generalization of (4) in the context of
symmetric hypothesis testing. As already noted in the Introduction, and as conjectured in
[14], it turns out to be achievable, see [1].

3 Proof of the main theorem

We will prove Theorem 2.2 applying the corresponding classical result, Theorem 2.1, to appro-
priate probability distributions appearing in the general non-commutative setting. Another
ingredient is the following lemma.

Lemma 3.1 Let »] … be two unit vectors in a finite-dimensional Hilbert space H and 7] / 7 0.
Then it holds for all projections ' T B(H)

7|h'»|…i|2 + /|h(1"')»|…i|2 7 1

2
|h»|…i|2min{7] /}¥

Proof. Let :] - be vectors in R2 identified with the respective complex numbers h»|…i and
h'»|…i, where ' T B(H) is a projection. We intend to prove the stronger claim that for all
- T R2

7k-k2 + /k: " -k2 7 1

2
k:k2min{7] /}¥ (10)

while Lemma 3.1 claims (10) only for - T ": = {h'»|…i : ' T B(H)} again identifying C with
R2.

Let r: be the projection onto the subspace spanned by : T R2, then

7k-k2 + /k: " -k2 = 7kr:-k2 + 7k(1" r:)-k
2 + /k: " r:-k2 + /k(1" r:)-k

2

7 7kr:-k2 + /k: " r:-k2

= 7~2k:k2 + /(1" ~)2k:k2] (11)

where in the last line we set r:- = ~: for some ~ T R.

Assume k:k ` 0, otherwise the lemma is trivially true. We calculate the minimum of (11) as
a function of ~ taking the derivative. The solution of (27~" 2/(1" ~)) k:k2 = 0 is ~ = /

7+/ ,
which leads to the value of (11) at the minimum

¡
7~2 + /(1" ~)2

¢
k:k2 =

7/

7+ /
k:k2 ¥

Finally, the claim (10) follows from the estimate

7/

7+ /
k:k2 7 7/

2max (7] /)
k:k2 =

1

2
min (7] /) k:k2 ¥

Proof of Theorem 2.2. We will establish

lim inf
fl[A

1

fl
log (g··('fl)) 7 inf

0C¶C1
logTr <1R¶

0 <¶
1]
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for any sequence of projections 'fl T B(H(fl)] fl T N.

We consider two arbitrary density operators <0] <1 on a finite-dimensional Hilbert space H =
C£ with spectral representations

<0 =
£X

“=1

7“ |»“ih»“|] <1 =
£X

“=1

/“ |…“ih…“|]

i.e. |»“i, “ = 1] ¥ ¥ ¥ ] £, and |…“i, “ = 1] ¥ ¥ ¥ ] £ are two orthonormal bases (ONB) of eigenvectors
in C£, and 7“] /“ T [0] 1] are the respective eigenvalues of <0 and <1.

Let ' be a projection onto a subspace of C£, then

Tr ['<] = Tr

"

'

Ã
£X

“=1

7“ |»“ih»“|

!#

=
£X

“=1

7“ h»“|'»“i

=
£X

“=1

7“ k'»“k
2

=
£X

“=1

7“

£X

«=1

|h'»“|…«i|
2]

where the third identity is true since ' is a projection and the last one is by Parseval’s
identity for the ONB |…«i, « = 1] ¥ ¥ ¥ ] £. In the same way we obtain

Tr [(1"')<1] =
£X

«=1

/«

£X

“=1

|h(1"')…« |»“i|
2¥

Now in view of the identity |h(1"')…« |»“i|
2 = |h(1"')»“|…«i|

2 we have

g··(') =
1

2
(Tr [<0'] +Tr [<1(1"')])

=
1

2

£X

“]«=1

¡
7“|h'»“|…«i|

2 + /« |h(1"')»“|…«i|
2
¢

¥

We introduce the abbreviation

g··“]«(') :=
1

2

¡
7“|h'»“|…«i|

2 + /« |h(1"')»“|…«i|
2
¢

¥

It holds

g··(') = inf
> projection

£X

“]«=1

g··“]«(') 7
£X

“]«=1

inf
> projection

g··“]«(')

7
£X

“]«=1

1

4
min{7“] /«}|h»“|…«i|

2 (12)
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where the first inequality is obvious and the second is an application of Lemma 3.1. Note
that

†“]« := 7“|h»“|…«i|
2] ‡“]« := /« |h»“|…«i|

2] “] « = 1] ¥ ¥ ¥ ] £] (13)

define probability measures r and s on £2 elements, respectively. Indeed

£X

“]«=1

†“]« =
£X

“]«=1

7“|h»“|…«i|
2 =

£X

“=1

7“k»“k
2 =

£X

“=1

7“ = 1

and similarly for (‡“]«). Now, inequality (12) may be written

g··(') 7 1

4

£X

“]«=1

min{†“]« ] ‡“¥«}¥ (14)

Observe according to (6) and (7), the r.h.s. above is up to the factor 1_2 equal to the classical
minimal Bayesian error probability #(r] s) of discrimination between probability measures
r and s :

1

2

‹X

“]«=1

min {†“]« ] ‡“]«} = # (r] s) ¥ (15)

Next we consider the case where the quantum hypotheses are <(fl
0 and <(fl

1 . Then the corre-
sponding classical probability measures according to (13) are product measures r fl and sfl,
for r] s corresponding to <0] <1, respectively. Applying inequality (14), (15) and subsequently
combining it with the classical result on the Cherno= bound for # (r fl] sfl), Theorem 2.1,
we obtain for any sequence of projections 'fl T B(H(fl), fl T N,

lim inf
fl[A

1

fl
logg··('fl) 7 lim

fl[A
1

fl
log

µ
1

2
#(r fl] sfl)

¶

= log

R
b inf
0C¶C1

£X

“]«=1

†1R¶
“]« ‡¶

“]«

S
c ¥

We finish the proof by verifying

£X

“]«=1

†1R¶
“]« ‡¶

“]« =
£X

“]«=1

71R¶
“ /¶

« |h»“|…«i|
2 =

£X

“]«=1

71R¶
“ h»“|…«i/

¶
« h…« |»“i

= Tr

T
V

£X

“]«=1

71R¶
“ |»“ih»“| /¶

« |…«ih…« |

U
W

= Tr
£
<1R¶
0 <¶

1

¤
¥
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4 Appendix

As announced in Section 2 we give a proof for Theorem 2.1 for the general case where the
two probability measures involved are allowed to have di=erent supports. As far as possible
we follow the proof in the case of same support by Chentsov and Morozova [4].

Proof of Theorem 2.1. 1. Preliminary observations: Assume that two probability measures
r0, r1 on a measurable space (,]() have support f“ = supp(r“), “ = 0] 1. Denote d =
f1 ̃f2 and for “ = 0] 1

u“ = f“ rd¥ (16)

We introduce the measure 8 = r0 + r1 and define the densities †“ = £r“_£8, “ = 0] 1. Then
clearly †1 + †2 = 1. We assume the densities and the sets f“ are chosen such that

f“ = {C : †“(C) ` 0} ] “ = 0] 1]

hence
d = {C : †0(C) ` 0] †1(C) ` 0} ¥

Recall the definition of the Hellinger arc of densities for parameter ¶ T [0] 1]:

†¶(C) = †¶
1(C)†

1R¶
0 (C)cR1(¶)]

where

c(¶) =

Z
†¶
1(C)†

1R¶
0 (C)8(£C)

is a normalizing factor. Note that for ¶ = 0 and ¶ = 1 we obtain the initial densities †0,
†1 respectively, so that c(0) = c(1) = 1. However the function c(¶) is not continuous in
general at the endpoints 0] 1. Indeed, the integral is over the set d,

c(¶) =

Z

d
†¶
1(C)†

1R¶
0 (C)8(£C)

and by dominated convergence it follows that

c+(0) := lim
¶&0

c(¶) =

Z

d
†0(C)8(£C) = r0(d)]

cR(1) := lim
¶%1

c(¶) =

Z

d
†1(C)8(£C) = r1(d)¥

Furthermore, observe that for ¶ T (0] 1) the densities †¶ have support d, with limits at the
endpoints

†0+(C) = †0(C)_r0(d)] †1R(C) = †1(C)_r1(d)¥

Hence the corresponding limiting measures are the conditional probability measures

r0+(·) = r0(·|d)] r1R(·) = r1(·|d)¥

If the sample space is restricted to d, the densities †¶, ¶ T (0] 1), can be written in exponential
family form

†¶(C) = exp

µ
¶ log

†1(C)

†0(C)

¶
†0(C)c

R1(¶)] C T d¥ (17)
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and for ¶ = 0] 1 the above holds if d = f¶. Also, for ¶ = 0] 1, if d 6= f¶ then the restriction
†¶|d is not a probability density. We denote

j(¶) = logc(¶)] j+(0) = logr0(d)] jR(1) = logr1(d)¥

2. Bayesian error probabilities g··(7vfl) by change of measure to r¶: Recall the form of the
optimal test 7vfl on ,

fl for equiprobable hypothetic densities †0 and †1 on ,:

7vfl = 1

Z
^
¥

flY

«=1

†1(C«) `
flY

«=1

†0(C«)

[
_
] ]

where C1] ¥ ¥ ¥ ] Cfl are fl i.i.d. observations. (One may also take "7" or decide arbitrarily on
the "=" set). We partition the set ,fl into disjoint subsets u0]fl] u1]fl and dfl:

u0]fl := {there is « T {1] ¥ ¥ ¥ ] fl} such that C« T u0} ]

u1]fl := {there is « T {1] ¥ ¥ ¥ ] fl} such that C« T u1} ]

where u“, “ = 0] 1 were defined in (16). The remaining case is the event

dfl := {C
fl T , : C« T d for « = 1] ¥ ¥ ¥ ] fl} ¥

Denote Cfl = (C1] ¥ ¥ ¥ ] Cfl) T ,fl. We have 7vfl(C
fl) = 1 (decision in favor of r1) if Cfl T u1]fl,

i.e. an event happens which excludes r0. Similarly we have 7vfl(C
fl) = 0 for Cfl T u0]fl. For

Cfl T dfl define the (normed) log-likelihood ratio by

nfl(C
fl) := flR1

flX

“=1

log
†1
†0
(C“)¥

Then we can describe the test 7vfl

7vfl(C
fl) = 1 {nfl(C

fl) ` 0] Cfl T dfl}+ 1 {C
fl T u1]fl} ¥ (18)

Further we define for “ = 0] 1 functions

i(“)
¶]fl(C

fl) = 1 {Cfl T dfl} flR1
flX

«=1

log
†“

†¶
(C«)¥

We note the following relations, for C T d:

log
†0
†¶
(C) = "¶ log

†1
†0
(C) +j(¶)] (19)

log
†1
†¶
(C) = (1" ¶) log

†1
†0
(C) +j(¶)¥ (20)

To prove (20), observe that

log
†1
†¶
= log

†1c(¶)

exp
³

¶ log †1
†0

´
†0
= log

†1
†0
" ¶ log

†1
†0
+j(¶) = (1" ¶) log

†1
†0
+j(¶)¥
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Furthermore it holds

log
†0
†¶
= log

†0c(¶)

exp
³

¶ log †1
†0

´
†0
= "¶ log

†1
†0
+j(¶)]

which implies (19). As a consequence of (19) and (20) we have for Cfl T dfl

i(0)
¶]fl(C

fl) = "¶nfl(C
fl) +j(¶)] (21)

i(1)
¶]fl(C

fl) = (1" ¶)nfl(C
fl) +j(¶)¥ (22)

In the sequel we write g¶ for expectation under the density †¶ and denote by gfl
¶ the ex-

pectation under the product density for the respective basic density †¶. Notice that the test
7vfl necessarily decides correctly if Cfl T d¢

fl = u0]fl } u1]fl. Thus the minimal Bayesian error
probabilities can be expressed for any ¶ T (0] 1) as

g··(7vfl) = gfl
0 7vfl +gfl

1 (1" 7vfl) = gfl
0 1dfl7vfl +gfl

1 1dfl(1" 7vfl)

= gfl
¶ 7vfl exp

³
fli(0)

¶]fl

´
+gfl

¶ (1" 7vfl) exp
³

fli(1)
¶]fl

´
(23)

= gfl
¶ 7vfl exp ("fl¶nfl + flj(¶)) +gfl

¶ (1" 7vfl) exp (fl(1" ¶)nfl + flj(¶))

= exp (flj(¶)) {gfl
¶ (7

v
fl exp ("fl¶nfl) + (1" 7vfl) exp (fl(1" ¶)nfl))} ¥ (24)

3. Upper risk bound:

From the expression (18) for 7vfl we see that for all Cfl T dfl

7vfl exp ("fl¶nfl) + (1" 7vfl) exp (fl(1" ¶)nfl) 6 1

so that (24) implies for all fl T N

g··(7vfl) 6 exp (flj(¶))

and hence
1

fl
logg··(7vfl) 6 j(¶)¥

Since ¶ T (0] 1) was arbitrary, and since the bounds j(0) = j(1) = 0 are trivial, we obtain

1

fl
logg··(7vfl) 6 inf

0C¶C1
j(¶)¥

4. Convexity of j(¶) on (0] 1): Using the exponential family expression (17) for densities †¶

the function j(¶) may be written for ¶ T (0] 1)

j(¶) = log

Z

d
exp

µ
¶ log

†1(C)

†0(C)

¶
†0(C)£8(C)¥ (25)

It follows

j 0(¶) =
c0(¶)

c(¶)
=

R
d log

†1(C)
†0(C)

exp
³

¶ log †1(C)
†0(C)

´
†0(C)£8(C)

c(¶)
]
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where the fact that c(¶) can be di=erentiated under the integral sign, and the integral is finite
for all ¶ T (0] 1) is from the basic theory of exponential families. In the sequel we identify
expectation under †¶ and its restriction †¶|d for ¶ T (0] 1). We can thus write (for a random
variable C taking values in d)

j 0(¶) = g¶ log
†1(C)

†0(C)
= g¶ log

†¶(C)

†0(C)
"g¶ log

†¶(C)

†1(C)
¥ (26)

For the second derivative we obtain

j 00(¶) =
c00(¶)c(¶)" (c0(¶))2

c2(¶)

=

R ³
log †1(C)

†0(C)

´2
exp

³
¶ log †1(C)

†0(C)

´
†0(C)£8(C)

c(¶)
"
¡
j 0(¶)

¢2

= g¶

µ
log

†1(C)

†0(C)

¶2
"
µ

g¶ log
†1(C)

†0(C)

¶2
7 0]

since the last expression is the variance of the random variable log (†1_†0) (C) under †¶. Thus
j(¶) is convex on (0] 1). There are two cases.

Case 1: There is some ¶ T (0] 1) such that j 00(¶) = 0. Then log (†1_†0) (C) is constant r¶-
almost surely. Since all r¶, ¶ T (0] 1), dominate each other, (†1_†0) (C) is also constant
r¶-almost surely, for all ¶ T (0] 1) and j 00(¶) = 0 for all these ¶. Hence j(¶) is linear
on (0] 1). Furthermore, each r¶, ¶ T (0] 1), dominates 8 on d (i.e. dominates 8|d). It
follows

†1
†0
(C) = ¢] 8-a.s. on d]

for some constant ¢ ` 0. In that case

r1(d) =

Z

d
¢£r0 = ¢r0(d)

and

¢ =
r1(d)

r0(d)
¥

This implies

r0(·|d) = r1(·|d) = r¶] ¶ T (0] 1)]
c(¶) = (r0(d))

1R¶ (r1(d))
¶ ] ¶ T (0] 1)¥ (27)

Case 2: For all ¶ T (0] 1) we have j 00(¶) ` 0. Then j(¶) is strictly convex on (0] 1).

5. Lower risk bound: Since, according to (26), for arbitrary ¶ T (0] 1)

j 0(¶) = g¶ log
†1
†0
(C)
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we have in view of (21) and (22) for each fl T N:

gfl
¶ i(0)

¶]fl = "¶j 0(¶) +j(¶) =: /0(¶)]

gfl
¶ i(1)

¶]fl = (1" ¶)j 0(¶) +j(¶) =: /1(¶)¥

Since i
(“)
¶]fl is an i.i.d. average, we have by the Law of Large Numbers as fl tends to infinity

i(0)
¶]fl(C

fl)C /0(¶)] i(1)
¶]fl(C

fl)C /1(¶)]

almost surely under r¶. Let 0] 3 ` 0 be arbitrary and consider the subsets

wfl :=
n

Cfl : i(“)
¶]fl(C

fl)" /“(¶) 7 "3, “ = 0] 1
o

] fl T N¥

Then, again by the Law of Large Numbers, there is an fl0 T N such that

r fl
¶ (wfl) 7 1" 0] for all fl 7 fl0¥

Starting with identity (23) we estimate the minimal error probability for fl 7 fl0:

g··(7vfl) = gfl
¶ 7vfl exp

³
fli(0)

¶]fl

´
+gfl

¶ (1" 7vfl) exp
³

fli(1)
¶]fl

´

7 gfl
¶ 1{wfl} (7

v
fl exp (fl/0(¶)" fl3) + (1" 7vfl) exp (fl/1(¶)" fl3))

7 gfl
¶ 1{wfl} exp (flmin (/0(¶)] /1(¶))" fl3)

7 (1" 0) exp (flmin (/0(¶)] /1(¶))" fl3) ¥

Consequently we have for any sequence of test functions 7fl, fl T N,

lim inf
fl[A

flR1 logg··(7fl) 7 min (/0(¶)] /1(¶))" 3¥

Since 3 was arbitrary, we obtain for any ¶ T (0] 1)

lim inf
fl[A

flR1 logg··(7fl) 7 min (/0(¶)] /1(¶))

and hence
lim inf
fl[A

flR1 logg··(7fl) 7 sup
0^¶^1

min (/0(¶)] /1(¶)) ¥

It remains to show that

sup
0^¶^1

min (/0(¶)] /1(¶)) 7 inf
0C¶C1

j(¶)¥ (28)

Recall that the values j 0(¶) are well defined for ¶ T (0] 1) and that j(¶) is convex in that
domain. Hence there exist limits

j 0
+(0) = lim

¶&0
j 0(¶)] j 0

R(1) = lim
¶%1

j 0(¶)¥

Observe that the limits are possibly infinite. However due to convexity, only j 0
+(0) = "S

or j 0
+(1) =S may occur.

Again, in view of the convexity of j(¶) on (0] 1), the following cases may occur.

14



a) j 0
+(0) ^ 0, j 0

R(1) ` 0

b) j 0
+(0) ^ 0, j 0

R(1) 6 0

c) j 0
+(0) 7 0, j 0

R(1) ` 0

d) j 0
+(0) 7 0, j 0

R(1) 6 0¥

Case a). In this case j cannot be linear, so that due to the above discussion in 4. (involving
Case 1, Case 2) it is strictly convex in (0] 1). Hence there is a unique minimum of j on [0] 1]
at some = T (0] 1) with j 0(=) = 0. We have

/0(=) = /1(=) = j(=)

hence
sup
0^¶^1

min (/0(¶)] /1(¶)) 7 j(=) = inf
0C¶C1

j(¶)¥

Case b). Again due to convexity, the infimum of j on [0] 1] is attained (uniquely) at ¶ % 1:

inf
0C¶C1

j(¶) = lim
¶ %1

j(¶) = jR(1)¥

Now for ¶ T (0] 1) we have j 0(¶) 6 0 and hence

/0(¶) = "¶j 0(¶) +j(¶) 7 j(¶) 7 (1" ¶)j 0(¶) +j(¶) = /1(¶)

which implies

sup
0^¶^1

min (/0(¶)] /1(¶)) 7 sup
0^¶^1

/1(¶) 7 lim sup
¶%1

/1(¶) 7 jR(1) = inf
0C¶C1

j(¶)¥

Case c). This is symmetric to case b). We obtain

inf
0C¶C1

j(¶) = j+(0)

and
sup
0^¶^1

min (/0(¶)] /1(¶)) 7 j+(0) = inf
0C¶C1

j(¶)¥

Now for ¶ T (0] 1) we have j 0(¶) 7 0 and hence

/1(¶) = (1" ¶)j 0(¶) +j(¶) 7 j(¶) 7 "¶j 0(¶) +j(¶) = /0(¶)

which implies

sup
0^¶^1

min (/0(¶)] /1(¶)) 7 sup
0^¶^1

/0(¶) 7 lim sup
¶&0

/0(¶) 7 j+(0) = inf
0C¶C1

j(¶)¥

Case d). Due to convexity we must have j 0
+(0) = j 0

R(1) = 0; then j(¶) is constant on
(0] 1). By (27) we then have r0(d) = r1(d) and

j(¶) = logr0(d) = logr1(d), ¶ T (0] 1)¥
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Consequently
/0(¶) = /1(¶) = j(¶) = inf

0C¶C1
j(¶)

and we obtain trivially
sup
0^¶^1

min (/0(¶)] /1(¶)) 7 inf
0C¶C1

j(¶)¥

We have verified inequality (28) in all cases a)-d). Hence for any sequence of test functions
7fl on ,

fl, fl T N, we have

lim inf
fl[A

flR1 logg··(7fl) 7 lim inf
fl[A

flR1 logg··(7vfl) 7 inf
0C¶C1

j(¶)

The upper and lower bounds together complete the proof.
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