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AN Lp TWO WELL LIOUVILLE THEOREM

ANDREW LORENT

Abstract. We provide a different approach to and prove a (partial) generalisation of a
recent theorem on the structure of low energy solutions of the compatible two well problem
in two dimensions [Lor 05], [Co-Sc 06]. More specifically we will show that a “quantitative”
two well Liouville theorem holds for the set of matrices K = SO (2) ∪ SO (2) H where

H =
` σ 0

0 σ−1
´

under a constraint on the Lp norm of the second derivative. Our theorem is

the following.
Let p ≥ 1, q > 1. Let u ∈ W 2,p (B1 (0)) ∩ W 1,q (B1 (0)). There exists positive constants

C1 << 1, C2 >> 1 depending only on σ, p, q such that if u satisfies the following inequalitiesZ
B1(0)

dq (Du (z) , K) dL2z ≤ C1ε,

Z
B1(0)

˛̨
D2u (z)

˛̨p
dL2z ≤ C1ε1−p

then there exist A ∈ K such thatZ
B 1

2
(0)

|Du (z) − A|q dL2z ≤ C2ε
1
2q . (2)

We provide a proof of this result by use of a theorem related to the isoperimetric inequality,
the approach is conceptually simpler than those previously used in [Lor 05], [Co-Sc 06],

however it does not given the optimal cε
1
q bound for (2) that has been proved (for the p = 1

case) in [Co-Sc 06].

In 1850 Liouville [Lio 50] proved the following classic theorem: given domain Ω ⊂ IR3 and
function u ∈ C4

(
Ω : IR3

)
with the property Du (x) = λ (x)O (x) where λ (x) ∈ IR and O (x) is

an orthogonal n× n matrix, then u is a Mobius transformation.
There are many works generalising this theorem, an incomplete list is Gehring [Ge 62],

Resnetnak [Re 67], Bojarski and Iwaniec [Bo-Iw 82]. A corollary to Liouville’s Theorem is that
a function whose gradient is in SO (n) is an affine mapping. Recently Friesecke, James and
Müller [Fr-Ja-Mu 02] have proved an optimal quantitative version of this corollary.
Theorem 1 (Friesecke, James, Müller). Let U be a bounded Lipschitz domain in IRn, n ≥ 2. Let
q > 1. There exists a constant C (U, q) with the following property. For each v ∈W 1,q (U, IRn)
there exists an associated rotation R ∈ SO (n) such that

‖Dv − R‖Lq(U) ≤ C (U, q) ‖dist (Dv, SO (n)) ‖Lq(U). (3)

This theorem has already had important applications [Fr-Ja-Mu 02], [Fr-Ja-Mu 06] and there
have been a number of generalisations of it [Cha-Mu 03], [Fa-Zh 05], [De-Se 06]. However the
corresponding statement for SO (n) replaced by a set of matrices L ⊂ Mm×n which contains
rank-1 connections (i.e. there exists A,B ∈ L such that rank (A−B) = 1) is trivially false.

However recently a version of Theorem 1 has been proved in two dimensions for the set
of matrices K = SO (2)A ∪ SO (2)B where the matrix AB−1 is rank-1 connected to some
matrix in SO (2). The first result was by the author [Lor 05] for invertible bilipschitz mappings
with control in inequality (2) of order ε

1
800 . This was greatly generalised by Conti, Schweitzer

[Co-Sc 06], Theorem 2.1, Corollary 2.5. Our current theorem is:
Theorem 2. Let H =

(
σ 0
0 σ−1

)
for σ > 0. Let p ≥ 1, q ≥ 1. Let K = SO (2) ∪ SO (2)H. Let

u ∈W 2,p
(
B1 (0) : IR2

) ∩W 1,q
(
B1 (0) : IR2

)
.
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There exists positive constants C1 << 1, C2 >> 1 depending only on σ, p, q such that if u
satisfies the following inequalities∫

B1(0)

dq (Du (z) ,K)dL2z ≤ C1ε (4)∫
B1(0)

∣∣D2u (z)
∣∣p dL2z ≤ C1ε

1−p, (5)

then there exists J ∈ {Id,H} such that
∫
B1(0)

dq (Du (z) , SO (2)J) dL2z ≤ C2ε
1
2q and conse-

quently (by application of Theorem 1) for the case q > 1, for some R ∈ SO (2) we have∫
B 1

2
(0)

|Du (z) −RJ |q dL2z ≤ C2ε
1
2q . (6)

In [Co-Sc 06] the hypotheses were that u satisfies (4) and (5) for the case p = 1, (i.e.
the L1 version of this theorem) however their theorem states the optimal inequality, namely
that (6) holds for ε

1
q , they also established the theorem for the more general sets of matrices

SO (2)A ∪ SO (2)B and stated it for Lipschitz domains.
Our approach differs from that of [Lor 05], [Co-Sc 06] in two ways. Firstly we will use the

hypotheses to reduce the situation to one in which we can apply a theorem related to the
isoperimetric inequality, this will allow us to gain control of our function in a central sub-ball.
Though this method does not produce optimal results, it is conceptually simpler in that it is
the fastest way to see why this initially surprising result should be true.

Secondly and more importantly we provide a different approach than [Co-Sc 06] to proving
the result for non-invertible mappings, specifically our argument does not require the use of
the embedding W 1,1 (B1 (0)) ↪→ L2 (B1 (0)). This embedding together with degree arguments
were used in a essential way in [Co-Sc 06] to prove the first result for non invertible mappings,
the main reason these methods can not be extended to higher dimensions is to do with the
failure of this embedding for dimension n ≥ 3. Using our methods we hope to prove Theorem
2 for n ≥ 3 in a forth coming paper [Lor pr2]. Our basic idea is to use the fact that on a large
subset A ⊂ B 1

2
(0) the function w := u�A forms a quasi-regular mapping and we obtain partial

invertibility properties of u inside w (A).
Our main motivation for proving Theorem 2 is to use it to establish a sharp reduction of

the problem of calculating the energy of the functional Ipε (u) =
∫
Ω d (Du,K) + ε

∣∣D2u
∣∣p over

W 2,p (Ω) ∩ AF (where AF is the space of functions with affine boundary condition F ) to the
problem of calculating the energy of I1

0 over the space of functions that are affine on a piecewise
affine triangular grid, for results in this direction see [Lor pr1].

One of the main tools we will use to prove Theorem 2 is a theorem charactering the case
of equality in the isoperimetric inequality. More specifically, it is well known that amongst
all bodies B of volume 1 in IRn, the ball minimises Hn−1 (∂B), i.e. the ball gives the case of
equality of the isoperimetric inequality. A quantitative statement of this kind is given by the
following theorem of Hall, Haymann, Weitsman [Ha-Ha-We 91].

Theorem 3 (Hall et al.). Let E be a set of finite perimeter 1 in IR2, R :=
(
L2(E)
π

) 1
2

and let
the Fraenkel asymmetry λ (E) be defined by

λ (E) := inf
a∈IR2

L2 (E\BR (a))
πR2

. (7)

1Hall et al. state their Lemma for sets with smooth boundaries. By Theorem 3.41 [Am-Fu-Pa 00] we can
approximate any set A of finite perimeter with a sequence of sets (An) that converge in measure to A which
have smooth boundaries and for which Per (An) → Per (A) as n → ∞, hence its easy to see the lemma holds
for sets of finite perimeter.
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Then

(Per (E))2 ≥ 4π

(
1 +

(λ (E))2

4

)
L2 (E) . (8)

The starting idea of the proof of the Theorem 2 is the same starting idea as that of Theorem
1 of [Lor 05] and that of Theorem 2.1 of [Co-Sc 06]. This idea is to surround a central sub-ball
with a lower dimensional set on which u is close to affine. In [Lor 05] the set was the boundary
of a diamond, in [Co-Sc 06] the corners of a triangle. In both papers the lower dimensional set
is found using that fact that hypotheses (4), (5) (for p = 1) forces the perimeter of the set

W = {x ∈ B1 (0) : d (Du (x) , SO (2)) < d (Du (x) , SO (2)H)} (9)

to be less that C1, for example since H1 (∂W) ≤ C1 it is easy to find (by Fubini’s Theorem)
many intervals [a, b] ⊂ B1 (0) for which [a, b]∩ ∂W = ∅ so (possibly after a change of variables)
[a, b] ⊂ W and then the full force of hypothesis (4) goes to show that for “most” intervals the
gradient of Du stays close to SO (2) and hence there is no stretching of u ([a, b]) in the sense
that we have the inequality |u (a) − u (b)| ≤ H1 (u ([a, b])) ≤ |a− b|+cε 1

q . To begin to establish
affine type properties we would like to show an inequality of the form

|u (a) − u (b)| ≥ |a− b| − cε
1
q . (10)

In [Lor 05] it was established that there exists two “special directions” η1, η2 ∈ S1 (defined by∣∣H−1ηi
∣∣ = 1 for i = 1, 2) for which (10) holds true for intervals parallel to η1 and η2 and for

which
∫
[a,b] d (Du (z) ,K) dH1z ≤ cε

1
q . Hence it was possible to show u is close to affine on the

boundary of a diamond.
In [Co-Sc 06], (10) was established using the fact that the inverse map u−1 satisfies an

inequality of the form (4) and “in some sense” an inequality of the form (5) in the image
u (B1 (0)), so assuming that intervals [a, b] and [u (a) , u (b)] satisfy the appropriate inequalities
both in the reference configuration and the image, the non-stretching argument can be carried
out on [u (a) , u (b)] and on [a, b] to establish

|a− b| ≈ |u (a) − u (b)| ± cε
1
q . (11)

With this approach it is only necessary to control three points {a, b, c} that form the corners
of an equilateral triangle because (11) shows that the distances of the set {u (a) , u (b) , u (c)}
are (almost) preserved, and hence {u (a) , u (b) , u (c)} comes close to forming the corners of
an equilateral triangle. With one further geometric idea (the “two triangles” argument of
[Co-Sc 06], p847, p848) this can be used to show that in ball Br0 (0) contained in the triangle,
L2 (Br0 (0) \W) ≤ ε

1
q , the theorem then follows by an application of Theorem 1, the main gain

in control comes from this strategy, i.e. to reduce the situation to a point where we have the
hypotheses to apply Theorem 1 .

In the proof of Theorem 2 we exploit the bound H1 (∂W) ≤ C1 a bit differently. This time
instead of lines we consider the boundary of balls, we can chose r0 ∈ ( 1

4 ,
3
4

)
so that ∂Br0 (0) ⊂ W

and
∫
∂Br0(0)

dp (Du (z) ,K)dH1z ≤ ε, and hence we have (possibly after change of variables)

H1 (u (∂Br0 (0))) ≤ 2πr0 + cε
1
q . Assuming u is an open mapping (which it almost is since

inequality (4) implies there is a set Z with L2 (B1 (0) \Z) ≤ cε
1
q for which u�Z is a quai-regular

mapping) we have H1 (∂u (Br0 (0))) ≤ H1 (u (∂Br0 (0))) ≤ 2πr0 + cε
1
q . And since by some

degree arguments it is not hard to show L2 (u (Br0 (0))) ≈ ∫
Br0(0)

det (Du (z)) dL2z ≥ πr2−cε 1
q

we have that the set u (Br0 (0)) comes very close to optimising the constants in the isoperimetric
inequality so applying Theorem 3 we have that the Fraenkel asymmetry of u (Br0 (0)) satisfies

λ (u (Br0 (0))) ≤ cε
1
2q . (12)
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The loss of a factor 2 in control comes from using Theorem 3, as Theorem 3 is optimal this is
a feature of the approach. However having (12) it is not hard to show L2 (Br0 (0) \W) ≤ cε

1
2q ,

(6) then follows by application of Theorem 1. Conceptually this approach is simpler in that it
avoids many of the quite delicate issues of finding substitutes for invertibility of u and controlling
lines simultaneously in the reference configuration and in the image, however only suboptimal
bounds can be established with the “isoperimetric method”. For optimal bounds the “non
stretching in lines” method of [Co-Sc 06] is best.

We would like to acknowledge that in the overall strategy (i.e. getting to the point of being
able to apply Theorem 1 as soon as possible) and in the technical details (the use of degree
theory, co-area argument along rays) we use many ideas of [Co-Sc 06].

Definition 1. Given a connected open set Ω ⊂ IRn. A function f ∈ W 1,2 (Ω : IRn) with the
property that det (Du (z)) ≥ 0 for a.e. x ∈ Ω is said to be of finite dilation if and only if
‖Df (x) ‖n ≤ K (x) |det (Df (x))| a.e. where 1 ≤ K (x) < ∞. The function f is said to have
integrable dilation if and only if

∫
Ω
K (x) dLnx <∞.

We will need the following theorem [Iw-Sv 93].

Theorem 4 (Iwaniec, Šverák). Let Ω ⊂ IR2 be a connected open set. Given function f : Ω →
IR2, f ∈ W 1,2 (Ω) which has integrable dilation then f is open and discrete.

It is also well known that functions of finite dilation are continuous [Vo-Go 76].

Lemma 1. Let

d0 := min {d (SO (2) , SO (2)H) , d (SO (2) , {P : det (P ) ≤ 0})} (13)

and let X ⊂ IR2 be an open bounded connected set. Suppose f : X → IR2 is C1 with the property
that sup

{
d (Df (z) , SO (2)) : z ∈ X

} ≤ 9d0
10 then for any open subset Y ⊂ X we have

∂f (Y ) ⊂ f (∂Y ) . (14)

Proof. Since ‖Df‖L∞(X) < ∞ we know for some constant c, ‖Df (z) ‖2 ≤ cdet (Df (z)) for

all z ∈ X and hence f is a function of integrable dilation. Thus by Theorem 4 we know it is
an open map and it is well known (see Exercise 9.12 [Vu 88]) that (14) follows for any open
Y ⊂ X .

Definition 2. For C1 function w : Ω → IRn and subset B ⊂ Ω we can define the Brouwder
degree d (y, w,B) via Definition 1.9 [Fo-Ga 95], note that for y such that

w−1 (y) ⊂ {x ∈ Ω : det (Dw (x)) �= 0} ,
we have

d (y, w,B) =
∑

x∈w−1(y)∩B
sgn (Det (Dw (x))) (15)

where sgn (t) = 1 for t > 0 and sgn (t) = −1 for t < 0. We define

N (y, w,B) := Card
({
x ∈ w−1 (y) ∩B}) . (16)

We will repeatedly use the following change of variable formula Theorem 5.27 from [Fo-Ga 95],
we will state it in less generality than in [Fo-Ga 95]

Theorem 5. Let D ⊂ IRn be an open, bounded set and let w : D → IRn be a C1 function. Let
φ ∈ L∞ (IRn), then for every open subset G ⊂ D∫

G

φ (w (x)) det (Dw (x)) dLnx =
∫

IRn
φ (y) d (w,G, y) dLny. (17)



AN Lp TWO WELL LIOUVILLE THEOREM 5

1. Proof of Theorem 2

1.1. Reduction. Given u ∈ W 2,p (B1 (0)) ∩W 1,q (B1 (0)) we can convolve u with a standard

convolution kernel φ to form uρ := φρ ∗ u. Since we know uρ
W 1,q(B1(0))→ u and uρ

W 2,p(B1(0))→ u
as ρ → 0 (see for example Section 4.2 [Ev-Ga 92]). So for small enough ρ0 we have a smooth
function ψ := uρ0 which satisfies∫

B1(0)

dq (Dψ (z) ,K)dL2z ≤ 2C1ε (18)

∫
B1(0)

∣∣D2ψ (z)
∣∣p dL2z ≤ 2C1ε

1−p, (19)

and
‖u− ψ‖W 1,q(B1(0)) ≤ ε. (20)

Let ε = ε
1
q . By Holder’s inequality (18) implies∫

B1(0)

d (Dψ (z) ,K) dL2z ≤ 2πC
1
q

1 ε. (21)

We will argue our main lemmas for function ψ.

2. Main lemmas

In the coming lemma we establish the basic consequences of W (see (9)) having small perime-
ter. By the relative isoperimetric inequality we have

min
{
L2 (W) , L2 (B1 (0) \W)

} ≤ cC2
1 ,

depending on which is the minimum we make a changes of variables to obtain a function v with
the property

∫
d (Dv, SO (2)) ≤ cC2

1 and has all the important properties of ψ. Throughout
our proof c will denote any constant depending only on matrix H , note that c may be used
repeatedly inside a proof denoting different constants on each occasion.

Lemma 2. Let p ≥ 1. Let p∗ be the Holder conjugate of p, i.e. 1
p + 1

p∗ = 1. Suppose ψ ∈
C1 (B1 (0)) satisfies (18), (19) and (21). Define

L (ψ) :=
∫
B1(0)

d (Dψ (z) , SO (2)) − d (Dψ (z) , SO (2)H) dL2z. (22)

Let lH be an affine function with the property that lH (0) = 0 and DlH = H. Let us define
v : B 1

2
(0) → IR2 by

v (z) :=

{
ψ (lH (σz))σ−1, if L (ψ) ≥ 0
ψ (z) , if L (ψ) < 0.

(23)

We will show there exists positive constant c2 = c2 (σ) > 1 such that v has the following
properties.

• For the set of matrices K̃ := SO (2) ∪ SO (2)J (where J is a diagonal matrix with
eigenvalues σ, σ−1) we have∫

B 1
2
(0)

d
(
Dv (z) , K̃

)
dL2z ≤ c2C1ε. (24)

and ∫
B 1

2
(0)

dq
(
Dv (z) , K̃

)
dL2z ≤ 3C1ε. (25)
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• ∫
B 1

2
(0)

d
q
p∗
(
Dv (z) , K̃

) ∣∣D2v (z)
∣∣ dL2z ≤ c2C1. (26)

• ∫
B 1

2
(0)

d (Dv (z) , SO (2)) dL2z ≤ c2C2
1 . (27)

• Let β := 1

2(1+ q
p∗ ) , for any b ∈ B 1

4
(0) there exists a set Kb ⊂

(
0, 1

2

)
with L1

((
0, 1

2

) \Kb

) ≤
8c2

√C1 and the properties∫
B 1

2
(0)∩∂Br(b)

d (Dv (z) , SO (2)) dH1z ≤ cε for each r ∈ Kb. (28)

And
sup

{
d (Dv (z) , SO (2)) : z ∈ ∂Br (b) ∩B 1

2
(0)
}
≤ Cβ1 . (29)

Proof.
Step 1. We will show we can find a1 ∈ [9d010 , d0

]
such that

H1
({
x ∈ B 1

2
(0) : d (Dψ (x) , SO (2)) = a1

})
< cC1. (30)

Let
Ga1 =

{
x ∈ B 1

2
(0) : d (Dψ (x) , SO (2)) < a1

}
and let

Ba1 =
{
x ∈ B 1

2
(0) : d (Dψ (x) , SO (2)H) < a1

}
.

We will also show

min
{
L2
(
B 1

2
(0) \Ga1

)
, L2

(
B 1

2
(0) \Ba1

)}
≤ cC2

1 . (31)

Proof of Step 1. Let p∗ be the Holder conjugate of p. By Young’s inequality∫
B 1

2
(0)

εd
q
p∗ (Dψ (x) ,K)

∣∣D2ψ (x)
∣∣ dL2x ≤

∫
B 1

2
(0)

dq (Dψ (x) ,K) + εp
∣∣D2ψ (x)

∣∣p dL2x

(18),(19)

≤ 4C1ε,

which gives ∫
B 1

2
(0)

d
q
p∗ (Dψ (x) ,K)

∣∣D2ψ (x)
∣∣ dL2x ≤ 4C1. (32)

Let S (x) = d (Dψ (x) , SO (2)). By the Co-area formula∫ d0

9d0
10

H1
(
S−1 (h)

)
dL1h =

∫
j
x∈B 1

2
(0):

9d0
10 <d(Dψ(x),SO(2))<d0

ff |DS (x)| dL2x

≤ c

∫
B 1

2
(0)

d
q
p∗ (Dψ (x) ,K)

∣∣D2ψ (x)
∣∣ dL2x

(32)

≤ cC1.

So we can find a1 ∈ ( 9d0
10 , d0

)
such that H1

(
S−1 (a1)

) ≤ cC1. By the relative isoperimetric
inequality [Am-Fu-Pa 00] Remark 3.49, 3.43 we have

min
{
L2
(
Ga1 ∩B 1

2
(0)
) 1

2
, L2

(
B 1

2
(0) \Ga1

) 1
2
}

≤ cH1
(
S−1 (a1)

)
≤ cC1.
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If L (ψ) < 0 then we must have L2
(
B 1

2
(0) \Ga1

)
≤ cC2

1 and if L (ψ) ≥ 0 we must have

L2
(
B 1

2
(0) ∩Ga1

)
≤ cC2

1 . Now

L2
(
B 1

2
(0) \Ba1

)
= L2

(
B 1

2
(0) ∩Ga1

)
+L2

({
x ∈ B 1

2
(0) : min {d (Dψ (x) , SO (2)) , d (Dψ (x) , SO (2)H)} > a1

})
≤ cC2

1 + a−1
1

∫
B 1

2
(0)

d (Dψ (x) ,K)dL2x

(18)

≤ cC2
1 .

This completes the proof of Step 1.

Step 2. Defining v by (23) we will show v satisfies (24), (25), (26), (27).
Proof of Step 2. In the case where L (ψ) < 0, (24) follows by Holder’s inequality

∫
B 1

2
(0)

d (Dv (z) ,K)dL2z ≤
⎛⎝∫

B 1
2
(0)

dq (Dv (z) ,K)dL2z

⎞⎠
1
q

≤ 2C1ε.

Inequality (27) follows because if x �∈ Ga1 then d (Dv (z) , SO (2)) ≤ cd (Dv (z) ,K) + c so∫
B 1

2
(0)

d (Dv (z) , SO (2)) dL2z ≤
∫
B 1

2
(0)∩Ga1

d (Dv (z) ,K)dL2z

+c
∫
B 1

2
(0)\Ga1

d (Dv (z) ,K)dL2z

+cL2
(
B 1

2
(0) \Ga1

)
(24)

≤ cC2
1 . (33)

Finally (26) is immediate from (32).
In the case where L (ψ) ≥ 0 for K̃ = SO (2)∪SO (2)H−1, (24) follows from (18) by change of

variables. We can also show
∫
B 1

2
(0)
d (Dv (z) , SO (2)H) dL2z ≤ cC2

1 by an identical argument

to (33), inequality (27) then follows by a change of variables.
Inequality (26) follows from (32) in the following way∫

B 1
2
(0)

d
q
p∗
(
Dv (z) , K̃

) ∣∣D2v (z)
∣∣ dL2z

=
∫
B 1

2
(0)

d
q
p∗
(
Dψ (lH (σz))H, K̃

)
|D [Dψ (lH (σz))H ]|dL2z

≤ c

∫
B 1

2
(0)

d
q
p∗ (Dψ (lH (σz)) ,K)

∣∣D2ψ (lH (σz))
∣∣ dL2z

(32)

≤ cC1.

Step 3. We will show v satisfies (28), (29).
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Proof of Step 3. Let

K1
b =

{
h ∈

(
0,

1
2

)
:
∫
∂Bh(0)

d
q
p∗
(
Dv (z) , K̃

) ∣∣D2v (z)
∣∣ dH1z ≤

√C1

22β+1

}
.

So by (26) L1
((

0, 1
2

) \K1
b

) ≤ 8c2
√C1.

K2
b =

{
h ∈

(
0,

1
2

)
:
∫
∂Bh(0)

d (Dv (z) , SO (2)) dH1z ≤ C1

}
.

By (27) L1
((

0, 1
2

) \K2
b

) ≤ c2C1. We claim that for any h ∈ K1
b ∩K2

b we have

sup {d (Dv (z) , SO (2)) : z ∈ ∂Bh (0)} < Cβ1 . (34)

Suppose (34) is false, then we must be able to find a1, a2 ∈ ∂Bh (0) with the following properties

• d (Dv (a1) , SO (2)) = Cβ1
2 , d (Dv (a2) , SO (2)) = Cβ1 .

• We can find a connected component of ∂Bh (0) \ {a1, a2} which we will denote by T
with the property that

d (Dv (x) , SO (2)) ∈
[
Cβ1
2
, Cβ1
]

for all x ∈ T. (35)

Thus ∫
T

d
q
p∗
(
Dv (z) , K̃

) ∣∣D2v (z)
∣∣ dH1z ≥

(
Cβ1
2

) q
p∗ ∫

T

∣∣D2v (z)
∣∣ dH1z

≥ Cβ(
q
p∗ +1)

1

2
q
p∗ +1

≥
√C1

22β

and this contradicts the fact that h ∈ K1
b . Let

K3
b =

{
h ∈

(
0,

1
2

)
:
∫
∂Bh(0)

d
(
Dv (z) , K̃

)
dH1z ≤ c2

√
C1ε

}
.

By (24) we know L1
((

0, 1
2

) \K3
b

) ≤ √C1. For any h ∈ K1
b ∩K2

b ∩K3
b we have that if z ∈ ∂Bh (0)

then d
(
Dv (z) , K̃

)
= d (Dv (z) , SO (2)) so defining Kb := K1

b ∩K2
b ∩K3

b the set Kb satisfies
(28) and (29) and this completes the proof.

2.1. Introduction to Lemma 3. In the introduction we mapped a ball into the image, for
reasons to do with lack of invertibility it will turn out to be more convenient to “pull back”
a ball Bh (y) from the image, this is essentially because in this way we can guarantee that
L2
(
v−1 (Bh (y))

)
is “almost” greater or equal to πh2. If we can show v−1 (∂Bh (y)) is well

defined and forms a Jordan curve and H1
(
v−1 (∂Bh (y))

) ≤ 2πh + cε
1
q then we can apply

Theorem 3. However to carry this out we need to establish some limited form of invertibility
of v, specifically we need v−1 (∂Bh (y)) to form a Jordan curve.

2.1.1. Motivation for Step 4. To establish the invertibility properties described in (2.1) we need
to consider a function w defined on a subset A ⊂ B 1

2
(0) for which det (Dv) > c. In addition

we need to show that the degree of w is 1 on the boundaries of many balls in the image of w.
This can be done by establishing L2 (w (A)) ≈ π

4 , which we will show via truncation arguments
and the use of the lower bound (47).
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2.1.2. Motivation for Step 5. Having shown that w−1 (∂Bh (y)) is a Jordan curve, let Iy denote

its interior. We now need to show L2 (Iy) ≥ πh2 − cε
1
q , this could be established if we know

every point in Iy ∩ A is mapped into the ball Bh (y). Step 5 shows this via the following
argument, since some of the points of Iy ∩ A must be mapped inside Bh (y), if w (Iy ∩A)
spreads outside Bh (y) we must have w (Iy ∩A)∩∂Bh (y) �= ∅ however this implies there exists
z ∈ ∂Bh (y) such that Card

(
w−1 (z)

) ≥ 2 because w (∂Iy) = ∂Bh (y) and this contradicts the
fact w has degree 1 on ∂Bh (y).

2.1.3. Motivation for Step 6. Having established that Iy has the property L2 (Iy) ≥ πh2 −
cε

1
q and H1 (∂Iy) ≤ 2πh + cε

1
q we can apply Theorem 3 to show there exists ωb such that

L2 (Iy�Bph (ωb)) ≤ cε
1
2q (where ph =

√
L2(Iy)
π ). In some sense this implies ∂Iy is “close” to a

circle. We would like to use this to show L2 (Iy\W) is small. To do this we will use the fact J
has “shrink directions”, by this we mean there exists θ1, θ2 ∈ S1 such that |Jθi| = 1 for i = 1, 2
and denoting by S the set of ψ “between” θ1 and θ2 we have |Jψ| < 1 for all ψ ∈ S. The
argument will be that if L2 (Wc ∩ Iy) is large then we must be able to find many lines (parallel
to the shrink directions) starting from the ωy and going to the boundary ∂Iy which has large
intersection with Wc hence the image of the path will be less than h so (assuming ωy is mapped

close to y and ph ≤ h+ cε
1
2q ) this will be a contradiction. This argument will only work if for

“most” ψ ∈ S, the line starting from ωy, parallel to ψ and ending in ∂Iy (denoted lψ) has the

property that
∫
lψ
d
(
Dv, K̃

)
is small. Formally we need

∫
ψ∈S

∫
lψ
d
(
Dv, K̃

)
< cε

1
q . To find

this we need to use the Co-area formula with a function Ψy defined by |x− ωy| eiΨy(x) = x−ωy
(identifying IR2 with C in the obvious way) and since |DΨy (z)| ≈ 1

|z−ωy| we need to have∫
d (Dv (z) ,K) |z − ωy|−1

dL2z ≤ cε
1
q . Let c0 denote the “centre” of v

(
B 1

2
(0)
)
, assuming the

set of points
{
ωy : y ∈ B 1

8
(c0)
}

has positive measure, by a Fubini trick learnt from [Co-Sc 06]
we can find a ωy for which this holds. The point of Step 6 is to establish the existence of such

a large set of
{
ωy : y ∈ B 1

8
(c0)
}

. Specifically we show there is a large set Υ0 ⊂ B 1
8

(0) such

that for every x ∈ Υ0, the point y := v (x) has the properties we want (i.e. invertibility of w
on ∂Bh (y)). Since (as we will later show) x ≈ ωv(x) the set Υ0 provide us with the large set
points we require.

2.1.4. Motivation for Step 7. As mentioned in 2.1.3, in order for our arguments with the “shrink

directions” to work we need that ph ≤ h+cε
1
2q and |w (ωy) − y| ≤ ε

1
2q since otherwise the image

of lines from ωy to ∂Iy can indeed have non-trivial intersection with Wc and they could still
reach ∂Bh (y). To establish these two things we will pull back lines of the form [y, tθ] where
tθ ∈ ∂Bh (y). If we find three such points tθ1 , tθ2 and tθ3 where the angle between any two of

them is close to 2π
3 and we can show H1

(
u−1 ([y, tθi])

) ≤ h+ cε
1
2q for i = 1, 2, 3 then since this

implies ωh ∈ ⋂3
i=1 Bh+cε

1
2q

(
w−1 (tθi)

)
it follows

∣∣ωh − w−1 (b)
∣∣ ≤ cε

1
2q , from this it is easy to

show ph ≤ h+ cε
1
2q . The purpose of Step 7 is to show we can find such lines.

Lemma 3. Given a function v ∈ C4
(
B 1

2
(0)
)

satisfying properties (24), (26), (27), (28) and

(29) of Lemma 2. We will show there exists a set Λ0 ⊂ B 1
8

(0) with L2
(
B 1

8
(0) \Λ0

)
≤ cC

1
4q
1

such that for any b ∈ Λ0 we can find a set Db ⊂
(

1
8 ,

5
16

)
with L1

((
1
8 ,

5
16

) \Db

) ≤ cC 1
32q and for

any h ∈ Db there exists a connected open set Ib with the following properties

v (∂Ib) = ∂Bh (v (b)) , (36)

∂Ib ⊂ N
cC

1
16
1

(∂Bh (b)) . (37)
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And
L2 (Ib\Bh (b)) ≤ c

√
ε. (38)

Proof.
Step 1. We will show that for any b ∈ B 1

4
(0) there exists a set Yb ⊂

(
0, 1

2

)
with L1

((
0, 1

2

) \Yb) ≤
c
√C1 affine function lR with derivative R ∈ SO (2) such that

‖v − lR‖L∞(∂Br(b)) ≤ c
√
C1 for each r ∈ Yb. (39)

Proof of Step 1. By applying Proposition A1 of [Fr-Ja-Mu 02] (and taking λ = 10σ−1) we
have a c-Lipschitz function ṽ and

L2
({
x ∈ B 1

2
(0) : ṽ (x) �= v (x)

})
≤ c

10σ−1

∫
j
x∈B 1

2
(0):|Dv(x)|>10σ−1

ff |Dv (z)| dL2z

≤ c

10σ−1

∫
j
x∈B 1

2
(0):d(Dv(x), eK)>5σ−1

ff d
(
Dv (z) , K̃

)
dL2z

(24)

≤ cε. (40)

And in the same way

‖Dv −Dṽ‖
L1

„
B 1

2
(0)

« ≤ c

10σ−1

∫
j
x∈B 1

2
(0):|Dv(x)|>10σ−1

ff |Dv (z)|dL2z

≤ cε. (41)

Thus ∫
B 1

2
(0)

d2 (Dṽ (z) , SO (2)) dL2z ≤ c

∫
B 1

2
(0)

d (Dṽ (z) , SO (2)) dL2z

(27),(41)

≤ cC2
1 . (42)

Thus applying Theorem 1 there exists R ∈ SO (2) such that

∫
B 1

2
(0)

|Dṽ (z) −R|dL2z ≤ c

⎛⎝∫
B 1

2
(0)

|Dṽ (z) −R|2 dL2z

⎞⎠
1
2

≤ c

⎛⎝∫
B 1

2
(0)

d2 (Dṽ (z) , SO (2)) dL2z

⎞⎠
1
2

(42)

≤ cC1.

And by (41) we have
∫
B 1

2
(0)

|Dv (z) −R| dL2z ≤ cC1. By Poincaré’s inequality there exists and

affine map lR with DlR = R such that∫
B 1

2
(0)

|v (z) − lR (z)|dL2z ≤ cC1. (43)

So by the co-area formula there exists a set Yb ⊂
(
0, 1

2

)
with L1

((
0, 1

2

) \Yb) ≤ c
√C1 such that

for each r ∈ Yb we have∫
∂Br(b)

|v (z) − lR (z)| + |Dv (z) −R|dH1z ≤ c
√
C1. (44)
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By the fundamental theorem of Calculus any r ∈ Yb satisfies (39) so this completes the proof
of Step 1.

Step 2. Let c0 = lR (0). We will show there exists l0 ∈ Y0 ∩K0 ∩
(

1
2 − c

√C1,
1
2

)
such that

the Brouwder degree of v and ṽ satisfy

d (v,Bl0 (0) , z) = 1 for any z ∈ Bl0−c
√C1

(c0) (45)

and
d (ṽ, Bl0 (0) , z) = 1 for any z ∈ Bl0−c

√C1
(c0) . (46)

Hence
L2
(
ṽ (Bl0 (0)) ∩B 1

2
(c0)
)
≥ π

4
− c
√
C1. (47)

Proof of Step 2. Let

F0 :=
{
h ∈

(
0,

1
2

)
: H1

({
x ∈ B 1

2
(0) : ṽ (x) �= v (x)

}
∩ ∂Bh (0)

)
≤ c

√
ε

}
. (48)

From (40) we know L1
((

0, 1
2

) \F0

) ≤ c
√
ε. Pick l0 ∈ Y0∩F0 ∩

(
1
2 − c

√C1,
1
2

)
. By (39) we know

v (∂Bl0 (0)) ⊂ Nc
√C1

(∂Bl0 (c0)) . (49)

In addition since ṽ is Lipschitz using (49) and the fact that l0 ∈ F0 we must have

ṽ (∂Bl0 (0)) ⊂ Nc
√C1

(∂Bl0 (c0)) . (50)

Now let us define the Homopoty H (x, t) = (1 − t) v (x)+ tlR (x). And define ht (x) := H (x, t).
Note thatBl0−c

√C1
(c0)∩ht (∂Bl0 (0)) = ∅ for any t ∈ [0, 1] and hence by Theorem 2.3 [Fo-Ga 95]

we have
d (v,Bl0 (0) , p) = d (lR, Bl0 (0) , p) = 1 for any p ∈ Bl0−c

√C1
(c0)

and thus establishes (45). Using (50), (46) follows via an identical argument. By Theorem 2.1
[Fo-Ga 95] (46) implies Bl0−c

√C1
(c0) ⊂ ṽ (Bl0 (0)) hence (47) follows.

Step 3. Let Q : IR → IR+ be defined by Q (t) = t− 4ε if t ≥ 4ε and Q (t) = 0 if t < 4ε. Let
Qε := Q ∗ φε where φε is the standard rescaled convolution kernel on IR (i.e. Sptφε ⊂ [−ε, ε]).
Let J (M) := d

(
M, K̃

)
. Finally we define Lε (z) = Qε (J (Dv (z))). Note Lε ∈ C3

(
B 1

2
(0)
)
.

It could be that
{
z ∈ B 1

2
(0) : |DLε (z)| = 0

}
is uncountable. However by the Area formula∫

Bε(0)∩DLε(Bl0 (0))
Card

({
z ∈ Bl0 (0) : DLε (z) = P

})
dL2P

≤
∫
Bl0 (0)

det
(
D2Lε (z)

)
dL2z

<∞. (51)

So we must be able to find P0 ∈ Bε (0) such that

Card ({z ∈ Bl0 (0) : DLε (z) = P0}) <∞. (52)

Defined L (z) := Lε (z) − P0 · z, so

Card
({
z ∈ Bl0 (0) : |DL (z)| = 0

})
= Card

({
z ∈ Bl0 (0) : DLε (z) = P0

})
<∞. (53)

Let β = 1

2(1+ q
p∗ ) . We will assume C1 is small enough so that 8Cβ1 < d0 (recall Definition (13)).

We will show we can find H ⊂
(
2Cβ1 , 4Cβ1

)
with L1 (H) ≥ 19

10Cβ1 such that for any a ∈ H

H1
(L−1 (a)

) ≤ c
√
C1. (54)
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Proof of Step 3. We know

|DL (z)| ≤ |DLε (z)| + ε

≤ |DQε (J (Dv (z)))| ∣∣D2v (z)
∣∣+ ε

≤ ∣∣D2v (z)
∣∣+ ε.

By the Co-area formula∫ 4Cβ1

2Cβ1
H1
(L−1 (a)

)
dL1a =

∫
j
z∈B 1

2
(0):2Cβ1 ≤L(z)≤4Cβ1

ff |DL (z)| dL2z

≤
∫

j
z∈B 1

2
(0):2Cβ1 ≤L(z)≤4Cβ1

ff ∣∣D2v (z)
∣∣ dL2z + cε

(26)

≤ cC1− βq
p∗

1 .

As 1 −
(
q
p∗ + 1

)
β = 1

2 , the set

H :=
{
a ∈

[
2Cβ1 , 4Cβ1

]
: H1

(L−1 (a)
) ≤ c

√
C1

}
(55)

has the property that L1 (H) ≥ 19
10Cβ1 . This completes the proof of Step 3.

Step 4. Let a1 ∈ H ∩
[
3Cβ1 , 4Cβ1

]
. Let

Ψa1 =
{
x ∈ B 1

2
(0) : d

(
Dv (x) , K̃

)
< a1

}
. (56)

Let l0 ∈ ( 1
2 − c

√C1,
1
2

) ∩ Y0 ∩K0 be the number satisfying (45) and (46) from Step 2. We will
show there exists open subset A ⊂ Bl0 (0) ∩ Ψa1 with the properties

•
L2 (Bl0 (0) \A) ≤ cε and ∂Bl0 (0) ⊂ A. (57)

• There exists a2 ∈
[
2Cβ1 , 3Cβ1

]
such that defining

Wa2 :=
{
x ∈ B 1

2
(0) : L (z) = a2

}
(58)

we have
∂A ⊂ ∂Bl0 (0) ∪Wa2 . (59)

• Also

Bl0 (0) \A =
m0⋃
k=1

Dk where {D1, D2, . . .Dm0} are connected open sets. (60)

In addition defining w : A→ IR2 by w (x) := v (x) for x ∈ A we will show w satisfies
•

L2
(
w (A) ∩B 1

2
(c0)
)
≥ π

4
− c
√
C1. (61)

•
∂w (A) ⊂ w (∂A) . (62)

Finally for any y ∈ B 1
4

(c0) there exists a set Ly ⊂
(
0, 1

2 + |y − c0|
)

with the property that

L1

((
0,

1
2

+ |y − c0|
)
\Ly
)

≤ cC 1
16
1 (63)
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and denoting l1 := l0 − c
√C1, Uy :=

(⋃
h∈Ly ∂Bh (y)

)
∩Bl1 (c0) we have

Uy ⊂ w (A) and d (w,A, z) = 1 for all z ∈ Uy. (64)

Proof of Step 4. Let

a2 ∈
[
2Cβ1 ,

5
2
Cβ1
]
∩H (65)

and define
B = {x ∈ Bl0 (0) : L (x) > a2} . (66)

Since l0 ∈ K0 from (29) (assuming ε is small enough) we know

∂Bl0 (0) ∩ B = ∅ hence d
(
∂Bl0 (0) ,B) > 0. (67)

Now since B is open we can find countably many open connected sets D1, D2, . . . such that
B =

⋃∞
k=1Dk. However by continuity of Dv we know that

L (z) = Qε (J (Dv (z))) − P0 ·Dv (z) = a2 for any z ∈ ∂B. (68)

Since from (53) we know |DL (z)| �= 0 except for finitely many points, for any k the boundary
∂Dk forms a piecewise smooth set of finite H1 measure. In addition for any k1 �= k2 if z0 ∈
∂Dk1 ∩ ∂Dk2 as DLδ(z0)

|DLδ(z0)| has to be the inward pointing unit normal to both ∂Dk1 and ∂Dk2 at
z0 and this is only possible if |DL (z0)| = 0. Thus Card (∂Dk1 ∩ ∂Dk2) < ∞ for any k1 �= k2.
Thus

∞∑
k=1

H1 (∂Dk) = H1

( ∞⋃
k=1

Dk

)
≤ c

√
C1. (69)

As diam(Dk) ≤ H1 (∂Dk) we know diam (Dk) → 0 as k → ∞. Now recall v is C4, so L is
Lipschitz on any compact subset of B 1

2
(0) and as (68) holds for z ∈ ∂Dk, there exists m0 ∈ IN

such that for any k > m0, if z ∈ Dk

L (z) ≤ cdiam (Dk) + a2

≤ 11
4
Cβ1 .

Hence defining A := Bl0 (0) \ (
⋃m0
k=1Dk) we have that A ⊂ Ψa1 , A satisfies (60) and it is clear

from continuity of Dv that (59) is satisfied. Now note

L2

(
m0⋃
k=1

Dk

)
≤ L2 (B)

(65),(66)

≤ L2
({
x ∈ B 1

2
(0) : d

(
Dv (x) , K̃

)
> Cβ1

})
(24)

≤ cε. (70)

As Bl0 (0) \B ⊂ A, (67) together with (70) implies (57). Let

N :=
{
x ∈ B 1

2
(0) : ṽ (x) = v (x)

}
(71)

so by (40)

L2 (A\N) ≤ cε. (72)
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Now

ṽ (Bl0 (0) \ (N ∩A)) ≤
∫
Bl0(0)\(N∩A)

det (Dṽ (z)) dL2z

(57),(72)

≤ cε. (73)

And as

ṽ (Bl0 (0)) ∩B 1
2

(c0) ⊂ (ṽ (Bl0 (0) \ (N ∩A)) ∪ ṽ (N ∩A)) ∩B 1
2

(c0) , (74)

we know

L2
(
v (N ∩A) ∩B 1

2
(c0)
)

= L2
(
ṽ (N ∩A) ∩B 1

2
(c0)
)

(73),(74)

≥ L2
(
ṽ (Bl0 (0)) ∩B 1

2
(c0)
)
− cε

(47)

≥ π

4
− c
√
C1. (75)

Hence (61) follows. Let U1,U2, . . .Um1 denote the connected components of A, by (60) we know
there are only finitely many such components. Finally by Lemma 1 we know that for any
i ∈ {1, 2, . . .m1} we have ∂w (Ui) ⊂ w (∂Ui) and this establishes (62).

We will assume a2 was chosen to be one of the a.e. numbers such that Wa2 (as the level set
of a Lipschitz function [Fed 69] 3,3.2.15) forms a rectifiable set.

By (39) we know w (∂Bl0 (0)) ⊂ Nc
√C1

(lR (∂Bl0 (0))) = Nc
√C1

(∂Bl0 (c0)). So for l1 :=
l0 − c

√C1

∂w (A) ∩Bl1 (c0)
(62)⊂ w (∂A) ∩Bl1 (c0)
(59)⊂ w (Wa2) . (76)

So as a2 ∈ H

H1 (w (Wa2)) ≤
∫
Wa2

|Dw (z) tz| dH1z

≤ cH1 (Wa2)
(55)

≤ c
√
C1. (77)

Let

Ty :=
{
h ∈

(
0,

1
2

+ |y − c0|
)

: ∂Bh (y) ∩ w (Wa2) �= ∅
}
. (78)

Let X0 : IR2 → IR be defined by X0 (z) = |z − y| so Ty ⊂ X0 (w (Wa2)) and as X0 is 1-Lipschitz
so L1 (X0 (w (Wa2))) ≤ c

√C1. Hence

L1 (Ty) ≤ c
√
C1. (79)

Let

Y0 =
{
h ∈

(
0,

1
2

+ |y − c0| − 2C 1
4
1

)
\Ty : ∂Bh (y) ∩ w (A) ∩Bl1 (c0) = ∅

}
.

See figure 1
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2c1

1/2

Wa1

1/4

c0

y

Figure 1

L2

(( ⋃
h∈Y0

∂Bh (y)

)
∩Bl1 (c0)

)
≥ C 1

4
1

∫
Y0

hdL1h

≥ C 1
4
1

∫ L1(Y0)

0

h dL1h

≥ C 1
4
1

(
L1 (Y0)

)2
2

.

And as
(⋃

h∈Y0
∂Bh (y)

) ∩Bl1 (c0) ⊂ B 1
2

(c0) \w (A) and from (61) we have

L1 (Y0) ≤ cC 1
8
1 . (80)

Let Y1 :=
(
0, 1

2 + |y − c0|
) \ (Ty ∪ Y0). Let

E0 :=

( ⋃
h∈Y1

∂Bh (y)

)
∩Bl1 (c0) . (81)

For h ∈ Y1, as h �∈ Y0 there exists z0 ∈ ∂Bh (y) ∩ w (A) ∩ Bl1 (c0), now suppose ∂Bh (y) ∩
Bl1 (c0) �⊂ w (A) then we must have ∂Bh (y) ∩Bl1 (c0) ∩ ∂w (A) �= ∅ and from (76) this implies
Bh (y) ∩Bl1 (c0) ∩ w (Wa2) �= ∅ which by (78) is a contradiction. Thus E0 ⊂ w (A) \w (∂A).

Now for any h ∈ Y1 as ∂Bh (y) ∩ Bl1 (c0) is a connected set it must belong to a connected
component of IR2\w (∂A) and hence by Theorem 2.3 [Fo-Ga 95] there exists a function N : Y1 →
IN such that d (z, w,A) = N (h) for any z ∈ ∂Bh (y) ∩ Bl1 (c0). Let Y2 = {h ∈ Y1 : N (h) ≥ 2}
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and define E1 =
⋃
h∈Y2

∂Bh (y) ∩Bl0 (c0). So∫
E0

d (w,A, y) dL2y =
∫
E0\E1

d (w,A, y) dL2y +
∫
E1

d (w,A, y) dL2y

≥ L2 (E1) + L2 (E0) . (82)

So using Theorem 5 (taking φ = χw(A)) recalling that A ⊂ Ψa1∫
E0

d (w,A, y) dL2y ≤
∫
w(A)

d (w,A, y) dL2y

=
∫
A

det (Dw (z)) dL2z

(24)

≤ L2 (A) + cε. (83)

Thus we have
π

4
+ cε ≥ L2 (A) + cε

(83),(82)

≥ L2 (E1) + L2 (E0) . (84)

Now

L2 (E0)
(81)

≥ L2 (Bl1 (c0)) − L2

⎛⎜⎝ ⋃
(0, 12+|y−c0|)\Y1

∂Bh (y)

⎞⎟⎠
≥ π

4
− c
√
C1 − cL1 (Ty ∩ Y0)

(80),(79)

≥ π

4
− cC 1

8
1 . (85)

Thus L2 (E1)
(84),(85)

≤ cC 1
8
1 since

L2 (E1) ≥ 2π
∫
Y2

r dL1r

≥ 2π
∫ L1(Y2)

0

r dL1r

= 2π
(
L1 (Y2)

)2
,

and as c
√
L2 (E1) ≥ L1 (Y2) this implies L2 (Y2) ≤ cC 1

16
1 . Let Ly = Y1\Y2, so Ly satisfies all

the properties of Step 4.

Step 5. Let y0 ∈ B 1
8

(c0), let Ly0 be as defined in Step 4. For any h ∈ Ly0 ∩
(
0, 1

8

)
we will

show w−1 (∂Bh (y0)) is a Jordan curve. Let Iy0 denote the interior of the curve we will prove

w (∂Iy0) = ∂Bh (y0) , w (Iy0 ∩A) ⊂ Bh (y0) . (86)

And
w
((
Bl0 (0) \Iy0

) ∩A) ⊂ Bh (y0)
c
. (87)

Proof of Step 5. Since A ⊂ Ψa1 we know for every x ∈ IR2

d (w,A, x) =
∑

z∈w−1(x)

sgn (det (Dw (z)))

= Card
(
w−1 (x)

)
(88)



AN Lp TWO WELL LIOUVILLE THEOREM 17

so from (64) we know
Card

(
w−1 (x)

)
= 1 for any x ∈ ∂Bh (y0) . (89)

So w−1 (∂Bh (y0)) is a closed curve with no intersections, i.e. w−1 (∂Bh (y0)) forms a Jordan
curve. Thus IR2\w−1 (∂Bh (y0)) has two connected components, let Iy0 denote the interior
component. Recall (60) on the structure of the set A. Since ∂Iy0 is a compact set contained in
open set A so

d (∂Iy0 , {D1, D2, . . .Dm0}) > d (∂Iy0 , ∂A)
> 0. (90)

We will show that

w

(
Iy0\

(
m0⋃
k=1

Dk

))
⊂ Bh (y0) (91)

and

w

((
Bl0 (0) \Iy0

) \(m0⋃
k=1

Dk

))
⊂ Bh (y0)

c
. (92)

As A ∩ Iy0 ⊂ Iy0\ (
⋃m0
k=1Dk) thus (91) implies the second part of (86). And similarly (92)

implies (87). First we will establish (91). Let x0 ∈ ∂Iy0 since we know det (Dw (x0)) > c it is
easy to see that for small enough α, w (Bα (x0) ∩ Iy0) ⊂ Bh (y0). For any z1 ∈ Iy0\

(⋃m0
k=1Dk

)
,

as Iy0 is connected we must be able to find a path in Iy0 starting from z0 ∈ Bα (x0) ∩ Iy0 and
ending in z1. Formally, there exists a function P : [0, γ] → Iy0 with P (0) = z0, P (γ) = z1 and
P ([0, γ]) ⊂ Iy0 .

Let J = P−1
(
P ([0, γ]) ∩ (⋃m0

k=1Dk

))
let I1, I2, . . . Im1 denote the connected components of

[0, γ] \J labelled so that sup Ii ≤ inf Ii+j . Let ai, bi be the endpoints of Ii, i.e. [ai, bi] = Ii.
Now P (a1) = P (0) = z0 but P (b1) ∈ ⋃m0

k=1 ∂Dk. As P ((a1, b1)) is connected we claim we
must have

w (P ((a1, b1))) ⊂ Bh (y0) (93)

since otherwise there exists y ∈ w (P ((a1, b1)))∩∂Bh (y0) and so there must be x1 ∈ P ((a1, b1)) ⊂
Iy0 ∩A and x2 ∈ w−1 (∂Bh (y0)) = ∂Iy0 with w (x1) = w (x2) = y and thus

d (w,A, y) =
∑

x∈w−1(y)

sgn (det (Dw (x))) ≥ 2, (94)

which contradicts (89) thus (93) is established. Now

∃ k1 ∈ {1, 2, . . .m0} such that P (b1) ∈ ∂Dk1 and also P (a2) ∈ ∂Dk1 (95)

so we have
w (P (b1)) , w (P (a2)) ∈ w (∂Dk1) . (96)

From (93) we have w (P (b1)) ∈ Bh (y0) and we claim must have

w (∂Dk1) ⊂ Bh (y0) (97)

since otherwise there must exist y ∈ w (∂Dk1) ∩ ∂Bh (y0) and in the same way we estab-
lish (94) (using the fact Dk1 ⊂ Iy0) this implies d (w,A, y) ≥ 2. So as P (a2) ∈ ∂Dk1 we
know w (P (a2)) ∈ Bh (y0). In the same way as before we have P ((a2, b2)) ⊂ Bh (y0) and
again P (b2) ∈ Dk2 for some k2 ∈ {1, 2, . . .m0}, we can then repeat the argument to show
w (∂Dk2) ⊂ Bh (y0). So continuing in this way we have v (P ((am0 , bm0))) ⊂ Bh (y0) and as this
means v (z1) = v (P (γ)) = v (P (bm0)) ∈ Bh (y0) we have established (91). The proof of (92) is
identical. This completes the proof of Step 5.
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Step 6. We will show we can find a set Υ0 ⊂ B 1
8

(0) ∩A such that

L2
(
B 1

8
(0) \Υ0

)
≤ c
√
C1 (98)

and Υ0 has the property that for any b ∈ Υ0 there exists a set Db ⊂ Lv(b) ∩
(

1
8 ,

5
16

)
such that

L1

((
1
8
,

5
16

)
\Db

)
≤ cC

1
32q
1 (99)

and any h ∈ Db has the property that

w−1 (∂Bh (v (b))) ⊂ N
cC

1
32
1

(∂Bh (b)) . (100)

∫
∂Bh(v(b))

d
(
Dw−1 (z) , SO (2)

)
dH1z ≤ cε. (101)

In addition Υ0 has the properties

v (x) ∈ B√C1
(lR (x)) ⊂ B 1

8
(c0) for any x ∈ Υ0, (102)

d (w,A, v (x)) = 1 for each x ∈ Υ0. (103)

Proof of Step 6. Recall c0 = lR (0), let Uc0 be defined as in Step 4. Let E0 := w−1 (Uc0).
Now for any x ∈ Uc0 , Dw−1 (x) =

[
Dw

(
w−1 (x)

)]−1 and as w−1 (x) ∈ A we have

d
(
Dw

(
w−1 (x)

)
, K̃
)
≤ 4Cβ1 where β =

1

2
(
1 + q

p∗

) .
This implies d

([
Dw

(
w−1 (x)

)]−1
, SO (2) ∪ SO (2)J−1

)
≤ 32Cβ1 . Hence

L2 (E0) =
∫
Uc0

det
(
Dw−1 (z)

)
dL2z

≥
(
1 − cCβ1

)
L2 (Uc0)

(63)

≥
(

1 − cC
1

16q
1

)
π

4
. (104)

Note that since for any x ∈ E0 we have v (x) ∈ Uc0 and hence by (64) we know

d (w,A, v (x)) = 1 for x ∈ E0. (105)

Let

E1 :=
{
x ∈ A : |lR (x) − v (x)| ≤

√
C1

}
(106)

we know from (43) that

L2 (A\E1) ≤ c
√
C1. (107)

Now for any b ∈ E0 ∩ E1 ∩B 1
8

(0) let Ab =
⋃
h∈( 1

4 ,
5
16 )∩Lv(b) ∂Bh (v (b)). So note since b ∈ E1

Ab ⊂ B 5
16

(v (b))
(106)⊂ B 5

16+
√C1

(lR (b))

⊂ B 15
32

(c0) .
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Note

L2 (v (E0 ∩ E1 ∩N)) = L2 (ṽ (E0 ∩ E1 ∩N))
≥ L2 (ṽ (A ∩N)) − L2 (ṽ (A\ (E1 ∪ E2)))

(104),(107)

≥ L2 (ṽ (A ∩N)) − cC
1

16q
1

(75)

≥ π

4
− cC

1
16q
1 . (108)

Now by Step 5 for any h ∈ ( 1
4 ,

5
16

) ∩ Lv(b) we know w−1 (∂Bh (v (b))) is a Jordan curve and
w−1 (∂Bh (v (b))) ⊂ Ψa1 , by continuity of Dv and since a1 <

d0
8 (see Definition (13)) we know

either {
Dv (z) : z ∈ w−1 (∂Bh (v (b)))

} ⊂ N2a1 (SO (2)) (109)

or {
Dv (z) : z ∈ w−1 (∂Bh (v (b)))

} ⊂ N2a1 (SO (2)J) . (110)

Let

S1
b =

{
h ∈

(
1
4
,

5
16

)
∩ Lv(b) : (109) holds true

}
,

S2
b =

{
h ∈

(
1
4
,

5
16

)
∩ Lv(b) : (110) holds true

}
.

Thus

S1
b ∪ S2

b =
(

1
4
,

5
16

)
∩ Lv(b). (111)

Now∫
Ab
d
(
Dw−1 (z) , SO (2)

)
dL2z =

∫
Ab
d
([
Dw

(
w−1 (z)

)]−1
, SO (2)

)
dL2z

=
∫
w−1(Ab)

d
(
[Dw (y)]−1 , SO (2)

)(
det
(
[Dw (y)]−1

))−1

dL2y.

And since w−1 (Ab) ⊂ A so for any y ∈ w−1 (Ab) we have d
(
Dw (y) , K̃

)
≤ 4Cβ1 which implies

d
(
[Dw (y)]−1 , SO (2) ∪ SO (2)J−1

)
≤ 16Cβ1 and hence∫

Ab
d
(
Dw−1 (z) , SO (2)

)
dL2z ≤ c

∫
w−1(Ab)

d
(
[Dw (y)]−1

, SO (2)
)
dL2y

≤ c

∫
B 1

2
(0)

d (Dw (y) , SO (2)) dL2y

(27)

≤ cC2
1 . (112)

Now let W 2
b =

⋃
h∈S2

b
∂Bh (v (b))∫

W 2
b

d
(
Dw−1 (z) , SO (2)

)
dL2z =

∫
W 2
b

d
([
Dw

(
w−1 (z)

)]−1
, SO (2)

)
dL2z

≥ d0

2
L2
(
W 2
b

)
so from (112) we have

L1
(
S2
b

) ≤ cL2
(
W 2
b

) ≤ cC2
1 . (113)
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Let W 1
b :=

⋃
h∈S1

b
∂Bh (v (b)) so arguing as before there exists a positive constant c3 = c3 (σ)∫

W 1
b

d
(
Dw−1 (z) , SO (2)

)
dL2z

=
∫
W 1
b

d
([
Dw

(
w−1 (z)

)]−1
, SO (2)

)
dL2z

=
∫
w−1(W 1

b )
d
(
[Dw (y)]−1 , SO (2)

)(
det
(
[Dw (y)]−1

))−1

dL2y

≤ c

∫
w−1(W 1

b )
d (Dw (y) , SO (2)) dL2y

(24),(109)

≤ c3ε. (114)

Let

Pb =

{
h ∈ S1

b :
∫
∂Bh(v(b))

d
(
Dw−1 (z) , SO (2)

)
dH1z ≤ C−1

1 c3ε

}
(115)

so from (114) we have L1
(
S1
b \Pb

) ≤ C1 and from this and (111), (113) and (63) we have

L1

((
1
8
,

5
16

)
\Pb
)

≤ cC 1
16
1 . (116)

Let

Db =
{
h ∈ Pb : H1 (∂Bh (v (b)) \v (E0 ∪ E1)) ≤ C 1

32
1

}
. (117)

So

cC
1

16q
1

(108)

≥ L2

(
A

(
v (b) ,

1
4
,

5
16

)
\v (E0 ∪ E1)

)
=

∫ 5
16

1
8

H1 (∂Bh (v (b)) \v (E0 ∪ E1)) dL1h

(117)

≥ C 1
32
1 L1 (Pb\Db)

and thus we have

L1 (Db) ≥ 3
16

− cC
1

32q
1 . (118)

Let h ∈ Db. Let z0 ∈ ∂Bh (v (b)) ∩ w (E0 ∩ E1) ⊂ Uc0 thus d (w,A, z0) = 1 and hence
Card

(
w−1 (z0)

)
= 1. Thus as w−1 (z0) ∈ E1 we have∣∣z0 − lR

(
w−1 (z0)

)∣∣ =
∣∣w (w−1 (z0)

)− lR
(
w−1 (z0)

)∣∣
(106)

≤
√
C1. (119)

Thus as b ∈ E1 and z0 ∈ ∂Bh (v (b)) we have

w−1 (z0)
(119)∈ B√C1

(
l−1
R (z0)

) ⊂ N√C1

(
∂Bh

(
l−1
R (v (b))

)) (106)⊂ N2
√C1

(∂Bh (b)) . (120)

And for any z1 ∈ ∂Bh (v (b)) \v (E0 ∩ E1) from (117) we can find a point z2 ∈ ∂Bh (v (b)) ∩
v (E0 ∩ E1) such that if W denote the short connected component of ∂Bh (v (b)) \ {z1, z2} then
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H1 (W ) ≤ C 1
32
1 . So∣∣w−1 (z1) − w−1 (z2)

∣∣ =
∣∣∣∣∫
W

Dw−1 (z) tzdH1z

∣∣∣∣
≤ H1 (W ) +

∫
∂Bh(v(b))

d
(
Dw−1 (z) , SO (2)

)
dH1z

(115)

≤ cC 1
32
1 .

Hence

w−1 (∂Bh (v (b))) ⊂ N
cC

1
32
1

(∂Bh (b)) . (121)

Letting Υ0 = E1 ∩ E2 ∩B 1
8−c

√C1
(0), by (105), (106), (115), (118) and (120) Υ0 satisfies (99),

(100), (101), (102) and (103) and this completes the proof of Step 6.

Step 7.We will show there exists a set Ξ0 ⊂ B 1
8

(c0) ∩w (A) such that

L2 (Ξ0) ≥ π

64
− cC

1
4q
1 (122)

and for any a ∈ Ξ0 there exists Θa ⊂ S1 with the following properties

•
H1
(
S1\Θa

) ≤ cC 1
8
1 . (123)

• For each θ ∈ Θa let t (θ) ∈ IR+ be the smallest number such that a+θt (θ) ∈ v (∂Bl0 (0)),
we will show [a, a+ θt (θ)) ⊂ w (A) and

d (w,A, y) = 1 for any y ∈ [a, a+ θt (θ)) . (124)

• For any θ ∈ Θa ∫
[a,a+θt(θ))

d
(
Dw−1 (z) , SO (2)

)
dL1z ≤ cε. (125)

Proof Step 7. Recall inclusion (59) ∂A ⊂ ∂Bl0 (0) ∪ Wa2 (where Wa2 is defined by (58)
and recall a2 ∈ H ⊂

[
2Cβ1 , 3Cβ1

]
) and as l0 ∈ K0 from (29) we have ∂Bl0 (0) ∩Wa2 = ∅. Let

Γ = w (Wa2), since Γ is the Lipschitz image of a rectifiable set it is rectifiable and from (77)
we have H1 (Γ) ≤ c

√C1. Define measure µ by µ (B) = H1 (B ∩ Γ). So µ
(
IR2
) ≤ c

√C1. By
Fubini’s Theorem∫

B2(c0)

∫
B2(c0)

1
|z − y|dµzdL

2y =
∫
B2(c0)

∫
B2(c0)

1
|z − y|dL

2ydµz

≤ cµ (B2 (c0))

≤ c
√
C1. (126)

Let

Ξ1 :=

{
y ∈ B 1

8
(c0) :

∫
B2(c0)

1
|z − y|dµz ≤ C 1

4
1

}
. (127)

So from (126)

L2
(
B 1

8
(0) \Ξ1

)
≤ cC 1

4
1 . (128)
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Let Ea (z) : Γ → S1 be defined by Ea (z) := (z−a)
|z−a| , so |DEa (z)| = 1

|z−a| . Now using the Co-area
formula for rectifiable sets, Theorem 3.2.22 [Fed 69] we have that for any a ∈ IR2

∫
Γ

χB2(c0) (z)
|z − a| dH1z ≥

∫
S1

∫
E−1
a (θ)∩Γ

χB2(c0) (x) dH0xdH1θ

=
∫
S1

Card
(
E−1
a (θ) ∩ Γ ∩B2 (c0)

)
dH1θ. (129)

So if a ∈ Ξ1 we have ∫
S1

Card
(
E−1
a (θ) ∩ Γ ∩B2 (c0)

)
dH1θ

(129),(127)

≤ C 1
4
1 .

Thus each a ∈ Ξ1 we can find a set Σ1
a ⊂ S1 such that

H1
(
S1\Σ1

a

) ≤ C 1
8
1 (131)

and for every θ ∈ Σ1
a we have Card

(
E−1
a (θ) ∩ Γ ∩B2 (c0)

)
= 0. Since l0 ∈ Y0 we know

v (∂Bl0 (0))
(39)⊂ Nc

√C1
(∂Bl0 (c0)) . (132)

Given b ∈ B 1
8

(c0), for each θ ∈ S1 we define tb (θ) ∈ IR+ to be the smallest number such that

[b+ θtb (θ)] ∩ v (∂Bl0 (0)) �= ∅. Thus for a ∈ Ξ1 ∩ w (A), θ ∈ Σ1
a as w (∂A)

(59)⊂ Γ ∪ v (∂Bl0 (0))
we have

[a, a+ θta (θ)) ∩ ∂w (A)
(62)⊂ [a, a+ θta (θ)) ∩ w (∂A)
⊂ [a, a+ θta (θ)) ∩ Γ
= ∅

and this implies ⋃
θ∈Σ1

a

[a, a+ θta (θ)) ⊂ w (A) \w (∂A) for any a ∈ Ξ1 ∩ w (A) . (133)

Hence as d (w,A, y) is constant on the connected components of IR2\w (∂A) and [a, θta (θ)) must
belong to one such connected component there exists, N (θ) ≥ 1 such that d (w,A, y) = N (θ)
for any y ∈ [a, a+ θta (θ)). Let

Ha :=
{
θ ∈ Σ1

a : N (θ) ≥ 2
}
. (134)

Arguing as we did in Step 4∫
S
θ∈Σ1

a
[a,a+θta(θ))

d (w,A, y) dL2y =
∫

S
θ∈Ha

[a,a+θta(θ))

d (w,A, y) dL2y

+
∫

S
θ∈Σ1

a\Ha
[a,a+θta(θ))

d (w,A, y) dL2y

≥ L2

⎛⎝ ⋃
θ∈Σ1

a

[0, θta (θ))

⎞⎠+ L2

( ⋃
θ∈Ha

[0, θta (θ))

)
.
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As by Theorem 5 (again taking φ = χw(A))∫
S
θ∈Σ1

a
[a,a+θta(θ))

d (w,A, y) dL2y ≤
∫
w(A)

d (w,A, y) dL2y

=
∫
A

det (Dw (y)) dL2y

≤ L2 (A) + cε

(24)

≤ π

4
+ cε

and as from (132) we know ta (θ) ≥ 1
16 for every θ ∈ S1 thus

H1 (Ha)
16

+ L2

⎛⎝ ⋃
θ∈Σ1

a

[0, θta (θ))

⎞⎠ ≤ π

4
+ cε. (135)

However

L2

⎛⎝ ⋃
θ∈Σ1

a

[0, θta (θ))

⎞⎠ ≥ L2

( ⋃
θ∈S1

[0, θta (θ))

)
− cH1

(
S1\Σ1

a

)
(132),(131)

≥ L2
(
B 1

2−c
√C1

(c0)
)
− cC 1

8
1

≥ π

4
− cC 1

8
1 (136)

so from (136), (135) we have

H1 (Ha) ≤ cC 1
8
1 . (137)

Let
Σ2
a := Σ1

a\Ha and S
1
a :=

⋃
θ∈Σ2

a

[a, a+ θta (θ)) . (138)

Let W :=
⋃
a∈Ξ1∩w(A) S1

a. From (133) we know W ⊂ w (A) from the definition of Σ2
a (see (138),

(134)) we know for any y ∈ W, we have Card
(
w−1 (y)

)
= d (w,A, y) = 1 and hence the inverse

of w is well defined on W.
It will simplify the notation to define Q :

{
M ∈ M2×2 : det (M) > 0

}→ M2×2 by Q (M) =

M−1, let K := SO (2)∪SO (2)J−1 so as w−1 (W) ⊂ A
(56)⊂

{
x ∈ B 1

2
(0) : d

(
Dv (x) , K̃

)
≤ 5Cβ

}
and as Dw−1 (y) =

[
Dw

(
w−1 (y)

)]−1∫
W

∣∣D2w−1 (y)
∣∣ ∣∣∣d q

p∗
(
Dw−1 (y) ,K

)∣∣∣ dL2y

=
∫

W

∣∣D (Q (Dw (w−1 (y)
)))∣∣ ∣∣∣d q

p∗
([
Dw

(
w−1 (y)

)]−1
,K
)∣∣∣ dL2y

≤ c

∫
W

∣∣DQ (Dw (w−1 (y)
))∣∣ ∣∣D2w

(
w−1 (y)

)∣∣ d q
p∗
([
Dw

(
w−1 (y)

)]−1
,K
)
dL2y

≤ c

∫
w−1(W)

|DQ (Dw (z))| ∣∣D2w (z)
∣∣ d q

p∗
(
[Dw (z)]−1

,K
)(

det
(
[Dw (z)]−1

))
dL2z

≤ c

∫
B 1

2
(0)

∣∣D2v (z)
∣∣ d q

p∗
(
Dv (z) , K̃

)
dL2z

(26)

≤ cC1. (139)
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Similarly ∫
W

d
(
Dw−1 (y) ,K

)
dL2y =

∫
W

d
([
Dw

(
w−1 (y)

)]−1
,K
)
dL2y

≤ c

∫
w−1(W)

d
(
[Dw (z)]−1

,K
)
dL2z

(24)

≤ cε. (140)

Finally ∫
W

d
(
Dw−1 (y) , SO (2)

)
dL2y =

∫
W

d
([
Dw

(
w−1 (y)

)]−1
, SO (2)

)
dL2y

≤ c

∫
w−1(W)

d
(
[Dw (z)]−1 , SO (2)

)
dL2z

(27)

≤ cC2
1 .

Now by Theorem 5 and (103), since Υ0 ⊂ Ψa1

L2 (w (Υ0)) =
∫

Υ0

det (Dw (z)) dL2z

≥
(
1 − cCβ1

)
L2 (Υ0)

(98)

≥ π

64
− cC

1
2q
1 .

And as by (102) w (Υ0) ⊂ B 1
8

(0) it is clear from (128) that L2 (w (Υ0) ∩ Ξ1) ≥ π
64 − cC

1
4q
1 .

Now by the same Fubini argument we used to established (127), (128) we can find a set Ξ0 ⊂
Ξ1 ∩ w (Υ0) with

L2 (Ξ0) ≥ L2 (Ξ1 ∩ w (Υ0)) − c
√
C1

≥ π

64
− cC

1
4q
1 (141)

and for any a ∈ Ξ0 we have∫
S1
a

∣∣D2w−1 (y)
∣∣ d q

p∗
(
Dw−1 (y) ,K

) |y − a|−1 dL2y ≤ c
√
C1, (142)

∫
S1
a

d
(
Dw−1 (y) ,K

) |y − a|−1
dL2y ≤ cε (143)

and ∫
S1
a

d
(
Dw−1 (y) , SO (2)

) |y − a|−1 dL2y ≤ cC 3
2
1 . (144)

By the Co-area formula for by a ∈ Ξ0 we can find Θa ⊂ Σ2
a with

H1
(
Σ2
a\Θa

) ≤ C 1
4
1 (145)

and any θ ∈ Θa has the property∫
[a,a+θta(θ))

∣∣D2w−1 (y)
∣∣ d q

p∗
(
Dw−1 (y) ,K

)
dH1y ≤ cC 1

4
1 , (146)

∫
[a,a+θta(θ))

d
(
Dw−1 (y) ,K

)
dH1y ≤ cε (147)
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and ∫
[a,a+θta(θ))

d
(
Dw−1 (y) , SO (2)

)
dH1y ≤ cC 5

4
1 . (148)

And as we have seen before in (34) of Lemma 2, inequalities (146) and (148) imply

d
(
Dw−1 (z) , SO (2)

)
< d

(
Dw−1 (z) , SO (2)J

)
for any z ∈ [a, a+ θta (θ))

and thus (147) gives ∫
[a,a+θta(θ))

d
(
Dw−1 (y) , SO (2)

)
dH1z ≤ cε. (149)

From (131), (137), (145) Θa satisfies (123). By (134), (138) it satisfies (124), from (149) it
satisfies (125) and finally from (141) it satisfies (122). This completes the proof of Step 7.

Step 8. Recall the definition of set Υ0, from Step 6. We will show that for any b ∈ Υ0 and
any h ∈ Db

H1
(
w−1 (∂Bh (v (b)))

) ≤ 2πh+ cε (150)
and denoting the interior of w−1 (∂Bh (v (b))) by Ib (i.e. Ib := Iv(b) of Step 5) we have

L2 (Ib ∩A) ≥ πh2 − cε. (151)

Proof of Step 8. As b ∈ Υ0, v (b) ∈ B 1
8

(c0) and so

Bh (v (b)) ⊂ B 15
32

(c0) ⊂ Bl1 (c0) . (152)

From Step 4 (64) we know that for h ∈ Dh we have ∂Bh (v (b)) ⊂ w (A) and d (w,A, z) = 1 for
z ∈ ∂Bh (v (b)) thus it makes sense to consider the inverse of w on ∂Bh (v (b)), we also know
w−1 (∂Bh (v (b))) is a Jordan curve and recall N is the set of points at which v and ṽ agree (see
(71)) and from (40) we know that L2 (Bl0 (0) \N) ≤ cε. We will show

L2 (Bh (v (b)) \v (Ib ∩A ∩N)) ≤ cε. (153)

Let O = Bl0 (0) \Ib. By (87)

ṽ (N ∩A ∩O) ∩Bh (v (b)) = ∅. (154)

So as from (152), (47)

Bh (v (b)) ⊂ ṽ (N ∩A ∩O) ∪ ṽ (N ∩A ∩ Ib
) ∪ ṽ (Bl0 (0) \ (N ∩A)) (155)

and as

L2 (ṽ (Bl0 (0) \ (N ∩A))) ≤ cL2 (Bl0 (0) \ (N ∩A))
(57),(40)

≤ cε

together with (154), (155) this implies (153). By Theorem 5 (taking φ = χv(Ib∩A∩N))∫
Ib∩A∩N

det (Dv (x)) dL2x =
∫
v(Ib∩A∩N)

N (v, Ib ∩A ∩N, z)dL2z

(153)

≥ πh2 − cε. (156)

And as ∫
Ib∩A∩N

det (Dv (x)) dL2x ≤
∫
Ib∩A∩N

1 + cd
(
Dv (x) , K̃

)
dL2x

(24)

≤ L2 (Ib ∩A ∩N) + cε.

Together with (156) this gives

L2 (Ib ∩A ∩N) ≥ πh2 − cε
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which establishes (151). By Step 6, (101)

H1
(
w−1 (∂Bh (v (b)))

)
=

∫
∂Bh(v(b))

∣∣Dw−1 (z) tz
∣∣ dH1z

≤ 2πh+ cε

which establishes (150) and completes the proof of Step 8.

Step 9. Let b ∈ Υ0, h ∈ Db for ph :=
√

L2(Ib)
π there exists ωb ∈ B 1

2
(0) such that

L2 (Ib\Bph (ωb)) ≤ c
√
ε. (157)

Proof of Step 9. Recall from Step 5 ∂Ib = w−1 (∂Bh (v (b))) and

H1 (∂Ib) = H1
(
w−1 (∂Bh (v (b)))

)
(150)

≤ 2πh+ cε (158)

and since by (151) we know L2 (Ib) ≥ πh2 − cε by Theorem 3 the Fraenkel asymmetry λ (Ib)
satisfies

(2πh+ cε)2
(8),(158)

≥ 4π

(
1 +

(λ (Ib))
2

4

)
L2 (Ib)

≥ 4π

(
1 +

(λ (Ib))
2

4

)(
πh2 − cε

)
thus 4π2h2 + cε ≥ 4π2h2 + π2h2 (λ (Ib))

2 thus λ (Ib) ≤ c
√
ε. Thus there exists ωb ∈ IR2 such

that (157) is satisfied.

Step 10. Let b ∈ Υ0 be such that v (b) ∈ Ξ0, for any h ∈ Db we will show

L2 (Ib\Bh (b)) ≤ c
√
ε. (159)

Proof of Step 10. Let ωb ∈ IR2 satisfy (157) for ph =
√

L2(Ib)
π . First note (157) implies

L2 (Ib ∩Bph (ωb)) ≥ πp2
h − c

√
ε and thus

L2 (Bph (ωb) \Ib) ≤ c
√
ε. (160)

Since ∂Ib = w−1 (∂Bh (v (b)))
(100)⊂ N

cC
1
32
1

(∂Bh (b)) it is easy to see

ωb ∈ B
cC

1
32
1

(b) and |ph − h| ≤ cC 1
32
1 . (161)

For each θ ∈ S1 let E (θ) > 0 be the largest number such that

(((ph + E (θ)) θ, (ph − E (θ)) θ) + ωb) ∩ ∂Ib = ∅.
Let

X1 :=
{
θ ∈ S1 : ((ph + E (θ)) θ, (ph − E (θ)) θ + ωb) ⊂ Ib

}
and let

X2 :=
{
θ ∈ S1 : ((ph + E (θ)) θ, (ph − E (θ)) θ + ωb) ∩ Ib = ∅} .

For any θ ∈ X1 we know

((ph + E (θ)) θ, phθ) + ωb ⊂ (Ib\Bph (ωb)) .
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So there exists constant c4 = c4 (σ) > 0 such that∫
X1

E (θ) dH1θ ≤
∫
X1

H1 ((Ib\Bph (ωb)) ∩ {ωb + θIR+}) dH1θ

=
∫
Ib\Bph (ωb)

|z − ωb|−1 dL2z

≤ cL2 (Ib\Bph (ωb))
(157)

≤ c4
√
ε. (162)

In the same way if θ ∈ X2 then we know

(phθ, (ph − E (θ)) θ) + ωb ⊂ (Bph (ωb) \Ib) ∩ {ωb + θIR+}
and arguing in exactly the same way as (162) we get∫

X2

E (θ) dH1θ ≤ cL2 (Bph (ωb) \Ib)
(160)

≤ c4
√
ε. (163)

Let U =
{
θ ∈ S1 : E (θ) < 2c4C−1

1

√
ε
}

so from (162), (163) we have

H1
(
S1\U

) ≤ C1. (164)

For any θ ∈ U we can find

Q (θ) ∈ {ωb + θIR+} ∩N2E(θ) (∂Bph (ωb)) ∩ ∂Ib.
Let D0 :=

⋃
θ∈U

Q (θ), note
D0 ⊂ Nc

√
ε (∂Bph (ωb)) (165)

and as D0 ⊂ ∂Ib, D0 is rectifiable.
Define P : IR2 → phS

1 by P (z) = ph
z−ωb
|z−ωb| , so |DP (z)| = ph

|z−ωb| . Now P (D0) = phU and
from (164) we have

H1 (P (D0)) ≥ 2πph − C1. (166)
As D0 is a rectifiable set we know

H1 (P (D0)) ≤
∫

D0

|DP (z) tz |dH1z

≤ (
1 + c

√
ε
)
H1 (D0) . (167)

Which implies

H1 (D0)
(166),(167)

≥ 2πph − cC1. (168)
Define Mb := ∂Bh (v (b)) \ (hΘv(b) + v (b)

)
(see figure 2), as v (b) ∈ Ξ0 (recall this is one of the

hypotheses of Step 10) we know

H1 (Mb)
(123)

≤ cC 1
8
1 . (169)

And as h ∈ Db we have that

H1
(
w−1 (Mb)

)
=

∫
Mb

∣∣Dw−1 (z) tz
∣∣ dH1z

(101)

≤ H1 (Mb) + cε

(169)

≤ cC 1
8
1 . (170)

Note
H1
(
P
(
D0\w−1 (Mb)

)) ≥ H1 (P (D0)) −H1
(
P
(
w−1 (Mb)

))
(171)
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and from (100), (161) we have w−1 (Mb) ⊂ N
cC

1
32
1

(∂Bph (ωb)) and so

H1
(
P
(
w−1 (Mb)

))
=

∫
w−1(Mb)

|DP (z) tz| dH1z

≤
(
1 + cC 1

32
1

)
H1
(
w−1 (Mb)

)
(170)

≤ cC 1
8
1 . (172)

Let D1 = D0\w−1 (Mb), so from (168), (170) we knowH1 (D1) ≥ 2πph−cC
1
8
1 . From (166), (171),

(172) there must exists constant c5 = c5 (σ) > 0 such that we can pick points p1, p2, p3 ∈ D1

for which the angle between any two of them is (roughly) 2π
3 , formally∣∣∣∣ pi1|pi1 |

· pi2|pi2 |
+

1
2

∣∣∣∣ < cC 1
8
1 for i1, i2 ∈ {1, 2, 3} . (173)

And by definition of D1 we know v(pi)−v(b)
|v(pi)−v(b)| ∈ Θv(b) for i = 1, 2, 3. Again see figure 2.

b v(b)

Mbw−1
Mb(     )w−1

p

p

p1

2

3

v(p )

v(p )

v(p )

1

2

3

Figure 2

Let θi := v(pi)−v(b)
|v(pi)−v(b)| and let t (θi) ≥ 0 be the smallest number such that v (b) + θit (θi) ∈

v (∂Bl0 (0)), from (124) the path w−1 : [v (b) , v (b) + θit (θi)) → A is well defined, since pi ∈ ∂Ib
so v (pi) ∈ ∂Bh (v (b)) ⊂ B 15

32
(c0) ⊂ v (Bl0 (0)) hence [v (b) , v (pi)] ⊂ [v (b) , v (b) + θit (θi)) thus

the path w−1 ([v (b) , v (pi)]) is also well defined and so as v (pi) ∈ ∂Bh (v (b)) we have

|b− pi| ≤ H1
(
w−1 ([v (b) , v (pi)])

)
=

∫
[v(b),v(pi)]

∣∣Dw−1 (z) tz
∣∣ dH1z

(125)

≤ h+ cε. (174)

Note

ph =

√
L2 (Ib)
π

(151)

≥ h− cε. (175)

Define the half-plane
H (x, v) :=

{
z ∈ IR2 : (z − x) · v ≥ 0

}
. (176)
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Let Wi := pi−ωb
|pi−ωb| for i = 1, 2, 3. So using the fact p1, p2, p3

(165)∈ Nc
√
ε (∂Bph (ωb)) for the last

inclusion (see figure 3)

b
(174)∈ Bh+cε (pi)
⊂ H (pi + (h+ cε) Wi,−Wi)

(175)⊂ H (pi + (ph + cε) Wi,−Wi)
⊂ H (ωb + c

√
εWi,−Wi

)
.

Thus

p2

3p

p1

ph

wb b

W

W

W

1

2

3

Figure 3

b ∈
3⋂
i=1

H (ωb + c
√
εWi,−Wi

)
(173)⊂ Bc

√
ε (ωb) . (177)

Again since pi
(165)∈ Nc

√
ε (∂Bph (ωb)) and as |pi − ωb|

(177)

≤ |pi − b| + c
√
ε

(174)

≤ h + c
√
ε thus

ph − c
√
ε ≤ h+ c

√
ε this together with (175) gives |ph − h| ≤ c

√
ε, this completes the proof of

Step 10.



30 ANDREW LORENT

Proof of Lemma 3 completed. Note by Theorem 5

L2 (w (Υ0))
(103)
=

∫
w(Υ0)

d (w,A, y) dL2y

=
∫

Υ0

det (Dw (z)) dL2z

≥
(
1 − cCβ1

)
L2 (Υ0)

(98)

≥
(

1 − cC
1
2q
1

)
π

64
.

So by (122) we know L2 (w (Υ0) ∩ Ξ0) ≥
(

1 − cC
1
4q
1

)
π
64 , let Λ0 := w−1 (w (Υ0) ∩ Ξ0), note

L2 (Λ0) ≥
∫
w(Υ0)∩Ξ0

det
(
Dw−1 (y)

)
dL2y

=
∫
w(Υ0)∩Ξ0

det
([
Dw

(
w−1 (y)

)]−1
)
dL2y

≥
(
1 − cCβ1

)
L2 (w (Υ0) ∩ Ξ0)

≥
(

1 − cC
1
4q
1

)
π

64
.

For any b ∈ Λ0 by Step 9 (159) Ib satisfies (38). In addition by (86), (99), (100) there exists

Db ⊂
(

1
8 ,

5
16

)
with L1

((
1
8 ,

5
16

) \Db

) ≤ cC
1

32q
1 such that inequalities (36) and (37) of the state-

ment of the lemma are satisfied. This completes the proof of Lemma 3.

Having established in Lemma 3 there is a large set of points Λ0 with the property that for

any b ∈ Λ0, for many radii h ∈ ( 1
8 ,

5
16

)
we have a connected set Ib with L2 (Ib�Bh (b)) ≤ ε

1
2q

and with the property that v maps ∂Ib onto ∂Bh (v (b)). We will use the “shrink directions”
argument described in (2.1.3) to prove that in a central sub-ball the gradient stays close to
SO (2).

Lemma 4. Given a function v ∈ C4
(
B 1

2
(0)
)

satisfying properties (24), (26), (27), (28) and
(29) of Lemma 2, define

B :=
{
x ∈ B 1

2
(0) : d (Dv (x) , SO (2)J) < d (Dv (x) , SO (2))

}
(178)

we will show there exists constant C3 = C3 (σ) > 0 such that

L2 (BC3 (0) ∩ B) ≤ c
√
ε. (179)

Proof of Lemma 4. From Lemma 3 we know there exists a set Λ0 ⊂ B 1
8

(0) with L2
(
B 1

8
(0) \Λ0

)
≤

cC
1
4q
1 such that for b ∈ Λ0 we have set Db ⊂

(
1
8 ,

5
16

)
with L1

((
1
8 ,

5
16

) \Db

) ≤ cC
1

32q
1 and for any

h ∈ Db there is a connected open set Ib satisfying (36), (37), (38). Note∫
Λ0

∫
B 1

2
(0)

d
(
Dv (z) , K̃

)
|z − x|−1

dL2zdL2x =
∫
B 1

2
(0)

d
(
Dv (z) , K̃

)∫
Λ0

|z − x|−1
dL2xdL2z

≤ c

∫
B 1

2
(0)

d
(
Dv (z) , K̃

)
dL2z

(24)

≤ cε.
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So we can find a set Λ1 ⊂ Λ0 with L2 (Λ1) ≥ L2(Λ0)
2 such that every x ∈ Λ1 has the property∫

B 1
2
(0)

d
(
Dv (z) , K̃

)
|z − x|−1

dL2z ≤ cε. (180)

Let b ∈ Λ1 and h ∈ Db ∩
(

5
16 ,

6
16

)
.

As in Step 10 of Lemma 3 for θ ∈ [0, 2π) define E (θ) > 0 to be the largest number so that

(((h− E (θ)) θ, (h+ E (θ)) θ) + b) ∩ ∂Ib = ∅. Note that from (37) we know E (θ) < cC 1
16
1 . In

exactly the same way as we established (162), (163) of Lemma 3 we can show∫
S1
E (θ) dH1θ ≤ c

√
ε. (181)

Since J is a diagonal matrix with eigenvalues σ, σ−1 we must be able to find θ1, θ2 ∈ S1

with the following properties

• |Jθi| = 1 for i = 1, 2.
• Letting H0 denote the “short” connected component of S1 between θ1, θ2 we have
|Jη| < 1 for any η ∈ H0.

If we divide H0 into three equal sized sub-arcs, let H1 denote the central sub-arc, then there
exists constant c6 = c6 (σ) > 0 such that |Hη| < 1 − c6 for any η ∈ H1. Let Vα (0) :=(
Bα (0) \(Bα

2
(0)
) ∩ {IRη : η ∈ H1} and let Vα (x) := Vα (0) + x.

Step 1. We will show that

L2 (Vh (b) ∩ B) ≤ c
√
ε. (182)

Proof of Step 1. For each θ ∈ H1 we can find aθ ∈ (((h− 2E (θ)) θ, (h+ 2E (θ)) θ) + b)∩∂Ib
and by (36) we know v (aθ) ∈ ∂Bh (v (b)) so letting eθ :=

∫
[b,aθ ]

d
(
Dv (z) , K̃

)
dH1z we have

h = |v (aθ) − v (b)|
≤

∫
[b,aθ ]

|Dv (x) θ| dH1x

=
∫

[b,aθ ]∩B

|Dv (x) θ| dH1x+
∫

[b,aθ ]\B

|Dv (x) θ| dH1x

≤ (1 − c6 + eθ)L1 ([b, aθ] ∩ B) + (1 + eθ)L1 ([b, aθ] \B)
≤ |b− aθ| − c6L

1 ([b, aθ] ∩ B) + ceθ.

Thus

L1

([
b,

4
16
θ

]
∩ B

)
≤ L1 ([b, aθ] ∩ B)

≤ c |h− |b− aθ|| + ceθ

≤ 2E (θ) + ceθ.

And note that by the co-area formula∫ 2π

0

eθdH
1θ =

∫
B 1

2
(0)

d
(
Dv (z) , K̃

)
|z − b|−1 dL2z

≤ cε. (183)

So again by the Co-area formula (see figure 4)
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h

b v(b)

v

aq v(a  )q

h

Figure 4

L2
(
V 1

4
(b) ∩ B

)
≤ c

∫
H1

L1

([
b,

4
16
θ

]
∩ B\B 1

8
(b)
)
dH1θ

(183)

≤ c

∫
H1

E (θ) + ceθdH
1θ

(181),(183)

≤ c
√
ε. (184)

Proof of Lemma completed. Assuming C1 is small enough we must be able to find b ∈ Λ1 ∩
V 1

4
(0) \B 3

16
(0). So pick h ∈ Db ∩

(
4
16 ,

5
16

)
then we have for some constant C3 = C3 (σ) > 0 that

BC3 (0) ⊂ Vh (b), then inequality (179) follows from (184).

3. Proof of Theorem 2 completed

Recall we have convolved u to form a smooth function ψ := uρ0 that satisfies (18), (19), (20)
and (21). By applying Lemma 2 function v defined by (23) satisfies (24), (25), (26), (27), (28)
and (29) and has all the necessary hypotheses to apply Lemma 4. So∫

BC3

d (Dv (x) , SO (2)) dL2x =
∫
BC3\B

d (Dv (x) , SO (2)) dL2x

+
∫

B

d (Dv (x) , SO (2)) dL2x

(24)

≤ ε+ c

∫
B

d
(
Dv (x) , K̃

)
dL2x+ cL2 (B)

(24),(179)

≤ c
√
ε. (185)

Since dq (Dv (x) , SO (2)) ≤ cd (Dv (x) , SO (2)) + cdq (Dv (x) ,K) this gives∫
BC3 (0)

dq (Dv (x) , SO (2)) dL2x
(185),(25)

≤ c
√
ε.
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From the definition of v this implies there exists J ∈ {Id,H} such that∫
BC3 (0)

dq (Dv (z) , SO (2)J) dL2z ≤ cε
1
2q .

Assuming C1 is chosen small enough we can apply the same argument to show that for each
x0 ∈ B 1

2
(0) there exists Jx0 ∈ {Id,H} such that∫

B C3
2

(x0)

dq (Du (z) , SO (2)Jx0) dL
2z ≤ cε

1
2q . (187)

By Besicovitch covering Theorem we can find a finite collection of points {x1, x2, . . . xm0} with
the properties that B 1

2
(0) ⊂ ⋃m0

i=1B C3
8

(xi) and ‖∑m0
i=1 χB C3

8
(xi)‖∞ ≤ 5. Now if for some

i1, i2 ∈ {1, 2, . . .m0} we have xi1 ∈ B C3
4

(xi2 ) then⎛⎝∫
B C3

8

“ xi1+xi2
2

” dq (Dv (z) , SO (2)Jxa) dL
2z

⎞⎠
1
q

≤ cε
1

2q2 for a = 1, 2.

And this implies Jxi1 = Jxi2 and hence we can find J ∈ {Id,H} such that

Jxi = J for i = 1, 2, . . .m0. (188)

Thus
∫
B C3

2
(xi)

dq (Du (z) , SO (2)J) dL2z ≤ cε
1
2q for i = 1, 2, . . .m0. Hence

∫
B 1

2
(0)

dq (Du (z) , SO (2)J) dL2z ≤ c

m0∑
k=1

∫
B C3

4
(xi)

dq (Du (z) , SO (2)J) dL2z

≤ cε
1
2q

thus establishes the first part of the conclusion of Theorem 2.
Now consider the case q > 1. If J = Id we can then apply Theorem 1 to conclude there

exists R ∈ SO (2) such that (6) holds true. If J = H we define w = u · lH−1 where lH−1 is an
affine functions with derivative H−1, then∫

l−1
H−1

„
B 1

2
(0)

« dq (Dw (z) , SO (2)) dL2z ≤ cε
1
2q .

Applying Theorem 1 again allows us to conclude there exists R such that∫
l−1
H−1

„
B 1

2
(0)

« |Dw (z) −R|q dL2z ≤ cε
1
2q ,

changing varibles then allows to conclude (6). �
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