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STRUCTURES OF G(2) TYPE AND NONINTEGRABLE DISTRIBUTIONS IN
CHARACTERISTIC p

PAVEL GROZMAN1, DIMITRY LEITES2

Abstract. Lately we observe: (1) an upsurge of interest (in particular, triggered by a paper by
Atiyah and Witten) to manifolds with G(2)-type structure; (2) classifications are obtained of simple
(finite dimensional and Z-graded vectorial) Lie superalgebras over fields of complex and real numbers
and of simple finite dimensional Lie algebras over algebraically closed fields of characteristic p > 3;
(3) importance of nonintegrable distributions in (1) – (2).

We add to interrelation of (1)–(3) an explicit description of several exceptional simple Lie alge-
bras for p = 5 (Melikyan algebras), for p = 3 (Brown, Ermolaev, Frank, and Skryabin algebras) as
subalgebras of Lie algebras of vector fields preserving certain nonintegrable distributions analogous
to (or identical with) those preserved by G(2), O(7), Sp(4) and Sp(10). The description is per-
formed in terms of Cartan-Tanaka-Shchepochkina prolongs — a main tool in constructing simple
Lie superalgebras of vector fields with polynomial coefficients — and is similar to descriptions of
these superalgebras. We give presentations of some algebras. Our results illustrate usefulness of
Shchepochkina’s algorithm and SuperLie package: one family of simple Lie algebras found in the
process might be new.

In memory of Felix Aleksandrovich Berezin

§1. Introduction

The exceptional (non-serial) simple finite dimensional Lie algebras, although of considerable
interest lately on account of various applications ([AW, B, CJ, FG]) are far less understood than,
say, sl(n), cf. [A, B]. Who, experts including, can nowadays lucidly explain what is g(2)1 or
f(4) or e(6) − e(8)?! Definitions in terms of octonions, although beautiful ([BE]), do not really
help to understand these algebras. Descriptions in terms of defining relations (as in [GL1]) are
satisfactory for computers, not humans. Together with [Sh2], this paper gives some applications of
Shchepochkina’s general algorithm [Shch] describing Lie algebras and Lie superalgebras in terms of
nonintegrable distributions they preserve. Berezin who taught all three of us, liked to read classics
and advised his students to. We return to Cartan’s first, now practically forgotten, description
of Lie algebras, not necessarily simple or exceptional ones, in terms of nonintegrable distributions
they preserve; we intend to apply it to ever wider range and begin with o(7), sp(4) and sp(10).

Turning to simple Lie algebras over algebraically closed fields K of characteristic p > 0 we
encounter more and more seemingly “strange”examples. In [S], Strade listed all simple finite di-
mensional Lie algebras over K for p > 3 and selected examples for p = 3. We mainly use notations
from [S] except for Skryabin algebras Y with appropriate adjectives: we think that Skryabin’s
own notation Y with its inherent implicit question mark is more appropriate. For various cases of
classification of simple finite dimensional Lie algebras for p = 3 due to Kuznetzov, see [Ku]; for
further references, see [Sk], [Sh14], [Y], [LSh]. Deformations and the case of p = 2 are mentioned
in passing, they will be studied elsewhere.

1991 Mathematics Subject Classification. 17B50, 70F25.
Key words and phrases. Cartan prolongation, nonholonomic manifold, G(2)-structure; Melikyan algebras, Brown

algebras, Ermolaev algebras, Frank algebras, Skryabin algebras.
We are thankful to I. Shchepochkina for help; DL is thankful to MPIMiS, Leipzig, for financial support and most

creative environment.
1We denote the exceptional Lie algebras in the same way as the serial ones, like sl(n); we thus avoid confusing

g(2) with the second component g2 of a Z-graded Lie algebra g.
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Melikyan algebras, still described as something somewhat mysterious and usually only for p = 5,
are, as we will see, no more mysterious than g(2) for which [Shch] recalls Cartan’s lucid description.
We observe that, for p = 2, 3, Melikyan algebras are the conventional special vectorial (divergence
free) Lie algebras.

For p = 3, the two Brown algebras, and their deformations, were until now given by means of
Cartan matrices A with only implicit defining relations (3), see below. As we pass to the Skryabin
algebras, the mist thickens so much that one example (BY(N )(1)) was only partly described, cf.
[Sk, S]; the Lie superalgebras SBY(N)(1) we single out might be even new (previously unobserved)
simple Lie algebras.

A. Kostrikin and Shafarevich used flags in description of simple Lie algebras in characteristic
p > 0. In these descriptions, (nonintegrable) distributions appear twice: as associated with flags
and with Lie algebras of depth > 1. Kostrikin felt the importance of the Cartan prolong and
its generalization to algebras of depth > 1 but his voice, even amplified by the authority of an
ICM talk, was not heard, except by Elsting, Ermolaev and Kuznetsov who buried their results
in a little-known journal Izvestiya Vusov. Examples Kostrikin and his students unearthed (for
example, Melikyan and Ermolaev algebras, followed by Skryabin algebras), as well as Kuznetsov’s
interpretations — practically identical to ours — of several of the known algebras, are all obtained
as such (generalized) Cartan prolongs. Still, no general definition of generalized prolongs — a
most vital tool — was ever formulated for p > 0 (except a tentative one in [FSh]; [Shch] positively
answers questions of [FSh]); a similarity between these examples and Shchepochkina’s constructions
of simple Lie superalgebras, as well as “nonstandard” regradings, was mentioned only in [KL] and
never before or after. This fact and the lack of lucid algorithm for constructing generalized prolongs
was a reason why the examples we consider (and a lot remains) still had to be elucidated and
interpreted.

Remarkably, an interpretation we have in mind — the description of (the exceptional sim-
ple) Lie algebras as preserving a nonintegrable distribution and, perhaps, something
else — WAS repeatedly published; first, by Cartan, cf. [C]. At least, for p = 0. But this aspect of
[Y], as well as of [C], passed unnoticed. In [Y], Yamaguchi lucidly described Tanaka’s construction
of generalized prolongs and considered, among other interesting things, two of the three possi-
ble Z-gradings of g(2) related with “selected”(see eq. (14)) simple roots and interpreted g(2) as
preserving the nonintegrable distributions associated with these Z-gradings. The initial Cartan’s
interpretation of g(2) used one of these distributions without indication why this particular dis-
tribution was selected. Later Cartan considered another distribution which characterizes Hilbert’s
equation f ′ = (g′′)2, see [Y]. Larsson [La2] considered the remaining, third grading of g(2) and
several (selected randomly, it seems) gradings of depth ≤ 2 of f(4) and e(6)–e(8). These and similar
results for other algebras looked as ad hoc examples. Shchepochkina’s algorithm ([Shch]) describes
Lie algebras and superalgebras g of vector fields as generalized Cartan prolongs and partial
prolongs ([LSh]) in terms of nonintegrable distributions g preserves and is applicable to fields of
prime characteristic. Such an interpretation (except partial prolongs) was known to the classics
(Lie, É. Cartan) but an explicit description of the Lie (super) algebras in terms of nonintegrable
distributions they preserve was only obtained (as far as we know) for some of the “selected”gradings
of some algebras. We believe it is time for a thorough study of all possible distributions related
with simple Lie (super)algebras, and start with [GL3].

With Shchepochkina’s algorithm we immediately see that various examples previously somewhat
mysterious, e.g., Frank algebras, are just partial prolongs — analogs of the projective embedding
sl(n + 1) ⊂ vect(n). Likewise, g(2) is a partial prolong if p = 5 or 2, whereas the Melikyan algebras
are complete prolongs; g(2) is the complete prolong only if p �= 5, 2.

Our results are obtained with aid of SuperLie package, see [Gr, GL2], and are applicable to
many other Lie (super)algebras. An arXiv version [GL4] of this paper contains lists of defining
relations for the positive nilpotent parts of the Frank algebras and some of the Skryabin algebras.
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§2. Background

2.1. Notations. We usually follow Bourbaki’s convention: if G is a Lie group, then its Lie algebra
is designated g, except in characteristic p > 0 where the modern tradition does not favor Gothic
font. The ground field K is assumed to be algebraically closed; its characteristic is denoted by p.
The elements of Z/n are denoted by ā, where a ∈ Z.

For the list of simple Lie superalgebras and background on Linear Algebra in Superspaces, see
[LSh]. All this super knowledge is not a must to understand this paper, but comparison of super and
p > 0 cases is instructive. Recall that there are two major types of Lie superalgebras (symmetric
and “skew”):

(SY) For symmetric algebras, related with a Cartan subalgebra is a root decomposition such
that (sdim is superdimension)

(1) sdimgα = sdimg−α for any root α;

(SK) For skew algebras, related with a Cartan subalgebra is a root decomposition such that
(1) fails. (Usually, skew algebras can be realized as vectorial Lie superalgebras — subalgebras
of the Lie superalgebra of vector fields vect(n|m) = derK[x, θ], where x = (x1, . . . , xn) are even
indeterminates and θ = (θ1, . . . , θm) are odd indeterminates. Of course, symmetric algebras can
also be realized as subalgebras of vect(n|m), but this is beside the point.)

On vectorial superalgebras, there are two types of trace. The divergences (depending on a
fixed volume element) belong to one of them, various linear functionals that vanish on the brackets
(traces) belong to the other type. Accordingly, the special (divergence free) subalgebra of a vectorial
algebra g is denoted by sg, e.g., vect(n|m) and svect(n|m) abbreviated for p > 0 to W (n|m) and
S(n|m); the superscript (1) (never ′) singles out the derived algebra — the traceless ideal.

2.2. Integer bases in Lie superalgebras. Let A = (aij) be an n×n matrix. A Lie superalgebra
g = g(A) with Cartan matrix A = (aij), is given by its Chevalley generators, i.e., elements X±

i of
degree ±1 and Hi = [X+

i ,X−
i ] (of degree 0) that satisfy the relations (hereafter in similar occasions

either all superscripts ± are + or all are −)

(2) [X+
i ,X−

j ] = δijHi, [Hi,Hj] = 0, [Hi,X
±
j ] = ±aijX

±
j ,

and additional relations Ri = 0 whose left sides are implicitly described, for a general Cartan
matrix, as

(3) “the Ri that generate the maximal ideal I such that I ∩ Span(Hi | 1 ≤ i ≤ n) = 0. ”

For simple (finite dimensional) Lie algebras over C, instead of implicit description (3) we have
the following explicit description (Serre relations): Normalize A so that aii = 2 for all i; then the
off-diagonal elements of A are non-positive integers and

(4) (adX±
i )1−aij (X±

j ) = 0.

A way to normalize A may affect reduction modulo p: Letting some diagonal elements of the
integer matrix A be equal to 1 we make the Cartan matrices of o(2n + 1) and Lie superalgebra
osp(1|2n) (for definition of Cartan matrices of Lie superalgebras, see [GL1]) indistinguishable (this
accounts for their “remarkable likeness” [RS], [Ser]):

(5)

⎛
⎜⎜⎜⎝

. . . . . . . . .
...

. . . 2 −1 0

. . . −1 2 −2

. . . 0 −2 2

⎞
⎟⎟⎟⎠ or

⎛
⎜⎜⎜⎝

. . . . . . . . .
...

. . . 2 −1 0

. . . −1 2 −2

. . . 0 −1 1

⎞
⎟⎟⎟⎠

For Lie superalgebras of the form g = g(A), there exist bases with respect to which all
structure constants are integer. Up to the above indicated two ways (5) to normalize A, there is
only one such (Chevalley) basis, cf. [Er].

When p = 3 and 2, it may happen that aii = 0 (if p = 0 and p > 3, then aii = 0 implies
dim g(A) = ∞). It is natural to study this case in terms of vectorial Lie algebras.
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For vectorial Lie superalgebras, integer bases are associated with Z-forms of C[x] — a
supercommutative superalgebra in a (ordered for convenience) indeterminates x = (x1, ..., xa) of
which the first m indeterminates are even and the rest n ones are odd (m+n = a). For a multi-index
r = (r1, . . . , ra), we set

uri
i :=

xri
i

ri!
and ur :=

∏
1≤i≤a

uri
i .

The idea is to formally replace fractions with ri! in denominators by inseparable symbols uri
i which

are well-defined over fields of prime characteristic. Clearly,

(6) ur · us =
(

r + s

r

)
ur+s, where

(
r + s

r

)
:=

∏
1≤i≤a

(
ri + si

ri

)
.

For a set of positive integers N = (N1, ..., Nm), denote

(7) O(m;N) := K[u;N ] := SpanK(ur | ri < pNi for i ≤ m and ri = 0 or 1 for i > m).

As is clear from (6), K[u;N ] is a subalgebra of K[u]. The algebra K[u] and its subalgebras K[u;N ]
are called the algebras of divided powers; they are analogs of the algebra of functions.

The simple vectorial Lie algebras over C have only one parameter: the number of indeterminates.
If CharK = p > 0, the vectorial Lie algebras acquire one more parameter: N . For Lie superalgebras,
N only concerns the even indeterminates. Let

vect(m;N |n) a.k.a W (m;N |n) := derK[u;N ]

be the general vectorial Lie algebra.
For Lie superalgebras g = g(A), if aii = 0, then x+

i and x−
i generate an analog of the Heisenberg

Lie algebra: if x±
i are even, we denote this Lie algebra hei(2; p;N ), where N ∈ N. Its natural

representation is realized in the Fock space of functions O(1;N ); it is indecomposable for N > 1
and irreducible for N = 1.

If x±
i are odd, they generate sl(1|1; K); all its nontrivial irreducible representations are of dimen-

sion 1|1.

2.3. On modules over vectorial Lie algebras. For simple complex vectorial Lie algebras
with polynomial or formal coefficients considered with a natural x-adic topology (as algebras of
continuous derivatives of C[[x]]), Rudakov described the irreducible continuous representations. Up
to dualization (passage to induced modules), all such representations either depend on k-jets of the
vector fields for k > 1 and are coinduced, or k = 1 and then the irreducible representations are
realized in the spaces of tensor fields and also are coinduced, except for the spaces Ωi of differential
i-forms which have submodules Zi := {ω ∈ Ωi | dω = 0}. The spaces Zi are irreducible since
(Poincaré’s lemma) the spaces Ωi constitute an exact sequence

(8) 0 −→ C −→ Ω0 d−→ Ω1 d−→ Ω2 d−→ · · · d−→ Ωm −→ 0.

For details, as well as a review in super setting, see [GLS]. At the moment, there is no complete
description of irreducible representations of simple finite dimensional vectorial Lie algebras for
p > 0, but in what follows we will only need the following version of Rudakov’s result easy to
obtain by Rudakov’s method:

Theorem. Since Rudakov’s description of d in (8) is given in terms of integers, reducing modulo
p is possible but this is not all: additional new invariant operators appear over K; it is natural to
interpret them as integrals depending on N :

(9)
0 −→ K −→ Ω0(N) d−→ Ω1(N) d−→ Ω2(N ) d−→ . . .

d−→ Ωm(N)
R

N−→ K −→ 0
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by setting

(10)
∫

N
fduN = the coefficient of uτ(N) in the expansion of f(u),

where

(11) τ(N) = (pN1 − 1, . . . , pNm − 1).

Remark. This description is not, perhaps, new, but we never saw it formulated, cf. [Ho].

Set Zi(N) := {ω ∈ Ωi(N) | dω = 0} and Bi(N) := {dω |∈ Ωi−1(N)}. As is easy to see by
induction on m, the sequence (9) is not exact: the space H i(N ) := Zi(N )/Bi(N) is spanned by
the elements

(12) u
τ(N)i1
i1

. . . u
τ(N)ik
ik

dui1 . . . duik .

For any W (m;N |n)-O(m;N |n)-bimodule M with the W (m;N)-action ρ, we denote by MA div a
copy of M with the affine W (m;N |n)-action given by

(13) ρA div(D)(µ) = ρ(D)(µ) + Adiv(D)(µ)
for any D ∈ W (m;N |n), µ ∈ M and A ∈ K.

After Strade, we denote the space Vol(m;N) of volume forms by O(m;N)div; denote the subspace
of forms with integral 0 by

O′(m;N )div = Span(xavol(u) | ai < τ(N )i),

where vol(u) is the volume element in coordinates u. The spaces Bi are irreducible.

2.4. Z-gradings. Recall that every Z-grading of a given vectorial algebra is determined by setting
deg ui = ri ∈ Z; every Z-grading of a given Lie superalgebra g(A) is determined by setting deg X±

i =
±ri ∈ Z. For the Lie algebras of the form g(A), we set

(14) deg X±
i = ±δi,ij for any ij from a selected set {i1, . . . , ik}

and say that we have “selected”certain k Chevalley generators (or respective nodes of the Dynkin
graph). Yamaguchi’s theorem cited below shows that, in the study of Cartan prolongs defined in
sec. 2.5, the first gradings to consider are the ones with 1 ≤ k ≤ 2 “selected”Chevalley generators.
In this paper we consider k = 1.

For vectorial algebras, filtrations are more natural than gradings; the very term “vectorial”
means, actually, that the algebra is endowed with a particular (Weisfeiler) filtration, see [LSh].
Unlike Lie algebras, the vectorial Lie superalgebras can sometimes be regraded into each other;
various realizations as vectorial algebras are described by means of one more parameter — regrading
r — with a “standard grading” as a point of reference:

(15)
vect(m;N |n; r) a.k.a W (m;N |n; r) := derK[u;N ], where

deg ui = ri is a grading of O(m;N |n).

For W (m;N |n), the standard grading is r = (1, . . . , 1). For the contact algebras k(2n + 1, N ) that
preserve the Pfaff equation α(X) = 0 for X ∈ vect(2n + 1), where

(16) α = dt −
∑
i≤n

(pidqi − qidpi),

the standard grading is deg t = 2 and deg pi = deg qi = 1 for any i.
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2.5. Cartan prolongs. Let g0 be a Lie algebra, g−1 a g0-module. Let us define the Z-graded
Lie algebra (g−1, g0)∗ = ⊕i≥−1gi called the complete Cartan prolong (the result of the Cartan
prolongation) of the pair (g−1, g0). Geometrically the Cartan prolong is the maximal Lie algebra
of symmetries of the G-structure (here: g0 = Lie(G)) on g−1. The components gi for i > 0 are
defined recursively.

First, recall that, for any (finite dimensional) vector space V , we have

Hom(V,Hom(V, . . . ,Hom(V, V ) . . .)) 	 Li(V, V, . . . , V ;V ),

where Li is the space of i-linear maps and we have (i + 1)-many V ’s on both sides. Now, we
recursively define, for any i > 0 and v1, . . . , vi+1 ∈ g−1:

gi = {X ∈ Hom(g−1, gi−1) | X(v1)(v2, v3, ..., vi+1) = X(v2)(v1, v3, ..., vi+1)}.
Let the g0-module g−1 be faithful. Then, clearly,

(g−1, g0)∗ := ⊕gi ⊂ vect(m) = der C[[x1, . . . , xm]], where m = dim g−1.

Moreover, setting deg xi = 1 for all i, we see that

gi = {X ∈ vect(m) = der C[[x1, . . . , xm]] | deg X = i, [X,∂] ∈ gi−1 for any ∂ ∈ g−1}.
Now it is subject to an easy verification that the Cartan prolong (g−1, g0)∗ forms a subalgebra of

vect(n). (It is also easy to see that (g−1, g0)∗ is a Lie algebra even if g−1 is not a faithful g0-module.)

2.6. Nonholonomic manifolds. Tanaka-Shchepochkina prolongs. Let Mn be an n-dimen-
sional manifold with a nonintegrable distribution D. Let

D = D−1 ⊂ D−2 ⊂ D−3 · · · ⊂ D−d

be the sequence of strict inclusions, where the fiber of D−i at a point x ∈ M is

D−i+1(x) + [D−1,D−i+1](x)

(here [D−1,D−i−1] = Span ([X,Y ] | X ∈ Γ(D−1), Y ∈ Γ(D−i−1))) and d is the least number such
that

D−d(x) + [D−1,D−d](x) = D−d(x).
In case D−d = TM the distribution is called completely nonholonomic. The number d = d(M) is
called the nonholonomicity degree. A manifold M with a distribution D on it will be referred to as
nonholonomic one if d(M) �= 1. Let

(17) ni(x) = dimD−i(x); n0(x) = 0; nd(x) = n − nd−1.

The distribution D is said to be regular if all the dimensions ni are constants on M . We will
only consider regular, completely nonholonomic distributions, and, moreover, satisfying certain
transitivity condition (19) introduced below.

To the tangent bundle over a nonholonomic manifold (M,D) we assign a bundle of Z-graded
nilpotent Lie algebras as follows. Fix a point pt ∈ M . The usual adic filtration by powers of the
maximal ideal m := mpt consisting of functions that vanish at pt should be modified because distinct
coordinates may have distinct “degrees”. The distribution D induces the following filtration in m:

(18)

mk = {f ∈ m | Xa1
1 . . . Xan

n (f) = 0 for any X1, . . . ,Xn1 ∈ Γ(D−1),

Xn1+1, . . . ,Xn2 ∈ Γ(D−2),. . . , Xnd−1+1, . . . ,Xn ∈ Γ(D−d) such that∑
1≤i≤d

i
∑

ni−1<j≤ni

aj ≤ k},

where Γ(D−j) is the space of germs at pt of sections of the bundle D−j. Now, to a filtration

D = D−1 ⊂ D−2 ⊂ D−3 · · · ⊂ D−d = TM,

we assign the associated graded bundle

gr(TM) = ⊕grD−i, where grD−i = D−i/D−i+1
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and the bracket of sections of gr(TM) is, by definition, the one induced by bracketing vector fields,
the sections of TM . We assume a “transitivity condition”: The Lie algebras

(19) gr(TM)|pt

induced at each point pt ∈ M are isomorphic.
The grading of the coordinates (18) determines a nonstandard grading of vect(n) (recall (17)):

(20)

deg x1 = . . . = deg xn1 = 1,

deg xn1+1 = . . . = deg xn2 = 2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deg xn−nd−1+1 = . . . = deg xn = d.

Denote by v = ⊕
i≥−d

vi the algebra vect(n) with the grading (20). One can show that the “complete

prolong” of g− to be defined shortly, i.e., (g−)∗ := (g−, g̃0)∗ ⊂ v, where g̃0 := der0g−, preserves D.
For nonholonomic manifolds, an analog of the group G from the term “G-structure”, or rather of

its Lie algebra, g = Lie(G), is the pair (g−, g0), where g0 is a subalgebra of the Z-grading preserving
Lie algebra of derivations of g−, i.e., g0 ⊂ der0 g−. If g0 is not explicitly indicated, we assume that
g0 = der0 g−, i.e., is the largest possible.

Given a pair (g−, g0) as above, define its Tanaka-Shchepochkina prolong to be the maximal sub-
algebra (g−, g0)∗ = ⊕

k≥−d
gk of v with given non-positive part (g−, g0). For an explicit construction

of the components, see [Sh14], [Y], [Shch].

2.7. Partial prolongs and projective structures. Let (g−, g0)∗ be a depth d Lie algebra;
h1 ⊂ g1 be a g0-submodule such that [g−1, h1] = g0. If such h1 exists (usually, [g−1, h1] ⊂ g0),
define the ith partial prolong of ( ⊕

i≤0
gi, h1) for i ≥ 2 to be

(21) hi = {D ∈ gi | [D, g−1] ∈ hi−1}.
Set hi = gi for i ≤ 0 and call h∗ = ⊕

i≥−d
hi the Shchepochkina partial prolong of ( ⊕

i≤0
gi, h1), see

[Sh14]. (Of course, the partial prolong can also be defined if h0 is contained in g0.)

Example. The SL(n+1)-action on the projective space Pn gives the embedding sl(n+1) ⊂ vect(n);
here sl(n + 1) is a partial prolong of vect(n)i≤0 ⊕ h1 for some h1.

Yamaguchi’s theorem. Let s = ⊕
i≥−d

si be a simple finite dimensional Lie algebra. Let (s−)∗ =

(s−, g0)∗ be the Cartan prolong with the maximal possible g0 = der0(s−).

Theorem ([Y]). Over C, equality (s−)∗ = s holds almost always. The exceptions (cases where
s = ⊕

i≥−d
si is a partial prolong in (s−)∗ = (s−, g0)∗) are

1) s with the grading of depth d = 1 (in which case (s−)∗ = vect(s∗−));
2) s with the grading of depth d = 2 and dim s−2 = 1, i.e., with the “contact” grading, in

which case (s−)∗ = k(s∗−) (these cases correspond to “selection” of the nodes on the Dynkin graph
connected with the node for the maximal root on the extended graph);

3) s is either sl(n + 1) or sp(2n) with the grading determined by “selecting” the first and the ith
of simple coroots, where 1 < i < n for sl(n + 1) and i = n for sp(2n). (Observe that d = 2 with
dim s−2 > 1 for sl(n + 1) and d = 3 for sp(2n).)

Moreover,

(22) (s−, s0)∗ = s

holds almost always, even in these exceptional cases 1) − 3). The cases where (22) fails (the
ones where a projective action is possible) are sl(n + 1) or sp(2n) with the grading determined by
“selecting” only one (the first) simple coroot.
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§3. Examples from the literature

In this section, we list several Lie algebras more or less as described in [S]; in the next section we
give their interpretations in terms of (partial) prolongs: no version of Yamaguchi’s theorem is yet
available for p > 0. For a general algorithm that describes the nonholonomic distributions these
Lie algebras preserve, see [Shch]. We mainly consider the simplest N = (1 . . . 1) and eventually
skip it whenever possible.

Melikyan algebras for p = 5. For any prime p, on the space g−1 := O(1;N )/const of “functions
(in one indeterminate u) modulo constants”, the skew-symmetric bilinear form (see (10))

(f, g) =
∫

N
fg′duN ,

is nondegenerate. Hence W (1, N) is embedded into sp(pN − 1). So we can consider the prolong

g∗ = ⊕
i≥−2

gi := (K(pN )−, cW (1, N ))∗ ⊂ K(pN ),

where cg = g⊕K z is the trivial central extension of g. This construction resembles Shchepochkina’s
construction of some of exceptional simple vectorial Lie superalgebras [Sh14]. Whatever this prolong
g∗ is for N > 1 or p > 5, either g1 is zero or the complete prolong is a known simple Lie algebra.

Melikyan observed that, for p = 5 and N = 1, the prolong
(K(5)−, cW (1, 1))∗ ⊂ K(5) is a new simple Lie algebra, Me. Melikyan’s only available publication
lacked details: he did not write for which 5-tuples N it is possible to generalize the construction to
K(5, N ) and the ground for Melikyan’s claim that N can only have 2 parameters was unclear. The
following are the vital for constructing the complete prolong terms of Me, as elements of K(5), given
both in terms of the indeterminates t; p1, p2, q1, q2 (see 16) and in terms of the ur corresponding to
W (1, 1); let z be the grading operator in K(5) corresponding to the generating function t:

(23)

g0 	 W (1) ⊕ K z g−1 g−2

span- −q2
2 + p1p2 ↔ u4 d

du , −q1p1 + 2q2p2 ↔ u3 d
du , p1 ↔ u4, p2 ↔ u3, 1

ned by −q1q2 − 2p2
2 ↔ u2 d

du , −q1p2 ↔ u d
du , −q2

1 ↔ d
du ; t q1 ↔ u2, q2 ↔ u

Kuznetsov [Ku1] found another description of Me(N). From Yamaguchi’s theorem cited above
we know that, over C, the Tanaka-Shchepochkina prolong of (g(2)−, g(2)0) (in any Z-grading of
g(2)) is isomorphic to g(2). There are two Z-gradings of g(2) with one “selected”generator: one of
depth 2 and one of depth 3. Kuznetsov observed that, for p = 5, the non-positive parts of g(2) in
the grading of depth 3 are isomorphic to the respective non-positive parts of the Melikyan algebras
in one of their Z-gradings. Let U [k] be the gl(V )-module which is U as sl(V )-module, and let a
fixed central element z ∈ gl(V ) act on U [k] as k id. Then

(24)
g0 g−1 g−2 g−3

gl(2) 	 gl(V ) V = V [−1] E2(V ) V [−3]

So it is natural to conjecture that, for p = 5, Melikyan algebras Me(N) are complete2 Tanaka-
Shchepochkina prolongs (g(2)−, g(2)0)∗ of total symmetries preserving a nonholonomic structure
whereas g(2) is a projective type subalgebra in Me(N). In this realization, it remains unclear what
are the admissible values of N .

Kuznetsov [Ku1] gives yet another realization. As spaces, and Z/3-graded Lie algebras, we have:

(25) Me(N) := g0̄ ⊕ g1̄ ⊕ g2̄ 	 W (2;N) ⊕ W̃ (2;N )2div ⊕O(2;N )−2div ,

where W̃ (2;N ) is a copy of W (2;N ) endowed, together with each element, with a tilde to distinguish
from (the elements of) W (2;N ). Let v be a short for vol(u); observe that we have the following

2Me(N) could be smaller than what it actually is, the complete prolong.
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identifications for m = 2, where du1du2 = v:

(26)
for any p, duiv

−1 = sign(ij)∂j for any permutation (ij) of (12)

for p = 5, v−4 = v, du1du2v
2 = v3 = v−2.

The g0̄-action on the gī is natural; the multiplication in Me(N) is given by the following formulas
(in line 2 we use duiv = sign(ij)∂jv

2, see (26)):

(27)

[f1v
−2, f2v

−2] = 2 (f1d(f2) − f2d(f1)) v4 =

2 (f1∂1(f2) − f2∂1(f1)) du1v + cycle = 2 (f2∂2(f1) − f1∂2(f2)) ∂̃1v
2 + cycle(12);

[fv−2, D̃v2] := −[D̃v2, fv−2] = fD;

[
∑

fi∂̃iv
2,

∑
gj ∂̃jv

2] = [
∑

sign(ik)fidukv,
∑

sign(jl)gjdulv] =

(f1g2 − f2g1) du1du2v
2 = (f1g2 − f2g1) v−2.

The standard Z-grading is given by setting ([S]):

(28) deg ur∂i = 3|r| − 3, deg urv−2 = 3|r| − 2, deg ur∂̃iv
2 = 3|r| − 1.

This realization allows one to easily compute the dimensions of Me(N) and its homogeneous com-
ponents, shows that N depends on at least 2 parameters but does not preclude more. The upper
bound on the number of independent parameters of N comes from the classification.

Melikyan algebras for p = 3. Shchepochkina’s realization [Shch] of the non-positive part of
Me(N ), identical to that of g(2) in a Z-grading (58), only involves ±1 as coefficients in g− and
±1,±2 in g0 and so invites to study the prolongs (g−, g0)∗ for p = 3, and (g−)∗ for p = 2; this is
being done.

Another approach is to interpret decomposition (25): In W (3;N, 1), consider a nonstandard
Z-grading:

(29) deg u1 = deg u2 = 0; deg u3 = 1 .

Let u = (u1, u2), v = u3; ∂i = ∂ui ; ∂ = ∂v. Then W (3;N, 1) can be represented as a direct sum of
the following spaces and (non-canonically) W (2;N)-modules (here 〈T 〉 denotes the space spanned
by the elements of a set T ):

(30)
W (2;N) 	 〈fi(u)∂i〉; W (2;N) 	 〈vfi(u)∂i〉; W (2;N ) 	 〈v2fi(u)∂i〉;
O(2;N ) 	 〈f(u)∂〉; O(2;N ) 	 〈f(u)v∂〉; O(2;N ) 	 〈f(u)v2∂〉 .

If we recall that 2 ≡ −1 mod 3, we see that the corresponding decomposition of S(3;N, 1) is of
the form (25):

(31)

W (2;N ) 	 〈∑ fi(u)∂i − (
∑

∂i(fi(u))) v∂〉;
W (2;N )div 	 〈vfi(u)∂i − (

∑
∂i(fi(u))) v2∂〉;

O(2;N )−div 	 〈f(u)∂〉 .

Thus, the Melikyan algebras for p = 3 are S(3;N, 1). Having observed this we recalled that Shen
[Sh] had noticed that, for p = 2, g(2) 	 S(3; 1, 1, 1). It is natural then, for p = 2 and 3, to consider
S(3;N, 1) as complete prolongs of g(2)-type.

Melikyan algebras for p = 2. It is also natural to consider the prolongs of non-positive parts
of g(2) in its various Z-gradings for p = 2 (p = 3 does not fit for obvious reasons) and Brown [Br]
did just it: As spaces, and Z/3-graded Lie algebras, let

(32) L(N) := g0̄ ⊕ g1̄ ⊕ g2̄ 	 W (2;N ) ⊕O(2;N )div ⊕O(2;N ) .
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The g0̄-action on the gī is natural; the multiplication in L(N) is given by the following formulas:

(33)
[fv, g] = fHg;

[f, g] : = Hf (g)v,

where f �→ Hf is the assignment of the Hamiltonian field to the Hamiltonian function f ∈ O(2;N ):

Hf =
∂f

∂u1
∂2 +

∂f

∂u2
∂1.

Define a Z-grading of L(N) by setting

(34) deg ur∂i = 3|r| − 3, deg urv = 3|r| − 2, deg ur = 3|r| − 4.

Now, set Me(N) = L(N)/L(N )−4. This algebra is not simple, because O(2;N )div has a submodule
of codimension 1; but Me(N)(1) is simple.

As is easy to see, the non-positive parts of g(2) and Me(N ) are isomorphic; it remains to find
out if the complete Tanaka-Schepochkina prolong of this part is Me(N).

p = 3: Brown algebras Consider the r × r Cartan matrices for r = 3, 2 (of course, −1 is the
same as 2 modulo 3, but −1 is more conventional):

(35)

⎛
⎝ 2 −1 0
−1 2 −1
0 −1 0

⎞
⎠ and

(
2 −1
−1 0

)
.

Although relations (3) are implicit, it is known ([S]) that the dimensions of algebras Br(r) given
by the matrices (35) are equal to 29 and 10, respectively (assuming the usual rules (2), (3) of
constructing g(A) from A).

Kostrikin [Ko] described a 3-parameter family containing Br(2) and acknowledged that Rudakov
was the first to observe that, if p = 3, then for any irreducible sl(2)-module V , the Cartan prolong
g := ⊕gi, where g−1 = V and g0 = sl(2) or gl(2) whose center acts on g as the grading operator, is
a simple Lie algebra. Nobody, it seems, published so far exact descriptions of this Cartan prolong
(36), (37) nor were particular cases studied (see (62)).

There are not that many irreducible sl(2)-modules; all such modules are listed in [RS]: for
p = 3, there is just one module of dimension 2 (the identity one; it yields h(2;N ) and k(3;N )) and
a 3-parameter family T(a, b, c) of 3-dimensional modules given by the following matrices, where
a �= bc:

X̃− =

⎛
⎜⎜⎝

0 0 c

1 0 0

0 1 0

⎞
⎟⎟⎠ H̃ =

⎛
⎜⎜⎝

a − bc 0 0

0 0 0

0 0 −a + bc

⎞
⎟⎟⎠ X̃+ =

⎛
⎜⎜⎝

0 a 0

0 0 a

b 0 0

⎞
⎟⎟⎠

normalized as X̃+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

0 1 0
0 0 1
b

a
0 0

⎞
⎟⎟⎠ if a �= 0 and then H =

⎛
⎜⎝

1 − bc 0 0
0 0 0
0 0 −1 + bc

⎞
⎟⎠

⎛
⎜⎝

0 0 0
0 0 0
1 0 0

⎞
⎟⎠ if b �= 0 and then H =

⎛
⎜⎝
−c 0 0
0 0 0
0 0 c

⎞
⎟⎠

So, Br(2; a, b, c) depends, actually, on two parameters. In realization by vector fields we have

(36)
X̃− = cu1∂3 + u2∂1 + u3∂2, H̃ = (a − bc) (u1∂1 − u3∂3) ,

X̃+ = au1∂2 + au2∂3 + bu3∂1, Ẽ = u1∂1 + u2∂2 + u3∂3.

Indeed,
[X̃+, X̃−] = H̃, [H̃, X̃±] = ±(a − bc)X̃±.
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If a �= bc, the change

X̃± �→ X± :=
√

a − bcX̃±; H̃ �→ H := (a − bc)H̃

leads to the standard commutation relations, so we drop the tilde. Set also E =
∑

ui∂i.
Set g−1 = T(a, b, c) = Span(∂1, ∂2, ∂3), where weight(u1) = −weight(u3) = w := a − bc,

weight(u2) = 0. Let us compute the Cartan prolong assuming that g0 contains sl(2).
For N = (111), g2 = 0; the space g1 is easy to get by hands; it is spanned by (for a �= 0):

(37)

∂∗
3 := (au2

2 + bcu1u3)∂1 + a(cu2
1 + u2u3)∂2 + (acu1u2 − (a + bc)u2

3)∂3 −w

∂∗
2 := (u1u2 + bu2

3)∂1 + (u2
2 + u1u3)∂2 + (u2u3 + cu2

1)∂3 0

∂∗
1 := −((a + bc)u2

1 − bu2u3)∂1 + (au1u2 + bu2
3)∂2 + (bcu1u3 + au2

2)∂3 w

The commutators are

(38)

∂∗
1 ∂∗

2 ∂∗
3

∂1 H + aE X− cX+

∂2 −X+ E aX−

∂3 bX− X+ aE − H

Since [∂∗
2 , ∂2] = E, it follows that g0 must be equal to gl(2) and can not equal to sl(2). Now, set

Br(2; a, b, c) := g.
Occasional isomorphisms If a �= 0, then

(39) Br(2; 1, b, c) 	 Br(2; 1, c, b), Br(2; 1, 0, 0) 	 Br(2).

Particular cases. Since Br(2; 1, 0, 0) = Br(2) has the same non-positive part as k(3), it follows
that Br(2) is a partial Cartan prolongation. All Kostrikin’s examples L(ε) also have the same
non-positive parts as k(3), so L(ε) is a deformation Br(2, a), where ε = a

2−a , of Br(2) and only one
member of the parametric family is Cartan prolongation. Each L(ε) can be embedded into K(3; 1):
Set ([S]):

(40)

X−
1 = q2, X−

2 = p,

X+
1 = −p2, X+

2 = δ(apq2 − qt), where δ =

⎧⎨
⎩

1 if a = 2,
1

a + 1
if a �= 2.

Then

h1 = pq, h2 =

⎧⎨
⎩

pq − t if a = 2,
a − 1
a + 1

pq − 1
a + 1

t if a �= 2.

The Cartan matrix is

(
2 −1
α 0

)
, where α =

⎧⎨
⎩
−1 if a = 2,
a − 1
a + 1

if a ∈ K \ {1, 2}.

Kostrikin observed [Ko] that Br(2, a) can be deformed into an algebra L(ε, α, β) which may be
identified with Br(2; a, b, c) for some a, b, c.

Remark. There is no “contact” analog of Br(2; a, b, c) because there is no nondegenerate skew-
symmetric bilinear form on g−1 = T(a, b, c).
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p = 3: Skryabin algebras. To describe them, observe that, as far as W (3, N)-action is concerned,
we have the following identifications: v2 = v−1 and (cf. (26))

(41) duidujv
−1 = sign(ijk)∂k for any permutation (ijk) of (123).

Observe that, as W (3, N )-modules, S(3, N ) �	 Z2(3, N ), more precisely, S(3, N ) is not a W (3, N)-
module: As a simple Lie algebra, W (3, N ) has no submodules in the adjoint representation. And,
contrary to what is stated in [Sk, S], neither S(3, N ) nor Z2(3, N ) are O(3;N )-modules.

The deep Skryabin algebra. As spaces, and Z/4-graded Lie algebras, we have, see [Sk]:

(42)

DY(N ) := g0̄ ⊕ g1̄ ⊕ g2̄ ⊕ g3̄ 	
W (3;N ) ⊕O(3;N )−div ⊕ Ω1(3;N )div ⊕ Z2(3;N ) ,

DY(N )(1) 	 W (3;N) ⊕O(3;N )−div ⊕ Ω1(3;N )div ⊕ B2(3;N ) .

In particular (hereafter |N | =
∑

Ni),

(43) dimDY(N ) = 3|N |+2 + 1, dim DY(N)(1) = 3|N |+2 − 2.

The multiplication in DY(N) is given by the W (3, N )-invariant bilinear differential operators acting
in the spaces of tensor fields entering (42). Over C, all such operators are described [Gr0]; to
describe even unary operators is an open problem for p > 0. For p = 3, the following formulas
for multiplication reveal presence of new invariant operators. Here, brackets in lines 3 and 5 are
anti-symmetrized by definition, cf. (27), f, g ∈ O, ωi ∈ Ωi:

(44)

[fv−1, gv−1] = (gdf − fdg)v;

[fv−1, ω1v] = −d(fω1);

[fv−1, ω2] = fω2v−1 ∈ g0̄;

[ω1
1v, ω1

2v] = ω1
1ω

1
2v

−1 ∈ g0̄;

[ω1v, ω2] = ω1ω2v ∈ O2div 	 O−div;

[
∑

fi(u)dujduk,
∑

gi(u)dujduk] = (f3g2 − f2g3)du1v + cycle(123).

Set ([Sk]):

(45)
deg ur∂i = 4|r| − 4, deg urduiv = 4|r| − 2,

deg urv−1 = 4|r| − 3, deg urduiduj = 4|r| − 1.

For gl(3) = gl(V ), where V := V [−1], we have E2(V ) 	 (V [−1])∗ 	 V ∗[−2], and E3(V ) 	 �[−3],
where � is the trivial sl(3)-module. Then DY(N) can be defined as the Tanaka-Shchepochkina
prolong with the following non-positive part (here i, j = 1, 2, 3):

(46)

g0 g−1 g−2 g−3 g−4

SpanK xj∂i duiduj duiv v−1 ∂i

gl(3) 	 gl(V ) V = V [−1] E2(V ) E3(V ) V [−4]

The big Skryabin algebra. BY(N) was only described so far ([Sk, S]) as having the following
non-positive part:

(47)
g0 g−1 g−2 g−3

gl(3) := gl(V ) V E2(V ) E3(V )
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The middle Skryabin algebra. As spaces, and Z/2-graded Lie algebras, we have

(48) MY(N) 	 W (3;N ) ⊕ Ω1(3;N )div.

with multiplication given by (44). Set ([S]):

(49)
deg ur∂i = 2|r| − 2,

deg urduiv = 2|r| − 1.

Then MY(N) can be defined as the generalized prolong with the following non-positive part (here
i, j = 1, 2, 3):

(50)

g0 g−1 g−2

SpanK uj∂i duiv ∂i

gl(3) 	 gl(V ) V E2(V )

and therefore the non-positive part MY(N)≤0 coincides with o(7)≤0 in the grading with the last
“selected”root.

The five small Skryabin algebras. The dimensions of these algebras g are distinct, as well
as the structures they preserve, so they should be considered as separate entities. Here we only
consider one of these algebras — Y(1)(N) — defined as the generalized prolong with the following
non-positive part:

(51)
g0 g−1 g−2

SpanK sl(3) 	 sl(V ) V = Span(dui)i≤3 E2(V ) = Span(∂i)i≤3

Clearly, Y(1)(N) 	 SMY(N) and, as spaces,

(52)
SMY(N) 	 S(3;N ) ⊕ Z1(3;N ), and SMY(1)(N ) 	 S(3;N )(1) ⊕ B1(3;N ),

dimSMY(1)(N) = 3|N |+1 − 3.

The other small Skryabin algebras are filtered deforms to be considered elsewhere.

p = 3: Frank algebras. Fr(n) has the same non-positive part as g := K(3; (1, 1, n)), where N =
(1, 1, n) corresponds to the ordered set (q, p, t); and hence same non-positive part as sp(4)≤0 in the
grading with the first “selected”root. As g0-module, g1 has two lowest weight vectors: qt, and pq2.
Strade gives all homogeneous components of Fr(n), in particular,

Fr(n)1 = Span(p2q − pt, pq2 + qt) ⊂ g1.

p = 3: Ermolaev algebras. As spaces, and Z/2-graded Lie algebras, we have:

(53)
Er(N) := W (2;N ) ⊕O(2;N )div, and Er(N)(1) = W (2;N ) ⊕O′(2;N )div

dim Er(N )(1) = 3|N |+1 − 1.

Recall that v2 = v−1 and observe that (cf. (41))

(54) duiv
−1 = sign(ij)∂j for any permutation (ij) of (12).

For any f v, g v ∈ O(2;N )div, set

(55) [fv, gv] = (fdg − gdf)v−1 = (f∂2(g) − g∂2(f))∂1 + (g∂1(f) − f∂1(g))∂2;

define the other products canonically. Define the Z-grading of Er(N) by setting in the standard
Z-grading of O(2;N ):

(56) Er(N )i := W (2;N)i ⊕ (O(2;N )div)i+1 for any i ≥ −1.
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Er(N) is defined as the Cartan prolong of the following non-positive part:

(57)
Er−1 = SpanK(∂1, ∂2; vol);

Er0 = SpanK(ui∂j ; ukvol | i, j, k = 1, 2).

Questions we address for all the above algebras. 1) What are the structures the algebras
preserve?

2) What are the complete and partial Tanaka-Shchepochkina prolongs of the non-positive and
negative parts of g corresponding to the Z-gradings obtained by setting deg X±

i = ±δi,i0 for one or
several selected indices i0?

3) What are the defining relations explicitly?
4) What are the natural generators of Br(2; a, b, c), and hence natural relations? Conjecturally,

the answer is similar to [GL5].
5) Why can’t we consider obvious analogs of Br(r) for r > 3? Presumably, they are of infinite

dimension; which of these Z-graded algebras are of polynomial growth?
The above problems are resolved in what follows, at least, partly. The following questions are

open:
6) In what follows we impose no restrictions on N ; the construction of prolongation imposes

them automatically. The result for BY(N) surprised us; it is clear now that, for p = 3 and 2
and all vectorial algebras, to find the number of parameters N depends on is an open problem.
Constructing the prolongs of ⊕

−d≤i≤0
gi when d > 1, we observed that N j > 1 only if deg uj > 1.

What is the reason for this?
7) What are the analogs of Weisfeiler gradings for infinite dimensional simple vectorial Lie

algebras in the limit as variable coordinates of N tend to ∞? (The corresponding preserved
structures are most interesting.)

§4. Interpretations

Melikyan algebras. The following realization of g(2)− ⊕ g(2)0 by vector fields is obtained by
Shchepochkina’s algorithm:

(58)

g0 X− = u2∂1 + u1u
2
2∂4 + u3

2∂5 + u5∂4,

X+ = u1∂2 + 2u3
1∂4 + u4∂5,

h1 = u1∂1 + u3∂3 + 2u4∂4 + u5∂5,

h2 = u2∂2 + u3∂3 + u4∂4 + 2u5∂5

g−1 ∂1 − u2∂3 − u1u2∂4 − u2
2∂5; ∂2

g−2 ∂3 + u1∂4 + u2∂5

g−3 ∂4; ∂5

Set deg u1 = (1, 0), deg u2 = (0, 1). This determines the other degrees (deg u3 = (1, 1), deg u4 =
(2, 1), deg u5 = (1, 2)). Unlike p = 0 case, the complete prolong of g(2)− ⊕ g(2)0 strictly contains
g(2) (the underlined components) and has (for the simplest N) the following irreducible components
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as g0-modules given by their highest weights:

deg dim highest weights of components deg dim highest weights of components

−3 2 (−1,−2) 23 2 (12, 11)

−2 1 (−1,−1) 22 1 (11, 11)

−1 2 (0,−1) 21 2 (11, 10)

0 4 (1,−1), (0, 0) 20 4 (11, 9), (10, 10)

1 2 (1, 0) 19 2 (10, 9)

2 4 (2, 0), (1, 1) 18 4 (10, 8), (9, 9)

3 6 (3, 0), (2, 1) 17 6 (10, 7), (9, 8)

4 3 (3, 1) 16 3 (9, 7)

5 6 (4, 1), (3, 2) 15 6 (9, 6), (8, 3)

6 8 (5, 1),(4, 2) 14 8 (9, 5), (8, 7)

7 4 (5, 2) 13 4 (8, 5)

8 8 (6, 2), (5, 3) 12 8 (8, 4), (7, 5)

9 10 (7, 2), (6, 3) 11 10 (8, 3), (7, 4)

10 5 (7, 3)

Computer experiments show that without restrictions on N the complete prolong only depends on
two parameters, as theory [S] predicts, explicitly: N = (1, 1, 1, N4, N5).

Brown algebras. Let x±
i be the preimage of the generators X±

i relative (3). By abuse of notations
we will often write x±

i instead of X±
i ; let xi be either all x+

i or all x−
i .

Br(2): Basis (of Br(2)±):
x1, x2, [x1, x2], [x2, [x2, x1]].

Here, x+
2 and x−

2 generate hei(2; 3; 1) on which h1 acts as an outer derivation. The Fock space
representation O(1; 1) of hei(2; 3; 1)⊂+ Kh1 (hereafter a⊃+ i is a semidirect sum of algebras, where i
is an ideal) is irreducible of dimension 3.

Therefore, the non-positive terms of the simplest Z-gradings (deg x±
i0

= ±1) are:

(59)

i0 g0 g−1 g−2

1 hei(2; 3; 1)⊂+ Kh1 O(1; 1) −
2 gl(2) 	 gl(V ) V E2(V )

The first grading tempts us to investigate if there is a nontrivial Cartan prolong of the pair g0 =
hei(2; 3;N )⊂+ Kh1 and g−1 = O(1;N ). But for the prolong to be simple, irreducibility is needed,
while O(1;N ) is irreducible hei(2; 3;N )-module only for N = 1.

Observe that in the second grading, the non-positive terms are the same as the non-positive
terms of K(3), and hence same as those of the Frank algebras and same as those of sp(4) with one
(first) “selected”simple root. Moreover, even the defining relations between the positive (negative)
generators are the same as the Serre relations of sp(4) although the Cartan matrix of Br(2), to say
nothing of Br(2, a), is different:

Theorem. For any a ∈ K \ {1, 2}, the defining relations between the positive (negative) generators
of Br(2; a) are

(60)
ad2x1(x2) = 0;

ad3x2(x1) = 0.



16 PAVEL GROZMAN1, DIMITRY LEITES2

So the defining relations for the Chevalley generators of Br(2; a) are of the same type as Serre
relations, but recovered from the Cartan matrix according to different (as compared with the p = 0
case), and so far unknown, rules, cf. [GL1]. (Although the general rules are not known, the answer
for Br(2; a) and Br(3) is now obtained: relations (60), (65).)

Br(2; a, b, c): Particular cases.

Theorem. Let a, b, c be such that the sl(2)-module T(a, b, c) is irreducible (i.e., a �= bc). Then
g2 �= 0 only for a = 0.

Proof. Direct computations with aid of SuperLie. �
Clearly, if a = 0, we can divide X+ by b, setting b = 1. As one can verify directly, Br(2; 0, 1, c)≤0

has the following kth Cartan prolong for N = (11n) and 1 ≤ k ≤ 3n−2, where w := weight of u3 =
−weight of u1 (note that g3n−1 = 0):

(61)

elements of gk their weights

uk+1
3 ∂1 (k + 2)w(

u2u
k
3 − cu2

1u
k−1
3

)
∂1 + uk+1

3 ∂2 + cu1u
k
3∂3 (k + 1)w = (k − 2)w

−u1u
k
3∂1 + uk+1

3 ∂3 kw

In particular, g1 is spanned (compare with (37)) by

(62)

∂∗
1 := (u2u3 − cu2

1)∂1 + u2
3∂2 + cu1u3∂3 −w

∂∗
2 := u2

3∂1 0

∂∗
3 := −u1u3∂1 + u2

3∂3 w

The commutators are

(63)

∂∗
1 ∂∗

2 ∂∗
3

∂1 H 0 X+

∂2 X+ 0 0

∂3 X− X+ 1
cH

Since [g1, g−1] = sl(2), and g±1 are irreducible sl(2)-modules, the Cartan prolongation Br(2; 0, 1, c) :=
⊕

i≥−1
gi is a simple Lie algebra whose positive part is generated by g1 and (if n > 1) g2. It seems,

Br(2; 0, 1, c) is a new simple Lie algebra, more precisely, it is a deformation of the nonstandard
Hamiltonian algebra h(2 : (1, n);ω) preserving the form ω = exp(x)dx ∧ du, and considered in
[BKK] in nonstandard grading degx = 0, deg y = 1.

Br(3): Basis (of Br(3)±):

(64)

x1, x2, x3;

[x1, x2], [x2, x3];

[x3, [x3, x2]], [x3, [x2, x1]];

[x3, [x3, [x1, x2]]];

[[x2, x3], [x3, [x1, x2]]];

[[x3, [x1, x2]], [x3, [x2, x3]]];

[[x3, [x2, x3]], [x3, [x3, [x1, x2]]]];

[[x3, [x2, x3]], [[x2, x3], [x3, [x1, x2]]]];

[[x3, [x3, [x1, x2]]], [[x2, x3], [x3, [x1, x2]]]].
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The non-positive terms of the Z-gradings in terms of g0-modules are (underlined are the dimensions
of the irreducible g0-modules)

i0 g0 g−1 g−2 g−3 g−4

1 Br(2)⊂+ Kh1 8 1 − −
2 (sl(2)⊃+ Kh2)⊃+ hei(2; 3; 1) 2 ⊗ 3 1 ⊗ 3 2 ⊗ 1 −
3 gl(3) 3 3 1 3

The last line coincides with DY−, see (46); the first line shows that Br(3) is a partial
prolong of (sp(10)−, Br(2)⊂+ Kh1) in the contact grading of sp(10).

Theorem. The defining relations between the positive (or negative) generators are as follows:

(65)

[x1, x3] = 0;

ad2x2(x1) = 0, ad2x2(x3) = 0;

ad3x3(x2) = 0;

[[x3, [x3, x2]], [[x3, [x2, x1]], [x3, [x3, x2]]]] = 0.

The last non-Serre relation resembles relations for Lie superalgebras with Cartan matrix, cf.
[GL1].

The Brown algebras given by tridiagonal r × r Cartan matrices of type (35) of larger size seem
to be of infinite dimension, though dim⊕|i|≤n grows rather slow as n −→ ∞, at least, for r = 4, 5;
conjecturally, these algebras (for r = 4, 5) are of polynomial growth.

g = DY. Here g0 = gl(3) (the weights are given with respect to the hi). Let g− be realized by
vector fields as follows:

(66)

g0 (−1, 0, 1) u3∂1 + u2
3∂5 − (u2u3 + u4) ∂6 − u2u

2
3∂7 + (u2u3u5 + u4u5 + u10) ∂8−(

u2u3u4 + u2
4

)
∂9 − u2

3u4∂10,

(−1, 1, 0) u2∂1 + u4∂5 − u2
2∂6 + u2

2u3∂7 +
(
u2

2u5 + u9

)
∂8 − u2

2u4∂9+(
u2

2u
2
3 + u2

4

)
∂10,

(0,−1, 1) u3∂2 − u2
3∂4 − u5∂6 + u2

5∂8 − u10∂9,

(0, 1,−1) u2∂3 − u2
2∂4 − u6∂5 + u2

6∂8 + u9∂10,

(1,−1, 0) −u1∂2 + u5∂4 + u2
1∂6 − u2

1u3∂7 − u2
1u5∂8 +

(
u2

1u4 − u8

)
∂9−(

u2
1u

2
3 + u2

5

)
∂10,

(1, 0,−1) u1∂3 + (u1u2 + u6) ∂4 + u2
1∂5 − u2

1u2∂7 −
(
u2

1u
2
2 + u2

6

)
∂9−(

u2
1u2u3 + u2

1u4 − u5u6 − u8

)
∂10,

h1 = u1∂1 + u5∂5 + u6∂6 + u7∂7 − u8∂8 + u9∂9 + u10∂10,

h2 = u2∂2 + u4∂4 + u6∂6 + u7∂7 + u8∂8 − u9∂9 + u10∂10,

h3 = u3∂3 + u4∂4 + u5∂5 + u7∂7 + u8∂8 + u9∂9 − u10∂10

(67)

g−1 ∂1 − u2∂6 + u3∂5 + (u2u3 − u4) ∂7 + (u2u5 + u7) ∂8 +
(
u2u

2
3 − u2u4

)
∂10,

∂2 − u3∂4 − u5∂7 + u7∂9, ∂3 − u6∂7 + u7∂10

g−2 ∂4 + u6∂9 − u5∂10, ∂5 − u6∂8, ∂6

g−3 ∂7

g−4 ∂8, ∂9, ∂10
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Remark. The above realization of DY(N ) shows that N ∈ N
10. Representation (42) shows that

N ∈ N
10 depends on at least 3 parameters. The concealed parameter we found for BY(N) urges

to investigate this question for DY(N ). Computer experiments intended to reveal the number of
parameters in DY(N ) depends on are in the process.

Suppose we do not have [S] or [Sk] to consult, but wish to describe DY in a form similar to
Me(N ): as a sum of W (3, N ) and its modules. The lines deg = −4 through −1 in table (68) give
us weights in terms of the identity gl(V )-module V . It is clear that deg = −3 corresponds to the
volume forms and either line −4 or line −2 should correspond to W (3, N) which should lie in even
degrees. A few experiments approve just one scenario. Line −4 gives us the highest weight of
W (3, N )−1 in a nonstandard grading:

weight(∂3) = (−1,−1,−2) =⇒ weight(x1) = (2, 1, 1) =⇒ weight(vol) = (1, 1, 1),

and hence the highest weights and the corresponding vectors of the following components are

g−1 : weight(du1du2) = (3, 3, 2) ∼= (0, 0,−1),

g−2 : weight(du1 · vol) = (3, 2, 2) ∼= (0,−1,−1),

g−3 : weight(vol−1) = (−1,−1,−1),

g−4 : weight(∂3) = (−1,−1,−2).

The subalgebra of g = DY generated by g− and g1 (the underlined components in table (68)) is,
clearly, isomorphic to Br(3). But the new generator of degree 2 and weight (0, 0, 2) generates,
together with Br(3), a larger algebra.

Below are the dimensions and highest weights of the components of DY(1) as DY0 = gl(3)-
modules. The terms of DY not contained in DY(1) are marked in parentheses in “dim”column.
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Recall (42) and (45); below i, j, k, l = 1, 2, 3.

(68)

deg dim highest weights of components basis (for all possible indices)

−4 3 (−1,−1,−2) ∂i

−3 1 (−1,−1,−1) v−1

−2 3 (0,−1,−1) duiv

−1 3 (0, 0,−1) duiduj

0 9 (1, 0,−1), (0, 0, 0) ui∂j

1 3 (1, 0, 0) uiv
−1

2 9 (2, 0, 0), (1, 1, 0) uidujv

3 8 (2, 1, 0) ⊃ (1, 1, 1) ω =
∑

fijduiduj | dω = 0, deg fij = 1

4 18 (3, 1, 0), (2, 1, 1) uiuk∂j

5 6 (3, 1, 1) uiujv
−1

6 18 (4, 1, 1), (3, 2, 1) uiujdukv

7 15 (4, 2, 1) ω =
∑

fijduiduj | dω = 0, deg fij = 2

8 21 (4, 3, 1), (4, 2, 2) uiukul∂j

9 7 (4, 3, 2) uiukulv
−1

10 21 (5, 3, 2), (4, 4, 2) uiukuldujv

11 15 (5, 4, 2) ω =
∑

fijduiduj | dω = 0, deg fij = 3

12 18 (5, 5, 2), (5, 4, 3) f(u)∂j | deg f = 4

13 6 (5, 5, 3) f(u)v−1 | deg f = 4

14 18 (6, 5, 3), (5, 5, 4) f(u)dujv | deg f = 4

15 8(+3) (6, 5, 4) ω =
∑

fijduiduj | dω = 0, deg fij = 4

16 9 (6, 6, 4), (6, 5, 5) f(u)∂j | deg f = 5

17 3 (6, 6, 5) f(u)v−1 | deg f = 5

18 9 (7, 6, 5), (6, 6, 6) f(u)dujv | deg f = 5

19 3 (7, 6, 6) ω =
∑

fijduiduj | dω = 0, deg fij = 5

20 3 (7, 7, 6) f(u)∂j | deg f = 6

21 1 (7, 7, 7) f(u)v−1 | deg f = 6

22 3 (8, 7, 7) f(u)dujv | deg f = 6

The modules with such highest weights are irreducible if CharK = 0; but since CharK = 3, some
of these components are reducible.
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g = BY. Here g0 = gl(3) (the weights are given with respect to the hi). Let g− be realized as
follows:

(69)

g0 (−1, 0, 1) u3∂1 + u2
3∂5 + (u2u3 − u4) ∂6 − u2u

2
3∂7

(−1, 1, 0) −u2∂1 + u4∂5

(0,−1, 1) −u3∂2 + u2
3∂4 + (u1u3 + u5) ∂6 − u1u

2
3∂7;

h1 = u1∂1 + u5∂5 + u6∂6 + u7∂7,

h2 = u2∂2 + u4∂4 + u6∂6 + u7∂7,

h3 = u3∂3 + u4∂4 + u5∂5 + u7∂7;

(0, 1,−1) −u2∂3 + u2
2∂4 + (u1u2 + u6) ∂5 − u1u

2
2∂7,

(1,−1, 0) −u1∂2 + u5∂4,

(1, 0,−1) −u1∂3 + (−u1u2 + u6) ∂4 − u2
1∂5 + u2

1u2∂7

g−1 −∂1 − u2∂6 − u3∂5 + u4∂7, −∂2 + u3∂4 + u1∂6 + u5∂7, −∂3 + u6∂7

g−2 ∂4 + u1∂7, ∂5 + u2∂7, ∂6 + u3∂7

g−3 ∂7

Consider the Tanaka-Shchepochkina prolong (g−, g0)∗. As g0-module, g1 is a direct sum of two
submodules, g′1 and g′′1 with lowest weights (0, 0, 1) and (−1, 1, 1), respectively. As algebra, g1

generates 224-dimensional algebra g+ of height 14 and relations up to degree 6 (for comparison: the
defining relations of g+ for simple vectorial Lie algebras are of degree 2 (and 3 for the Hamiltonian
series), cf. [GLP]). Observe that even so ugly and seemingly impossible to use relations are
sometimes useful since they are explicit.

Let BY be the algebra generated by g− and g1. Its dimension is 240. The Tanaka-Shchepochkina
prolong (g−, g0)∗ has, however, 4 elements more than BY: one, of degree 9 and weight (3, 3, 3)
and three more elements of degree 12 whose weights are (6, 3, 3), (3, 6, 3), and (3, 3, 6). These four
elements are outer derivatives of (g−, g0)∗; so there are four linearly independent traces on (g−, g0)∗
and BY = (g−, g0)

(1)
∗ .

We have

[g′1, g−1] = g0, [g′1, g
′
1] = 0.

Let BY′ be the algebra generated by g− and g′1. Its dimension is 19. It is not simple: the part
g−2 ⊕ g−3 is an ideal.

We also have

[g′′1, g−1] = sl(3).

Let BY′′ be the algebra generated by g− and g′′1. It is the special subalgebra of BY; its dimension is
78. The element of weight (3, 3, 3) is its outer derivative; together with g−, it generates BY′′ := SBY;
the three other outer derivatives of BY are also divergence free and belong to (g−, sl(3))∗, the
complete prolong of (g−, sl(3)).
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Here are the dimensions and the highest weights of the components of BY (recall that BY0 =
gl(3)):

deg dim weights of components deg dim weights of components

−3 1 (−1,−1,−1) 6 26 (4, 1, 1), (3, 2, 1), (3, 2, 1)

−2 3 (0,−1,−1) 7 24 (4, 2, 1), (3, 3, 1), (3, 2, 2)

−1 3 (0, 0,−1) 8 24 (4, 3, 1), (4, 2, 2), (3, 3, 2)

0 9 (1, 0,−1), (0, 0, 0) 9 19 (5, 2, 2), (4, 3, 2), (3, 3, 3)

1 9 (1, 1,−1), (1, 0, 0) 10 18 (5, 3, 2), (4, 3, 3)

2 18 (2, 1,−1), (1, 1, 0) 11 9 (5, 3, 3), (4, 4, 3)

3 16 (2, 1, 0), (2, 1, 0) 12 11 (4, 4, 4), (6, 3, 3), (3, 6, 3), (3, 3, 6)

4 24 (3, 1, 0), (2, 2, 0), (2, 1, 1) 13 3 (4, 4, 4)

5 24 (3, 2, 0), (3, 1, 1), (2, 2, 1) 14 3 (5, 5, 4)

The dimensions of the respective components of (g−, sl(3))∗ (same of BY′′ only differ in dimensions
6 and 9; they are paranthesized) are:

deg −3 −2 −1 0 1 2 3 4 5 6 7 8 9

dim 1 3 3 8 6 15 7 15 6 11 (8) 3 3 1 (0)

The dimension of degree 3 here looks like a mistake if one compares with deg = 3 line table for
BY: but the point is that one component of weight (2, 1, 0) contains a 1-dimensional submodule
(1, 1, 1) while the other component of weight (2, 1, 0) contains a submodule of dimension 7.

As spaces, and Z/2-graded Lie algebras, we have (hence dim SBY(N) = 3|N |+1 + 1)

(70)
SBY(N) := g0̄ ⊕ g1̄ 	 S(3;N ) ⊕O(3;N )

SBY(N)(1) 	 S(3;N )(1) ⊕O′(3;N ), dim SBY(N)(1) = 3|N |+1 − 3.

The multiplication of functions is given by

(71) [f, g] =
(

∂f

∂u1

∂g

∂u2
− ∂f

∂u2

∂g

∂u1

)
∂

∂u3
+ cycle(123).

Let us now figure out what is BY(Ñ) and what is its Ñ . It is not difficult to see that, as space,
BY(Ñ) is:

(72) BY(Ñ) 	 W (3;N) ⊕O(3;N )div ⊕ W (3;N )−div ⊕ Z2(3;N )

and we accordingly set:

(73)
deg urvol = 2|r| − 3, deg ur∂i = 2|r| − 2,

deg ur∂iv
−1 = 2|r| + 1, deg urduiduj = 2|r| + 4.

The structure of BY(Ñ ), as W (3;N )-module, is remarkable:

(74)
BY(Ñ ) 	 W (3;N ) ⊕ Z2(3;N ) ⊕ R, where

0 −→ W (3;N)−div −→ R −→ O(3;N )div −→ 0

is an exact sequence.
The multiplication is easy to describe in terms of the vector fields that constitute the Tanaka-

Schepochkina prolongation, but is too bulky. To describe the multiplication in BY(Ñ) in terms of
constituents (74), especially the W (3;N )-action on R, observe that the basis of the complementary
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module to W (3;N )−div can be selected canonically if we restrict the W (3;N )-action on R to
WS(3;N )-action or even gl(3)-action. These complementary elements will be denoted by “fv”.

(75)

[“fv”, “gv”] = (dfdg)v−1;

[“fv”,Dv−1] = fD;

[“fv”, ω2] = fω2v ∈ W (3;N )−div;

[D1v
−1,D2v

−1] = [D1,D2]v ∈ Z2(3;N );

[Z2(3;N ), Z2(3;N )] = 0, [Z2(3;N ), W (3;N )−div] = 0.

The description (72) makes an impression that the parameter Ñ in BY(Ñ) depends on a 3-
dimensional N . Computer experiments show, however, that without restrictions on Ñ the complete
prolong depends not on three parameters but on four:

(76) Ñ = (1, 1, 1, N4, N5, N6, N7).

At the moment we can not explain the meaning of the fourth parameter. This result invites to
investigate also DY(Ñ ) lifting all restrictions on Ñ .

g = MY. Here g0 = gl(3) (the weights are given with respect to the hi). Let g− be realized by
vector fields as follows:

(77)

g0 (−1, 0, 1) u3∂1 + 2u2
3∂5 + (u2u3 + 2u4) ∂6 h1 = u1∂1 + u5∂5 + u6∂6

(−1, 1, 0) 2u2∂1 + 2u2
2∂6 + u4∂5 h2 = u2∂2 + u4∂4 + u6∂6

(0,−1, 1) u3∂2 + u2
3∂4 + 2u5∂6 h3 = u3∂3 + u4∂4 + u5∂5

(0, 1,−1) 2u2∂3 + 2u2
2∂4 + u6∂5

(1,−1, 0) 2u1∂2 + 2u2
1∂6 + u5∂4

(1, 0,−1) 2u1∂3 + (2u1u2 + u6) ∂4 + u2
1∂5

g−1 ∂1, ∂2 + u1∂6, ∂3 − u1∂5 + u2∂4

g−2 ∂4, ∂5, ∂6

Consider the Tanaka-Shchepochkina prolong (g−, g0)∗. As g0-module, g1 is a direct sum of two
submodules, g′1 and g′′1 with lowest weights (0, 0, 1) and (−1, 1, 1), respectively. The space g1

generates an algebra of height 11. Here are the dimensions and highest weights of the components
of MY:

deg dim weights of components deg dim weights of components

−2 3 (0, 0,−1) −1 3 (1, 0, 0)

0 9 (1, 0,−1), (0, 0, 0) 1 9 (1, 1,−1), (1, 0, 0)

2 18 (2, 1,−1), (1, 1, 0) 3 18 (2, 2,−1), (2, 1, 0)

4 21 (3, 2, 0), (3, 1, 1) 5 21 (3, 2, 0), (3, 1, 1)

6 18 (4, 1, 1), (3, 2, 1) 7 18 (4, 2, 1), (3, 2, 2)

8 9 (4, 2, 2), (3, 3, 2) 9 9 (4, 3, 2), (3, 3, 3)

10 3 (4, 3, 3) 11 3 (4, 4, 3)

Now, consider partial Tanaka-Shchepochkina prolongs (g−, g0)∗. As g0-module, g1 is a direct
sum of two submodules, g′1 and g′′1 with lowest weights (0, 0, 1) and (−1, 1, 1), respectively.

We have

[g′1, g−1] = g0, [g′1, g
′
1] = 0.
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Let MY′ be the algebra generated by g− and g′1. We have (given are the highest weights):

deg dim weights of components deg dim weights of components

1 3 (1, 0, 0) 2 3 (1, 1, 0)

So MY′ 	 o(7).
Let MY′′ be the algebra generated by g− and g′′1. Its negative part consists of the same compo-

nents as for MY,

[g′′1, g−1] = sl(3),

and hence MY′′ is isomorphic to SMY, the divergence-free subalgebra, and dimSMY = 77.
g = Er. We have g0 = sl(2)⊃+ hei(2; 3; 1); we realize the vital components gi for i = −1, 0, 1 by

vector fields as follows (a realization in terms of (57) is indicated in parentheses, where Di = ∂
∂ui

);
the weights are given with respect to B−A and A+B from g0; in order not to mix the indeterminates
u1 and u2 of realization (57), we denote the new three indeterminates the xi, although they generate
the algebra of divided powers:

g−1 ∂1, ∂3 (this is 1), ∂2

g0 (−2, 0) : x2∂1,

(−1,−1) : x2∂3 + x3∂1 (this is u2)

(0, 0) : A := x1∂1 − x3∂3 (this is u1D1),

B := x2∂2 − x3∂3 (this is u2D2),

(1,−1) : x1∂3 − x3∂2 (this is u1),

(2, 0) : x1∂2

g1 (−3, 1) : −x2
2∂1,

(−2, 0) : x2
2∂3 + x2x3∂1,

(−1, 1) : x1x2∂1 − x2
2∂2,

x1x2∂1 − x2x3∂3 − x2
3∂1,

(0, 0) : −x1x2∂3 − x1x3∂1 + x2x3∂2,

(1, 1) : −x2
1∂1 + x1x2∂2,

−x2
1∂1 + x1x3∂3 − x2

3∂2,

(2, 0) : −x2
1∂3 + x1x3∂2,

(3, 1) : −x2
1∂2

The other components of the complete prolong are also computed; Er1 is irreducible as a Er0-
module, it generates the codimension 1 subalgebra of (Er−,Er0)+; the dimensions of the components
of degree 1, 2, 3 are 9, 6 and 2, respectively; dim Er = 26.

Frank algebras. The algebras Br(2, a) (deformations of Br(2)), sp(4) and Fr(n) are partial pro-
longs with the same non-positive part as K(3; (1, 1, n)). The generator of sp(4)1 is tq, the generator
of Fr(n)1 is given above, and

Br(2, a)1 = Span(αq2p + qt, αqp2 − pt) for α =
a − 1
a + 1

and α �= 1, 2.

The partial prolong of
(
⊕
i≤0

K(3; (1, 1, n))i

)
⊕ Fr(n)1 coincides with Fr(n) described component-

wise in [S]; the generators of the positive part are z1 = pq2 + qt and z2 = q2t, and for n > 1,
conjecturally, z3, . . . , zi+2 = t3

i − p2q2t3
i−2 for 1 ≤ i < n).



24 PAVEL GROZMAN1, DIMITRY LEITES2

The relations for n = 1 are (x1 = p2):

deg = 1 : [x1, [x1, z1]] = 0,

deg = 2 : [x1, [x1, [x1, z2]]] = 0,

deg = 3 : [z1, z2] = 0, [z1, [z1, [x1, z1]]] = 0, [[x1, z1], [x1, [x1, z2]]] = 0,

deg = 4 : [z2, [z1, [x1, z1]]] + [z2, [x1, z2]] = 0,

[[x1, z1], [[x1, z1], z2]] + [z2, [x1, [x1, z2]]] = 0,

deg = 5 : [z2, [[x1, z1], z2]] = 0, [[x1, z2], [[x1, z1], z2]] = 0,

deg = 6 : [z2, [z2, [x1, z2]]] = 0, [[x1, z2], [z2, [x1, z2]]] = 0,

[[x1, [x1, z2]], [z2, [x1, z2]]] = 0
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