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ON THE BOTT-BOREL-WEIL AND TOLPYGO THEOREMS

ALEXEI LEBEDEV

Abstract. An explicit basis for the cohomology of the maximal nilpotent subalgebra of
each simple finite dimensional Lie algebra with trivial coefficients is offered.

1. Introduction

Let the ground field be C and let all spaces encountered be of finite dimension. Let g be a
simple Lie algebra, n its maximal nilpotent subalgebra and M an irreducible g-module. The
famous Bott-Borel-Weil theorem states that

(1) dim H i(n; M) = |{w ∈ W | l(w) = i}|,
where W is the Weyl group of g and l(w) is the length of w, see [FH, OV]. In particular,
(1) does not depend on M . For applications of the BBW theorem in physics, see, e.g., [W];
see also [GL3].

Attempts to describe the cohomology of n with coefficients in n-modules were scanty; for
their review and an extension of these results, see [T].

In these two cases, namely, where M is either (A) the trivial module C or (B) the adjoint
one, the description of the BBW-type looks (and is) insufficient. Indeed, in these cases the
space H = ⊕H i is naturally endowed, respectively, with a supercommutative superalgebra
structure in case (A) or (in case (B)) with Lie superalgebra structure resembling the one
determined by the Nijenhuis bracket. Even if we know all the dimensions (1), this does not
describe the multiplication in the algebra; besides, even in the cases Tolpygo considered,
these dimensions (1) are not described sufficiently explicitly, except for i ≤ 3.

Our goal is the description of the algebra H = ⊕H i in terms of generators and defining
relations. Such a description might be, however, rather complicated.

In case (B), such a description was offered for several simple Lie algebras and superalgebras
g in [LLS, GL1].

Still, if the elements of a basis of H∗(n, C) are described in terms of the Weyl group
sufficiently lucidly, the more complicated description in terms of generators and defining
relations might be not needed for computational purposes (e.g., as the bracket of matrix
units for gl(n) suffices to determine the bracket in gl(n), whereas the presentation in terms
of Chevalley ([FH, GL4]) or Jacobson-Grozman-Leites ([GL2, LS]) or Sylvester-t’Hooft ([Sa])
generators, although needed in various problems, is much more complicated).

Here we elucidate the algebra structure of H
.
(n; C) and describe, up to a sign, the su-

percommutative superalgebra structure in the space spanned by the elements of the Weyl
group.
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2. Results

Now we will describe the cohomology with coefficients in the trivial module for a maximal
nilpotent subalgebra of any simple Lie algebra.

Let g be a simple Lie algebra, h its Cartan subalgebra, and ∆ the root system of g with
respect to h. Let ∆+ and ∆− be the sets of positive and negative roots; let n+ and n− be
the corresponding maximal nilpotent subalgebras of g. Let {eα | α ∈ ∆+} be a basis of n+

such that eα is of weight α with respect to h, and {fα | α ∈ ∆+} is the dual basis. Then for
any α, β ∈ ∆+, we have

(2) [eα, eβ] =

{
Nαβeα+β, where Nαβ ∈ C \ {0}, if α + β ∈ ∆+

0 if α + β �∈ ∆+

Let W be the Weyl group. For any v ∈ W , set

(3) ∆v = ∆+ ∩ v∆− = {α ∈ ∆+; v−1(α) < 0} and Cv =
∧

α∈∆v

fα.

Note that since the length of an element of the Weyl group is equal to the number of negative
roots it maps into positive ones, the degree of Cv is equal to the length of v.

2.1. Lemma. The set {Cv | v ∈ W} is a basis of H∗(n; C).

Proof. A cochain is said to be basic, if it can be represented as a wedge product of some
fαs. Since the Cv are basic cochains, not proportional to one another, they are linearly
independent.

Recall the definition of the differential in the cochain complex: for a given Lie algebra L
and its module V , and for any e ∈ L, ϕ1, . . . , ϕn ∈ V ∗, we set

(4) d(e ⊗ ϕ1 ∧ · · · ∧ ϕn) = de ∧ ϕ1 ∧ · · · ∧ ϕn +
n∑

k=1

(−1)ke ⊗ ϕ1 ∧ · · · ∧ dϕk ∧ · · · ∧ ϕn.

Since we consider cochains with coefficients in the trivial module, we get the following:

(5) d(ϕ1 ∧ · · · ∧ ϕn) =

n∑
k=1

(−1)k ⊗ ϕ1 ∧ · · · ∧ dϕk ∧ · · · ∧ ϕn

From (2) we get that

(6) dfα =
∑

β∈∆+; α−β∈∆+; β≺α−β

Nβ,α−βf
β ∧ fα−β,

where ≺ is any complete ordering on ∆+.
So we see that any basic cochain which appears with nonzero coefficient is the differential

dc of a basic cochain c, it can be obtained by replacing some fα in c by fβ ∧ fα−β for some
β ∈ ∆+ such that α − β ∈ ∆+. But, by definition (3), for such α, β and any v ∈ W , if
Cv contains fα, then it also contains at least one of the elements fβ and fα−β (because
otherwise v−1(β) > 0, v−1(α − β) > 0 and, therefore, v−1(α) > 0, and Cv can not contain
fα). Therefore, NO basic cochain can appear with nonzero coefficient in dCv, and dCv = 0.

Similarly, for any v ∈ W and any α, β ∈ ∆+ such that α − β ∈ ∆+, if Cv does not
contain fα, then it can not contain fβ and fα−β at the same time (otherwise v−1(β) < 0,
v−1(α−β) < 0, and therefore v−1(α) < 0, and hence Cv contains fα). So Cv can not appear
with nonzero coefficient in a differential of a cochain. Thus, no nontrivial linear combination
of the Cv is a coboundary.

According to the BBW theorem, dim H∗(n; C) = |W |. Thus, {Cv | v ∈ W} is indeed a
basis of H∗(n; C). �
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2.2. Lemma. For any v1, v2 ∈ W , exactly one of the following two conditions holds:
1) Cv1 ∧ Cv2 = ±Cv for some v ∈ W ;
2) Cv1 ∧ Cv2 is a coboundary.

Proof. Clearly, the two conditions can not hold simultaneously since Cv’s are not cobound-
aries.

Since Cv1 and Cv2 are basic cochains, Cv1 ∧ Cv2 is either 0 (and then it is a coboundary)
or a basic cochain. Suppose that Cv1 ∧Cv2 is a basic cochain, which is not equal to ±Cv for
any v ∈ W . Then it can be represented in the following way:

Cv1 ∧ Cv2 =
∑
v∈W

a(v)Cv + B for some a(v) ∈ C, B ∈ B∗(n, n).

Since, as it was shown in the proof of the previous Lemma, no Cv can appear with a
non-zero coefficient in decomposition of a coboundary w.r.t basic cochains, we see that the
coefficient at Cv in decomposition w.r.t basic cochains is equal to 0 for the left-hand side,
and equal to a(v) for the right-hand side. So all the a(v)’s are equal to 0, and Cv1 ∧ Cv2 =
B ∈ B∗(n, n). �

2.3. Proposition. For any v ∈ W , we have:
1) the weight of Cv is equal to vρ − ρ;
2) any element from C∗(n; C) of weight vρ − ρ is proportional to Cv.

Proof. 1) By definition (3), the weight of Cv is equal to

−
∑

α∈∆+∩v∆−
α =

1

2

(
−

∑
α∈∆+∩v∆−

α +
∑

α∈∆−∩v∆+

α

)
=

1

2

⎛
⎝−

∑
α∈∆+\∆+

α +
∑

α∈v∆+\v∆+

α

⎞
⎠ =

1

2

( ∑
α∈v∆+

α −
∑

α∈∆+

α

)
=

1

2

(
v
∑

α∈∆+

α −
∑

α∈∆+

α

)
= vρ − ρ.

2) This statement is implicitly contained in [T]. At the moment I can not offer a short
independent proof. �

Since the weight is additive on exterior products, we have proven the following

2.4. Statement. If Cv1 ∧ Cv2 = ±Cv for some v, v1, v2 ∈ W , then

(v1ρ − ρ) + (v2ρ − ρ) = vρ − ρ, i.e., v1ρ + v2ρ = vρ + ρ.

So from this statement and Proposition 2.3, we get the following multiplication rule of
basic elements in H∗(n; C):

1) If, for some v1, v2 ∈ W , there is no v ∈ W such that vρ =
v1ρ + v2ρ − ρ, then Cv1 ∧ Cv2 = 0.

2) If such v exists, then

a) if there is no α ∈ ∆+ such that v−1
1 α < 0 and v−1

2 α < 0 (i.e.,
Cv1 ∧ Cv2 �= 0), then Cv1 ∧ Cv2 = ±Cv;

b) Cv1 ∧ Cv2 = 0 otherwise.

Example. Let us consider g = Ar = sl(r + 1). In this case, the Weyl group is isomorphic
to the group Sr+1 of permutations of integers from 0 to r. Then we get the following:
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2.5. Corollary. 1) If for s1, s2 ∈ Sr+1, the numbers s−1
1 (i) + s−1

2 (i) − i, 0 ≤ i ≤ r, are not
the integers from 0 to r in some order, then Cs1 ∧ Cs2 = 0.

2) Otherwise, set

s =

(
0 1 . . . r

s−1
1 (0) + s−1

2 (0) s−1
1 (1) + s−1

2 (1) − 1 . . . s−1
1 (r) + s−1

2 (r) − r

)−1

.

If there are integers i, j such that 0 ≤ i < j ≤ r, s−1
1 (i) > s−1

1 (j) and s−1
2 (i) > s−1

2 (j), then
Cs1 ∧ Cs2 = 0; otherwise, Cs1 ∧ Cs2 = ±Cs.
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