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Abstract

We consider random Schrödinger equations on Rd for d ≥ 3 with a homogeneous Anderson-
Poisson type random potential. Denote by λ the coupling constant and ψt the solution with initial
data ψ0. The space and time variables scale as x ∼ λ−2−κ/2, t ∼ λ−2−κ with 0 < κ < κ0(d).
We prove that, in the limit λ → 0, the expectation of the Wigner distribution of ψt converges
weakly to the solution of a heat equation in the space variable x for arbitrary L2 initial data.

The proof is based on analyzing the phase cancellations of multiple scatterings on the random
potential by expanding the propagator into a sum of Feynman graphs. In this paper we consider
the non-recollision graphs and prove that the amplitude of the non-ladder diagrams is smaller
than their “naive size” by an extra λc factor per non-(anti)ladder vertex for some c > 0. This is
the first rigorous result showing that the improvement over the naive estimates on the Feynman
graphs grows as a power of the small parameter with the exponent depending linearly on the
number of vertices. This estimate allows us to prove the convergence of the perturbation series.
The analysis of the recollision graphs is given in the companion paper [19].
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1 Introduction

The fundamental equations governing the basic laws of physics, the Newton and the Schrödinger
equations, are time reversible and have no dissipation. It is remarkable that dissipation is neverthe-
less ubiquitous in nature, so that almost all macroscopic phenomenological equations are dissipative.
The oldest such example is perhaps the equation of heat conductance found by Fourier.

On a microscopic level, Brown observed almost two centuries ago that the motion of a pollen
suspended in water was erratic [5]. This led to the kinetic explanation by Einstein in 1905 [14] that
such a motion was created by the constant “kicks” on the relatively heavy pollen by the light water
molecules. It should be noted that at that time even the atomic-molecular structure of matter was
not universally accepted. Einstein’s theory was strongly supported by Boltzmann’s kinetic theory,
which, however, was phenomenological and seriously debated at the time. Finally in 1908 Perrin
[40] experimentally verified Einstein’s theory and used it, among others, to give a precise estimate
on the Avogadro number. These experiments gave the strongest evidence for atoms and molecules
at that time.

In Einstein’s kinetic theory both the heavy particle (the pollen) and the light particles (the water
molecules) obey Newton’s law. Therefore, Einstein’s kinetic theory in fact postulated the emergence
of the Brownian motion from a classical non-dissipative reversible dynamics. The key difficulty of
a mathematically rigorous derivation of Brownian motion from reversible dynamics is similar to the
justification of Boltzmann’s molecular chaos assumption (Stoßzahlansatz); the dissipative character
emerges only in a scaling limit, as the number of degrees of freedom goes to infinity.

The first mathematical definition of the Brownian motion was given in 1923 by Wiener, who
constructed the Brownian motion as a scaling limit of random walks. This construction was built
upon a stochastic microscopic dynamics which by itself is dissipative. The derivation of the Brown-
ian motion from a time reversible Hamiltonian system, however, was not seriously considered until
more than half a century later. Kesten-Papanicolaou [33] in 1978 proved that the velocity distribu-
tion of a particle moving in an environment consisting of random scatterers (i.e., Lorenz gas with
random scatterers) converges to a Brownian motion in a weak coupling limit for d ≥ 3. In this model
the bath of light particles is replaced with random static impurities. The same result was obtained
later in d = 2 dimensions by Dürr, Goldstein and Lebowitz [13]. In a recent work [36], Komorowski
and Ryzhik have controlled the same evolution on a longer time scale and proved the convergence to
Brownian motion of the position process as well. Bunimovich and Sinai [9] proved the convergence
of the periodic Lorenz gas with a hard core interaction to a Brownian motion in 1980. In this model
the only source of randomness is the distribution of the initial condition. Finally, Dürr, Goldstein
and Lebowitz [12] proved that the velocity process of a heavy particle in a light ideal gas, which is
a model with a dynamical environment, converges to the Ornstein-Uhlenbeck process.

Wiener’s construction of Brownian motion is based on a random walk. The random walk could
easily be replaced by the Markovian process generated by a linear Boltzmann equation. The linear
Boltzmann equation was rigorously derived from the classical Lorenz gas by Gallavotti [29], Spohn
[46] and Boldrighini, Bunimovich and Sinai [4]. (The nonlinear Boltzmann equation was derived
by Lanford [37] for short time.) Although Brownian motion was discovered and theorized in the
context of classical dynamics, we shall prove that it also describes the motion of a quantum particle
in a random environment.

1



The random Schrödinger equation, or the quantum Lorentz model, is given by the evolution
equation:

i∂tψt(x) = Hψt(x), H = Hω = −1

2
∆x + λVω(x) , (1.1)

where λ is the coupling constant and Vω is the random potential. The first scale with a non-trivial
limiting dynamics is the weak coupling limit, λ → 0, where the space, time and the coupling
constant are subject to the kinetic scaling:

t→ tε−1, x→ xε−1, λ =
√
ε . (1.2)

Under this limit, the appropriately rescaled Wigner distribution (see (2.11)) of the solution to the
Schrödinger evolution (1.1) converges weakly to a linear Boltzmann equation. This was first estab-
lished by Spohn [45] for a random potential with Gaussian distribution and small macroscopic time.
This method was extended to study higher order correlations in [28]. A different method (applicable
to the lattice setting and general random potential, see remarks later on) was developed in [16] where
the short time restriction was removed. This method was also extended to the phonon case [15] and
Lukkarinen and Spohn [39] have employed a similar technique for studying the energy transport in
a harmonic crystal with weakly perturbed random masses.

Since the long time limit of a Boltzmann equation is a heat equation, we shall take a time scale
longer (see (2.17)) than in the kinetic scaling limit (1.2). Our aim is to prove that the limiting
dynamics of the Schrödinger evolution in a random potential under this scaling is governed by a
heat equation. This requires to control the Schrödinger dynamics up to a time scale λ−2−κ, κ > 0.
Quantum correlations that are small on the kinetic scale and are neglected in the first limit may
contribute on the longer time scale. The derivation of the heat equation is thus much more difficult
than first deriving the Boltzmann equation from Schrödinger dynamics on the kinetic scale and
then showing that Boltzmann equation converges to a diffusive equation under a different limiting
procedure. Notice that the limit in our approach is a long time scaling limit which involves no
semiclassical limit.

The approach of this paper applies also to lattice models and yields a derivation of Brownian
motion from the Anderson model [17, 18]. The dynamics of the Anderson model was postulated
by Anderson to be localized for large coupling constant λ and extended for small coupling constant
(away from the band edges and in dimension d ≥ 3). The localization conjecture was first estab-
lished rigorously by Goldsheid, Molchanov and Pastur [32] in one dimension, by Fröhlich-Spencer
[25], and later by Aizenman-Molchanov [1] in several dimensions, and many other works have since
contributed to this field. The progress for the extended state conjecture, however, has so far been
very limited. It was proved by Klein [34] that all eigenfuctions are extended on the Bethe lattice
(see also [2, 24]). In Euclidean space, Schlag, Shubin and Wolff [44] proved that the eigenfunctions
cannot be localized in a region smaller than λ−2+δ for some δ > 0 in d = 2. Chen [10], partly
based on the method [16], extended this result to all dimensions d ≥ 2 and δ = 0 (with logarithmic
corrections).

A special class of random Schrödinger equation was proposed to understand the dynamics in the
extended region. Instead of a spatially stationary random potential, one considers a random potential
Vω(x) with a power law decay, i.e.,

Vω(x) = h(x)ωx , h(x) ∼ |x|−η
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where ωx, x ∈ Zd are mean zero i.i.d. random variables and η > 0 is a fixed parameter.
If η ≥ 1, i.e, the random potential decays at least as fast as the Coulomb potential, a standard

scattering argument yields that for λ small enough Hω has absolutely continuous spectrum. Using
cancellation properties of the random potential, Rodnianski and Schlag [41] have improved the same
result to η > 3/4 in d ≥ 2 and recently, J. Bourgain [8] has extended it to η > 1/2 (see also [11]).
Notice that the expected number of collisions for this model with η > 1/2 is of order one.

In summary, all known results [44, 41, 8, 10] for the Anderson model (or its modifications)
in Euclidean space are in regions where the dynamics have either no effective collision or there are
typically only finitely many of them. Under the diffusive scaling of this paper, see (2.17), the number
of effective scatterings is a negative fractional power of the scaling parameter. In particular, it goes
to infinity in the scaling limit, as it should be the case if we aim to obtain a Brownian motion. As
in [10], one may derive from our dynamical result that the eigenfunctions cannot be localized in a
region smaller than λ−2−κ/2 and dimension d ≥ 3.

Acknowledgement. The authors are grateful for the financial support and hospitality of the Erwin
Schrödiger Institut, Vienna, Max Planck Institut, Leipzig, Stanford University and Harvard Univer-
sity, where part of this work has been done.

2 Statement of the main result

2.1 Notations

Let

H := −1

2
∆ + λV (2.1)

denote a random Schrödinger operator acting on L2(Rd), d ≥ 3, with a random potential V = Vω(x)
and a small positive coupling constant λ. The potential is given by

Vω(x) :=

∫
Rd

B(x− y)dµω(y) , (2.2)

where B is a single site potential profile and µω is a Poisson point process on Rd with homogeneous
unit density and with independent, identically distributed random masses. More precisely, for almost
all realizations ω consists of a countable, locally finite collection of points, {yγ(ω) ∈ Rd : γ =
1, 2, . . .}, and random weights {vγ(ω) ∈ R : γ = 1, 2, . . .} such that the random measure is given
by

µω =
∞∑
γ=1

vγ(ω)δyγ(ω) , (2.3)

where δy denotes the Dirac mass at y ∈ Rd. The Poisson process {yγ(ω)} is independent of the
weights {vγ(ω)}. The weights are real i.i.d. random variables with distribution Pv and with mo-
ments mk := Ev v

k
γ satisfying

m2 = 1, m2d <∞, m1 = m3 = m5 = 0 . (2.4)
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The expectation with respect to the random process {yγ, vγ} is denoted by E.
For the single-site potential, we assume thatB is a spherically symmetric Schwarz function with

0 in the support of its Fourier transform, i.e.

0 ∈ supp (B̂) . (2.5)

More precisely, we introduce the norm

‖f‖m,n :=
∑
|α|≤n

‖〈x〉m∂αf(x)‖∞

with 〈x〉 := (2 + x2)1/2 (here α is a multiindex) and we assume

‖B‖k,k < Ck ∀k ∈ N . (2.6)

Actually, it is sufficient to assume (2.6) for all k ≤ k0(κ).
We note that the operator Hω is not bounded from below due to the possible large concentration

of Poisson points in some region. Nevertheless, Hω is self-adjoint under very general conditions,
see [35].

We introduce a few notational conventions. The letters x, y, z will always denote configuration
space variables, while p, q, r, u, v, w will be reserved for d-dimensional momentum variables. The
norm without indices, ‖ · ‖, will always denote the standard L2(Rd) norm. The bracket (· , ·) denotes
the standard scalar product on L2(Rd) and 〈· , ·〉 will denote the pairing between the Schwarz space
and its dual on the phase space Rd × Rd.

Integrals without explicit domains will always denote integration over Rd with respect to the
Lebesgue measure. For any f ∈ L2(Rd), the Fourier transform is given by

f̂(p) :=

∫
e−2πip·xf(x)dx , p ∈ Rd . (2.7)

and the inverse Fourier transform is given by

g(x) =

∫
ĝ(p)e2πip·xdp , x ∈ Rd .

For functions defined on the phase space, f(x, v), the Fourier transform will always be taken only
in the space variable, i.e.

f̂(ξ, v) :=

∫
e−2πiξ·xf(x, v)dx , ξ ∈ Rd .

The Fourier transform of the kinetic energy operator is given by

̂[
− 1

2
∆f
]

(p) = e(p)f̂(p) ,

where

e(p) :=
1

2
p2 (2.8)
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is the dispersion law. The velocity is given by 1
2π
∇e(p) = 1

2π
p.

Define the Wigner transform of a function ψ ∈ L2(Rd)

Wψ(x, v) :=

∫
e2πiv·ηψ(x+

η

2
)ψ(x− η

2
)dx . (2.9)

The Fourier transform of Wψ(x, v) in the x variable is therefore

Ŵψ(ξ, v) = ψ̂
(
v − ξ

2

)
ψ̂
(
v +

ξ

2

)
. (2.10)

Define the rescaled Wigner distribution as

W ε
ψ(X, V ) := ε−dWψ

(X
ε
, V
)
. (2.11)

Its Fourier transform in X is given by

Ŵ ε
ψ(ξ, V ) = ψ̂

(
V − εξ

2

)
ψ̂
(
V +

εξ

2

)
.

For any function h : Rd → C and energy value e ≥ 0 we introduce the notation

[h](e) :=

∫
h(v)δ(e− e(v))dv :=

∫
Σe

h(q)
dν(q)

|∇e(q)| , (2.12)

where dν(q) is the restriction of the Lebesgue measure onto the energy surface Σe := {q : e(q) =
e} that is the ball of radius

√
2e. More explicitly,

[h](e) := (2e)
d
2
−1

∫
Sd−1

h(
√

2eφ)dφ .

Clearly ∫
h(v)dv =

∫ ∞

0

[h](e)de . (2.13)

The normalization of the measure [·]e is given by

[1](e) := cd−1(2e)
d
2
−1 , (2.14)

where cd−1 is the volume of the unit sphere Sd−1.

2.2 Main Theorem

The weak coupling limit is defined by the following scaling:

t = T /ε, x = X /ε, ε = λ2 . (2.15)
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The Wigner distribution W ε
ψT /ε

(X ,V) converges weakly to a function FT (X , V ) that satisfies the
Boltzmann equation

∂T FT (X , V ) + V · ∇XFT (X , V )

= 2π

∫
dU |B̂(U − V )|2δ(e(U) − e(V ))

[
FT (X , U) − FT (X , V )

]
. (2.16)

Note that the Boltzmann equation can be viewed as the generator of a Markovian semigroup on
phase space. The proof of (2.16) for continuum Gaussian model was given in [16]; the Zd lattice
case with general i.i.d. random potential was considered in [10]. The derivation of the Boltzmann
equation for potential (2.2) follows from these two proofs in a straightforward way.

In this paper we consider the long time scaling

t = λ−κ
(
λ−2T

)
, x = λ−κ/2

(
λ−2X

)
= X/ε, ε = λκ/2+2 (2.17)

with some κ > 0. This scaling corresponds to the long time limit of the Boltzmann equation with
diffusive scaling.

For some energy e > 0, let

Lef(v) :=

∫
du σ(u, v)[f(u)− f(v)], e(v) = e , (2.18)

be the generator of the momentum jump process v(t) on Σe with collision kernel

σ(u, v) := 2π|B̂(u− v)|2δ(e(u) − e(v)) . (2.19)

A well-known argument shows that B �≡ 0 and the regularity of B guarantees the following
properties. Some details will be given in [19].

Lemma 2.1 For each e > 0 the Markov process {v(t)}t≥0 with generator Le is uniformly exponen-
tially mixing. The unique invariant measure is the uniform distribution, [ · ](e)/[1](e), on the energy
surface Σe.

Let

Dij(e) :=
1

(2π)2

∫ ∞

0

Ee
[
v(i)(t)v(j)(0)

]
dt , v = (v(1), . . . , v(d)), i, j = 1, 2, . . . d,

be the velocity autocorrelation matrix, where Ee denotes the expectation with respect to this Markov
process in equilibrium. By the spherical symmetry of B̂ and e(U), the autocorrelation matrix is
constant times the identity:

Dij(e) = De δij , De :=
1

(2π)2d

∫ ∞

0

Ee
[
v(t) · v(0)

]
dt . (2.20)

The main result of the paper is the following theorem.
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Theorem 2.2 Let d ≥ 3 and ψ0 ∈ L2(Rd) be a normalized initial wave function. Let ψ(t) :=
exp(−itH)ψ0 solve the Schrödinger equation (1.1). Let O(x, v) be a Schwarz function on Rd×Rd.
For any e > 0, let f be the solution to the heat equation

∂T f(T,X, e) =
De

2
∆Xf(T,X, e) (2.21)

with the initial condition
f(0, X, e) := δ(X)

[
|ψ̂0(v)|2

]
(e) .

Then there exist 0 < κ0(d) ≤ 2 such that for 0 < κ < κ0(d) and for ε and λ related by (2.17), the
rescaled Wigner distribution satisfies

lim
λ→0

∫
dX

∫
dv O(X, v)EW ε

ψ(λ−κ−2T )(X, v) =

∫
dX

∫
dv O(X, v)f(T,X, e(v)) , (2.22)

and the limit is uniform on T ∈ [0, T0] with any fixed T0. In d = 3 one can choose κ0(3) = 1/500.

Remark 1. The coefficient
[
|ψ̂0(v)|2

]
(e) in the initial condition f(0, X, e) is finite for almost all

e by using (2.13) for h = |ψ̂0|2.

Remark 2. The total cross section of the collision process (2.18),

σ0(e) :=

∫
du σ(u, v) e = e(v) , (2.23)

is a function of e = e(v) only. Assuming B̂(0) �= 0, we see that σ0(e) ∼ [1](e) for small e, and
σ0(e) ∼ e−1/2 for large e. It follows from Lemma 2.1 and from standard probability arguments that
the diffusion constant (2.20) scales as De ∼ e/σ0(e) for small e � 1 and De ∼ e2/σ0(e) for large
e � 1. If B̂ vanishes at 0 (but (2.5) still holds), then the small energy behaviour of σ0(e) and De

depends on the rate of vanishing of B̂ at 0 in a straighforward way.

Remark 3. The condition (2.5) is not essential, but the theorem needs to be modified if B̂ vanishes
on D(0, δ), a ball of radius δ > 0 about the origin. Let δ > 0 be the maximal radius so that
D(0, δ) ∩ supp (B̂) = ∅. In this case the total cross section σ0(e) is zero for all energy values
e ≤ δ2/8, because the diameter of the energy surface Σe is smaller than the minimal range of B̂.
Therefore the evolution is ballistic for the part of the initial wave function that is supported on energy
shells e ≤ δ2/8. For the other part of the wave function the diffusion equation still holds.

Fig. 1 below shows the three different scales schematically. On the Schrödinger scale both time
and space are of order 1 in atomic units. On the kinetic scale time and space are rescaled by λ−2.
The dynamics is given by the Boltzmann equation characterized by finitely many collisions. On the
diffusive scale we rescaled the time and space by an additional factor λ−κ and λ−κ/2 respectively.
The typical number of collisions is of order λ2t ∼ λ−κ.

If we assume that the Boltzmann equation holds under all scalings, Theorem 2.2 can be easily
understood. From the Boltzmann equation (2.16), the velocity distribution develops according to
the Markovian generator Le. Therefore, the Boltzmann equation (2.16) describes a process that a
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λ

Diffusive scale:  X,  T Atomic scale:  x, t

λ−2−κ/2 −2λ

Time:
−2−κ

Length:

−2λ 1

Heat equation Boltzmann eq. Schrodinger eq.

1

Kinetic scale: X T,

Figure 1: Evolution equations on three scales

particle travels with a fixed velocity v up to an exponentially distributed random time with average
value σ0(e(v))

−1, then it changes velocity from v to a new velocity u on the same energy surface
Σe chosen by the probability distribution P (u) = σ(u, v)/σ0(e(v)). The different energy sectors do
not interact. Clearly, this process then converges to a Brownian motion in configuration space with
a diffusion coefficient given by (2.20) and with momentum restricted to a fixed energy shell Σe.

Under the assumption that the Boltzmann equation is valid for all time, this argument applies in
all dimensions. The random Schrödinger evolution, however, is expected to be localized for d ≤ 2
even for small coupling constant. Therefore, even though the Boltzmann approximation was proved
to be valid for d ≥ 2 [16], [10] (it is not valid for d = 1) in the weak coupling limit, it will not be
valid for all time in d = 2. It is expected that memory effects and quantum correlations eventually
dominate the evolution and ruin the Markovian character of the Boltzmann picture. Heuristic ideas
show this transition happens at an exponentially large time (see, e.g. [47]).

The effects of the quantum correlations and memory are not expected to change the Boltzmann
picture drastically in d ≥ 3, but one expects corrections to the diffusion equation and a transition
between different energy shells for κ ≥ 2 (see [38]).

2.3 Strategy of the proof

The above heuristic argument using the Boltzmann equation, besides being misleading for d = 2,
also masks the difficulties in proving Theorem 2.2, namely that one has to follow the full quan-
tum mechanical time evolution through infinitely many collisions. The main tool of our proof is to
use the Duhamel expansion to decompose the wave function into elementary wave functions char-
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acterized by their collision histories. We then apply two strategies to simplify the expansion: (i)
renormalization of the propagator, i.e., resumming the two legged subdiagrams; (ii) stopping rules
to control recollisions. Apart from these two steps, the bulk of our proof is devoted to giving sharp
estimates for a large class of Feynman graphs.

To get an idea, imagine that we expand the solution to the Schrödinger equation by using the
Duhamel formula repeatedly. This rewrites the solution into a sum of elementary wave functions,
each of which is characterized by a sequence of collisions with random obstacles. When we take the
expectation of ‖ψt‖2 with respect to a Gaussian randomness, we pair the random obstacles by Wick’s
theorem and obtain a sum of amplitudes of Feynman graphs. In case of a non-Gaussian randomness
the higher order cumulants are also present (their contribution turns out to be negligible, but proving
this is rather involved).

If we take only the Laplacian as the free part in the expansion, even the amplitudes of individual
graphs diverge in the limit we consider. However, this can be remedied by a simple resummation
of all two-legged insertions caused by the lowest order self-energy contribution (it turns out that
higher order corrections to the self-energy do not play a role in the scaling limit we consider). The
resummation is performed by choosing an appropriate reference Hamiltonian H0 for the expansion.
After this rearrangement, all graphs have a finite amplitude in our scaling limit, and the ladder graphs
give the leading contribution.

However, we have to estimate not only individual graphs but the sum of all graph amplitudes,
which requires beating down the factorial growth of the number of graphs. This problem has been
addressed in constructive field theory. For field theories with bosons, the graphical expansion to infi-
nite order diverges. Borel summability was proven by cluster expansion and renormalization group
methods [30, 22, 7, 6]. In fermionic theories, the anticommutation relations entail cancellations
which lead to analyticity in the presence of regulators [31, 23, 20, 42]. Our method to control the
combinatorial growth is completely different: it is by very sharp bounds on the individual graphs.
We give a classification of arbitrary large graphs, based on counting the number of vertices carrying
extra oscillatory effects. The number of these vertices is called the degree of the graph and it mea-
sures the improvement over the standard power counting. For the ladder graphs, the degree is zero,
for the anti-ladder (i.e., complete crossing) graph it is 2. For general graphs, the degree is roughly
the number of vertices after removing all ladder and anti-ladder subgraphs. We thus obtain an extra
λc factor (for some c > 0) per non-(anti)ladder vertex. This strong improvement is sufficient to
beat the growth of the combinatorics in the time scale we consider. To our knowledge, nothing like
this has been done in a graphical expansion before. Improved phase space estimates have been used
to prove regularity in two-dimensional many–fermion systems, but the improvement exponent was
fixed independently of the number of vertices [26, 27, 21].

For a comparison, the unperturbed Green functions in the perturbation expansion for the many–
fermion systems and for the random Schrödinger equation are given by

1

ip0 + p2 − µ
,

1

p2 − α+ iη
.

In the many–fermion case, µ > 0, p0 ∈ MF = {π
β
(2n + 1) : n ∈ Z} where β ∼ T−1 is the inverse
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temperature. In the random Schrödinger case, η ∼ t−1. Their L2-properties are different:

1

β

∑
p0∈MF

∫
dp
∣∣ip0 + p2 − µ

∣∣−2 ∼ | log β|,
∫

dp
∣∣p2 − α + iη

∣∣−2 ∼ η−1 .

Notice the divergence is more severe for the random Schrödinger equation case. In the many-fermion
case, there is one p0–summation per line of the graph; in the random Schrödinger case there are just
two overall α–integrals for graphs with arbitrarily many lines.

Finally we note that the threshold κ < κ0(d) in our theorem may be improved up to κ < 2/3
simply with more detailed arguments. To go beyond 2/3 but with κ < 2 requires substantially better
estimates on the individual graphs than we have here. On the other hand, one cannot go beyond
κ = 2 with only improvements on estimates of the individual graphs. The Duhamel formula must
be expanded at least up to k = λ2t = λ−κ, which is the typical number of collisions up to time t.
Even if one proves for most graphs the best possible estimate, λ2k, it cannot beat the k! from the
combinatorics when k � λ−2, i.e., λ2kk! � 1 for k � λ−2. A different resummation procedure is
needed beyond this threshold to exploit cancellations among these graphs.

This paper is organized as follows. In Section 3 we perform the self-energy renormalization, we
smooth out the data and restrict the problem to a finite box. The Duhamel expansion is introduced
in Section 4. In Section 5 we reduce the Main Theorem to Theorems 5.1, 5.2 and 5.3. The key
result is Theorem 5.2 which we prove in the rest of this paper. The other two theorems are more
technical and they are proven in the companion paper [19]. The Feynman graphs are introduced in
Section 7. In Sections 8 and 9 we reduce all estimates to Theorem 8.4. This theorem is our main
technical bound on Feynman graphs and it is proven in Section 10. Since the random potential in
our model is given by general i.i.d. random variables, the rule for taking the expectation is different
from the case of Gaussian random field used in [16]. In addition to the usual pairing from the Wick
theorem, we have to introduce higher order partitions of the vertices, called non-trivial lumps. This
produces significant technical difficulties and complicates our proof. We recommend the reader to
ignore these lumps at first reading.

Universal constants and constants that depend only on the dimension d, on the final time T0 and
on the Schwarz norms ‖B‖k,k from (2.6) will be denoted by C and their value may vary from line
to line.

3 Preparations

3.1 Renormalization

The purpose of this procedure is to include immediate recollisions with the same obstacle into the
propagator itself. This is also called the renormalization of ”one-particle propagators” or two legged
subdiagrams. Without renormalization, these graphs individually are exponentially large (“diver-
gent”), but their sum is finite. Renormalization removes this instability and the analysis of the
resulting Feynman graphs will become simpler.
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The self-energy operator is given by the multiplication operator in momentum space

θ(p) := Θ(e(p)), Θ(α) := lim
ε→0+

Θε(α) , Θε(α) := Θε(α, r) (3.1)

for any r with e(r) = α, where

Θε(α, r) :=

∫ |B̂(q − r)|2dq
α− e(q) + iε

. (3.2)

Note that by spherical symmetry of B and e(q), Θε(α, r) depends only on the length of r, therefore
Θε(α) in (3.1) is well defined. Clearly θ(p) is spherically symmetric. The existence of the limit and
related properties of Θ have been proven in [16] using that ‖B̂2‖2d,2d <∞. Here we summarize the
results:

Lemma 3.1 In d ≥ 3 the following hold:

|Θε(α, r) − Θe(α, r
′)| ≤ C

∣∣ |r| − |r′|
∣∣ (3.3)

(Eq. (3.80) in [16]) and

|Θε(α, r) − Θε′(α
′, r)| ≤ C(|ε− ε′| + |α− α′|)ε−1/2 (3.4)

if ε ≥ ε′ > 0 (Eq. (3.68) in [16]). From this latter estimate the existence of the limit limε→0+0 Θε(α, r)
follows. Moreover, Θ is Hölder continuous

|Θ(α) − Θ(α′)| ≤ C|α− α′|1/2 . (3.5)

Proof. We have only to prove the Hölder continuity. For any ε and any r, r ′ with α = e(r),
α′ = e(r′) we have

|Θ(α) − Θ(α′)| ≤ lim
ε′→0+0

|Θε′(α, r) − Θε(α, r)|+ |Θε(α, r) − Θε(α, r
′)|

+ |Θε(α, r
′) − Θε(α

′, r′)| + lim
ε′→0+0

|Θε(α
′, r′) − Θε′(α

′, r′)|

≤ C
(
ε1/2 +

∣∣ |r| − |r′|
∣∣+ |α− α′|ε−1/2

)
.

By optimizing ε and using e(r) = α, we obtain (3.5). �

We have the following estimate on θ(p) and in parallel on Θ(e):

Lemma 3.2 For any d ≥ 3 there exist universal positive constants c1, c2 such that

|θ(p)| ≤ c2 log〈p〉
〈p〉 , |Θ(e)| ≤ c2 log〈e〉

〈e〉1/2 , (3.6)

Im Θ(e) ≤ −c1 min{|e| d
2
−1, |e|−1/2} , Im θ(p) ≤ −c1 min{|p|d−2, |p|−1} . (3.7)
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Proof of Lemma 3.2. By performing the angular integration, we can write Θε(α, p) with e(p) = α
as

Θε(α, p) =

∫ ∞

0

(2e)
d
2
−1de

α− e+ iε
S(e) , with S(e) :=

∫
Sd−1

|B̂(
√

2e(φr − φ))|2dφ , (3.8)

where φr is a fixed vector on the unit sphere Sd−1. For small e values

|S(e)| = O(1), |∇S(e)| = O(e−1/2) .

For large e values, using the regularity of B̂,

|S(e)| = O(e−
d−1
2 ), |∇S(e)| = O(e−

d
2 ) .

These estimates, in particular, stand behind the proof that limε→0+0 Θε(α, p) is finite, since they
guarantee the sufficient decay for large e and the sufficient smoothness around the singularity of the
denominator in (3.8). The imaginary part therefore is

Im θ(p) = Im lim
ε→0+0

Θε(α, p) = −π(2α)
d
2
−1S(α)

which behaves as ∼ −|p|d−2 for small p and as ∼ −|p|−1 for large p. The real part of Θε(α, r) is
bounded for small α. For large α one splits the integration

Re Θε(α, r) =

(∫ α+1

α−1

+

∫
|α−e|≥1

)
(2e)

d
2
−1de

α− e+ iε
S(e) .

After Taylor expanding (2e)
d
2
−1S(e) around α, the first term is bounded by∫ α+1

α−1

∣∣∣ d

de
[(2e)

d
2
−1S(e)]

∣∣∣de = O(α−1)

and the second term by ∫
|α−e|≥1

de

|α− e|e1/2 ≤ c log〈α〉
〈α〉1/2 .

If we write Θ(e) = R(e) − iI(e), where R(e) and I(e) are real functions, and recall Im(x +
i0)−1 = −πδ(x), we have

I(e) = −Im Θ(e) = π

∫
δ(e(q) − e)|B̂(q − r)|2dq (3.9)

for any r satisfying e = e(r). �

We rewrite the Hamiltonian as
H = H0 + Ṽ ,
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where
H0 := ω(p) := e(p) + λ2θ(p), Ṽ := λV − λ2θ(p) . (3.10)

We note that our renormalization is only an approximation to the standard self-consistent renormal-
ization given by the solution to the equation

ω(p) = e(p) + λ2 lim
ε→0+0

∫ |B̂(p− q)|2dq
ω(p) − ω(q) + iε

. (3.11)

Due to our truncation procedure, the definition (3.1) is sufficient and is more convenient for us.
Since e(p) is spherically symmetric, so are θ(p) and ω(p).

The following lemma collects some estimates on the renormalized propagators we shall use to
prove Theorem 2.2. The proof is fairly simple and will be given in [19].

Lemma 3.3 Suppose that λ2 ≥ η ≥ λ2+4κ with κ ≤ 1/12. Then we have,∫ |h(p− q)|dp
|α− ω(p) + iη| ≤

C‖h‖2d,0 | log λ| log〈α〉
〈α〉1/2〈|q| −

√
2|α|〉

, (3.12)

and for 0 ≤ a < 1 ∫ |h(p− q)|dp
|α− ω(p) + iη|2−a ≤ Ca‖h‖2d,0 λ

−2(1−a)

〈α〉a/2〈|q| −
√

2|α|〉
, (3.13)∫ |h(p− q)|dp

|α− e(p) + iη|2−a ≤ Ca‖h‖2d,0 η
−2(1−a)

〈α〉a/2〈|q| −
√

2|α|〉
. (3.14)

For a = 0 and with h := B̂, the following more precise estimate holds. There exists a constant C0,
depending only on finitely many constants Ck from (2.6) such that∫

λ2|B̂(p− q)|2 dp

|α− ω(p) − iη|2 ≤ 1 + C0λ
−12κ
[
λ+ |α− ω(q)|1/2

]
. (3.15)

3.2 Smoothing the initial data and the potential

In this section we show that it is sufficient to prove the Main Theorem under the assumptions that
ψ̂0(p) is a bounded, smooth, compactly supported function and B̂(p) is supported on {|p| ≤ λ−δ}
for any fixed δ > 0.

The approximation procedure relies on the followingL2-continuity property of the Wigner trans-
form. If a random wave function is decomposed as ψ = ψ1 + ψ2, then∣∣∣E〈Ô, Ŵ ε

ψ〉 − E〈Ô, Ŵ ε
ψ1
〉
∣∣∣ ≤ C

(∫
sup
v

|Ô(ξ, v)|dξ
)√

E
[
‖ψ1‖2 + ‖ψ2‖2

]
· E‖ψ2‖2 (3.16)

by a simple Schwarz inequality. (Due to a misprint, the ‖ψ2‖2 term was erroneously omitted in
Section 2.1. of our earlier paper [16].)
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Approximation of the initial data. Let ψ̂0 ∈ L2 and let ψ̂n be a sequence of smooth, compactly
supported functions with ‖ψ̂n − ψ̂0‖ → 0. We decompose ψ̂0 = ψ̂n + (ψ̂0 − ψ̂n). Then

ψ̂(t) = e−itH ψ̂n + e−itH(ψ̂0 − ψ̂n) .

Since
‖e−itH(ψ̂0 − ψ̂n)‖ = ‖ψ̂0 − ψ̂n‖ → 0

as n→ ∞, uniformly in t, we see that

lim
n→∞

∣∣∣E〈Ô, Ŵ ε
ψ(t)〉 − E〈Ô, Ŵ ε

ψn(t)〉
∣∣∣ = 0

uniformly in t (and thus in ε), where ψn(t) := e−itH ψ̂n is the time evolution of the approximated
initial data. This means that the approximation procedure is continuous on the left hand side of
(2.22).

Similarly, on the right hand side of (2.22), we can define fn(T,X, e) to be the solution to
(2.21) with initial data fn(0, X, e) := δ(X)

[
|ψ̂n|2

]
(e). Clearly

[
|ψ̂n|2

]
(e) converges to

[
|ψ̂0|2

]
(e) in

L1(de). Therefore
fn(T,X, e) → f(T,X, e) (3.17)

in L1(dX de), uniformly in T . The right hand side of (2.22) is therefore also continuous as n→ ∞.
We remark, that if ψ̂0 is smooth, e.g. |∇pψ̂0(p)| ≤ C〈p〉−4d, then a bounded, smooth and

compactly supported approximant, ψ̂n, can be chosen so that
[
|ψ̂n|2

]
(e) →

[
|ψ̂0|2

]
(e) for every

e > 0 and then the convergence in (3.17) also holds in L1(dX) for any e. The smoothness of ψ̂0 is
used only at the point when we explicitly compute the main term of the perturbation expansion and
identify it with the Boltzmann equation, see [19].

Propagation estimate. To verify that a truncation is allowed for B̂, we first need a crude propa-
gation estimate. Define the following event for any Z > 0

ΩZ :=
{
ω :

∫
|y−k|≤1

d|µω|(y) ≤ Z〈k〉 , ∀k ∈ Zd
}
,

where |µω| denotes the total variation of the (random) measure µω. A standard large deviation
estimate on the Poisson point process and on the random weights easily gives

lim
Z→∞

P(ΩZ) = 1 . (3.18)

We decompose

E〈Ô, Ŵ ε
ψt
〉 = E

[
1(ΩZ)〈Ô, Ŵ ε

ψt
〉
]
+ E

[
1(Ωc

Z)〈Ô, Ŵ ε
ψt
〉
]
,

where 1(·) is the characteristic function. On the set Ωc
Z we use∣∣∣E [1(Ωc

Z)〈Ô, Ŵ ε
ψt
〉
]∣∣∣ ≤ (∫ sup

v
|Ô(ξ, v)|dξ

)
‖ψt‖2P(Ωc

Z) → 0 (3.19)
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as Z → ∞, uniformly in t (hence in λ).
For ω ∈ ΩZ we have |Vω(x)| ≤ CZ〈x〉 using the decay properties of B. Computing the

time derivative of the mean square displacement, we obtain ∂t(ψt, x2ψt) = i(ψt, [H, x
2]ψt) . Us-

ing [H, x2] = −(∇ · x+ x · ∇) and a Schwarz estimate we have∣∣∣∂t(ψt, x2ψt)
∣∣∣ ≤ C(ψt, x

2ψt)
1/2
[
E + λ(ψt, |Vω|, ψt)

]1/2
(3.20)

with E := (ψt, Hψt) = (ψ0, Hψ0) by energy conservation. We estimate (ψ, |Vω|ψ) ≤ CZ +
CZ(ψ, x2ψ)1/2, in particular the energy E is bounded (depending on ψ0 and Z). From (3.20) we
thus have

(ψt, x
2ψt) ≤ c1(Z, ψ0)t

4 + c2(Z, ψ0) (3.21)

on ΩZ with some constants c1,2(Z, ψ0).

Approximation of the potential. We define the truncation of B in Fourier space as B̂δ(p) :=

ϕ(λδ〈p〉)B̂(p), where ϕ : R+ → [0, 1] is a fixed smooth cutoff function with ϕ(a) ≡ 1 for a ≤ 1/2
and ϕ(a) ≡ 0 for a ≥ 1. In position space, we have for any M ∈ N,

|B(x) − Bδ(x)| ≤ 〈x〉−2d

∫ ∣∣∣〈∇p〉2d
[
B̂(p)[1 − ϕ(λδ〈p〉)

] ∣∣∣dp ≤ Cδ,Mλ
M〈x〉−2d (3.22)

by using that B is in Schwarz space (2.6).
Let

Hδ := −1

2
∆x + λ

∫
Rd

Bδ(x− y)dµω(y)

be the Hamiltonian with the truncated potential. Let ψδt := e−itH
δ
ψ0 be the evolution of the wave

function under the modified Hamiltonian H δ. On the set ΩZ and for t� λ−4

∂t‖ψt − ψδt ‖2 = −2 Im (ψδt , (H −Hδ)ψt) ≤ CδZλ
13(ψt, 〈x2〉ψt)1/2 ≤ C(Z, δ, ψ0)λ

5

by using (3.22) with M = 12. In particular, ψt and ψδt remain close up to time scale t ∼ λ−2−κ,
κ < 2. This bound, together with the L2-continuity of the Wigner transform (3.16) guarantees that
the truncation of B does not influence the left hand side of (2.22).

As for the right hand side of (2.22), notice that the collision kernel, σ(U, V ), of the momentum
jump process (2.18) is restricted to the energy surface e(V ) = e(U) = e. Therefore U, V are
bounded, depending on e, so B̂(U − V ) = B̂δ(U − V ) for these momenta, if λ is sufficiently small.
Thus the truncation of B does not influence the right hand side of (2.22).

Armed with these results, we assume for the rest of the paper that ψ̂0(p) is smooth, compactly
supported, bounded and B̂(p) is supported on {|p| ≤ λ−δ} for any fixed δ > 0. We thus extend
the convention from the end of Section 2 that general constants denoted by C may depend on the
truncated version of B̂ and ψ̂0. The same applies to the hidden constants in the O(·) and o(·)
notations.
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3.3 Restriction to a finite box

We will reduce the problem to a finite box of size L, L � 1, with periodic boundary condi-
tions. In this way, for technical convenience, we avoid the infinite summation in (2.3). Let ΛL :=
[−L/2, L/2]d ⊂ Rd be a finite torus and let Λ∗

L := (Z/L)d be the dual lattice. We introduce the
notation ∫

Λ∗
L

f(x)dp :=
1

|Λ∗
L|
∑
p∈Λ∗

L

f(p) . (3.23)

The integrals
∫

ΛL
and
∫

Λ∗
L

converge to their infinite volume counterparts as L → ∞. Let (·, ·)L and

‖ · ‖L denote the scalar product and the norm on L2(ΛL).
For any L,M � 1 we consider the random Schrödinger operator

H ′ = H ′
L,M := −1

2
∆ + λV ′

ω V ′
ω(x) :=

M∑
γ=1

v′γ B(x− y′γ) =

∫
ΛL

B(x− y)dµ′
ω ,

with periodic boundary conditions on ΛL and µ′
ω :=

∑M
γ=1 v

′
γδy′γ . Here {y′γ : γ = 1, . . . ,M} are

i.i.d. random variables uniformly distributed on ΛL and {v′γ : γ = 1, . . . ,M} are i.i.d. variables
distributed according to Pv and they are independent of the y ′γ . M itself will be random; it is chosen
to be an independent Poisson variable with expectation |ΛL|. The expectation with respect to the
joint measure of {M, y ′γ, v

′
γ} is denoted by E′. Sometimes we will use the decomposition

E′ = EME⊗M
y E⊗M

v (3.24)

referring to the expectation of M , {yγ} and {vγ} separately. The parameter L is implicit in these
notations. In particular, E⊗M

y stands for the normalized integral

1

|ΛL|M
∫

ΛL

M∏
γ=1

dyγ . (3.25)

It is well known that the restriction of the random measure µω (see (2.3)) to the box ΛL has the
same distribution as µ′

ω. In particular, given a realization ω of the infinite volume random measure
µω, we can associate to it the number of points in ΛL (M = M(ω)) and the operator H ′

ω = HL,M(ω)

with random measure µ′
ω. We can thus realize the random operator H ′

ω on the same probability
space as Hω. Due to the periodic boundary and the nontrivial support of B, the potential of Hω and
H ′
ω will not be the same on ΛL, but the difference will be negligible far away from the boundary.

Let χL be a smooth cutoff function, supported on ΛL, with χL ≡ 1 on ΛL/2 and |∇χL| ≤ CL−1.
Let ψL(t) := χLe

−itHψ′
0 and let ψ′(t) := e−itH

′
ψ′

0 be the two dynamics applied to the cutoff initial
data ψ′

0 := χLψ0 supported on ΛL. We also define the cutoff observable OL := χLO. Clearly

lim
L→∞

E〈ÔL, Ŵ
ε
ψL(t)〉L = E〈Ô, Ŵ ε

ψ(t)〉 (3.26)

for any t. We estimate

∂t‖ψL(t) − ψ′
L(t)‖2

L ≤ C‖(H −H ′)ψL(t)‖2
L + C‖[H,χL]ψL(t)‖2

L . (3.27)
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The second term is bounded by CL−1‖∇ψL(t)‖ and on ΩZ it can be estimated by the total energy
as in (3.20). With a propagation estimate similar to (3.21) but applied to the evolution e−itHψ′

0, we
easily obtain that the right hand side of (3.27) vanishes as L → ∞ for any t. On the complement
set, ω ∈ Ωc

Z , we use the uniform bound (3.19) and finally let Z → ∞. In summary, we have shown
the following

Lemma 3.4 Let ψ′(t) := e−itH
′
L,Mψ′

0, where M is a Poisson random variable with mean |ΛL|, then

lim sup
L→∞

∣∣∣E〈Ô, Ŵ ε
ψ(t)〉 − E′〈ÔL, Ŵ

ε
ψ′(t)〉L

∣∣∣ = 0 �

whenever
∫

supv |Ô(ξ, v)|dξ <∞. �

4 The Duhamel expansion

We expand the unitary kernel of H = H0 + Ṽ (see (3.10)) by the Duhamel formula. Due to the
restriction to ΛL, we really work with H ′

L,M = H ′
0 + Ṽ ′, where the renormalized free evolution,

H ′
0, is given by ω(p) in Fourier space and Ṽ ′ = λV ′ − λ2θ(p), p ∈ Λ∗

L. The prime indicates the
restriction to ΛL and the dependence on L and M . In this section we work on ΛL but we will mostly
omit the primes in the notation.

For any fixed integer N ≥ 1

ψt := e−itHψ0 =
N−1∑
n=0

ψn(t) + ΨN (t) , (4.1)

with

ψn(t) := (−i)n
∫ t

0

[dsj ]
n+1
1 e−isn+1H0 Ṽ e−isnH0 Ṽ . . . Ṽ e−is1H0ψ0 (4.2)

being the fully expanded terms and

ΨN(t) := (−i)
∫ t

0

ds e−i(t−s)H Ṽ ψN−1(s) (4.3)

is the non-fully expanded or error term. We used the shorthand notation∫ t

0

[dsj]
n
1 :=

∫ t

0

. . .

∫ t

0

( n∏
j=1

dsj

)
δ
(
t−

n∑
j=1

sj

)
.

Since each potential Ṽ in (4.2), (4.3) is a summation itself, Ṽ = −λ2θ(p) +
∑M

γ=1 Vγ , Vγ(x) :=
vγB(x − yγ), both of these terms in (4.2) and (4.3) are actually big summations over so-called
elementary wave functions, which are characterized by their collision history, i.e. by a sequence of
obstacles and, occasionally, by θ(p). Denote by Γ̃n, n ≤ ∞, the set of sequences

γ̃ = (γ̃1, γ̃2, . . . , γ̃n), γ̃j ∈ {1, 2, . . . ,M} ∪ {ϑ} (4.4)
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and by Wγ̃ the associated potential

Wγ̃ :=

{
λVγ̃ if γ̃ ∈ {1, . . . ,M}

−λ2θ(p) if γ̃ = ϑ .

The tilde refers to the fact that the additional {ϑ} symbol is also allowed. An element γ̃ ∈ {1, . . . ,M}∪
{ϑ} is identified with the potential Wγ̃ and it is called potential label if γ̃ ∈ {1, . . . ,M}, otherwise
it is a ϑ-label. A potential label carries a factor λ, a ϑ-label carries λ2.

For any γ̃ ∈ Γ̃n we define the following fully expanded wave function with truncation

ψ∗t,γ̃ := (−i)n−1

∫ t

0

[dsj ]
n
1 Wγ̃ne

−isnH0Wγ̃n−1 . . . e
−is2H0Wγ̃1e

−is1H0ψ0 (4.5)

and without truncation

ψt,γ̃ := (−i)n
∫ t

0

[dsj ]
n+1
1 e−isn+1H0Wγ̃ne

−isnH0Wγ̃n−1 . . . e
−is2H0Wγ̃1e

−is1H0ψ0 . (4.6)

In the notation the star (∗) will always refer to truncated functions. Note that

ψt,γ̃ = (−i)
∫ t

0

ds e−i(t−s)H0ψ∗s,γ̃ .

Each term (4.6) along the expansion procedure is characterized by its order n and by a sequence
γ̃ ∈ Γ̃n. We now identify the main terms.

Denote by Γnrk ⊂ Γ̃k the set of non-repetitive sequences that contain only potential labels, i.e.

Γnrk :=
{
γ = (γ1, . . . , γk) : γj ∈ {1, . . . ,M}, γi �= γj if i �= j

}
.

Let
ψnrt,k :=

∑
γ∈Γnr

k

ψt,γ

denote the corresponding elementary wave functions.
The typical number of collisions up to time t is of order λ2t. To allow us for some room, we set

K := [λ−δ(λ2t)] , (4.7)

([ · ] denotes integer part), where δ = δ(κ) > 0 is a small positive number to be fixed later on. K
will serve as an upper threshold for the number of collisions in the expansion.

5 Proof of the Main Theorem

The proof is divided into three theorems. The first one states that all terms other than ψnr
t,k, 0 ≤ k <

K, are negligible. For the precise statement we use the previous notations, in particular we recall
that the prime indicates the dependence on L,M
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Theorem 5.1 (L2-estimate of the error terms) Let t = O(λ−2−κ) and K given by (4.7). If κ <
κ0(d) and δ is sufficiently small (depending only on κ), then

lim
λ→0

lim
L→∞

E′
∥∥∥ψ′

t −
K−1∑
k=0

ψ′ nr
t,k

∥∥∥2

L
= 0 .

In d = 3 dimensions, one can choose κ0(3) = 1
500

.

The second key theorem gives an explicit formula for the main terms, ψ ′ nr
t,k . It really identifies

the so-called ladder diagram as the only contributing term. We introduce the notation

Rη(α, v) :=
1

α− ω(v) + iη
,

for the renormalized propagator.

Theorem 5.2 (Only the ladder diagram contributes) Let κ < 2
34d+39

, ε = λ2+κ/2, t = O(λ−2−κ),
and K given by (4.7). For a sufficiently small positive δ, for η ≥ λ2+2κ and for any 1 ≤ k < K we
have

lim
L→∞

E′‖ψ′ nr
t,k ‖2

L = Vλ(t, k) +O
(
λ

1
3
−( 17

3
d+ 13

2
)κ−O(δ)

)
(5.1)

lim
L→∞

〈ÔL,E
′Ŵ ε

ψ′ nr
t,k

〉L = Wλ(t, k,O) +O
(
λ

1
3
−( 17

3
d+ 13

2
)κ−O(δ)

)
(5.2)

as λ� 1. Here

Vλ(t, k) :=
λ2ke2tη

(2π)2

∫ ∫ ∞

−∞
dαdβ ei(α−β)t

∫ ( k+1∏
j=1

dpj

)
|ψ̂0(p1)|2

×
k+1∏
j=1

Rη(α, pj)Rη(β, pj)
k∏
j=1

|B̂(pj+1 − pj)|2 (5.3)

Wλ(t, k,O) :=
λ2ke2tη

(2π)2

∫ ∫ ∞

−∞
dαdβ ei(α−β)t

∫
dξ

∫ ( k+1∏
j=1

dvj

)
Ô(ξ, vk+1)Ŵ ε

ψ0
(ξ, v1)

×
k+1∏
j=1

Rη

(
α, vj +

εξ

2

)
Rη

(
β, vj −

εξ

2

) k∏
j=1

|B̂(vj − vj+1)|2 . (5.4)

We adopt the notation O(δ) in the exponent of λ. This always means (const.)δ with universal,
explicitly computable positive constants that depend on κ and that can be easily computed from the
proof.

The formula (5.3) is the value of the so-called ladder Feynman graph in the diagrammatic expan-
sion of E′‖ψ′ nr

t,k ‖2. We will see in Proposition 7.2 that this expansion generates k!Bk terms, where
Bk is the number of partitions of a set with k elements (note that Bk is almost of order k!). Theorem
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5.2 states that only one diagram is relevant; the contribution of all the other Feynman graphs is negli-
gible even after summation. The extension of (5.1) to the Wigner transform (5.2) is straightforward.
Theorem 5.2 is the most important step in the proof of the Main Theorem.

The third theorem identifies the limit of
∑

kWλ(t, k,O) as λ → 0 with the solution to the heat
equation. We note that the definition (5.4) does not apply literally to the free evolution term k = 0;
this term is defined separately:

Wλ(t, k = 0,O) :=

∫
dξdv eitεv·ξ e2tλ

2Im θ(v) Ô(ξ, v)Ŵ0(εξ, v) . (5.5)

Theorem 5.3 (The ladder diagram converges to the heat equation) Under the conditions of The-
orem 5.2 and setting t = λ−2−κT , we have

lim
λ→0

K−1∑
k=0

Wλ(t, k,O) =

∫
dX

∫
dv O(X, v)f(T,X, e(v)) , (5.6)

where f is the solution to the heat equation (2.21).

Proof of the Main Theorem 2.2 using Theorems 5.1, 5.2 and 5.3. We compute the expectation of
the rescaled Wigner transform, EW ε

t = EW ε
ψt

, tested against a Schwarz function∫
dX

∫
dv O(X, v)EW ε

t (X, v) =

∫
dξ

∫
dv Ô(ξ, v)EŴ ε

t (ξ, v) = 〈O,EW ε
t 〉 .

Combining Lemma 3.4, Theorem 5.1 and the finite box version of the L2-continuity of the Wigner
transform (3.16), it is sufficient to compute the Wigner transform of ψ ′(t,K) :=

∑K−1
k=0 ψ

′ nr
t,k . The

Wigner transform Wψ′(t,K) is quadratic in ψ′, so it contains a double sum over k and k ′

Wψ′(t,K) =
K−1∑
k,k′=0

ψ′ nr
t,k (· · · )ψ′ nr

t,k′ (· · · ) .

The potential labels are not repeated within ψ and ψ. Moreover, the expectation of a single potential
in (4.6) is zero. Thus the potential labels in the ψ and ψ must pair, in particular taking expectation
reduces this double sum to a single sum over k

E′Wψ′(t,K) =
K−1∑
k=0

E′Wψ′ nr
t,k

.

By using (5.2) and (5.6) together with K = O(λ−κ−δ), we obtain Theorem 2.2. �
The main result of the present paper is the proof of Theorem 5.2. The proofs of Theorem 5.1 and

Theorem 5.3 will be given in the companion paper [19]. For the reader’s convenience, we summarize
below the key ideas of the proof of Theorem 5.1 from [19].
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The Duhamel expansion allows for the flexibility that at every new term of the expansion we
perform the separation into elementary waves, ψ∗s,eγ , and we can decide whether we want to stop
(keeping the full propagator as in (4.3)) or we continue to expand that term further. This decision
will depend on the collision history, γ̃. In particular, not every error term will be expanded up to the
same order N , in some cases we may decide to stop the expansion earlier.

To estimate a non-fully expanded term, we will use the unitarity of the full evolution,∥∥∥(−i) ∫ t

0

e−i(t−s)Hψ∗s,eγds
∥∥∥2

≤ t

∫ t

0

‖ψ∗s,eγ‖2ds . (5.7)

Typically we lose a factor of t by using this estimate since the oscillatory character of the time
integration is lost. We can use this crude estimate only if the fully expanded term, ‖ψ∗s,eγ‖2, is
small, i.e. if γ̃ represents an atypical collision sequence. Once γ̃ is “sufficiently” atypical, we stop
the expansion for that elementary wave function to reduce the number and the complexity of the
expanded terms.

There are basically two patterns how a collision history can become atypical; either the total
number of collisions exceeds the typical number of collisions,O(λ2t), or there is a recollision. This
explains why only the non-repetition terms ψnrt,k with k ≤ K contribute to the main term.

A recollision is typically penalized by a factor λ2 in the weak coupling environment. This is,
however, not the case for the immediate repetition of a potential label, γ̃j = γ̃j+1 ∈ {1, . . . ,M}.
The renormalization (3.10) compensates for these terms. Up to the highest order, the contribution
of a sequence with an immediate repetition cancels that of the same sequence where the repetition
is replaced by a θ-label. Technically, all these estimates have to be combined with the key method
of the present paper (proof of Theorem 5.2) to show that the sum of all k!Bk repetition diagrams is
sufficiently small to compensate for the unitarity estimate (5.7).

6 Pairing potential labels

The wave function

ψ′ nr
t,k = (−i)k

∑
γ∈Γnr

k

∫ t

0

[dsj ]
k+1
1 e−isk+1H

′
0V ′

γk
e−iskH

′
0V ′

γk−1
. . . e−is2H

′
0V ′

γ1
e−is1H

′
0ψ′

0

contains k potential terms with different potential labels. Every term in

E′‖ψ′ nr
t,k ‖2

L =
∑
γ,γ′

E′ ψt,γψt,γ′

has 2k potential terms, and their expectation is

E′ V ′
γ1
V ′
γ2
. . . V ′

γk
V ′
γ′1
V ′
γ′2
. . . V ′

γ′k
. (6.1)

Since there is no repetition within γ and γ ′, and E′V ′
γ = 0, the expectation in (6.1) is nonzero

only if there is a complete pairing between γ and γ ′. Such pairings correspond to permutations on
Ik = {1, 2, . . . , k}. We denote by Sk the set of all permutations on k elements.
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We recall the K-identity from Lemma 3.1 of [16] (with a corrected (2π)−1 factor)∫ t

0

[dsj ]
k+1
1

k+1∏
j=1

e−isjω(pj) =
ieηt

2π

∫
R

dα e−iαt
k+1∏
j=1

1

α− ω(pj) + iη
(6.2)

for any η > 0. Therefore, we have

E′‖ψ′ nr
t,k ‖2

L =
λ2ke2tη

(2π)2

∑
σ∈Sk

∫ ∫
Λ∗

L

dpdp̃ δ(pk+1 − p̃k+1) (6.3)

×E′
M∑

γ1,...,γk=1
γi �=γj

k∏
j=1

V̂γj
(pj+1 − pj)V̂γj

(p̃σ(j)+1 − p̃σ(j))ψ̂
′
0(p1)ψ̂

′
0(p̃1)

×
∫ ∫

R

dαdβ ei(α−β)t

(
k+1∏
j=1

1

α− ω(pj) − iη

1

β − ω(p̃j) + iη

)
,

where the summation runs over all ordered k-tuples (γ1, . . . , γk) of {1, 2, . . . ,M} with disjoint
elements. We compute the expectation, using m2 = 1 from (2.4) and the factorization of E′ from
(3.24)

E

k∏
j=1

V̂γj
(pj+1 − pj)V̂γj

(p̃σ(j)+1 − p̃σ(j)) = P (σ,p, p̃)B(p)B(p̃) (6.4)

with

B(p) :=
k∏
j=1

B̂(pj+1 − pj) (6.5)

and

P (σ,p, p̃) := EME⊗M
y

M∑
γ1,...,γk=1

γi �=γj

k∏
j=1

exp
[
2πiyγj

(pj+1 − pj − (p̃σ(j)+1 − p̃σ(j)))
]
. (6.6)

We obtain from (6.3) that

E′‖ψ′ nr
t,k ‖2

L = λ2k
∑
σ∈Sk

∑
γ1,...,γk
γi �=γj

∫ ∫
Λ∗

L

dpdp̃ δ(pk+1 − p̃k+1) (6.7)

×P (σ,p, p̃)M◦(k,p, p̃)ψ̂0(p1)ψ̂0(p̃1)

with

M◦(k,p, p̃) :=
e2tη

(2π)2

∫ ∫
R

dαdβ ei(α−β)t

(
k+1∏
j=1

B̂(pj+1 − pj)

α− ω(pj) − iη

B̂(p̃j+1 − p̃j)

β − ω(p̃j) + iη

)
(6.8)
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(with the convention that for j = k + 1 we set the superfluous term B̂(pj+1 − pj) := 1).
Due to the constraint γi �= γj, the formula (6.6) is not a simple product of delta functions and we

have to use a connected graph expansion that is well-known from field theory.
Let An be the set of partitions of Ik := {1, 2, . . . , k}, i.e. A = {Aµ : µ ∈ I(A)} ∈ Ak if

∪µ∈I(A)Aµ = Ik and the elements of A are disjoint. The sets in the partition are labelled by the
index set I(A) and let m(A) = |I(A)| denote the number of elements in A. The elements of the
partition A will be called lumps. A lump is trivial if it has only one element. The trivial partition,
where every lump is trivial, is denoted by A0.

Lemma 6.1 For any fixed L, k and M , k ≤M , and any fixed momenta qj ∈ Λ∗
L,

E⊗M
y

M∑
γ1,...,γk=1

γi �=γj

k∏
j=1

exp
[
2πiqjyγj

]
=
( M

|ΛL|
)k ∑

A∈Ak

∏
ν∈I(A)

c(|Aν |)δ
(∑
�∈Aν

q�

)
(6.9)

with
c(n) :=

∑
Γ⊂Kn

Γ connected

(−1)|Γ|

where Kn denotes the complete graph on n vertices and |Γ| denotes the number of edges in the
subgraph Γ. The following estimate holds for n ≥ 2

|c(n)| ≤ nn−2 . (6.10)

Remark. An analogous formula holds if the natural index set Ik = {1, 2, . . . , k} is replaced by
an arbitrary finite set S. In this case, the summation on the right hand side is over all partitions of S.
The set of these partitions is denoted by A(S).

Proof. By the connected graph expansion

k∏
i
=j=1

(1 − δγi,γj
) =

∑
A∈Ak

∏
ν∈I(A)

δc(Aν) ,

where
δc(A) = c(|A|)

∏
�,�′∈A

δγ�,γ�′

is the Ursell coefficients of the hard-core lattice gas (see: e.g. [43]). Therefore

L.h.s of (6.9) = E⊗M
y

M∑
γ1,...,γk=1

∑
A∈Ak

∏
ν∈I(A)

(
e2πi

P
�∈Aν

q�yγ�c(|Aν |)
∏

�,�′∈Aν

δγ�,γ�′

)

=
( M

|ΛL|
)k ∑

A∈Ak

∏
ν∈I(A)

[
c(|Aν |)δ(

∑
�∈Aν

q�)
]
. �

We will use the identity (6.9) to express P in (6.6) as a linear combination of products of delta
functions of the momenta and insert it into (6.7). After the limitL→ ∞, each term in the summation∑

σ

∑
A will be expressed by a Feynman graph. The precise definitions will be given in the next

Section.
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7 Graphical representation

Traditionally, the Feynman graphs consist of interaction vertices and particle lines among them.
In case of Gaussian random potentials, the interaction vertices are paired according to the Wick
theorem [16]. For non-Gaussian randomness, the non-vanishing higher order cumulants correspond
to joining several vertices [10]. In our case, the appearance of the non-trivial subsets are due to
selecting the non-repetition sequences. This requires us to define Feynman graphs in a more general
setup than usual. In this section we introduce the necessary graphical representation in full generality
and we will define the value of a Feynman graph, V ◦(A, σ), with permutation σ and partition A in
(7.21). The final result of this section is given in Proposition 7.2 at the end.

7.1 Circle graphs and their values

We start with an oriented circle graph with two distinguished vertices, denoted by 0, 0∗. The number
of vertices is N . The vertex set is V , the set of oriented edges is L(V). For v ∈ V we use the
notation v − 1 and v + 1 for the vertex right before and after v in the circular ordering. We also
denote ev− = (v−1, v) and ev+ = (v, v+1) the edge right before and after the vertex v, respectively.
In particular e(v+1)− = ev+. For each e ∈ L(V), we introduce a momentum we and a real number
αe associated to this edge. The collection of all momenta is denoted by w = {we : e ∈ L(V)} and
dw = ⊗edwe is the Lebesgue measure. We sometimes use the notation v ∼ e to indicate that an
edge e is adjacent to a vertex v.

Let P = {Pµ : µ ∈ I} be a partition of the set V \ {0, 0∗}

V \ {0, 0∗} =
⋃
µ∈I

Pµ ,

(all Pµ nonempty and pairwise disjoint) where I = I(P) is the index set to label the sets in the
partition. Let m(P) := |I(P)|. The sets Pµ are called P-lumps or just lumps. If two elements
v, v′ ∈ V \ {0, 0∗} belong to the same lump within a partition P, we denote it by v ≡ v ′ (mod P).
We assign a variable, uµ ∈ Rd, µ ∈ I(P), to each lump. We call them auxiliary momenta; they will
be needed for a technical reason. We always assume that the auxiliary momenta add up to 0∑

µ∈I(P)

uµ = 0 . (7.1)

The vector of auxiliary momenta is denoted by u := {uµ : µ ∈ I(P)}.
The set of all partitions of the vertex set V \ {0, 0∗} is denoted by PV . For any P ⊂ V , we let

L+(P ) := {(v, v + 1) ∈ L(V) : v + 1 �∈ P, v ∈ P}

denote the set of edges that go out of P , with respect to the orientation of the circle graph, and
similarly L−(P ) denote the set of edges that go into P . We set L(P ) := L+(P ) ∪ L−(P ).

For any ξ ∈ Rd we define the following product of delta functions

∆(P,w,u) := δ
(
ξ +

∑
e∈L±({0∗})

±we
) ∏
µ∈I(P)

δ
( ∑
e∈L±(Pµ)

±we − uµ

)
, (7.2)
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where u := {uµ : µ ∈ I(P)} ∈ Rd is a set of auxiliary momenta. The sign ± indicates
that momenta we is added or subtracted depending whether the edge e is outgoing or incoming,
respectively. The function ∆(· · · ) = ∆ξ(· · · ) depends on ξ, but we will mostly omit this fact from
the notation. All estimates will be uniform in ξ.

Summing up all arguments of these delta functions and using (7.1) we see that these delta func-
tions force the two momenta corresponding to the two edges adjacent to 0 to differ by ξ: we−we′ = ξ
for e ∈ L+({0}), e′ ∈ L−({0}).

As a motivation for these definitions, we mention that the lumps naturally arise from the con-
nected graph formula (Lemma 6.1). According to this formula, the Kirchhoff Law must be satisfied
for all lumps, i.e. the incoming and outgoing momenta must sum up to zero. This fact would be
described by the delta functions (7.2) with all uµ = 0. In certain recollision terms, however, the non-
repetition condition leading to Lemma 6.1 is not fully satisfied and the Kirchhoff Law breaks down
for a few lumps. The nontrivial auxiliary momenta will bookkeep this deviation from the Kirchhoff
Law (see [19] for more details). Finally, the shift by ξ at the vertex 0∗ in (7.2) will be used when
computing the Wigner transform in Fourier representation (2.10).

For each subset G ⊂ V \ {0, 0∗}, we define

NG(w) :=
∏
e∼0

|ψ̂0(we)|
∏

v∈V\{0,0∗}\G

|B̂(wev− − wev+)|
∏
v∈G

〈wev− − wev+〉−2d . (7.3)

In our application, the subset G collects those vertices, where the original potential decay |B̂(wev− −
wev+)| could not be explicitly kept along the estimates and this will happen only at a few places;
the size of G will be at most 8. For the purpose of this paper, i.e. for the proof of Theorem 5.2, we
will need only G = ∅, but for the analysis of the repetition terms in [19] we need the more general
definition.

Due to the support properties of B̂ and ψ̂0, we will see that all intermediate momenta we satisfy
|we| ≤ Nλ−δ . The maximal number of vertices in our graphs will be N ≤ 2K + 2 = O(λ−κ−δ),
therefore all intermediate momenta will be smaller than ζ := λ−κ−3δ. This justifies to define the
restricted Lebesgue measures

dµ(w) := 1(|w| ≤ ζ)dw , ζ := λ−κ−3δ, dµ(w) := ⊗edµ(we) . (7.4)

Moreover, each auxiliary momenta, uµ, will always be a sum (or difference) of differentwe momenta
(see (7.2)), therefore each of them always satisfies |uµ| ≤ O(λ−2κ−4δ). We will often take the
supremum of all possible auxiliary momenta and supu is always considered subject to this bound.

With these notations, we define, for any P ∈ PV and g = 0, 1, 2, . . ., the E-value of the parti-
tion

Eg(P,u,α) := λN−2 sup
G : |G|≤g

∫
dµ(w)

∏
e∈L(V)

1

|αe − ω(we) + iη| ∆(P,w,u)NG(w) . (7.5)

The prefactor λN−2 is due to the fact that in the applications all but the two distinguished vertices,
{0, 0∗}, will carry a factor λ. The E-value depends also on the parameters λ, η, but we will not
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specify them in the notation. In the applications, the regularization η will be mostly chosen as
η = λ2+κ.

We will also need a slight modification of these definitions, indicated by a lower star in the
notation:

E∗g(P,u,α) := λN−2 sup
G : |G|≤g

∫
dµ(w)

∏
e∈L(V)

e�∈L({0∗})

1

|αe − ω(we) + iη| ∆(P,w,u)NG(w) . (7.6)

The only difference is that the denominators carrying the momenta associated to edges that are
adjacent to 0∗ are not present in E∗g. We call E∗g the truncation of Eg. We will see that Feynman
diagrams arising from the perturbation expansion can naturally be estimated by quantities of the
form (7.5) or (7.6).

7.2 Feynman graphs

We apply this general setup to the following situation that we will call Feynman graph. Every
quantity in our perturbation expansion will be expressed by values of Feynman graphs that are
defined below.

For experts we mention that our Feynman graphs differ from those that one typically obtains
after averaging over a Gaussian disorder. In the latter, potential lines never appear as external lines
but only as pairing lines, and one can identify vertices connected by pairing lines so that the graph
becomes four–valent. In our case, the graph is still trivalent and has external potential lines, with
a corresponding dependence on momentum variables u. Also, averaging the disorder will not sim-
ply pair up lines but can also join more than two potential lines. which correspond to the higher
moments.

Consider the cyclically ordered set Vn,n′ := {0, 1, 2, . . . , n, 0∗, ñ′, ñ′ − 1, . . . , 1̃} and view this
as the vertex set of an oriented circle graph on N = n + n′ + 2 vertices. We set In := {1, 2, . . . n}
and Ĩn′ := {1̃, 2̃, . . . , ñ′} and the vertex set can be identified with Vn,n′ = In ∪ Ĩn′ ∪ {0, 0∗}.

The set of edges L(Vn,n′) is partitioned into L(Vn,n′) = L ∪ L̃ such that L contains the edges
between In ∪ {0, 0∗} and L̃ contains the edges between Ĩn′ ∪ {0, 0∗}.

Let Pn,n′ be the set of all partitions P on the set In ∪ Ĩn′ . The lumps of a partition containing
only one vertex will be called single lumps. The vertices 0 and 0∗ are not part of the partitions hence
they will not be considered single lumps. Let G = G(P) be the set of edges that go into a single
lump and let g(P) := |G(P)| be its cardinality. In case of n = n′, we will use the shorter notation
Vn = Vn,n, Pn = Pn,n etc. The Feynman graphs arising from the non-repetition terms will always
have n = n′ and no single lumps, g(P) = 0, but the more general definition will be needed for the
repetition terms in [19]. We remark that even in [19] we will always have

|n− n′| ≤ 2, |n− n′| ≤ g(P) ≤ 4, n, n′ ≤ K . (7.7)

We also introduce a functionQ that will represent the momentum dependence of the observable.
In our estimates, we will always bound Q in supremum norm; no decay or smoothness will be
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necessary. We will need extra conditions on the observable only to evaluate the ladder in the proof
of Theorem 5.3 (see [19] for details). Since Q will always appear linearly in our formulae, we can
assume, for convenience, that ‖Q‖∞ ≤ 1. General Q can be accommodated by a multiplicative
factor ‖Q‖∞ in the final estimate but it will not be carried along the proofs.

We define the following function to collect all potential terms:

M(w) :=
∏

e∈L∩G
[−θ(we)]

∏
e∈ eL∩G

[−θ(we)]
∏

e∈L\G
e�∼0∗

B̂(we − we+1)
∏

e∈ eL\G
e�∼0

B̂(we − we+1) (7.8)

× ψ̂(we0+)ψ̂(we0−)Q
[1
2
(we0∗− + we0∗+

)
]

with w := {we : e ∈ L ∪ L̃} and recalling that for any e ∈ L(V), the edge e+ 1 denotes the edge
succeeding e in the circular ordering.

The delta function ∆(P,w,u ≡ 0) ensures that the two momenta adjacent to each single lump
coincide. This holds even for ξ �= 0, recall that 0, 0∗ are not considered lumps. Therefore the
distribution M(w)∆(P,w,u ≡ 0) is supported on the regime with |we| ≤ ζ for all momenta we,
thanks to the support properties of ψ̂0, B̂ and to the control on the number of terms, n, n′ ≤ K (see
Section 7.1). In particular

M(w)∆(P,w,u ≡ 0)dw = M(w)∆(P,w,u ≡ 0)dµ(w) . (7.9)

Using the boundedness of θ and |ψ̂0(w)| ≤ C〈w〉−10d, we easily obtain

|M(w)|∆(P,w,u ≡ 0)dw ≤ Cg(P)NG(w)∆(P,w,u ≡ 0)dµ(w) , (7.10)

where G is the set of single lumps and g(P) = |G|, since the delta function also guarantees that there
is no additional decay at the vertices v ∈ G in NG(w) (the last product in (7.3) is a constant).

Let α, β ∈ R, P ∈ Pn,n′ and

V (P, α, β) := λn+n′+g(P)

∫
dw
∏
e∈L

1

α− ω(we) − iη

∏
e∈ eL

1

β − ω(we) + iη
(7.11)

×∆(P,w,u ≡ 0)M(w) .

Thanks to (7.9), the integration measure could be changed to dµ(w). The truncated version, V∗(P, α, β),
is defined analogously but the α and β denominators that correspond to e ∈ L({0∗}) are removed.

We set Y := λ−100 and define

V(∗)(P) :=
e2tη

(2π)2

∫ ∫ Y

−Y
dαdβ eit(α−β)V(∗)(P, α, β) (7.12)

and

E(∗)g(P,u) :=
e2tη

(2π)2

∫ ∫ Y

−Y
dαdβ E(∗)g(P,u,α) , (7.13)
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where α in E(∗)g(P,u,α) is defined as αe = α for e ∈ L and αe := β for e ∈ L̃. We will call these
numbers the V -value and E-value of the partition P, or sometimes, of the corresponding Feynman
graph. Strictly speaking, the V - and E-values depend on ξ through ∆ = ∆ξ. When this dependence
is important, we will make it explicit in the notation, e.g. V = Vξ. Both values depend on the choice
of Q as well. When necessary, the notations Vξ(P;Q), Eξ,g(P,u;Q) etc. will indicate this fact.

Clearly, by using (7.10), ∣∣V(∗)(P)
∣∣ ≤ (Cλ)g(P) E(∗)g(P,u ≡ 0) (7.14)

with g = g(P). We will use the notation E(∗)g(P) := E(∗)g(P,u ≡ 0).
As we will see in (6.2), for the graphical representation of the Duhamel expansion we will really

need

V ◦
(∗)(P) :=

e2tη

(2π)2

∫ ∫
R

dαdβ V(∗)(P, α, β) , (7.15)

i.e. a version of V(∗)(P) with unrestricted dα dβ integrations. (The circle superscript in V ◦ will refer
to the unrestricted version of V ). However, the difference between the restricted and unrestricted
V -values are negligible even when we sum them up for all partitions:

Lemma 7.1 Assuming that η ≥ λ2+4κ and (7.7), we have∑
P∈Pn,n′

∣∣∣V(∗)(P) − V ◦
(∗)(P)

∣∣∣ = O(λ5(n+n′)) . (7.16)

The same result holds if V(∗)(P) were defined by restricting the α, β-integral to any domain that
contains [−Y, Y ] × [−Y, Y ].

Proof. First we consider the case n, n′ ≥ 1. To estimate the difference, we consider the integra-
tion domain where either |α| ≥ Y or |β| ≥ Y . We assume, for definiteness, that |α| ≥ Y , and we
estimate all α denominators trivially,

1

|α− ω(we) − iη| ≤
C

〈α〉 ,

by using that |ω(we)| ≤ 1
2
w2
e + O(λ2) ≤ 1

2
Y + O(λ2) on the support of dµ(we). Then we estimate

all but the last β-denominators in (7.11) trivially by η−1〈β/Y 〉−1. Thus all we integrations are trivial
except the last one where we use (3.12). Thanks to the bounds |ψ̂(w)|, |B̂(w)| ≤ C〈w〉−10d, one
easily obtains that

|V (P, α, β)| ≤ (Cλ)n+n′+g(P)| log λ| log〈β〉
〈α〉n+1ηn′〈β/Y 〉n′〈β〉1/2 .

Therefore, we have∫
R

dβ

∫
{|α|≥Y }

dα |V (P, α, β)| ≤ (Cλ)n+n′+g(P)| log λ|
ηn′Y n− 1

2
−2δ

= O(λ6(n+n′))
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by using (7.7). Similar bound holds for the truncated values, V∗. Thus∣∣∣V(∗)(P) − V ◦
(∗)(P)

∣∣∣ = O(λ6(n+n′)) . (7.17)

Since the total number of partitions, |Pn,n′|, is smaller than (n + n′)n+n′
and in our applications

n, n′ ≤ K � λ−κ−2δ, we see that the restriction of the α, β-integral to any domain that contains
[−Y, Y ] × [−Y, Y ] has a negligible effect of order O(λ5(n+n′)) even after summing up all V -values.

If the condition n, n′ ≥ 1 is not satisfied, say the number of α-denominators is one (n = 0),
then we will not introduce the auxiliary variable α as in (6.2), because the

∫
dα integral would be

logarithmically divergent after taking the absolute value. In this case, we use the definition

V ◦(P) :=
etη

2π

∫
R

dβ e−itβV (P, β)

with

V ◦(P, β) := λn+n′+g(P)

∫ ( ∏
e∈L∪ eL

dwe

)∏
e∈ eL

1

β − ω(we) + iη

×eitω(w)∆(P,w,u ≡ 0)M(w) ,

directly, instead of V ◦ given in (7.15). Similar modifications hold for the other cases (n′ = 0, n ≥ 1
and n′ = n = 0) as well. In particular, in our expansion (including all the cases in [19]) only a
few such graphs may appear due to |n− n′| ≤ 2. The estimates leading to (7.16) in these cases are
similar but much easier than in the general case and they are left to the reader (the same estimates
were covered in [16] as well, without the renormalization of the dispersion relation). �

Sometimes we will use a numerical labelling of the edges (see Fig. 2). In this case, we label
the edge between (j − 1, j) by ej, the edge between (j̃, j̃ − 1) by ej̃ . At the special vertices 0, 0∗

we denote the edges as follows: en+1 := (n, 0∗), e
ñ′+1

:= (0∗, ñ′), e1 = (0, 1) and ee1 := (1̃, 0).

Therefore the edge set L = L(Vn,n′) is identified with the index set In+1 ∪ Ĩn′+1 and we set

pj := wej
, p̃j := we

ej
. (7.18)

These two notations will sometimes be used in parallel: the p, p̃ notation is preferred when dis-
tinction is needed between momenta on L and L̃ edges and the w notation is used when no such
distinction is necessary. Note that we always have

p1 − p̃1 = ξ . (7.19)

7.3 Non-repetition Feynman graphs

A partition P ∈ Pn of In ∪ Ĩn is called even if for any Pµ ∈ P we have |Pµ ∩ In| = |Pµ ∩ Ĩn|. In
particular, in an even partition there are no single lumps, G(P) = ∅.
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Figure 2: Vertex and edge labels

Let Sn be the set of permutations on In and let id be the identity permutation. Note that A ∈ An

and σ ∈ Sn, uniquely determine an even partition in P(A, σ) ∈ Pn, by I(P) := I(A) and Pµ :=
Aµ ∪ σ(Aµ).

Conversely, given an even partition P ∈ Pn, we can define its projection onto In, A := π(P) ∈
An, by I(A) := I(P) and Aµ := Pµ ∩ In. We let

Sn(P) := {σ ∈ Sn : P(π(P), σ) = P}

be the set of permutations that are compatible with a given even partition P. In other words,
σ ∈ Sn(P) if for each i ∈ In the pair (i, σ(i)) belongs to the same P-lump. Clearly

|Sn(P)| =
∏

µ∈I(P)

( |Pµ|
2

)
! =

∏
µ∈I(π(A))

|Aµ| ! . (7.20)

We will use the notation
V(∗)(A, σ, Q) := V(∗)(P(A, σ), Q) (7.21)

and similarly for E(∗)g and V ◦
(∗). In the proofs, Q will be omitted. We also introduce

c(A) :=
∏

ν∈I(A)

c(|Aν|) . (7.22)

With these notations we can state the representation of the non-repetition terms as a summation over
Feynman diagrams:

Proposition 7.2 With Q ≡ 1 and ξ = 0 we have

lim
L→∞

E′‖ψ′ nr
t,k ‖2

L =
∑
σ∈Sk

∑
A∈Ak

c(A)V ◦
ξ=0(A, σ, Q ≡ 1) (7.23)

and with Qξ(v) := Ô(ξ, v) we have

lim
L→∞

E′〈ÔL, Ŵ
ε
ψ′ nr

t,k
〉L =

∑
σ∈Sk

∑
A∈Ak

c(A)

∫
dξ V ◦

εξ(A, σ, Qξ) . (7.24)
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Figure 3: Ladder graph

Proof of Proposition 7.2. We insert (6.6) and (6.9) into (6.7) and we take the limit L → ∞.
We use that EM

[
M/|ΛL|

]k → 1 for any fixed k. We also replace every Riemann sum (3.23) with

integrals and we use ψ̂′
0 → ψ̂0. By recalling (7.19) and by choosing Q ≡ 1 in the definition (7.8),

we obtain (7.23). The proof of (7.24) is identical. �.

Proof of Theorem 5.2. We will prove only (5.1); the proof of (5.2) is analogous. Starting with
(7.23), we notice that the graph with the trivial partition A0 and with the identity permutation on Ik
gives the main term in Theorem 5.2 since

V (k) = V ◦
ξ=0(A0, id) .

This graph is called the ladder graph (Fig. 3). All other graphs will be negligible.
We first replace V ◦(· · · ) with V (· · · ); the error is negligible by Lemma 7.1. In Section 8 we

then estimate V (A, σ) for the trivial partition A = A0, where every lump has one element. The
result is Proposition 8.6. In this case we set V (σ) := V (A0, σ). In Section 9 we treat the general
case A �= A0. The final result of this section is Proposition 9.2. The proof of both propositions rely
on Theorem 8.4 that is the core of our method. Its proof is given separately in Section 10. Finally,
the proof of Theorem 5.2 follows from Proposition 9.2, together with (7.23), (7.16) and (6.10). �

We remark that the E- and V -values of the partitions depend on the parameters λ, t, ξ, ζ, k and
g; a fact that is not explicitly included in the notation. In Sections 8, 9 and 10 we will always assume
the following relations

η = λ2+κ, t = λ−2−κT, T ∈ [0, T0], K = [λ−δ(λ2t)], k < K, ζ = λ−κ−3δ, g ≤ 8
(7.25)

with a sufficiently small positive δ > 0 that is independent of λ but depends on κ. All estimates
will be uniform in ξ and in T ∈ [0, T0]. We mention that for the proof of Theorem 5.2 we need only
g = 0, but the more general case is used in [19].

8 Estimates on Feynman graphs without nontrivial lumps

We use the letters pj, p̃j , j ∈ Ik+1 for the momenta variables (see the convention at the end of
Section 7.2) and I(A0) = Ik for the index set of the trivial partition. In the following sections we
always assume Q ≡ 1.

We introduce the restricted version of M ◦ (see (6.8)) as

M(k,p, p̃) :=
e2tη

(2π)2

∫ ∫ Y

−Y
dαdβ ei(α−β)t

(
k+1∏
j=1

B̂(pj+1 − pj)

α− ω(pj) − iη

B̂(p̃j+1 − p̃j)

β − ω(p̃j) + iη

)
(8.1)
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and we also define the trivial estimate of M as

N(k,p, p̃) :=
e2tη

(2π)2

∫ ∫ Y

−Y
dαdβ

(
k+1∏
j=1

|B̂(pj+1 − pj)|
|α− ω(pj) − iη|

|B̂(p̃j+1 − p̃j)|
|β − ω(p̃j) + iη|

)
. (8.2)

The truncated versions of these quantities, denoted by M∗(k,p, p̃) and N∗(k,p, p̃), are defined by
removing the (k + 1)-th α and β denominators from the definitions (8.1), (8.2) but keeping all
numerators and all other denominators.

From the definition (7.11), we obtain

V(∗)(σ) = λ2k

∫ ∫
dpdp̃ M(∗)(k,p, p̃)∆ξ(σ,p, p̃,u ≡ 0)ψ̂0(p1)ψ̂0(p̃1) , (8.3)

E(∗)(σ,u) = λ2k

∫ ∫
dpdp̃ N(∗)(k,p, p̃)∆ξ(σ,p, p̃,u)ψ̂0(p1)ψ̂0(p̃1) (8.4)

with

∆ξ(σ,p, p̃,u) := δ(p̃k+1 − pk+1 + ξ)
k∏
�=1

δ
(
p�+1 − p� − (p̃σ(�)+1 − p̃σ(�)) − u�

)
.

Clearly |V(∗)(σ)| ≤ E(∗)g=0(σ,u ≡ 0) for any ξ (see (7.14)).

We introduce a convenient notation. For any (k + 1) × (k + 1) matrix M and for any vector of
momenta p = (p1, . . . pk+1), we let Mp denote the following (k + 1)-vector of momenta

Mp :=
( k+1∑
j=1

M1jpj ,

k+1∑
j=1

M2jpj, . . .
)
. (8.5)

Furthermore, we introduce the vector v = (v1, . . . , vk+1) as

v� := ξ + u1 + u2 + . . .+ u�−1, for all � = 1, 2, . . . , k + 1 . (8.6)

Note that vk+1 = ξ by (7.1).
Given a permutation σ ∈ Sk, we define a (k + 1) × (k + 1) matrix M = M(σ) as follows

Mij(σ) :=

⎧⎨⎩
1 if σ̃(j − 1) < i ≤ σ̃(j)
−1 if σ̃(j) < i ≤ σ̃(j − 1)
0 otherwise,

(8.7)

where, by definition, σ̃ is the extension of σ to a permutation of {0, 1, . . . , k + 1} by σ̃(0) := 0 and
σ̃(k + 1) := k + 1. In particular [Mp]1 = p1, [Mp]k+1 = pk+1.

It is easy to check that

∆ξ(σ,p, p̃,u) =
k+1∏
j=1

δ
(
p̃j − [Mp]j − [Mv]j

)
, (8.8)
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Figure 4: Domain of dependencies of the momenta

in other words, the matrix M encodes the dependence of the p̃-momenta on the p-momenta and
the v-momenta. This rule is transparent in the graphical representation of the Feynman graph: the
momentum pj appears in those p̃i’s which fall into its ”domain of dependence”, i.e. the section
between the image of the two endpoints of pj , and the sign depends on the ordering of these images
(Fig. 4).

Definition 8.1 A matrix M with entries 0,+1 or −1 is called tower matrix if in each column the
non-zero entries are consecutive and identical. The collection of these consecutive 1 or −1 entries
are called the tower of that column.

By construction, the matrix M(σ) is a tower matrix.

Proposition 8.2 For any permutation σ ∈ Sk the matrixM(σ) is
(i) invertible;
(ii) totally unimodular, i.e. each subdeterminant is 0 or ±1.

Proof. The invertibility follows from the fact that p and p̃ play a symmetric role in (8.8) if v ≡ 0,
ξ = 0, in particular M(σ)−1 = M(σ−1). It is easy to prove by induction on the size of the matrix
that any tower matrix is totally unimodular. �.

The following definition is crucial. It establishes the necessary concepts to measure the com-
plexity of a permutation.

Definition 8.3 (Valley, peak and slope) Given a permutation σ ∈ Sk let σ̃ be its extension. A point
(j, σ(j)), j ∈ Ik, on the graph of σ is called peak if σ̃(j − 1) > σ(j) < σ̃(j + 1), it is called valley
if σ̃(j − 1) < σ(j) > σ̃(j + 1), otherwise it is called slope. Additionally, the point (k + 1, k + 1) is
also called valley, but (0, 0) is not a peak.

Let I = {1, 2, . . . , k + 1} denote the set of row indices of M . This set is partitioned into three
disjoint subsets, I = Iv ∪ Ip ∪ Is, such that i ∈ Iv, Ip or Is depending on whether (σ̃−1(i), i) is
a valley, peak or slope, respectively. For i ∈ Ip the σ̃−1(i) and σ̃−1(i) + 1 columns of M are
called the walls of the valley (σ̃−1(i), i). Finally, an index i ∈ Iv ∪ Is is called ladder index if
|σ̃−1(i) − σ̃−1(i − 1)| = 1. The set of ladder indices is denoted by I� ⊂ I and their cardinality is
denoted by � = �(σ) := |I�|. The number of non-ladder indices,

deg(σ) := k + 1 − �(σ) , (8.9)
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Figure 5: Graph of a permutation

is called the degree of the permutation σ.
A maximal collection of consecutive ladder indices, i + 1, . . . , i + b ∈ I�, is called a ladder of

length b. The index i and i+ b are called the top and the bottom index of the ladder, respectively.
The set of bottom and top indices are denoted by Ib, It ⊂ {0, 1, . . . , k + 1}.

Remarks: (i) The terminology of peak, valley, slope, ladder comes from the graph of the per-
mutation σ̃ drawn in a coordinate system where the axis of the dependent variable, σ(j), is oriented
downward (see Fig. 5). The nonzero entries in the matrix M(σ) follow the same geometric pattern
as the graph: each downward segment of the graph corresponds to a column with a few consecutive
1’s, upward segments correspond to columns with (−1)’s.

(ii) By the definition of the ladder, the index i of the top of a ladder is not a ladder index.
Moreover, the permutation σ̃−1 restricted to (i, i+ 1, . . . , i+ b) is clearly a monotonic function.

(iii) All these index sets depend on the permutation σ but we usually omit this dependence from
the notation.

(iv) We note that for the special case of the identity permutation σ = id we have Ip = ∅,
Is = {1, 2, . . . , k}, Iv = {k + 1} and I� = {1, 2, . . . , k + 1}. In particular, deg(id) = 0 and
deg(σ) ≥ 2 for any other permutation σ �= id.

An example is shown on Fig. 5. The matrix corresponding to the permutation on this figure is
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the following (zero entries are left empty)

M(σ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1 −1 1
1 −1 1
1 −1 1
1 −1 1

1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 s/�
2 p
3 s/�
4 s
5 s/�
6 v/�
7 s
8 v/�

(8.10)

The numbers on the right indicate the column indices and the letters show whether it is peak/slope/valley
or ladder. In this case Ip = {2}, Iv = {6, 8}, Is = {1, 3, 4, 5, 7}. I� = {1, 3, 5, 6, 8}, It =
{0, 2, 4, 7}, Ib = {1, 6, 3, 8} and deg(σ) = 3. There are four ladders, three of them is of length one,
one is of length two.

Now we are ready to estimate |V (σ)| ≤ Eg=0(σ,u ≡ 0). The following theorem shows that
the degree of the permutation, deg(σ), measures the size of V (σ). The proof is the key step in our
method and it is given in Section 10.

Theorem 8.4 Assume (7.25) with κ < 2
10d+9

and let σ ∈ Sk. Then the E-value of the graph of the
trivial partition with permutation σ is estimated by

sup
u
E(∗)g(σ,u) ≤ C

(
λ

1
3
−( 5

3
d+ 3

2
)κ−O(δ)

)deg(σ)

| log λ|2 (8.11)

if λ� 1.

This theorem is complemented by the following combinatorial lemma.

Lemma 8.5 Let k ≤ O(λ−κ−δ), D ≥ 0 integer, and let γ > κ+ δ be fixed. Then∑
σ∈Sk

deg(σ)≥D

λγ deg(σ) ≤ O
(
λD(γ−κ−δ)

)
(8.12)

for λ� 1.

Since deg(σ) ≥ 2 if σ �= id, from Theorem 8.4, Lemma 8.5, g(P) = 0 and the estimate
|V (σ)| ≤ Eg=0(σ,u ≡ 0) we immediately obtain:

Proposition 8.6 Assuming (7.25) with κ < 2
10d+15

we have∑
σ∈Sk
σ �=id

sup
u

|V (σ)| ≤ O
(
λ

2
3
−( 10

3
d+5)κ−O(δ)

)
(8.13)

for λ� 1. �

35



Proof of Lemma 8.5. Notice that �(σ) = k + 1 only if σ = id, for all other permutations
�(σ) ≤ k − 1. We shall prove that, for any �,

#{σ ∈ Sk : �(σ) = �} ≤ (Ck)k−�+1 . (8.14)

Then (8.12) follows by recalling k − �(σ) + 1 = deg(σ) and k ≤ K = O(λ−κ−δ) and summing up
the geometric series ∑

σ∈Sk
deg(σ)≥D

λγdeg(σ) ≤
k+1∑
m=D

[
Cλ(γ−κ−δ)]m .

To prove (8.14), let σ be a permutation withm ladders of size b1, . . . , bm such that
∑

j bj = � and
bj ≥ 1. If we remove these ladder indices, we have k− �+ 1 indices in I \ I� = {i1, i2, . . . , ik−�+1}.
The permutation σ induces a unique permutation σ∗ ∈ Sk−�+1 on the indices of this set by σ∗(j) <
σ∗(j′) iff σ(ij) < σ(ij′).

Suppose that k+1 �∈ I�, then the number of allowed permutations σ∗ is (k−�)! since σ(k+1) =
k + 1 determines σ∗ on the last element.

Let I∗ := (I \ I�) ∪ {0}, then g := |I∗| = k − �+ 2. Clearly the top of any ladder belongs to I ∗

and each element of I∗ can be the top of at most one ladder, except k+1. We assign the length bj of
the ladder to its top and for simplicity, we assign the value zero to any other element of I ∗ \ {k+1}.
Thus we obtain numbers b1, . . . , bg−1 with

∑g−1
j=1 bj = � and bj ≥ 0.

If the permutation σ∗ and the numbers b1, . . . , bg−1 are given, then we have 2g−1 ways to recon-
struct the original permutation σ. To see this, first notice that the tops are identified by the condition
bj > 0 and the corresponding ladder in σ can grow either “to the right” or “to the left” from its bot-
tom point on the graph of σ. Therefore, the number of permutations σ ∈ Sk with � ladder indices is
bounded by

2g−1(k − �)! × #
{

(b1, b2, . . . , bg−1) :

g−1∑
j=1

bj = �, bj ≥ 0
}

≤ 2k−�+1(k − �)!

(
g − 2 + �

g − 2

)
≤ (Ck)k−�+1 .

The estimate for the case k + 1 ∈ I� is similar. �

9 Estimates on Feynman graphs with nontrivial lumps

In this section we estimate V (A, σ) for a general partition A. We start with a definition.

Definition 9.1 (i) Let A ∈ Ak. Set aν := |Aν |, ν ∈ I(A), to be the size of the ν-th lump. Let

S(A) :=
⋃

ν∈I(A)
aν≥2

Aν
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be the union of nontrivial lumps. The cardinality of this set, s(A) := |S(A)|, is called the degree
of the partition A.

(ii) Let A ∈ Ak and σ ∈ Sk. The number

q(A, σ) := max
{

deg(σ),
1

2
s(A)

}
(9.1)

is called the joint degree of the pair (σ,A) of the permutation σ and partition A.

The goal is the following generalization of Proposition 8.6 that includes summations over non-
trivial lumps as well.

Proposition 9.2 We assume (7.25). Let D and s be given integers, let q := max{D, 1
2
s}. For any

κ < 2
34d+39

we have

Ξ(k,D, s) :=
∑
σ∈Sk

deg(σ)≥D

∑
A∈Ak
s(A)≥s

sup
u,g≤8

E(∗)g(A, σ,u)|c(A)| ≤ C
(
λ

1
3
−( 17

3
d+ 13

2
)κ−O(δ)

)q
| log λ|2 . (9.2)

Proof of Proposition 9.2. The following lemma shows that any even partition P ∈ Pk can be
generated by a permutation with high degree, depending on the size of nontrivial lumps. The proof
will be given later.

Lemma 9.3 For any even partition P ∈ Pk there exists a compatible permutation σ̂ = σ̂(P) ∈
Sk(P) such that

deg(σ̂) ≥ 1

2
s(π(P)) . (9.3)

Corollary 9.4 Given σ ∈ Sk and A ∈ Ak, we have, for κ ≤ 2
34d+9

sup
u
E(∗)g(A, σ,u) ≤ C| logλ|2

(
λ

1
3
−( 17

3
d+ 3

2
)κ−O(δ)

)q(A,σ)

. (9.4)

Proof of Corollary 9.4. We define a permutation σ∗ := σ∗(A, σ) as σ∗ := σ if deg(σ) ≥ 1
2
s(A),

and σ∗ := σ̂(P(A, σ)) otherwise. By Lemma 9.3 we have deg(σ∗) = q(A, σ). Clearly P(A, σ) =
P(A, σ∗), in particular, E(∗)g(A, σ,u) = E(∗)g(A, σ

∗,u).
We wish to estimate the value of an arbitrary partition A by that of the trivial partition A0.

We can artificially break up lumps and using the auxiliary momenta to account for the additional
Kirchhoff rules. We describe this procedure in full generality for any circle graph. We will call it
Operation I because further similar operations will be introduced in the companion paper [19].

Operation I: Breaking up lumps

Consider a circle graph on N vertices (Section 7.1). Given a partition of the set V \ {0, 0∗},
P = {Pµ : µ ∈ I(P)} ∈ PV , we define a new partition P∗ by breaking up one of the lumps into
two smaller nonempty lumps. Let Pν = Pν′ ∪ Pν′′ with Pν′ ∩ Pν′′ = ∅ and P∗ = {Pν′, Pν′′, Pµ :
µ ∈ I(P) \ {ν}}. In particular I(P∗) = I(P) ∪ {ν ′, ν ′′} \ {ν} and m(P∗) = m(P) + 1.
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Lemma 9.5 With the notation above, we have

E(∗)g(P,u,α) ≤
∫
|r|≤Nζ

dr E(∗)g(P
∗,u∗(r, ν),α) ,

where the new set of momenta u∗ = u∗(r, ν) is given by u∗µ := uµ, µ ∈ I(P)\{ν} and u∗ν′ = uν−r,
u∗ν′′ = r. In our estimates we will always have N ≤ 2K and then

sup
u
E(∗)g(P,u,α) ≤ ΛE(∗)g sup

u
(P∗,u,α)

with Λ := [CKζ ]d = O(λ−2dκ−O(δ)) (see (4.7) and (7.4)).

Proof of Lemma 9.5. The break-up of the lump Pν corresponds to

δ
( ∑
e∈L±(Pν)

±we − uν

)
=

∫
dr δ

( ∑
e∈L±(Pν′ )

±we − uν + r
)
δ
( ∑
e∈L±(Pν′′ )

±we − r
)
. (9.5)

Note that L(Pν) ⊂ L(Pν′) ∪ L(Pν′′) and for any edge e ∈ (L(Pν′) ∪ L(Pν′′)) \ L(Pν), we inserted
an extra we − we in the left hand side of (9.5). Note that the property (7.1) on the sum of auxiliary
momenta is preserved. The integration in (9.5) can be restricted to |r| ≤ Nζ since |we| ≤ ζ for all
e. �

We return to the proof of Corollary 9.4. By applying the break-up operation not more than s(A)
times, and by using Lemma 9.5, we obtain

sup
u
E(∗)g(A, σ

∗,u) ≤ Λs(A) sup
u
E(∗)g(A0, σ

∗,u)

with Λ := [CKζ ]d. Then (9.4) immediately follows from s(A) ≤ 2q(A, σ) and from Theorem 8.4.
�

Proof of Lemma 9.3. For any σ ∈ Sk we define the set of internal ladder indices as

I∗� = I∗� (σ) := {i ∈ Ik : |σ̃−1(i− 1) − σ̃−1(i)| = |σ̃−1(i+ 1) − σ̃−1(i)| = 1} ⊂ I�

where σ̃ is the extension of σ as before. The indices i − 1, i + 1 are called the protectors of the
internal ladder index i ∈ I∗� . They ensure that the index i is neither the bottom nor the top index of
the ladder.

We first claim that for any σ ∈ Sk we have

k − |I∗� (σ)| ≤ 2deg(σ) (9.6)

To see this inequality, we first recall the definition of a ladder and its bottom and top indices from
Definition 8.3. Since every ladder has a unique bottom and top index, that are not internal ladder
indices, we see that the sets I∗� , Ib and It are disjoint subsets of {0, 1, . . . , k+ 1}, hence |I∗� |+ |It|+
|Ib| ≤ k + 2. Moreover |It| = |Ib|. Finally, notice that I� = I∗� ∪ Ib is a disjoint union, therefore
� = |I∗� | + |Ib| . From these three relations and deg(σ) = k − �+ 1, (9.6) follows.
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Next we show that there exists a compatible permutation σ̂ ∈ Sk(P),

I∗� (σ̂) ∩ σ̂(S(A)) = ∅ , (9.7)

where we set A := π(P) for simplicity. Combining this fact with I ∗� and σ̂(S(A)) ⊂ {1, 2, . . . , k}
and with (9.6), we will obtain (9.3).

To construct σ̂ satisfying (9.7), we apply a greedy algorithm. Since P is even, Sk(P) is
nonempty and we pick a σ0 ∈ Sk(P). If (9.7) is not satisfied for σ0, then some internal ladder
index i is in the image of a nontrivial lump A ∈ A; i = σ0(i

′), i′ ∈ A. Let j ′ ∈ A be another
element of this lump. Flip the permutation σ0 on these two elements, i.e. define a new permutation
σ1 such that σ1(i

′) := σ0(j
′) = j, σ1(j

′) := σ0(i
′) = i, otherwise σ1 := σ0. Clearly σ1 ∈ Sk(P),

σ1(s(A)) = σ0(s(A)). We claim that

|I∗� (σ1) ∩ σ1(S(A))| < |I∗� (σ0) ∩ σ0(S(A))| , (9.8)

i.e. the total number of internal ladder indices in nontrivial lumps decreased. Continuing this flipping
process for σ1 etc., we obtain a permutation σ̂ satisfying (9.7).

To see (9.8) we note that after the flip i is not an internal ladder index any more. This is clear if
j �= i− 1, i+ 1; in that case the points (σ̃−1(i− 1), i− 1) and (σ̃−1(i+ 1), i+ 1) have not changed
and they would uniquely fix the location of an internal ladder index in between. The preimage of the
index i has moved out from this position, σ−1

1 (i) �= σ−1
0 (i). The index j however would not become

internal ladder since σ−1
1 (j) = i′ is between σ−1

1 (i − 1) and σ−1
1 (i + 1), but j is not between i − 1

and i+1. It is easy to see that the fixed points (σ̃−1(i−1), i−1) and (σ̃−1(i+1), i+1) also prevent
any other indices from becoming an internal ladder index after the flip. This could only be possible
if due to the new point (σ̃−1

1 (j), j) = (σ̃−1
0 (i), j), one of the neighbors of j, say j+1, would become

an internal ladder index. It is easy to see that then j+1 must be equal to i−1 and the other protector
of the new internal ladder index j + 1 must be i. In this case i − 1 was already an internal ladder
index before the flip as well, so no new internal ladder was created.

A similar but simpler argument shows that if j = i − 1 or j = i + 1, the number of internal
ladder indices also decreases. This completes the proof of Lemma 9.3 �

We continue the proof of Proposition 9.2. Given σ ∈ Sk and A ∈ Ak, we recall the permutation
σ∗ = σ∗(A, σ) defined in the proof of Corollary 9.4. We also note that s(A) ≤ 2 deg(σ∗). Hence

Ξ(k,D, s) =
∑
A∈Ak
s(A)≥s

|c(A)|
∑

σ∗∈Sk
deg(σ∗)≥q

∑
σ∈Sk

σ∗(A,σ)=σ∗

sup
u
E(∗)g(A, σ,u) .

Note that σ ∈ Sk(P(A, σ∗)), so by (7.20) the summation over σ contributes by a factor of at most∏
ν aν ! and we obtain

Ξ(k,D, s) ≤
∑

σ∗∈Sk
deg(σ∗)≥q

∑
A∈Ak

s(A)≤2deg(σ∗)

( ∏
ν∈I(A)

aaν−2
ν aν !

)
sup
u
E(∗)g(A, σ

∗,u) .
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We also used the estimate (6.10). By using (9.4) and deg(σ∗) = q(A, σ), we obtain

Ξ(k,D, s) ≤
∑

σ∗∈Sk
deg(σ∗)≥q

(
Cλ

1
3
−( 17

3
d+ 3

2
)κ−O(δ)

)deg(σ∗) ∑
A∈Ak

s≤s(A)≤2deg(σ∗)

( ∏
ν∈I(A)

aaν−2
ν aν !

)
.

We introduce the notation
∗∑
f(aν) :=

∑
ν∈I(A)
aν≥2

f(aν) ,

∗∏
f(aν) :=

∏
ν∈I(A)
aν≥2

f(aν) .

First we fix the sizes of the nontrivial lumps aν ≥ 2. Given these sizes, the number of A
partitions is bounded by(

k

a1

)(
k − a1

a2

)(
k − a1 − a2

a3

)
. . . ≤ k!

(k −
∑∗ aν)!

∏∗ aν !
≤ k

P∗ aν∏∗ aν !
.

Recalling s(A) =
∑∗ aν , and that s(A) ≤ 2 deg(σ∗), we have

Ξ(k,D, s) ≤
∑

σ∗∈Sk
deg(σ∗)≥q

(Ck2λτ )deg(σ∗)
∑

aν :
P∗ aν≤2deg(σ∗)

( ∗∏
aaν−2
ν

)
(9.9)

with τ < 1
3
− (17

3
d+ 3

2
)κ. We use the bound aa−2 ≤ Ca−1(a− 1)!. To estimate the summation over

aν’s we use the following inequality. For any fixed m, H we have

#∑( ∗∏
(aν − 1)!

)
≤ (H − 1)! (9.10)

where the summation # is over all sequences (a1, a2, . . . , am) of positive integers at least 2, whose
sum is H . The proof of (9.10) is easily obtained by induction on m from

H−2∑
a=2

(a− 1)!(H − a− 1)! ≤
H−2∑
a=2

(H − 2)! < (H − 1)! .

Summing (9.10) over all H ≤ 2deg(σ∗) and m ≤ H/2, we obtain the bound∑
aν :

P∗ aν≤2deg(σ∗)

( ∗∏
aaν−2
ν

)
≤ 2
[
2deg(σ∗)

]
! ≤ (Ck)2deg(σ∗)

for the aν summation in (9.9) since deg(σ∗) ≤ k + 1 by definition.
In summary, we obtain from (9.9)

Ξ(k,D, s) ≤
∑
σ∈Sk

deg(σ)≥q

(Ck4λτ )deg(σ)

Recalling that k = O(λ−κ−δ), we can apply Lemma 8.5 with γ = τ −4(κ+ δ) as long as γ > κ+ δ.
For sufficiently small positive δ this gives the condition κ < 2

34d+39
in Proposition 9.2 and the

estimate (9.2). �
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10 Proof of Theorem 8.4

We set

E(M) := sup
ũ,ξ

λ2k

∫ ∫ Y

−Y
dαdβ

∫
dµ(p) |B(p)| |B(Mp + ũ)||ψ̂(p1)||ψ̂(p1 + ũ1)|

×
k+1∏
j=1

1

|α− ω(pj) − iη|
1

|β − ω([Mp + ũ]j) + iη| . (10.1)

The key step in the proof of Theorem 8.4 is the following Lemma:

Lemma 10.1 For any σ ∈ Sk we have

E(M(σ)) ≤
(
λ

1
3
−( 5

3
d+ 3

2
)κ−O(δ)

)deg(σ)

| log η|2 , (10.2)

where the matrixM(σ) was defined in (8.7) and the degree of the permutation, deg(σ), was defined
in (8.9).

From (7.13), (8.4), (8.8), clearly

sup
u
Eg=0(σ,u) ≤ e2tη

(2π)2
E(M(σ)) (10.3)

after integrating out all p̃j variables in (8.4) and by using p̃1 = p1 − ξ. The estimate (10.2) will then
complete the proof of Theorem 8.4 for g = 0.

The proof of Theorem 8.4 for other (but finitely many) g values follows exactly in the same way.
This requires to slightly redefine B(p) (see (6.5)) in the definition of E(M) by allowing the factor
〈pj+1 − pj〉−2d instead of B̂(pj+1 − pj) at a few places exactly as in the definition of NG (see (7.3)).
As we will see along the proof of (10.2), this change will require using the less precise bound (3.13)
with a = 0 and h(p− q) = 〈p− q〉−2d instead of the more accurate estimate (3.15) at most g times.
Each time we lose a constant factor compared with the proof for g = 0. Since g ≤ 8, this results
only in a constant factor. Finally, the proof for the truncated E-values requires to define a truncated
version of E(M), where the last product in (10.1) runs only up to j = k, i.e. the last α and β
denominators are not present. It will be clear from the proof of Lemma 10.1 that the same bound
holds for the truncated version of E(M) as well. �

10.1 Pedagogical detour

The size of the multiple integral in (10.1) heavily depends on the structure ofM = M(σ). Before we
go into the algorithm to evaluate this multiple integral, we present two calculations, that introduce
the techniques that we are going to use in the actual proof. The second calculation also provides the
bound (10.2), hence (8.11), for the case of the trivial permutation deg(σ) = 0.
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10.1.1 Method I. Pointwise bound

The most straightforward bound on (10.1) estimates all but one of the β-denominators by L∞ norm

sup
β,p,ũ,j

1

|β − ω([Mp + ũ]j) + iη| ≤ η−1 . (10.4)

It would be possible to estimate this denominator by Cλ−2 apart from a neighborhood of zero using
(3.7) and treat the |p| ∼ 0 regime separately. Here we choose the simplest argument and we do not
optimize for the best possible exponent κ.

We use (10.4) k times to obtain

E(M) ≤
(Cλ2

η

)k
sup
ũ

∫
dµ(pk+1)

〈pk+1 + ũk+1〉2d
∫ ∫ Y

−Y

dαdβ

|α− ω(pk+1) − iη||β − ω(pk+1 + ũk+1) + iη|

×
∫
. . .

∫
dp1 . . .dpk

k∏
j=1

|B̂(pj+1 − pj)|
|α− ω(pj) − iη| .

Here we used the following bound for any q = (q1, . . . , qk+1):

|B(q)||ψ̂0(q1)| ≤ Ck〈qk+1〉−2d (10.5)

to obtain the decay in p̃k+1 = pk+1 + ũk+1. We integrate out p1, p2, . . . , pk using (3.12), then we
perform the dα, dβ integrals and finally dpk+1 to obtain

E(M) ≤ (C| log λ|)k+2(λ2η−1)k . (10.6)

The estimate (10.6) is off by a factor (λ2η−1)k = (λ−κ)k because we did not use the stronger
estimate mentioned after (10.4). We also collected many logarithmic factors and the constant is not
optimal. We note that in the typical term k ∼ λ2t ∼ λ−κ � 1, so even an error Ck may not be
affordable. To improve this estimate, for a typical matrix M , we will not use the pointwise bound
(10.4) for all β-denominators. We will carefully select those β-denominators whose singularities
cannot overlap with other singularities, hence they can be integrated out at a | log η| expense instead
of η−1.

Before we explain this algorithm, we show another method to estimate E(M). It practically
estimates E(M) by E(I), i.e. by the ladder graph, that can be computed more precisely. The same
calculation will be important when evaluating embedded ladder graphs.

10.1.2 Method II. Successive integration scheme

We separate all but one α and β denominator by a Schwarz’ inequality. We obtain

E(M) ≤ λ2k sup
ũ

∫
dµ(p)

∫ ∫ Y

−Y

dαdβ

|α− ω(p1) − iη||β − ω(p1 + ũ1) + iη|

×
[
|ψ̂0(p1)|2

k+1∏
j=2

|B̂(pj − pj−1)|2
|α− ω(pj) − iη|2 + |ψ̂0(q1)|2

k+1∏
j=2

|B̂(qj − qj−1)|2
|β − ω(qj) + iη|2

]
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with the shorthand notation q := Mp+ ũ. By using that M is an invertible matrix with determinant
±1 (Proposition 8.2), the contributions of the two terms in the square bracket are identical up to
exchange of α and β. To estimate the first term, we use iteratively (3.15) and (3.13) (with a = 1/2)
to integrate out pk+1, pk, . . . , p2 (in this order):

λ2

∫ |B̂(pk+1 − pk)|2
|α− ω(pk+1) − iη|2dpk+1 ≤ (1 + Cλ1−12κ)

[
1 + λ−1|α− ω(pk)|1/2

]
(10.7)

λ2

∫ |B̂(pk − pk−1)|2
|α− ω(pk) − iη|2

[
1 + λ−1|α− ω(pk)|1/2

]
dpk ≤ (1 + Cλ1−12κ)

[
1 + λ−1|α− ω(pk−1)|1/2

]
(10.8)

etc. In the last step we use only (3.13) once for a = 0 and once for a = 1/2:

λ2

∫ |B̂(p2 − p1)|2
|α− ω(p2) − iη|2

[
1 + λ−1|α− ω(p2)|1/2

]
dp2 ≤ C . (10.9)

Then we integrate dα dβ and finally dp1 to obtain

E(M) ≤ C(1 + Cλ1−12κ)k| log λ|2 ≤ C| logλ|2 (10.10)

by using k ≤ K � λ−1+12κ as κ < 1/13.
We note that this method also gives a robust bound for the truncatedE-value, since the truncation

means that Lemma 3.3 is used only k − 1 times. Summarizing, we have proved

Lemma 10.2 We assume (7.25) and κ < 1/13. Then

sup
σ∈Sk

sup
u
E(σ,u) ≤ C| logλ|2 (10.11)

sup
σ∈Sk

sup
u
E∗(σ,u) ≤ Cλ2| log λ|2 . � (10.12)

10.2 Choice of the integration variables

Before we start the actual proof of Lemma 10.1, we explain the main idea. We use the combination
of Methods I and II. We will assume in the sequel that σ �= id. The lemma for the trivial σ = id
case has been proven in (10.10).

Note that each factor in the integrand in (10.1) is almost singular on a set of codimension one of
the form {α = Re ω(pj)} or {β = Re ω([Mp + ũ]j)} in the high dimensional space of integration,
(Rd)k+1 × R2. The singularities are regularized by η and Im ω and the two regularizations always
have the same sign. The matrix M may enhance the strength of these singularities by forcing these
“almost singularity” sets to overlap. For example, in the ladder diagram with ũ ≡ 0, we have p̃ ≡ p,
hence the singularity sets are pairwise identical if α = β. Therefore singularities of quadratic type
necessarily occur. It is expected that this is the only mechanism that creates relevant overlaps of
singularities. Hence, ideally, one would integrate out the ladder momenta with the precise bound
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(3.15). This would remove all denominators with indices j ∈ I� and the remaining integral should
be of O(λ2(k−�)) if σ �= id (and for σ = id it is O(1)) with possible logarithmic corrections.

However, the singularity sets of the remaining denominators may still intersect on higher codi-
mensional manifolds. These enhancements of singularities are expected to have contributions of
lower order, but their estimate is not easy. Note that every integration variable pj may appear in
many denominators. This interdependence renders the effective L1-estimate of each integral practi-
cally impossible. A Schwarz inequality (Method II) can remove all correlations between denomina-
tors, but the resulting L2-estimate is of the same order as the main (ladder) term and we would not
gain anything from the higher degree of the permutation σ.

The idea is to estimate many, but not all β-denominators in (10.1) in the trivial way (10.4). These
denominators are chosen in such a way that the remaining ones can be successively integrated out
without ever computing an integrand with more than two denominators. This choice is given by an
algorithmic procedure that we describe now.

We recall Definition 8.3 on partitioning the set of rows of M = M(σ). Let p := |Ip| be the
number of peaks. We will derive new matrices from M by removing certain rows and entries.
However, for convenience, we shall keep the original labelling of the rows (even after removing
some of them in between).

Step 1. Construct a (k+ 1− p)× (k+ 1) matrix M1 by removing all rows i ∈ Ip from M . Note
that M1 has no empty column and it is a tower matrix. Let I1 := I \ Ip denote the set of row indices
of M1.

Step 2. For each row h ∈ I1 in M1 we define a column index c(h) such that the bottom nonzero
entry of this column in M1 is in the row h. If (σ−1(h), h) was a slope then we have a unique
choice, if it was a valley then both σ−1(h) and σ−1(h) + 1 are possible; we choose one of them
arbitrarily if h �∈ I�. If h ∈ Iv ∩ I�, i.e., |σ̃−1(h) − σ̃−1(h− 1)| = 1, then choose c(h) := σ−1(h) if
σ̃−1(h) − σ̃−1(h − 1) = 1, and c(h) := σ−1(h) + 1 otherwise. The column indices {c(h) : h ∈
Iv ∪ Is} are called the pivot columns; the corresponding pj momenta will be used for integration.

The matrix M2 is constructed from M1 by zeroing the bottom nonzero entry of each pivot col-
umn. The set of row-indices of M2 is I1, the same as for M1. Let r = rank(M2). Consider those
columns that became empty in M2. In these columns there was only a single nonzero entry in M1,
so these are called single columns, their number is denoted by s. Note that these are not only the
columns c(h) of the ladder rows h ∈ I� in M , because the removal of the Ip rows can result in
additional single columns.

Step 3. Construct a full row-rank matrix M3 of dimension r × (k + 1) from M2 by selecting r
linearly independent rows. Let I3 ⊂ I1 be the set of indices of the rows in M3. These rows will
determine those β-denominators that are not estimated trivially by (10.4).

It trivially follows from the definition that M1,M2,M3 are tower matrices. Below we show the
matrices M1,M2 and M3 derived from the matrix M(σ) in (8.10). The boxed entries are the pivot
elements (h, c(h)), h ∈ I1 that are removed in M2. In this example, k = 7, p = 1, � = 5, s = 5,

44



r = 2 and the final index set I3 = {3, 4}.

M1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 −1 1
1 -1 1

1 -1 1

1 -1 1

1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
3
4
5
6
7
8

M2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1 −1 0
1 0 1
1 0 1
1 0 1

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
3
4
5
6
7
8

M3 :=

(
0 1 0 0 −1 0 0 0
0 1 0 0 0 0 1 0

)
3
4

A few inequalities follow from this construction.

Lemma 10.3 We have
r ≥ (k + 1 − p) − s , (10.13)

s ≤ �+ p , (10.14)

r ≥ v − 1 = p . (10.15)

From the inequalities (10.13)–(10.15), it follows that

r ≥ 1

3
(k + 1 − �) . (10.16)

Proof. Since the bottoms of the towers in the pivot columns all are located in different rows in
M1, M1 has full rank and thus rank(M1) = k + 1 − p. Furthermore, the towers in the nonempty
columns of M2 all become shorter exactly by one element, so their bottoms are still located in
different rows, thus these columns are independent. This proves (10.13).

For the proof of (10.14), we claim that, apart from the ladders, (i.e., h ∈ I� whose pivot column
c(h) is single in bothM andM1), each peak can create at most one extra single. Granting this claim,
we have proved (10.14). The last claim is obvious; a proof is given in the following.

Creating a single in M1 that was non-ladder in M requires removing the second to the bottom
nonzero element of that column, i.e. it requires that there be a peak (σ−1(p), p), p ∈ Ip right above of
the single that sits in row with index p+ 1. Because M is obtained from a permutation, the removal
of the row right above a peak removes the second to the bottom nonzero entry of two, one or zero
columns, depending whether (σ−1(p+1), p+1) is a valley, slope or peak, respectively. However, for
each valley only one wall can become single since only one of them was chosen as a pivot column.
Therefore every peak can increase the number of singles only by at most one.

To prove (10.15), notice that the non-pivot columns of the valleys (except the last valley (k +
1, k+1)) all have different height inM2. The relation v−1 = p follows from the fact that (k+1, k+1)
was defined to be a valley, but (0, 0) is not a peak. This concludes the proof. �
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10.3 Integration procedure

Our goal is to estimate (10.1) for M = M(σ) when σ �= id. We eliminate the β-denominators one
by one either by a trivialL∞-estimate or by integrating out a well-chosen pj variable. Unfortunately,
new denominators with point-like singularities arise along this way. This makes a generalization of
(10.1) necessary.

We start with defining

|||q||| := η + min{|q|, 1}, q ∈ Rd . (10.17)

This is not a norm, but it satisfies the triangle inequality, |||p + q||| ≤ |||p||| + |||q|||. For any index set
I ′ ⊂ I = {1, 2, . . . , k + 1} with 1 �∈ I ′, we define the function UI′ as the product of those potential
terms, |B̂|, in (10.1) that depend only on momenta {pj : j ∈ I ′}. More precisely,

UI′(p, ũ) :=

∣∣∣∣∣
∗∏
j

B̂(pj+1 − pj)

∗∏
j

B̂
(
[Mp + ũ]j+1 − [Mp + ũ]j

) ∣∣∣∣∣ ,
where the star indicates a product on a restricted index set. The first product is taken over all indices
j for which j, j + 1 ∈ I ′. The second product is taken over those j’s, for which Mj+1,b = Mj,b for
all b �∈ I ′.

For any |I ′| × (k + 1) matrix M , any ν integer and any ν × (k + 1) matrix E we define

E(I ′,M, E) := λ2k sup
ũ,v

∫ ∫ Y

−Y
dαdβ

∫ |ψ̂0(p1)||ψ̂0(p1 + ũ1)|dµ(p1)

|α− ω(p1) − iη| |β − ω(p1 + u1) + iη|

× sup
pj : j 
∈I′

sup
|α|,|β|≤Y

∫ ∏
j∈I′

dµ(pj)UI′(p, ũ)

ν∏
µ=1

1

|||[Ep + v]µ|||

×
(∏

j∈I′

1

|α− ω(pj) − iη|
1

|β − ω
(
[Mp + ũ]j

)
+ iη|

)
. (10.18)

Here {vµ : 1 ≤ µ ≤ ν} is an additional set of dummy momenta and Ep is defined analogously to
(8.5). The dα dβ integrations can be directly performed in (10.18), yielding a factor C| log λ|2 and
eliminating the propagators carrying momenta p1 and p̃1 = p1 + ũ1. The index 1 therefore plays a
special role. From the definition of M(σ) it follows that either 1 ∈ Ip ∪ I�, in particular 1 �∈ I3.

For each h ∈ I we will define an index set I (h) and matricesM (h), E (h) such that E(I (h),M (h), E (h))
is the intermediate value of the integral (10.18) after integrating out h momentum variables p i. We
will bookkeep this integration by removing the corresponding h rows from M and we will say in
short that these rows have been integrated out. On the matrix E (h) we perform a Gaussian row
operation.

Definition 10.4 Let B be a matrix and let bij be a non-zero entry. We say that the j-th column is
Gaussian-eliminated by bij if appropriate multiples of the i-th row is added to each rows to zero
out all but the bij entry in the j-th column.
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Definition 10.5 Let B be a matrix. We say that a matrix C is derived from B if it is obtained from
B by applying the following operations arbitrary many times:

(a) zeroing out some columns completely;
(b) removing some rows;
(c) Gaussian-eliminating a column by one of its nonzero element;
(d) swapping two rows.

The following Lemma is obvious:

Lemma 10.6 Any matrix derived from a totally unimodular matrix is also totally unimodular. �

Now we define M (h), I(h) and E (h). For any h ≥ 1, define M (h) to be the matrix M = M(σ)
with the first h rows, i = 1, 2, . . . , h, removed. Let I (1) := I = {1, 2, . . . , k + 1} and for h ≥ 2 let

I(h) := I \ {c(h′) : h′ ≤ h, h′ ∈ I3 ∪ I�}

be the index set of columns that have not been integrated out up to the h-th step.
For the definition of E (h), we will need a sequence of auxiliary matrices, F (h), of dimensions

r × (k + 1) that will be defined inductively below. The rows of F (h) will be naturally indexed by
I3. By definition, throughout this section E (h) will always denote the matrix consisting of the rows
of F (h) with index i ∈ I3, i ≤ h.

We define the initial matrix F (1) := M3. The initial E (1) matrix is then the trivial matrix with no
rows at all recalling that 1 �∈ I3. At every level h, there may be several F (h) matrices (and therefore
also several E (h) matrices) according to a ramification in the integration procedure. But each matrix
F (h) at level h will have linearly independent rows and will be derived from M3, in particular F (h)

will be totally unimodular. The same statements then obviously hold for each E (h).
Suppose that a collection of matrices F (h−1) at level (h−1) has been defined with the properties

above and we now define the matrices F (h) at level h ≥ 2.

Case 1: h ∈ I \ (I3 ∪ I�) (recall that I� denotes the set of ladder indices from Definition 8.3). In

this case I (h) = I(h−1) and we set F (h) := F (h−1). We estimate the denominator |β − ω([Mp +
ũ]h) + iη| trivially as in (10.4) and we obtain

E(I(h−1),M (h−1), E (h−1)) ≤ η−1E(I(h),M (h), E (h)) . (10.19)

Case 2: h ∈ I� \ I3. Let h, h+ 1, . . . , h+ τ − 1 ∈ I� \ I3 be a maximal sequence of consecutive
ladder indices, i.e. h + τ �∈ I� \ I3 with some τ ≥ 1. By the definition of the pivot indices,
c(h), c(h + 1), . . . , c(h + τ − 1) are consecutive numbers, which, for definiteness, are assumed to
be increasing (the other case is similar). Let c = c(h). From the fact that h, . . . , h + τ − 1 are
all consecutive ladder indices, it follows that [Mp]i = pi + w, for all c ≤ i ≤ c + τ − 1 with a
vector w = w(p) that does not depend on {pj : c ≤ j ≤ c + τ − 1}. Set F (k) := F (h−1) for all
k = h, h+ 1, . . . , h+ τ − 1. We claim

E(I(h−1),M (h−1), E (h−1)) ≤ Cλ−2τζdE(I(h+τ−1),M (h+τ−1), E (h+τ−1)) . (10.20)
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This inequality entails integrating out the variables pc, pc+1, . . . , pc+τ−1 (in this order) to remove the
rows h, h+ 1, . . . h+ τ − 1. This requires estimating the following integral

I := sup
α,β,w

sup
q,r

∫ c+τ−1∏
j=c

dµ(pj)

|α− ω(pj) − iη||β − ω(pj + w + ũj) + iη| (10.21)

×
c+τ−2∏
j=c

|B̂(pj+1 − pj)||B̂(pj+1 + ũj+1 − pj − ũj)|

Due to the ladder structure it is easy to see that UI(h−1) still contains all the B̂ factors shown in
(10.21).

After a Schwarz inequality we use the iterative integration scheme similar to (10.7)–(10.9) to
estimate∫ c+τ−1∏

j=c

|B̂(pj+1 − pj)|2
|α− ω(pj) − iη|2 dµ(pj)

≤
[
λ−2(1 + Cλ1−12κ)

]τ−1
∫

1 + λ−1|α− ω(pc)|1/2
|α− ω(pc) − iη|2 dµ(pc) .

In the last integral we use (3.13) with a = 0 and a = 1/2 after inserting a partition of unity
subordinated to unit cubes on the support of dµ(pc) (see (7.4)). Since τ ≤ K � λ1−12κ, this gives

I ≤ Cλ−2τζd . (10.22)

It would be possible to eliminate the additional ζ d factor by keeping one more B̂ factor that connects
the ladder to a non-ladder index in the definition of U , but we will not need it since we do not aim at
the optimal κ.

Case 3: h ∈ I3. We define Ah := A(h,F (h−1)) := {a : F (h−1)
a,c(h) �= 0} to be the set of row

indices with nonzero entry in the c(h) column of F (h−1). For any a ∈ Ah, the matrix F (h),a is
constructed from F (h−1) as follows:

(i) we Gauss-eliminate the c(h)-th column of F (h−1) by the entry F (h−1)
a,c(h) .

(ii) we remove the a-th row of F (h−1).

Note that these two steps result in completely zeroing out the c(h) pivot column that has been
altered when constructing M2.

From this construction and from Lemma 10.6 we immediately obtain

Lemma 10.7 Every matrix F (h),a has linearly independent rows and is derived from the matrixM3.
In particular, every F (h),a is totally unimodular and thus the same holds for E (h),a, defined to consist
of the rows of F (h),a with index at most h. �
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We will also need the following observation. Recall that in the matrix M1 the h-th entry was the
lowest in the c(h) column and this element was removed in M2 and inM3. Therefore the matrixM3

contains no non-zero entry in the c(h) column below the (h − 1)-th row. The same is true for the
F (h−1) matrix as well, since it follows from the inductive definition that up to the (h− 1) steps only
the first (h− 1) rows of the F matrices have been modified. Therefore all elements a ∈ Ah satisfies
a < h, in other words

{a : F (h−1)
a,c(h) �= 0} ⊂ I3 ∩ {1, 2, . . . , h− 1}. (10.23)

The following lemma will be proved in the Appendix.

Lemma 10.8 For λ3 ≤ η ≤ λ2 and for any non-empty index set A we have

sup
|α|,|β|≤Y

∫
1

|α− ω(p) − iη| |β − ω(r + p) + iη|
∏
a∈A

1

|||ra + p||| dµ(p)

≤ Cη−1/2ζd−3| log η|2
∑
a∈A

( ∏
a′∈A, a′ 
=a

1

|||ra − ra′ |||
) 1

|||r||| , (10.24)

assuming |r|, |ra| ≤ λ−1. If A = ∅, |r| ≤ λ−1, then we have the following improved bound:

sup
|α|,|β|≤Y

∫
dµ(p)

|α− ω(p) − iη| |β − ω(r + p) + iη| ≤
Cζd−3| log η|2

|||r||| . (10.25)

To estimate E(I (h−1),M (h−1), E (h−1)) for h ∈ I3, we integrate out p = pc(h) in the definition of
E(I(h−1),M (h−1), E (h−1)) (see (10.18)) by applying (10.24) with A := A(h,F (h−1)),

ra :=
1

E (h−1)
a,c(h)

( k+1∑
j=1

j �=c(h)

E (h−1)
aj pj + va

)
, r :=

1

Mh,c(h)

( k+1∑
j=1

j �=c(h)

Mhjpj + ũh

)
.

Note that any a ∈ A satisfies a ≤ h− 1 thanks to (10.23), hence the E (h−1)
aj entries are well defined.

The entries Mh,c(h) and E (h−1)
a,c(h) are ±1 by definition. and we also used the symmetry of ω(p).

In the special case c(h) = 1, the propagator |α − ω(pc(h)) − iη|−1 is not present (it has been
removed by the dα-integration) and the measure dµ(p1) is changed to |ψ̂0(p1)ψ̂0(p1 + ũ1)|dµ(p1).
However, the estimates (10.24), (10.25) still hold with these modifications on their left hand side,
the constant may depend on ψ̂0.

Focusing on the p dependence of the denominators, we notice that the denominators on the right
hand side of (10.24), without the η regularizations, correspond exactly to the procedure how F (h),a

was obtained from F (h−1). The dummy variables ũ,v are redefined but their precise new form is
irrelevant since we eventually take the supremum over all of them. This gives the estimate

E(I(h−1),M (h−1), E (h−1)) ≤ Cη−1/2ζd−3| log η|2
∑
a∈Ah

E(I(h),M (h), E (h),a) (10.26)
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for h ∈ I3.

Using inequalities (10.19), (10.20), (10.26), we shall subsequently eliminate all denominators
with β in (10.18) and reduce the integral to contain only α-denominators and point singularities. To
integrate out the remaining pj variables successively, we define, with a little abuse of notations,

E(J, ∅, E) := λ2k sup
v,ũ1

∫
dµ(p1)|ψ̂0(p1)||ψ̂0(p1 + ũ1)|

× sup
α

∫ ∏
j∈J
j �=1

dµ(pj)

|α− ω(pj) − iη|

ν∏
µ=1

1

|||[Ep + v]µ|||
UJ(p) (10.27)

for any J ⊂ I(1) and for any matrix E of dimensions ν × |J |. It may happen that after eliminiting
all β-denominators, no α denominator is left.

Lemma 10.9 For any index set J ⊂ I (1) and any totally unimodular ν×|J |matrix E with rank(E) =
ν, we have

E(J, ∅, E) ≤ Cλ2k
[
Cζd−2| log η|

]|J |
ν! (10.28)

Proof. We first estimate supp |UJ(p)| ≤ C |J |. Notice that the bound (10.28) is trivial if |J | = 0
or J = {1}. Otherwise, let j1, j2, . . . , j|J | be the elements of J \ {1}. We integrate out pj1 , pj2, . . .
one by one. If the corresponding j�-th column of E is empty, then we pick up only a C| log η| factor.
Otherwise, we use the inequality

sup
|α|≤Y

∫
1

|α− ω(p) − iη|
∏
a∈A

1

|||ra + p||| dµ(p) ≤ Cζd−2| log η|
∑
a∈A

( ∏
a′∈A
a′ �=a

1

|||ra − ra′|||
)
, (10.29)

whose proof is similar to that of Lemma 10.8 and it follows directly from (A.1), (A.3) and (A.7).
Notice that the remaining integrand is of the same form, but the index set J is reduced by one and
the E matrix has changed. After the first step, with the choice of p := pj1 , A := {a : Eaj1 �= 0} and

ra = (Ea,j1)−1
(∑

j 
=j1 Eajpj + va

)
in (10.29), we obtain

E(J, ∅, E) ≤ Cζd−2| log η|
∑
a∈A

E(J ′, ∅, E ′,a) ,

where J ′ := J \ {j1} and E ′,a is obtained from E by following a construction analogous to step (i)
and (ii) in Case 3 above. In other words, we first Gauss-eliminate the j1 column by the element Ea,j1
and finally we remove the a-th row. As before, it follows from the construction that E ′,a is totally
unimodular and of full rank. The number of terms in the summation is bounded by ν, the number of
rows in E . Clearly each E ′,a has ν − 1 rows. We continue this procedure until |J | = 0 or J = {1}
and we arrive at (10.28). �

Armed with these, we can proceed to the proof of Theorem 8.4 with estimating (10.2). We start
with the identity

E(M(σ)) = E(I(1),M (1), E (1)) . (10.30)
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We recall that I(1) = I , M (1) is the matrix M(σ) with the first row removed and E (1) is the trivial
matrix with no rows.

Introduce b := |I3 ∩ I�|. We perform the integration procedure above. The dαdβ integration
picks up a factor C| log η|2. Inequality (10.19) in Case 1 is used (k − r − � + b) times. Case 2
integrates out altogether � − b ladder indices, i.e. the sum of the τ ’s in the consecutive inequalities
(10.20) is �−b. Each time we apply Case 2, there is an index, h+τ , that belongs to I c� ∪I3. Therefore
the additional factor Cζd appears at most |Ic� ∪ I3| ≤ k + 1 − � + r times (recall |I3| = r). Finally,
Case 3 occurs r times. The number of terms in (10.26) is the cardinality of Ah and it is bounded by
k. Altogether we obtain

E(M(σ)) ≤ C| log η|2(η−1)k−r−�+b · λ−2(�−b)(Cζd)k+1−�+r · (Cη−1/2ζd−3| log η|2k)r

× sup
{
E(I(k+1), ∅, E) : E full row-rank and totally unimodular with ν rows

}
. (10.31)

Now we apply Lemma 10.9 with

J := I(k+1) = I(1) \ {c(h) : h ∈ I� ∪ I3}

and with the matrix E that is obtained by removing all the zero columns from E (k+1) that correspond
to the integrated out pi’s, i ∈ I(1) \ J . In particular, rank(E) = rank(E (k+1)) is the number of rows
in E .

To complete the proof of Theorem 8.4, we combine (10.30), (10.31), (10.28) with the bounds

|J | ≤ k + 1 − � , and ν ≤ k + 1 − � .

The latter inequality follows from the fact that ν is the number of rows in E that is equal to |I \ (I� ∪
I3)|. We also estimate ν! ≤ |J |! ≤ (Ck)k+1−� and we obtain

E(M(σ)) ≤ C| log η|2
(
Cλ2−dκ−O(δ)η−1k

)k+1−�(
Cλ2−2dκ−O(δ)η−1/2k

)r
(λ2η−1)b−r

≤ C| log η|2
(
Cλ−(d+1)κ−O(δ)

)k+1−�(
Cλ1−(2d+ 3

2
)κ−O(δ)

)r
,

where in the second inequality we used (7.25), b ≤ r and that δ is sufficiently small. Using r ≥
1
3
(k + 1 − �) from (10.16) and recalling that deg(σ) = k + 1 − �, we obtain (10.2). �

A Proof of Lemma 10.8.

First we reduce the multiple point singularities to one point singularity using the pointwise estimate∏
a∈A

1

|||p− ra|||
≤
∑
a∈A

1

|||p− ra|||
∏

a′∈A,a′ 
=a

1

|||ra − ra′ |||
, (A.1)

that can be proven by a simple induction on |A| using the triangle inequality for ||| · |||. Then the proof
of (10.24) will follow from

sup
α,β,r

∫
dµ(p)

|α− ω(p) + iη| |β − ω(p+ q) + iη|
1

|||p− r||| ≤
Cη−1/2ζd−3| log η|2

|||q||| . (A.2)

51



We can replace ω(p) with e(p) by using a straightforward resolvent expansion:

1

|α− ω(p) + iη| ≤
1

|α− λ2Θ(α) − e(p) + iη|

[
1 +

Cλ2|α− e(p)|1/2
|α− ω(p) + iη|

]
≤ C

|α̃− e(p) + iη| (A.3)

with α̃ = α−λ2 Re Θ(α). We used the boundedness and the Hölder continuity of Θ (3.5). Therefore
the proof of Lemma 10.8 is reduced to

Lemma A.1 For any |q| ≤ λ−1

I1 :=

∫
dµ(p)

|α− e(p) + iη| |β − e(p+ q) + iη| ≤ Cζd−3| log η|2
|||q||| (A.4)

I2 :=

∫
dµ(p)

|α− e(p) + iη| |β − e(p+ q) + iη|
1

|||p− r||| ≤
Cη−1/2ζd−3| log η|2

|||q||| (A.5)

uniformly in r, α, β.

Proof of Lemma A.1. The bound on I1 follows from a direct calculation and |q| ≤ λ−1

I1 ≤
∫ ζ

0

ud−1du

|α− u2/2 + iη|

∫ 1

−1

dc∣∣2β − (u2 + q2) − 2|q|uc
∣∣+ η

≤ Cζd−3| log η|2
|q| . (A.6)

If η ≤ |q|, then we use |||q||| ≤ |q| to obtain (A.4). If |q| ≤ η, then we use Schwarz inequality to
separate the denominators and use (3.14) to conclude the proof of (A.4).

To prove (A.5), we first establish the following bound uniformly in α:

J :=

∫
dµ(p)

|α− e(p) + iη|
1

|||p− r||| ≤ Cζd−2| log η| (A.7)

that follows by a direct calculation

J ≤ C

∫ ζ

0

ud−1du

|α− u2/2 + iη|

[
1 +

∫ 1

−1

dc∣∣u2 + r2 − 2|r|uc
∣∣1/2
]

≤ C(ζd−3 + ζd−2)

∫ ζ2

0

dv

|α− v + iη| ≤ Cζd−2| log η|

with u = |p|, v = u2/2 using
∣∣u2 + r2 − 2|r|uc

∣∣ ≥ |u|2|1 − c2| for |c| ≤ 1.
We can assume that |q| ≥ η, otherwise we can estimate the β-denominator in (A.5) trivially by

η−1 and we can conclude with (A.7). We then distinguish two regimes. If |||p− r||| ≥ η1/2, then we
estimate |||p− r||| trivially and we use (A.4).

Now let |||p− r||| ≤ η1/2. We split this regime to two subregimes, |q| ≤ 2|p| and |q| ≤ 2|p+ q|,
the union of whose clearly cover all values of p.
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In the regime, where |q| ≤ 2|p|, we estimate the square root of the β-denominator trivially and
use a Schwarz inequality to separate the remaining β denominator from the point singularity. The
corresponding contribution can be estimated by

Cη−1/2

∫
1(|q| ≤ 2|p|)
|α− e(p) + iη|

[
1

|β − e(p + q) + iη| +
1(|||p− r||| ≤ η1/2)

|||p− r|||2

]
dµ(p) .

The first term was already estimated in (A.4). The second term is bounded by the co-area formula
by

Cη−1/2

∫ ζ2

(|q|/2)2

Ja da

|α− a + iη| |a|1/2 , with Ja :=

∫
Σa

1(|||p− r||| ≤ η1/2)

|||p− r|||2 dν(p) ,

where Σa := {p : e(p) = a} and dν(p) being the surface measure. Clearly Ja ≤ | log η|. and we
obtain the estimate Cη−1/2| log η|2/|q|.

In the regime where |q| ≤ 2|p + q|, we shift p → p + q, r → r − q and interchange the role of
the α and β denominators in the above proof. This completes the proof of Lemma A.1. �.
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VIII 18, 5–114 (1909).

[41] I. Rodnianski, W. Schlag, Classical and quantum scattering for a class of long range ran-
dom potentials. Int. Math. Res. Not. 5 243–300 (2003).

[42] M. Salmhofer, C. Wieczerkowski, Positivity and Convergence in Fermionic Field Theory,
J. Stat. Phys. 99, 557–586 (2000)

[43] E. Seiler, Gauge Theories as a Problem of Constructive Quantum Field Theory and Sta-
tistical Mechanics. Lecture Notes in Physics, 159. Springer, (1982).

[44] W. Schlag, C. Shubin, T. Wolff, Frequency concentration and location lengths for the
Anderson model at small disorders. J. Anal. Math. 88 (2002), 173–220.

[45] H. Spohn: Derivation of the transport equation for electrons moving through random im-
purities. J. Statist. Phys.17 (1977), no. 6., 385-412.

[46] H. Spohn: The Lorentz process converges to a random flight process. Commun. Math.
Phys. 60 (1978), no. 3, 277-290.

55
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