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SIMPLE LIE SUPERALGEBRAS AND NONINTEGRABLE DISTRIBUTIONS

IN CHARACTERISTIC p

SOFIANE BOUARROUDJ1, DIMITRY LEITES2

Abstract. Recently, Grozman and Leites returned to the original Cartan’s description of Lie
algebras to interpret the Melikyan algebras (for p ≤ 5) and several other little-known simple Lie
algebras over algebraically closed fields for p = 3 as subalgebras of Lie algebras of vector fields
preserving nonintegrable distributions analogous to (or identical with) those preserved by G(2),
O(7), Sp(4) and Sp(10). The description was performed in terms of Cartan-Tanaka-Shchepochkina
prolongs using Shchepochkina’s algorithm and with the help of SuperLie package. Grozman and
Leites also found two new series of simple Lie algebras.

Here we apply the same method to distributions preserved by one of the two exceptional sim-
ple finite dimensional Lie superalgebras over C; for p = 3, we obtain a series of new simple Lie
superalgebras and an exceptional one.

In memory of Felix Aleksandrovich Berezin

§1. Introduction

F. A. Berezin and supersymmetries are usually associated with physics. However, Lie superal-
gebras — infinitesimal supersymmetries — appeared in topology at approximately the same time
as the word “spin” appeared in physics and it were these examples that Berezin first had in mind.
The Lie superalgebras of topologists were often the ones over fields of characteristic p > 0, more-
over, over finite fields, see [W, CL]. Since the natural symmetries are usually related to simple
Lie (super)algebras, and the latter are easier to study over algebraically closed fields, the attention
of mathematicians became focused on these, and here we follow the trend, although it is clear
that simple Lie algebras and simple Lie superalgebras (for any p) are not as interesting as their
“relatives” (central extensions, algebras of derivations, etc.). Berezin was also interested in these
topics but having felt that H. Galois’s passionate words “je n’ai pas de temps” were applicable to
him, he choose to concentrate on other things. Lately, Lie algebras and superalgebras for p prime
return to the scene as prime characters, see [BKK, BKR].

The habitual nowadays description of simple finite dimensional Lie algebras in terms of abstract
root systems, although enables one to advance rather far in the study of representations, reminds us
V. Arnold’s description of Leibniz’s contribution to Calculus: “Leibniz’s notations are so good that
using them everybody can nowadays study, and even teach, Calculus without any understanding
of what one is doing”. In [GL4], Grozman and Leites, keeping roots handy, applied Cartan’s
initial (now practically forgotten) description of Lie algebras, not necessarily simple ones, in terms
of nonintegrable distributions these algebras preserve. They interpreted a number of ill-described
simple Lie superalgebras over algebraically closed fields of characteristic p = 5 and 3, and discovered
two (or rather three) new series of simple Lie algebras for p = 3. These Lie algebras seemingly have
no counterparts over C but actually they do: they preserve the same nonintegrable distributions as
some of the classical simple Lie algebras (for the lack of space, this interpretation was implicit in
[GL4]; the explicit description of the distributions in terms of Pfaff equations can be easily obtained
by means of Shchepochkina’s algorithm [Shch] and SuperLie package [Gr]).
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1.1. Cartan’s description of Lie algebras. The method of constructing new Lie algebras used
in [GL4] is as follows (all nonstandard terms will be described in the main text):

(GL1) Take a simple finite dimensional Lie algebra g over C, take its form over Z and reduce
all structure constants modulo p. We may assume now that g is being considered over the ground
field K of characteristic p.

(GL2) For each of the “simplest” Z-gradings g = ⊕gi of g, consider a version (adjusted to the
algebra of divided powers) of the Cartan-Tanaka-Shchepochkina (CTS) prolong of the “beginning”
(see [Shch]) part g = ⊕

i≤k0

gi, where k0 is usually equal to 0 or 1.

(GL3) If the CTS prolong does not coincide with g, it contains a simple ideal. Single out this
ideal.

The situation with the classification of simple finite dimensional Lie algebras and Lie superalge-
bras is described in the next subsection.

1.2. The Kostrikin-Shafarevich conjecture and its super counterpart. In [KS], Kostrikin
and Shafarevich conjectured a description of all simple restricted finite dimensional Lie algebras g

over an algebraically closed field K of characteristic p > 7. Dropping the restrictedness condition,
a generalized KSh-conjecture states that all simple finite dimensional Lie algebras can be obtained
as the end product of the following steps:

(KS1) Take a Z-form gZ of a simple finite dimensional Lie algebra g over C and tensor this
Z-form by K over Z and take all simple subquotients si(g) of gZ ⊗Z K for all such g;

(KS2) take an analog gK (with an algebra of divided powers over K instead of polynomials) of a
simple vectorial Lie algebras g over C and take all simple subquotients si(gK) of gK for all such g;

(KS3) take nontrivial deformations of the simple Lie algebras obtained at steps (KS1)–(KS2), if
any exists.

This conjecture is now proven; it is even true for p = 7. For p = 5, the list of simple finite
dimensional Lie algebras contains one more item: Melikyan1 algebras (and nothing else, as proven
by Premet and Strade, see [S]). For p = 3, there is no even feeling that a complete list of simple
algebras is obtained; for p = 2, the mood is even gloomier, cf. [S].

Super case. Even when [ALS] was being written (and the classification of simple vectorial Lie
superalgebras was not yet even announced, see [LSh, K3]), Leites and Shchepochkina conjectured2

that the same steps (KS1)–(KS3) applied to either simple finite dimensional Lie super-
algebras or the simple vectorial Lie superalgebras (everything over C) yield all simple
finite dimensional Lie superalgebras over an algebraically closed field K of character-
istic p > 7, perhaps, even for p = 7. To prove this conjecture is a challenging problem.

1.3. Our result. Here we apply the method (GL1)–(GL3) to a simple Lie superalgebra ag(2)
and obtain new simple finite dimensional Lie superalgebras for p > 2. The novelty of our examples
is due to the fact that even the conjectural list of simple Lie superalgebras (sec. 1.2) only covers
p > 7. The above procedure (GL1)–(GL3) (description of deforms of the results thus obtained
should follow) is our method to get new examples of simple Lie (super)algebras; to speak about
completeness of the bestiarium thus obtained is too early.

We start our quest for new simple Lie superalgebras with an algebra related to g(2)3, the latter
being of interest lately for physical applications [AW].

§2. Background

For the background on Linear Algebra in Superspaces and the list of simple Lie superalgebras,
see [LSh], [K2], and also [K3] and references therein.

1For their interpretation, see [GL4].
2Delivered at various seminars and conferences starting from 1977, it was never published until now.
3We denote the exceptional Lie algebras in the same way as the serial ones, like sl(n); we thus avoid confusing

g(2) with the second component g2 of a Z-graded Lie algebra g.
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2.1. Integer bases in Lie superalgebras. Let A = (aij) be an n×n matrix. A Lie superalgebra
g = g(A) with Cartan matrix A = (aij), is given by its Chevalley generators, i.e., elements X±

i of

degree ±1 and Hi = [X+
i , X−

i ] (of degree 0) that satisfy the relations (hereafter in similar occasions
either all superscripts ± are + or all are −)

(1) [X+
i , X−

j ] = δijHi, [Hi,Hj ] = 0, [Hi, X
±
j ] = ±aijX

±
j ,

and additional relations Ri = 0 whose left sides are implicitly described, for a general Cartan
matrix, as

(2)
“the Ri that generate the maximal ideal I such that

I ∩ Span(Hi | 1 ≤ i ≤ n) = 0.”

For simple (finite dimensional) Lie algebras over C, instead of implicit description (2) we have an
explicit description (Serre relations) in terms of Cartan matrices. For definition of Cartan matrices
of Lie superalgebras, see [GL1]. In particular, for all simple Lie superalgebras of the form g = g(A),
except for the deforms of osp(4|2), there exist bases with respect to which all structure constants
are integer. In particular, this applies to ag(2), first discovered by Kaplansky, see [K1C, K2]. For
presentations of ag(2), see [GL1].

For vectorial Lie superalgebras, integer bases are associated with Z-forms of C[x] — a
supercommutative superalgebra in a (ordered for convenience) indeterminates x = (x1, ..., xa) of
which the first m indeterminates are even and the rest n ones are odd (m+n = a). For a multi-index
r = (r1, . . . , ra), we set

uri

i :=
xri

i

ri!
and ur :=

∏

1≤i≤a

uri

i .

The idea is to formally replace fractions with ri! in denominators by inseparable symbols uri

i which
are well-defined over fields of prime characteristic. Clearly,

(3) ur · us =

(
r + s

r

)
ur+s, where

(
r + s

r

)
:=

∏

1≤i≤a

(
ri + si

ri

)
.

For a set of positive integers N = (N1, ..., Nm), denote

(4)
O(m; N) := K[u;N ] :=

SpanK(ur | ri < pNi for i ≤ m and ri = 0 or 1 for i > m).

As is clear from (3), K[u; N ] is a subalgebra of K[u]. The algebra K[u] and its subalgebras K[u; N ]
are called the algebras of divided powers; they are analogs of the algebra of functions.

An important feature that differs K[u] from K[u; N ] is the number of generators: whereas K[u]

is generated by the ui, the algebra K[u; N ] has, additionally, the generators u
(pki )
i for every ki such

that 1 < ki < Ni. Since any derivation of a given algebra is completely determined by its value on
every generator of the algebra, the Lie algebra of all derivations of K[u; N ] is much larger than the
Lie algebra of special derivations whose generators behave like partial derivatives:

(5) ∂i(u
(k)
j ) = δiju

(k−1)
j .

In what follows, we only consider special derivations, e.g., in (6).
The simple vectorial Lie algebras over C have only one parameter: the number of indeterminates.

If CharK = p > 0, the vectorial Lie algebras acquire one more parameter: N . For Lie superalgebras,
N only concerns the even indeterminates. Let

(6) vect(m;N |n) a.k.a W (m;N |n) := derK[u;N ]

be the general vectorial Lie algebra.
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2.2. Z-gradings. Recall that every Z-grading of a given vectorial algebra is determined by setting
deg ui = ri ∈ Z; every Z-grading of a given Lie superalgebra g(A) is determined by setting deg X±

i =
±ri ∈ Z.

For the Lie algebras of the form g(A), we set

(7) deg X±
i = ±δi,ij for any ij from a selected set {i1, . . . , ik}

and say that we have “selected”certain k Chevalley generators (or respective nodes of the Dynkin
graph). Yamaguchi’s theorem cited below shows that, in the study of Cartan prolongs defined
below, the first gradings to consider are the ones with all ri = 0 except k of them (1 ≤ k ≤ 2)
“selected”Chevalley generators for which ri = 1. In this paper we consider the simplest gradings,
for k = 1.

For vectorial algebras, filtrations are more natural than gradings; the very term “vectorial”
means, actually, that the algebra is endowed with a particular (Weisfeiler) filtration, see [LSh].
Unlike Lie algebras, the vectorial Lie superalgebras can sometimes be regraded into each other;
various realizations as vectorial algebras are described by means of one more parameter — regrading
r — with a “standard grading” as a point of reference:

(8)
vect(m;N |n; r) a.k.a W (m;N |n; r) := derK[u; N ], where

deg ui = ri is a grading of O(m; N |n).

For W (m; N |n), the standard grading is r = (1, . . . , 1). For the contact algebras k(2n + 1, N) that
preserve the Pfaff equation α(X) = 0 for X ∈ vect(2n + 1|m), where (see [Le])

(9) α =





dt −
∑
i≤n

(pidqi − qidpi) +
∑

j≤m

θjdθj if p 6= 2,

dt +
∑

1≤i≤k

xidxk+i

{
for n = 2k and x1, . . . , xn all even or all odd

+xndxn for n = 2k + 1 and x1, . . . xn odd
if p = 2.

the standard grading is deg t = 2 and the degree all other indeterminates being equal to 1.

2.3. Cartan prolongs. Let g0 be a Lie algebra, g−1 a g0-module. Let us define the Z-graded
Lie algebra (g−1, g0)∗ = ⊕i≥−1gi called the complete Cartan prolong (the result of the Cartan
prolongation) of the pair (g−1, g0). Geometrically the Cartan prolong is the maximal Lie algebra
of symmetries of the G-structure (here: g0 = Lie(G)) on g−1. The components gi for i > 0 are
defined recursively.

First, recall that, for any (finite dimensional) vector space V , we have

Hom(V, Hom(V, . . . ,Hom(V, V ) . . .)) ≃ Li(V, V, . . . , V ; V ),

where Li is the space of i-linear maps and we have (i + 1)-many V ’s on both sides. Now, we
recursively define, for any v1, . . . , vi+1 ∈ g−1 and any i > 0:

gi = {X ∈ Hom(g−1, gi−1) | X(v1)(v2, v3, ..., vi+1) =

X(v2)(v1, v3, ..., vi+1)}.

Let the g0-module g−1 be faithful. Then, clearly,

(g−1, g0)∗ := ⊕gi ⊂ vect(m) = der K[x1, . . . , xm], where m = dim g−1.

Moreover, setting deg xi = 1 for all i, we see that

gi = {X ∈ vect(m) | deg X = i, [X, ∂] ∈ gi−1 for any ∂ ∈ g−1}.

Now it is subject to an easy verification that the Cartan prolong (g−1, g0)∗ forms a subalgebra of
vect(m). (It is also easy to see that (g−1, g0)∗ is a Lie algebra even if g−1 is not a faithful g0-module;
but then it can not be realized as a subalgebra of vect(m).)

Obviously, for p > 0, there is a series of Cartan prolongs labelled by N and the same applies to
the CTS-prolongs and the partial prolongs defined in the next subsections.
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2.4. Nonholonomic manifolds. Cartan-Tanaka-Shchepochkina (CTS) prolongs. Let Mn

be an n-dimensional manifold. Recall that a distribution D on M is any subbundle of the tangent
bundle; D is said to be integrable (in a neighborhood U of a point m ∈ M) if, for each point x ∈ U ,
there is a local submanifold S of U containing x and such that the tangent bundle to S is equal to
D restricted to S. A criterion due to Frobenius states that D is integrable if and only if its sections
form a Lie algebra. Let D be a nonintegrable distribution; then there exists a sequence of strict
inclusions

D = D−1 ⊂ D−2 ⊂ D−3 · · · ⊂ D−d,

where the fiber of D−i at a point x ∈ M is

D−i+1(x) + [D−1,D−i+1](x)

(here [D−1,D−i−1] = Span ([X, Y ] | X ∈ Γ(D−1), Y ∈ Γ(D−i−1))) and d is the least number such
that

D−d(x) + [D−1,D−d](x) = D−d(x).

In case D−d = TM the distribution is called completely nonholonomic. The number d = d(M) is
called the nonholonomicity degree. A manifold M with a distribution D on it will be referred to as
nonholonomic one if d(M) 6= 1. Let

(10) ni(x) = dimD−i(x); n0(x) = 0; nd(x) = n − nd−1.

The distribution D is said to be regular if all the dimensions ni are constants on M . We will
only consider regular, completely nonholonomic distributions, and, moreover, satisfying certain
transitivity condition (12) introduced below.

To the tangent bundle over a nonholonomic manifold (M,D) we assign a bundle of Z-graded
nilpotent Lie algebras as follows. Fix a point pt ∈ M . The usual adic filtration by powers of the
maximal ideal m := mpt consisting of functions that vanish at pt should be modified because distinct
coordinates may have distinct “degrees”. The distribution D induces the following filtration in m:

(11)

mk = {f ∈ m | Xa1

1 . . . Xan
n (f) = 0 for any X1, . . . , Xn1

∈ Γ(D−1),

Xn1+1, . . . , Xn2
∈ Γ(D−2),. . . , Xnd−1+1, . . . , Xn ∈ Γ(D−d)

such that
∑

1≤i≤d

(
i

∑
ni−1<j≤ni

aj

)
≤ k},

where Γ(D−j) is the space of germs at pt of sections of the bundle D−j . Now, to a filtration

D = D−1 ⊂ D−2 ⊂ D−3 · · · ⊂ D−d = TM,

we assign the associated graded bundle

gr(TM) = ⊕grD−i, where grD−i = D−i/D−i+1

and the bracket of sections of gr(TM) is, by definition, the one induced by bracketing vector fields,
the sections of TM . We assume a “transitivity condition”: The Lie algebras

(12) gr(TM)|pt

induced at each point pt ∈ M are isomorphic.
The grading of the coordinates (11) determines a nonstandard grading of vect(n) (recall (10)):

(13)

deg x1 = . . . = deg xn1
= 1,

deg xn1+1 = . . . = deg xn2
= 2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deg xn−nd−1+1 = . . . = deg xn = d.

Denote by v = ⊕
i≥−d

vi the algebra vect(n) with the grading (13). One can show that the “complete

prolong” of g− to be defined shortly, i.e., (g−)∗ := (g−, g̃0)∗ ⊂ v, where g̃0 := der0g−, preserves D.
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For nonholonomic manifolds, an analog of the group G from the term “G-structure”, or rather of
its Lie algebra, g = Lie(G), is the pair (g−, g0), where g0 is a subalgebra of the Z-grading preserving
Lie algebra of derivations of g−, i.e., g0 ⊂ der0 g−. If g0 is not explicitly indicated, we assume that
g0 = der0 g−, i.e., is the largest possible.

Given a pair (g−, g0) as above, define its Tanaka-Shchepochkina prolong to be the maximal subal-
gebra (g−, g0)∗ = ⊕

k≥−d
gk of v with given non-positive part (g−, g0). For an explicit construction of

the components, see [Shch]. If g− = g−1 the Tanaka-Shchepochkina prolong turns into its particular
case, the well-known Cartan prolong.

2.5. Partial prolongs and projective structures. Let (g−, g0)∗ be a depth d Lie algebra;
h1 ⊂ g1 be a g0-submodule such that [g−1, h1] = g0. If such h1 exists, define the ith partial prolong
of ( ⊕

i≤0
gi, h1) for i ≥ 2 to be

(14) hi = {D ∈ gi | [D, g−1] ∈ hi−1}.

Set hi = gi for i ≤ 0 and call h∗ = ⊕
i≥−d

hi the Shchepochkina partial prolong of ( ⊕
i≤0

gi, h1), see

[Sh14, Shch]. (Of course, the partial prolong can also be defined if h0 is contained in g0.)

Example. The SL(n+1)-action on the projective space Pn gives the embedding sl(n+1) ⊂ vect(n);
here sl(n + 1) is a partial prolong of vect(n)i≤0 ⊕ h1 for some h1.

2.6. Yamaguchi’s theorem. Let s = ⊕
i≥−d

si be a simple finite dimensional Lie algebra. Let

(s−)∗ = (s−, g0)∗ be the CTS prolong with the maximal possible g0 = der0(s−).

Theorem ([Y]). Over C, the isomorphism (s−)∗ ≃ s holds almost always. The exceptions (cases
where s = ⊕

i≥−d
si is a partial prolong in (s−)∗ = (s−, g0)∗) are

1) s with the grading of depth d = 1 (in which case (s−)∗ = vect(s∗−));
2) s with the grading of depth d = 2 and dim s−2 = 1, i.e., with the “contact” grading, in

which case (s−)∗ = k(s∗−) (these cases correspond to “selection” of the nodes on the Dynkin graph
connected with the node for the maximal root on the extended graph);

3) s is either sl(n + 1) or sp(2n) with the grading determined by “selecting” the first and the ith
of simple coroots, where 1 < i < n for sl(n + 1) and i = n for sp(2n). (Observe that d = 2 with
dim s−2 > 1 for sl(n + 1) and d = 3 for sp(2n).)

Moreover, the isomorphism (s−, s0)∗ ≃ s also holds almost always. The cases where it fails (the
ones where a projective action is possible) are sl(n + 1) or sp(2n) with the grading determined by
“selecting” only one (the first) simple coroot.

§3. Our Examples

Our examples, as well as Melikyan’s ones, and those of [GL4], are due to the fact that, for p
small, the analog of Yamaguchi’s theorem is false both for Lie algebras and Lie superalgebras.

Serganova and van de Leur showed ([Se], [vdL]; [Se1]) that the Lie superalgebra g = ag(2) has
the following four non-equivalent Cartan matrices:

1)




0 1 0
−1 2 −3
0 −1 2


 2)




0 1 0
−1 0 3
0 −1 2


 3)




0 −3 1
−3 0 2
−1 −2 2


 4)




2 −1 0
−3 0 2
0 −1 1




Here we only consider the simplest Z-grading r and only the first matrix.

4.1. The first Cartan matrix and r = (1, 0, 0). Then g = ⊕
|i|≤2

gi, where dim g−2 = 1 and

sdimg−1 = 0|7. Therefore, g ⊂ k(1|7). Observe that g0 = g(2) ⊕ z, where z = Span(t) is the center
of g0. Hereafter the elements of the Lie superalgebra of contact vector fields are given in terms of
their generating functions in indeterminates introduced in (15).
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From an explicit description of g(2) and its first fundamental representation in [FH] we deduce
an explicit form of the non-positive elements of g which we give in terms of the generating functions
with respect to the contact bracket corresponding to the contact form

(15) α = dt −
∑

i=1,3,4

(vidwi + widvi) + 2udu,

where the vi, wi and u are odd and notations match [FH], p. 354, while our X+
i and X−

i correspond
to Xi and Yi of [FH], p. 340, respectively.

We also set X±
3 := [X±

1 , X±
2 ], X±

4 := [X±
1 , X±

3 ], X±
5 := [X±

1 , X±
4 ], X±

6 := [X±
2 , X±

5 ].
To describe the g0-module g−1 = Span(u and vi, wi for i = 1, 3, 4), only the highest weight

vector suffices:

gi the generating functions of generators, as g0-modules

g−2 1

g−1 v4

g0 z = Span(t)

X+
1 = −v4w3 − uv1

X+
2 = v3w1

X−
1 = −v3w4 − uw1

X−
2 = v1w3

As expected, for p = 0 and p > 3, the CTS prolong is isomorphic to ag(2).
For p = 3, the Lie algebra g0 is not simple, but has a simple Lie subalgebra isomorphic to psl(3)

generated by x±
1 = X±

1 , and x±
2 = [X1, X

±
2 ] and spanned by {X±

1 , X±
3 , X±

4 ,H1}. Let g̃0 := psl(3)⊕z,
where z = Span(t + v1w1 + v3w3 + 2 v4w4) is the center of g̃0.

The g̃0-module g1 splits into two irreducible components: A 0|1-dimensional, and 0|7-dimensional
with lowest weight vectors, respectively:

g1 generating function

V ′
1 v1v3w4 + v1uw1 + v3uw3 + 2v4uw4 + v4w1w3

V ′′
1 tw4 + v1w1w4 + v3w3w4 + uw1w3

Since g1 generates the positive part of the CTS prolong, [g1, g−1] = g̃0, the g̃0-module g−1 is
irreducible, and [g−1, g−1] = g−2, the standard criterion for simplicity ([S]) ensures that the CTS
prolong is simple. Since none of the finite dimensional simple Lie superalgebras over C has grading
of this form, except vectorial ones, and none of vectorial simple Lie superalgebras g have the simple
part of g̃0 isomorphic to psl(3) (which only exists for p = 3), we conclude that this Lie superalgebra
is a new simple Lie superalgebra indigenous to p = 3. We denote it Bj(1;N |7).

The positive components of Bj(1;N |7) are all of dimension 8 (the direct sums gk = g′k ⊕ g′′k of
irreducible g0-modules of dimension 1 and 7, up to parity), except the ones of the highest degree
(2(3N − 1)+ 3− 2 = 2 · 3N − 1), which are all of dimension 1, and the second highest degree, which
are all of dimension 7. Let V ′

k and V ′′
k be the lowest weight vectors (with respect to g0) of g′k and
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g′′k, respectively:

gk generating function: N = 1

V ′
2 t2 + 2v4uw1w3 + v3v4w3w4 + v1v4w1w4 + 2v1v3w1w3 + 2v1v3uw4

V ′′
2 2v1uw1w4 + 2v3uw3w4 + 2v4w1w3w4 + tuw4 + 2tw3w4

V ′
3 tv1v3w4 + tv1uw1 + tv3uw3 + 2tv4uw4 + tv4w1w3

V ′′
3 t2w4 + tuw1w3 + 2v1v3w1w3w4 + tv1w3w4 + tv3w3w4 + 2v4uw3w4

V ′′
4 2v1v3uw1w3w4 + 2tv1uw1w4 + 2tv3uw3w4 + 2tv4w1w3w4 + t2uw4 + 2t2w1w3

V ′
5 2v1v3v4uw1w3w4 + 2t2v1v3w4 + 2t2v1uw1 + 2t2v3uw3 + t2v4uw4 + 2t2v4w1w3

Similarly (the components up to 3 being the same as for N = 1):

gk generating function: N = 2

V ′
4 t3 + 2tv1v3uw4 + 2tv1v3w1w3 + tv1v4w1w4 + tv3v4w3w4 + 2tv4uw1w3

V ′′
4 2v1v3uw1w3w4 + 2tv1uw1w4 + 2tv3uw3w4 + 2tv4w1w3w4 + t2uw4 + 2t2w1w3

V ′
5 2v1v3v4uw1w3w4 + 2t2v1v3w4 + 2t2v1uw1 + 2t2v3uw3 + t2v4uw4 + 2t2v4w1w3

V ′′
5 t3w4 + t2v1w1w4 + t2v3w3w4 + t2uw1w3 + 2tv1v3w1w3w4 + 2tv4uw1w3w4

V ′
6 t3uw4 + 2t3w1w3 + 2t2v1uw1w4 + 2t2v3uw3w4 + 2t2v4w1w3w4 + 2tv1v3uw1w3w4

V ′′
6 t4 + 2t2v1v3uw4 + 2t2v1v3w1w3 + t2v1v4w1w4 + t2v3v4w3w4 + 2t2v4uw1w3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V ′′
16 t8uw4 + 2t8w1w3 + 2t7v1uw1w4 + 2t7v3uw3w4 + 2t7v4w1w3w4 + 2t6v1v3uw1w3w4

V ′
17 2t8v1v3w4 + 2t8v1uw1 + 2t8v3uw3 + t8v4uw4 + 2t8v4w1w3 + 2t6v1v3v4uw1w3w4

Similarly (the components up to 15 being the same as for N = 2):

gk generating function: N = 3

V ′
16 t8uw4 + 2t8w1w3 + 2t7v1uw1w4 + 2t7v3uw3w4 + 2t7v4w1w3w4 + 2t6v1v3uw1w3w4

V ′′
16 t9 + 2t7v1v3uw4 + 2t7v1v3w1w3 + t7v1v4w1w4 + t7v3v4w3w4 + 2t7v4uw1w3

V ′
17 2t8v1v3w4 + 2t8v1uw1 + 2t8v3uw3 + t8v4uw4 + 2t8v4w1w3 + 2t6v1v3v4uw1w3w4

V ′′
17 t9w4 + t8v1w1w4 + t8v3w3w4 + t8uw1w3 + 2t7v1v3w1w3w4 + 2t7v4uw1w3w4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V ′′
52 t26uw4 + 2t26w1w3 + 2t25v1uw1w4 + 2t25v3uw3w4 + 2t25v4w1w3w4 + 2t24v1v3w1w3w4

V ′
53 t26v1v3w4 + t26v1uw1 + t26v3uw3 + t26v4uw4 + t26v4w1w3 + t24v1v3v4uw1w3w4

Now, let us consider subalgebras of Bj(1;N |7):
(i) Let g′1 be generated by V ′

1 , as g̃0-module. The component of degree 2 of the partial CTS
prolong (g−, g0, g

′
1)∗ is 0, so the corresponding Lie algebra is not simple.

(ii) Let g′′1 be generated by V ′′
1 , as g̃0-module. Let bj = (g−, g0, g

′′
1)∗ denote the partial CTS

prolong , then

dim g2 = dimSpan(t2 + 2v1v3uw3 + 2v1v3w1w3 + v1v3w1w4 + v3v4w3w4 + 2v4uw1w3) = 1

and g3 = 0. We see that [g′′1, g−1] = g̃0. The corresponding partial CTS prolong is of dimension
(10|14) and the criteria for simplicity imply that bj is simple. Since none of the known Lie super-
algebra has such bj0̄ ≃ sl(2) ⊕ psl(3), this simple Lie superalgebra is new. Since the partial CTS
prolong for N = 2 is the same, it is an exceptional Lie superalgebra.
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Let us summarize:

4.2. Theorem. For the first Cartan matrix of ag(2) and its Z-grading r = (100), the CTS prolongs
return ag(2), except for the case p = 3, which yield the simple subalgebras of series Bj(1;N |7), and
the exceptional algebra bj.

Post scriptum. We do not regularly check arXiv news, and missed several interesting papers
by Elduque cited in [CE] and almost missed (the deadline for Berezin’s volume being April 15)
[CE] (which appeared on May 15), where several new simple Lie superalgebras for p = 3, also
related to g(2), are described by an approach different from ours. Elduque’s superalgebras look
non-isomorphic to ours.
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