Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Global well-posedness for the Schroedinger equation coupled to a nonlinear oscillator

Alexander Komech, and Andrew Komech

Global well-posedness for the Schrödinger equation coupled to a nonlinear oscillator

Alexander Komech *
Faculty of Mathematics, Vienna University, Wien A-1090, Austria
Andrew Komech ${ }^{\dagger}$
Mathematics Department, Texas A $\mathcal{G M}$ University, College Station, TX, USA

August 23, 2006

Abstract

The Schrödinger equation with the nonlinearity concentrated at a single point proves to be an interesting and important model for the analysis of long-time behavior of solutions, such as the asymptotic stability of solitary waves and properties of weak global attractors. In this note, we prove global well-posedness of this system in the energy space H^{1}.

1 Introduction and main results

We are going to prove the well-posedness in H^{1} for the nonlinear Schrödinger equation with the nonlinearity concentrated at a single point:

$$
\begin{equation*}
i \dot{\psi}(x, t)=-\psi^{\prime \prime}(x, t)-\delta(x) F(\psi(0, t)), \quad x \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where the dots and the primes stand for the partial derivatives in t and x, respectively. The equation describes the Schrödinger field coupled to a nonlinear oscillator. This equation is a convenient playground for developing the tools for the analysis of long-time behavior of solutions to $U(1)$-invariant Hamiltonian systems with dispersion. In particular, this equation is a convenient model for studying the asymptotic stability and global attraction. Let us mention that for the Klein-Gordon equation with the nonlinearity of the same type the global attraction was addressed in [KK06a], [KK06b].

We assume that

$$
\begin{equation*}
F(\psi)=-\nabla_{\psi} U(\psi), \quad \psi \in \mathbb{C} \tag{1.2}
\end{equation*}
$$

for some real-valued potential $U \in C^{2}(\mathbb{C})$, where ∇_{ψ} is the real derivative with respect to $(\operatorname{Re} \psi, \operatorname{Im} \psi)$. Equation (1.1) is a Hamiltonian system with the Hamiltonian

$$
\begin{equation*}
\mathscr{H}(\psi)=\int_{\mathbb{R}} \frac{\left|\psi^{\prime}(x)\right|^{2}}{2} d x+U(\psi(0)), \quad \psi \in H^{1}=H^{1}(\mathbb{R}) \tag{1.3}
\end{equation*}
$$

[^0]The Hamiltonian form of (1.1) is

$$
\begin{equation*}
\dot{\Psi}=J D \mathscr{H}(\Psi), \tag{1.4}
\end{equation*}
$$

where

$$
\Psi=\left[\begin{array}{c}
\operatorname{Re} \psi \tag{1.5}\\
\operatorname{Im} \psi
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

and $D \mathscr{H}$ is the Fréchet derivative on the Hilbert space H^{1}. The value of the Hamiltonian functional is conserved for classical finite energy solutions of (1.1). We assume that equation (1.1) possesses $U(1)$-symmetry, thus requiring that

$$
\begin{equation*}
U(\psi)=u\left(|\psi|^{2}\right), \quad \psi \in \mathbb{C} \tag{1.6}
\end{equation*}
$$

It then follows that $F(0)=0$ and $F\left(e^{i s} \psi\right)=e^{i s} F(\psi)$ for $\psi \in \mathbb{C}, s \in \mathbb{R}$, and that

$$
\begin{equation*}
F(\psi)=a\left(|\psi|^{2}\right) \psi, \quad \psi \in \mathbb{C}, \quad \text { where } \quad a(\cdot)=2 u^{\prime}(\cdot) \in \mathbb{R} . \tag{1.7}
\end{equation*}
$$

This symmetry implies that $e^{i \theta} \psi(x, t)$ is a solution to (1.1) if $\psi(x, t)$ is. According to the Nöther theorem, the $U(1)$-invariance leads (formally) to the conservation of the charge, given by the functional

$$
\begin{equation*}
Q(\psi)=\frac{1}{2} \int_{\mathbb{R}}|\psi|^{2} d x \tag{1.8}
\end{equation*}
$$

We also assume that $U(\psi)$ is such that

$$
\begin{equation*}
U(z) \geq A-B|z|^{2} \quad \text { with some } \quad A \in \mathbb{R}, \quad B>0 . \tag{1.9}
\end{equation*}
$$

We will show that equation (1.1) is globally well-posed in H^{1}. We will consider the solutions of class $\psi \in C_{b}(\mathbb{R} \times \mathbb{R})$. All the derivatives in equation (1.1) are understood in the sense of distributions.

Theorem 1.1 (Global well-posedness). Let the conditions (1.2), (1.6) and (1.9) hold with $U \in C^{2}(\mathbb{C})$. Then
(i) For any $\phi \in H^{1}(\mathbb{R})$, the equation for (1.1) with the initial data $\left.\psi\right|_{t=0}=\phi$ has a unique solution $\psi \in C\left(\mathbb{R}, H^{1}(\mathbb{R})\right)$.
(ii) The values of the charge and energy functionals are conserved:

$$
\begin{equation*}
Q(\psi(t))=Q(\phi), \quad \mathscr{H}(\psi(t))=\mathscr{H}(\phi), \quad t \in \mathbb{R} \tag{1.10}
\end{equation*}
$$

(iii) There exists $\Lambda(\phi)>0$ such that the following a priori bound holds:

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\|\psi(t)\|_{H^{1}} \leq \Lambda(\phi)<\infty . \tag{1.11}
\end{equation*}
$$

(iv) The map $\mathbf{U}: \psi(0) \mapsto \psi$ is continuous from H^{1} to $L^{\infty}\left([0, T], H^{1}(\mathbb{R})\right)$, for any $T>0$.

Theorem 1.2. Under conditions of Theorem 1.1, $\psi \in C^{(1 / 4)}(\mathbb{R} \times \mathbb{R})$.

Let us give the outline of the proof. We need a small preparation first: We show that, without loss of generality, it suffices to prove the theorem assuming that U is uniformly bounded together with its derivatives. Indeed, the a priori bounds on the L^{∞}-norm of ψ imply that the nonlinearity $F(z)$ may be modified for large values of $|z|$. Then we will prove the existence and uniqueness of the solution $\psi \in C_{b}(\mathbb{R} \times[0, \tau])$, for some $\tau>0$. This is accomplished in Section 2.

In Section 3, we construct approximate solutions $\psi_{\epsilon} \in C_{b}\left(\mathbb{R}, H^{1}(\mathbb{R})\right)$ that are solutions to a regularized problem (the δ-function substituted by its smooth approximations $\rho_{\epsilon}, \epsilon>0$). On one hand, the approximate solutions have their energy and charge conserved. On the other hand, we will show in Section 4 that the approximate solutions converge to $\psi(x, t)$ uniformly for $|x| \leq R, 0 \leq t \leq \tau$.

In Section 5, we use the uniform convergence of approximate solutions to conclude that $\psi \in L^{\infty}\left([0, \tau], H^{1}(\mathbb{R})\right)$ and moreover that ψ could be extended to all $t \geq 0$. Then we show that the energy and the charge are conserved. We will use these conservations to extend the solution $\psi(x, t)$ for $t \in \mathbb{R}$. Then we prove that $\psi \in C\left(\mathbb{R}, H^{1}(\mathbb{R})\right)$.

In Section 6 , we study the Hölder continuity in time, showing that $\psi \in C^{(1 / 4)}(\mathbb{R} \times \mathbb{R})$.

2 Local well-posedness in C_{b}

Lemma 2.1. A priori bound (1.11) follows from (1.9) and the energy and charge conservation (1.10).

Proof. Let $A \in \mathbb{R}, B>0$ be constants from (1.9). Then for $\psi \in H^{1}$,

$$
\begin{align*}
& \left(2 B^{2}+\frac{1}{2}\right) Q(\psi)+\mathscr{H}(\psi) \geq\left(B^{2}+\frac{1}{4}\right)\|\psi\|_{L^{2}}^{2}+\frac{1}{2}\left\|\psi^{\prime}\right\|_{L^{2}}^{2}+A-B|\psi(0)|^{2} \\
& \geq\left(B^{2}+\frac{1}{4}\right)\|\psi\|_{L^{2}}^{2}+\frac{1}{2}\left\|\psi^{\prime}\right\|_{L^{2}}^{2}+A-B^{2}\|\psi\|_{L^{2}}^{2}-\frac{1}{4}\left\|\psi^{\prime}\right\|_{L^{2}}^{2} \geq \frac{1}{4}\|\psi\|_{H^{1}}^{2}+A . \tag{2.1}
\end{align*}
$$

The first inequality follows from (1.9), while the second one holds since $|\psi(0)|^{2} \leq B\|\psi\|_{L^{2}}^{2}+$ $\frac{1}{4 B}\left\|\psi^{\prime}\right\|_{L^{2}}^{2}$ by the Fourier representation $\psi(0)=\frac{1}{2 \pi} \int \hat{\psi}(k) d k$. Obviously, (2.1) and (1.10) imply the inequality (1.11), with

$$
\begin{equation*}
\Lambda(\phi)=\sqrt{\left(8 B^{2}+2\right) Q(\phi)+4 \mathscr{H}(\phi)-4 A} . \tag{2.2}
\end{equation*}
$$

Lemma 2.2. Let us assume that Theorem 1.1 is true for the nonlinearities U that satisfy the following additional condition: for $k=0,1,2$ there exist $U_{k}<\infty$ so that

$$
\begin{equation*}
\sup _{z \in \mathbb{C}}\left|\nabla^{k} U(z)\right| \leq U_{k}, \quad k=0,1,2 \tag{2.3}
\end{equation*}
$$

Then Theorem 1.1 is also true without this additional condition.
Proof. Fix a nonlinearity U that does not necessarily satisfy (2.3). For a particular initial data $\phi \in H^{1}(\mathbb{R})$ in Theorem 1.1, we choose $\widetilde{U}(z) \in C^{2}(\mathbb{C})$ so that $\widetilde{U}(z)=\widetilde{U}(|z|)$ for $z \in \mathbb{C}$
and $\widetilde{U}(z)=U(z)$ for $|z| \leq \Lambda(\phi)$, where $\Lambda(\phi)$ is defined by (2.2). We can choose \widetilde{U} so that it satisfies (1.9) with the same A, B as U does, and also satisfies the uniform bounds

$$
\sup _{z \in \mathbb{C}}\left|\nabla^{k} \widetilde{U}(z)\right|<\infty, \quad k=0,1,2 .
$$

By the assumption of the Lemma, Theorem 1.1 is true for the nonlinearity $\widetilde{F}=-\nabla \widetilde{U}$ instead of $F=-\nabla U$. Hence, there is a unique solution $\psi(x, t) \in L^{\infty}\left(\mathbb{R}, H^{1}\right) \cap C_{b}(\mathbb{R} \times \mathbb{R})$ to the equation

$$
i \dot{\psi}(x, t)=-\psi^{\prime \prime}(x, t)-\delta(x) \widetilde{F}(\psi(0, t)),
$$

with $\left.\psi\right|_{t=0}=\phi$. By Lemma 2.1, ψ satisfies the a priori bound (1.11) with $\Lambda(\phi)$ defined by (2.2). This bound implies that $|\psi(0, t)| \leq \Lambda(\phi)$ for $t \in \mathbb{R}$. Therefore, $\widetilde{F}(\psi(0, t))=F(\psi(0, t))$ for $t \in \mathbb{R}$, and $\psi(x, t)$ is also a solution to (1.1) with the nonlinearity $F=-\nabla U$.

From now on, we shall assume in the proof of Theorem 1.1 that the bounds (2.3) hold true.

Lemma 2.3. (i) Let $\phi \in H^{1}:=H^{1}(\mathbb{R})$. There exists $\tau>0$ that depends only on U_{2} in (2.3) so that there is a unique solution $\psi \in C_{b}(\mathbb{R} \times[0, \tau])$ to equation (1.1) with the initial data $\left.\psi\right|_{t=0}=\phi$.
(ii) The map $\phi \mapsto \psi$ is continuous from H^{1} to $C_{b}(\mathbb{R} \times[0, \tau])$.

Proof. Let us denote the dynamical group for the free Schrödinger equation by

$$
\begin{equation*}
\mathbf{W}_{t} \phi(x)=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} e^{i \frac{|x-y|^{2}}{2 t}} \phi(y) d y, \quad x \in \mathbb{R} . \tag{2.4}
\end{equation*}
$$

For its Fourier transform, we have:

$$
\begin{equation*}
\mathcal{F}_{x \rightarrow k}\left[\mathbf{W}_{t} \phi(x)\right](k)=e^{i k^{2} t} \hat{\phi}(k), \quad k \in \mathbb{R} . \tag{2.5}
\end{equation*}
$$

Then the solution ψ to (1.1) with the initial data $\left.\psi\right|_{t=0}=\phi$ admits the Duhamel representation

$$
\begin{equation*}
\psi(x, t)=\mathbf{W}_{t} \phi(x)=\mathbf{W}_{t} \phi(x)+\mathbf{Z} \psi(x, t), \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{Z} \psi(x, t)=-\int_{0}^{t} \mathbf{W}_{s} \delta(x) F(\psi(0, t-s)) d s=-\int_{0}^{t} \frac{e^{\frac{x^{2}}{2 s}}}{\sqrt{2 \pi s}} F(\psi(0, t-s)) d s \tag{2.7}
\end{equation*}
$$

The Fourier representation (2.5) implies that $\mathbf{W}_{t} \phi(x) \in C_{b}\left(\mathbb{R}, H^{1}\right) \subset C_{b}(\mathbb{R} \times \mathbb{R})$. Further, we compute for $\psi_{1}, \psi_{2} \in C_{b}(\mathbb{R} \times[0, \tau])$:

$$
\begin{array}{r}
\left|\mathbf{Z} \psi_{2}(x, t)-\mathbf{Z} \psi_{1}(x, t)\right| \leq \int_{0}^{t} \frac{\left|F\left(\psi_{2}(0, t-s)\right)-F\left(\psi_{1}(0, t-s)\right)\right|}{\sqrt{2 \pi s}} d s \\
\leq U_{2} \sqrt{t} \sup _{0 \leq s \leq t}\left|\psi_{2}(s)-\psi_{1}(s)\right|, \tag{2.9}
\end{array}
$$

where we used (2.3) with $k=2$. For definiteness, we set

$$
\begin{equation*}
\tau=\frac{1}{4 U_{2}^{2}} \tag{2.10}
\end{equation*}
$$

Then the map $\psi \mapsto \mathbf{W}_{t} \phi+\mathbf{Z} \psi$ is contracting in the space $C_{b}(\mathbb{R} \times[0, \tau])$. It follows that equation (2.6) admits a unique solution $\psi \in C_{b}(\mathbb{R} \times[0, \tau])$, proving the first part of the theorem. The second part of the theorem also follows by contraction.

3 Regularized equation

We proved that there is a unique solution $\psi(x, t) \in C([0, \tau] \times \mathbb{R})$. Now we are going to prove that $\psi \in L^{\infty}\left(\mathbb{R}_{+}, H^{1}\right)$ and moreover $\|\psi(t)\|_{H^{1}}$ is bounded uniformly in time.

Let us fix a family of functions $\rho_{\epsilon}(x)$ approximating the Dirac δ-function. We pick $\rho_{1}(x) \in C_{0}^{\infty}[-1,1]$, nonnegative, and such that $\int_{\mathbb{R}} \rho_{1}(x) d x=1$, and define

$$
\begin{equation*}
\rho_{\epsilon}(x)=\frac{1}{\epsilon} \rho_{1}\left(\frac{x}{\epsilon}\right), \quad \epsilon \in(0,1) \tag{3.1}
\end{equation*}
$$

so that

$$
\operatorname{supp} \rho_{\epsilon}(x) \subseteq[-\epsilon, \epsilon], \quad \rho_{\epsilon}(x) \geq 0, \quad \int_{\mathbb{R}} \rho_{\epsilon}(x) d x=1
$$

Consider the smoothed equation with the "mean field interaction"

$$
\begin{equation*}
i \dot{\psi}(x, t)=-\Delta \psi(x, t)-\rho_{\epsilon}(x) F\left(\left\langle\rho_{\epsilon}, \psi(t)\right\rangle\right), \tag{3.2}
\end{equation*}
$$

where

$$
\left\langle\rho_{\epsilon}, \psi(t)\right\rangle=\left\langle\rho_{\epsilon}(\cdot), \psi(\cdot, t)\right\rangle=\int_{\mathbb{R}} \rho_{\epsilon}(x) \psi(x, t) d x
$$

Clearly, equation (3.2) is the Hamiltonian equation, with the Hamilton functional

$$
\begin{equation*}
\mathscr{H}_{\epsilon}(\psi)=\int \frac{|\nabla \psi|^{2}}{2} d x+U\left(\left\langle\rho_{\epsilon}, \psi\right\rangle\right) \tag{3.3}
\end{equation*}
$$

The Hamiltonian form of (3.2) is (cf. (1.4))

$$
\begin{equation*}
\dot{\Psi}_{\epsilon}=J D \mathscr{H}_{\epsilon}\left(\Psi_{\epsilon}\right) . \tag{3.4}
\end{equation*}
$$

The solution ψ_{ϵ} to (3.2) with the initial data $\left.\psi_{\epsilon}\right|_{t=0}=\phi$ admits the Duhamel representation

$$
\begin{equation*}
\psi_{\epsilon}(x, t)=\mathbf{W}_{t} \phi(x)+\mathbf{Z}_{\epsilon} \psi_{\epsilon}(x, t) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{Z}_{\epsilon} \psi_{\epsilon}(x, t)=-\int_{0}^{t} \mathbf{W}_{s} \rho_{\epsilon}(x) F\left(\left\langle\rho_{\epsilon}, \psi_{\epsilon}(t-s)\right\rangle\right) d s \tag{3.6}
\end{equation*}
$$

Lemma 3.1 (Local well-posedness). (i) For any $\epsilon \in(0,1)$, there exists $\tau_{\epsilon}>0$ that depends on ϵ and on U_{2} from (2.3) so that there is a unique solution $\psi_{\epsilon} \in C_{b}\left(\left[0, \tau_{\epsilon}\right], H^{1}\right)$ to equation (3.2) with $\left.\psi_{\epsilon}\right|_{t=0}=\phi$.
(ii) For each $t \leq \tau_{\epsilon}$, the map $\mathbf{U}_{\epsilon}(t): \phi=\psi_{\epsilon}(0) \mapsto \psi_{\epsilon}(t)$ is continuous in H^{1}.
(iii) The values of the functionals \mathscr{H}_{ϵ} and Q are conserved in time.

Proof. (i) For $\psi_{1}, \psi_{2} \in C_{b}\left(\left[0, \tau_{\epsilon}\right], H^{1}\right)$, we compute:

$$
\begin{aligned}
& \left\|\mathbf{Z}_{\epsilon} \psi_{2}(\cdot, t)-\mathbf{Z}_{\epsilon} \psi_{1}(\cdot, t)\right\|_{H^{1}} \\
& =\left\|\int_{0}^{t} \mathbf{W}_{s} \rho_{\epsilon} F\left(\left\langle\rho_{\epsilon}, \psi_{2}(t-s)\right\rangle\right)-F\left(\left\langle\rho_{\epsilon}, \psi_{1}(t-s)\right\rangle\right) d s\right\|_{H^{1}} \\
& \leq \int_{0}^{t}\left\|\mathbf{W}_{s} \rho_{\epsilon}\right\|_{H^{1}}\left|F\left(\left\langle\rho_{\epsilon}, \psi_{2}(t-s)\right\rangle\right)-F\left(\left\langle\rho_{\epsilon}, \psi_{1}(t-s)\right\rangle\right)\right| d s
\end{aligned}
$$

The first factor under the integral sign is bounded uniformly for $0<s \leq t$:

$$
\left\|\mathbf{W}_{s} \rho_{\epsilon}\right\|_{H_{x}^{1}}=\frac{1}{\sqrt{2 \pi}}\left\|\sqrt{1+k^{2}} e^{i k^{2} s / 2} \widehat{\rho}_{\epsilon}(k)\right\|_{L_{k}^{2}}=\left\|\rho_{\epsilon}\right\|_{H^{1}} .
$$

Taking this into account, we get:

$$
\begin{aligned}
\left\|\mathbf{Z}_{\epsilon} \psi_{2}(\cdot, t)-\mathbf{Z}_{\epsilon} \psi_{1}(\cdot, t)\right\|_{H^{1}} & \leq\left\|\rho_{\epsilon}\right\|_{H^{1}} \int_{0}^{t}\left|F\left(\left\langle\rho_{\epsilon}, \psi_{2}(t-s)\right\rangle\right)-F\left(\left\langle\rho_{\epsilon}, \psi_{1}(t-s)\right\rangle\right)\right| d s \\
& \leq t U_{2}\left\|\rho_{\epsilon}\right\|_{H^{1}} \sup _{s \in[0, t]}\left|\left\langle\rho_{\epsilon}, \psi_{2}(s)-\psi_{1}(s)\right\rangle\right| .
\end{aligned}
$$

Therefore, the map $\psi \mapsto \mathbf{W}_{t} \phi+\mathbf{Z}_{\epsilon} \psi$ is contracting if we choose, for definiteness,

$$
\begin{equation*}
\tau_{\epsilon}=\frac{1}{4 U_{2}\left\|\rho_{\epsilon}\right\|_{H^{1}}} . \tag{3.7}
\end{equation*}
$$

(ii) The continuity of the mapping $\mathbf{U}_{\epsilon}(t)$ also follows from the contraction argument.
(iii) It suffices to prove the conservation of the values of $\mathscr{H}_{\epsilon}\left(\psi_{\epsilon}(t)\right)$ and $Q\left(\psi_{\epsilon}(t)\right)$ for $\phi \in$ $H^{2}:=H^{2}(\mathbb{R})$ since the functionals are continuous on H^{1}. For $\phi \in H^{2}$, the corresponding solution belongs to the space $C_{b}\left(\left[0, \tau_{\epsilon}\right], H^{2}\right)$ by the Duhamel representation (3.5). Then the energy and charge conservation follows by the Hamiltonian structure (3.4). Namely, the differentiation of the Hamilton functional gives by the chain rule,

$$
\begin{equation*}
\frac{d}{d t} \mathscr{H}_{\epsilon}\left(\Psi_{\epsilon}(t)\right)=\left\langle D \mathscr{H}_{\epsilon}\left(\Psi_{\epsilon}(t)\right), \dot{\Psi}_{\epsilon}(t)\right\rangle=\left\langle D \mathscr{H}_{\epsilon}\left(\Psi_{\epsilon}(t)\right), J D \mathscr{H}_{\epsilon}\left(\Psi_{\epsilon}(t)\right)\right\rangle=0 \tag{3.8}
\end{equation*}
$$

since the Fréchet derivative $\left.D \mathscr{H}_{\epsilon}\left(\Psi_{\epsilon}(t)\right)=-\Delta \Psi_{\epsilon}(\cdot, t)-\rho_{\epsilon}(\cdot) F\left(\left\langle\rho_{\epsilon}, \Psi_{\epsilon}(t)\right)\right\rangle\right)$ belongs to $L^{2}(\mathbb{R})$ for $t \in\left[0, \tau_{\epsilon}\right]$. Similarly, the charge conservation follows by the differentiation,

$$
\begin{align*}
\frac{d}{d t} Q\left(\Psi_{\epsilon}(t)\right) & =\left\langle D Q\left(\Psi_{\epsilon}(t)\right), \dot{\Psi}_{\epsilon}(t)\right\rangle=\left\langle D Q\left(\Psi_{\epsilon}(t)\right), J D \mathscr{H}_{\epsilon}\left(\Psi_{\epsilon}(t)\right)\right\rangle \\
& =\left\langle\Psi_{\epsilon}(x, t), J \Delta \Psi_{\epsilon}(x, t)\right\rangle-\left\langle\Psi_{\epsilon}(x, t), J \rho_{\epsilon}(x) F\left(\left\langle\rho_{\epsilon}, \Psi_{\epsilon}(t)\right\rangle\right)\right\rangle . \tag{3.9}
\end{align*}
$$

Here $\left.\left.\Psi_{\epsilon}(x, t), J \Delta \Psi_{\epsilon}(x, t)\right\rangle=\nabla \Psi_{\epsilon}(x, t), J \nabla \Psi_{\epsilon}(x, t)\right\rangle=0$, and also

$$
\begin{align*}
\left\langle\Psi_{\epsilon}(x, t), J \rho_{\epsilon}(x) F\left(\left\langle\rho_{\epsilon}, \Psi_{\epsilon}(t)\right\rangle\right)\right\rangle & =\int \Psi_{\epsilon}(x, t) \cdot\left[J \rho_{\epsilon}(x) F\left(\left\langle\rho_{\epsilon}, \Psi_{\epsilon}(t)\right\rangle\right)\right] d x \\
& =\left\langle\rho_{\epsilon}, \Psi_{\epsilon}(t)\right\rangle \cdot\left[J F\left(\left\langle\rho_{\epsilon}, \Psi_{\epsilon}(t)\right\rangle\right)\right]=0 \tag{3.10}
\end{align*}
$$

Here "." stands for the real scalar product in \mathbb{R}^{2}, and $Z \cdot[J F(Z)]=0$ for $Z \in \mathbb{R}^{2}$ since $F(Z)=a(|Z|) Z$ with $a(|Z|) \in \mathbb{R}$ by (1.7).

Corollary 3.2 (Global well-posedness). (i) For any $\epsilon>0, \epsilon \leq 1$, there exists a unique solution $\psi_{\epsilon} \in C\left(\mathbb{R}, H^{1}\right)$ to equation (3.2) with $\left.\psi_{\epsilon}\right|_{t=0}=\phi$.
The H^{1}-norm of ψ_{ϵ} is bounded uniformly in time:

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\left\|\psi_{\epsilon}(t)\right\|_{H^{1}} \leq \Lambda_{\epsilon}(\phi), \quad t \in \mathbb{R} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{\epsilon}(\phi)=\sqrt{\left(8 B^{2}+2\right) Q(\phi)+4 \mathscr{H}_{\epsilon}(\phi)-4 A} . \tag{3.12}
\end{equation*}
$$

(ii) For each $t \geq 0$, the map $\psi_{\epsilon}(0) \mapsto \psi_{\epsilon}(t)$ is continuous in H^{1}.

Proof. (i) The existence and uniqueness of the solution $\psi_{\epsilon} \in C_{b}\left(\left[0, \tau_{\epsilon}\right], H^{1}\right)$ follow from Lemma $3.1(i)$. The bound on the value of the H^{1}-norm of $\psi_{\epsilon}(t)$ is obtained as in Lemma 2.1. Namely, noting that

$$
U\left(\left\langle\rho, \psi_{\epsilon}\right\rangle\right) \geq A-B\left\langle\rho, \psi_{\epsilon}\right\rangle^{2} \geq A-B \sup _{x \in \mathbb{R}}\left|\psi_{\epsilon}\right|^{2} \geq A-B^{2}\|\psi\|_{L^{2}}^{2}-\frac{1}{4}\left\|\psi^{\prime}\right\|_{L^{2}}^{2}
$$

and using the energy and charge conservation proved in Lemma 3.1 (iii), we conclude that

$$
\left(2 B^{2}+\frac{1}{2}\right) Q(\phi)+\mathscr{H}_{\epsilon}(\phi)=\left(2 B^{2}+\frac{1}{2}\right) Q\left(\psi_{\epsilon}\right)+\mathscr{H}_{\epsilon}\left(\psi_{\epsilon}\right) \geq A+\frac{1}{4}\left\|\psi_{\epsilon}\right\|_{H^{1}}^{2},
$$

so that

$$
\begin{equation*}
\left\|\psi_{\epsilon}\right\|_{H^{1}}^{2} \leq\left(8 B^{2}+2\right) Q(\phi)+4 \mathscr{H}_{\epsilon}(\phi)-4 A . \tag{3.13}
\end{equation*}
$$

By (3.7), the time span τ_{ϵ} depends only on $\left\|\rho_{\epsilon}\right\|_{H^{1}}$ and U_{2}. Hence, the bound (3.11) allows us to extend the solution to $t \in\left[\tau_{\epsilon}, 2 \tau_{\epsilon}\right]$. The bound (3.11) for $t \in\left[0,2 \tau_{\epsilon}\right]$ follows from (3.13) by the energy and charge conservation proved in Lemma 3.1 (iii). We conclude by induction that the solution exists and the bound (3.11) holds for all $t \in \mathbb{R}$.
(ii) The continuity of the mapping $\mathbf{W}_{\epsilon}(t): \psi_{\epsilon}(0) \mapsto \psi_{\epsilon}(t)$ for all $t \geq 0$ follows from its continuity for small times by dividing the interval $[0, t]$ into small time intervals.

4 Convergence of regularized solutions

Lemma 4.1. Let τ and $\psi \in C_{b}(\mathbb{R} \times[0, \tau])$ be as in Lemma 2.3, and let $\psi_{\epsilon} \in C\left(\mathbb{R}_{+}, H^{1}\right)$ be as in Corollary 3.2. Then for any finite $R>0$

$$
\begin{equation*}
\psi_{\epsilon}(x, t) \underset{\epsilon \rightarrow 0}{\rightrightarrows} \psi(x, t), \quad|x| \leq R, \quad 0 \leq t \leq \tau \tag{4.1}
\end{equation*}
$$

Proof. We have

$$
\begin{array}{r}
\psi_{\epsilon}(x, t)=\mathbf{W}_{t} \phi(x)+\int_{0}^{t} \mathbf{W}_{s} \rho_{\epsilon}(x) F\left(\left\langle\rho_{\epsilon}, \psi_{\epsilon}(t-s)\right\rangle\right) d s \\
\psi(x, t)=\mathbf{W}_{t} \phi(x)+\int_{0}^{t} \mathbf{W}_{s} \delta(x) F(\psi(0, t-s)) d s \tag{4.3}
\end{array}
$$

Taking the difference of these equations and regrouping the terms, we can write:

$$
\begin{array}{r}
\psi_{\epsilon}(x, t)-\psi(x, t)=\int_{0}^{t} \mathbf{W}_{s} \rho_{\epsilon}(x)\left(F\left(\left\langle\rho_{\epsilon}, \psi_{\epsilon}(t-s)\right\rangle\right)-F(\psi(0, t-s))\right) d s \\
+\int_{0}^{t}\left[\mathbf{W}_{s} \rho_{\epsilon}(x)-\mathbf{W}_{s} \delta(x)\right] F(\psi(0, t-s)) d s \tag{4.4}
\end{array}
$$

Let us analyze the first term in the right-hand side of (4.4). It is bounded by

$$
\begin{array}{r}
\left|\int_{0}^{t} \frac{e^{i \frac{(x-y)^{2}}{2 s}}}{\sqrt{2 \pi s}} \rho_{\epsilon}(y) d y d s\right| \sup _{0 \leq s \leq t}\left|F\left(\left\langle\rho_{\epsilon}, \psi_{\epsilon}(s)\right\rangle\right)-F(\psi(0, s))\right| \\
\leq\left|\int_{0}^{t} \frac{d s}{\sqrt{2 \pi s}}\right| U_{2} \sup _{|x| \leq \epsilon, 0 \leq s \leq t}\left|\psi_{\epsilon}(x, s)-\psi(x, s)\right| \\
\leq \sqrt{\frac{2 t}{\pi}} U_{2} \sup _{|x| \leq \epsilon, 0 \leq s \leq t}\left|\psi_{\epsilon}(x, s)-\psi(x, s)\right| \\
\leq \frac{1}{2} \sup _{|x| \leq \epsilon, 0 \leq s \leq t}\left|\psi_{\epsilon}(x, s)-\psi(x, s)\right|, \tag{4.5}
\end{array}
$$

where in the last inequality we used (3.7). Setting $M_{R, \tau}=\sup _{|x| \leq R, 0 \leq t \leq \tau}\left|\psi_{\epsilon}(x, t)-\psi(x, t)\right|$, we can rewrite (4.4) as

$$
M_{R, \tau} \leq \frac{1}{2} M_{R, \tau}+\sup _{|x| \leq R, 0 \leq t \leq \tau} \int_{0}^{t}\left[\mathbf{W}_{s} \rho_{\epsilon}(x)-\mathbf{W}_{s} \delta(x)\right] F(\psi(0, t-s)) d s
$$

Therefore,

$$
\begin{equation*}
M_{R, \tau} \leq 2 \sup _{|x| \leq R, 0 \leq t \leq \tau} \int_{0}^{t} \int \frac{e^{i \frac{(x-y)^{2}}{2 s}}}{\sqrt{2 \pi s}}\left[\rho_{\epsilon}(y)-\delta(y)\right] d y F(\psi(0, t-s)) d s \tag{4.6}
\end{equation*}
$$

We claim that the right-hand side tends to zero as $\epsilon \rightarrow 0$. To prove this, we split the integral into two pieces:

$$
\begin{align*}
& I_{1}(\delta, \epsilon)=\int_{\delta}^{t} \int \frac{e^{i \frac{(x-y)^{2}}{2 s}}}{\sqrt{2 \pi s}}\left[\rho_{\epsilon}(y)-\delta(y)\right] d y F(\psi(0, t-s)) d s \tag{4.7}\\
& I_{2}(\delta, \epsilon)=\int_{0}^{\delta} \int \frac{e^{i \frac{(x-y)^{2}}{2 s}}}{\sqrt{2 \pi s}}\left[\rho_{\epsilon}(y)-\delta(y)\right] d y F(\psi(0, t-s)) d s \tag{4.8}
\end{align*}
$$

where $\delta \in(0, t)$ is yet to be chosen. Let us analyze the term (4.7):

$$
\begin{equation*}
\left|I_{1}(\delta, \epsilon)\right| \leq C U_{0} \sup _{s \geq \delta,|x| \leq R}\left|\int_{|y|<\epsilon} \frac{e^{i \frac{(x-y)^{2}}{2 s}}}{\sqrt{2 \pi s}}\left[\rho_{\epsilon}(y)-\delta(y)\right] d y\right| . \tag{4.9}
\end{equation*}
$$

Since $s \geq \delta>0$ and $|x| \leq R$, the function $\frac{e^{i \frac{(x-y)^{2}}{2 s}}}{\sqrt{2 \pi s}}$ is Lipschitz in $y \in[-\epsilon, \epsilon]$, uniformly in all the parameters. Therefore,

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{e^{i \frac{(x-y)^{2}}{2 s}}}{\sqrt{2 \pi s}}\left[\rho_{\epsilon}(y)-\delta(y)\right] d y \rightarrow 0, \quad \epsilon \rightarrow 0 \tag{4.10}
\end{equation*}
$$

uniformly in the parameters. We conclude that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} I_{1}(\delta, \epsilon)=0 \tag{4.11}
\end{equation*}
$$

for any fixed $\delta>0$. We then bound (4.8) uniformly by

$$
I_{2}(\delta, \epsilon) \leq C U_{0} \int\left(\rho_{\epsilon}(y)+\delta(y)\right) d y \int_{0}^{\delta} \frac{d s}{\sqrt{s}} \leq C \sqrt{\delta}
$$

with C independent of ϵ. Now apparently the right-hand side of (4.6) tends to zero as $\epsilon \rightarrow 0$.

5 Well-posedness in energy space

Lemma 5.1 (Local well-posedness). There is a unique solution $\psi \in L^{\infty}\left([0, \tau], H^{1}(\mathbb{R})\right) \cap$ $C_{b}(\mathbb{R} \times[0, \tau])$ to equation (1.1) with $\left.\psi\right|_{t=0}=\phi$, where τ is as in (2.10).

Proof. The unique solution $\psi \in C_{b}(\mathbb{R} \times[0, \tau])$ is constructed in Lemma 2.3. According to (3.11) and (4.1),

$$
\begin{equation*}
\|\psi(t)\|_{H^{1}} \leq \liminf _{\epsilon \rightarrow 0}\left\|\psi_{\epsilon}(t)\right\|_{H^{1}} \leq \Lambda(\phi), \quad 0 \leq t \leq \tau \tag{5.1}
\end{equation*}
$$

Lemma 5.2. The values of the functionals \mathscr{H} and Q are conserved in time for $t \in[0, \tau]$.

Proof. The convergence (4.1) and the bounds (3.11) imply that

$$
\begin{equation*}
Q(\psi(t))=\frac{1}{2}\|\psi(t)\|_{L^{2}}^{2} \leq \frac{1}{2} \lim _{\epsilon \rightarrow 0}\left\|\psi_{\epsilon}(t)\right\|_{L^{2}}^{2}=Q(\phi), \tag{5.2}
\end{equation*}
$$

where we used the conservation of Q for the approximate solutions ψ_{ϵ} (Lemma 3.1). The same argument applied to the initial data $\left.\psi\right|_{t=t_{0}}$ with any $t_{0} \in(0, \tau)$ and combined with the uniqueness of the solution, allows to conclude that $Q(\psi(t))$ is monotonically non-increasing when time changes from 0 to τ. Instead, solving the Schrödinger equation backwards in time and using the uniqueness of solution, we can as well conclude that $Q(\psi(t))$ is monotonically non-decreasing when time changes from 0 to τ. This proves that $Q(\psi(t))=$ const for $t \in[0, \tau]$.

To prove the conservation of $\mathscr{H}(\psi(t))$, we will need the relation

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} U\left(\left\langle\rho_{\epsilon}, \psi_{\epsilon}\right\rangle\right)=U(\psi(0, t)) . \tag{5.3}
\end{equation*}
$$

This relation follows from continuity of the potential U and from

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left\langle\rho_{\epsilon}, \psi_{\epsilon}(t)\right\rangle=\lim _{\epsilon \rightarrow 0}\left\langle\rho_{\epsilon},\left(\psi_{\epsilon}(t)-\psi(t)\right)\right\rangle+\lim _{\epsilon \rightarrow 0}\left\langle\rho_{\epsilon}, \psi(t)\right\rangle=\psi(0, t), \tag{5.4}
\end{equation*}
$$

where $\lim _{\epsilon \rightarrow 0}\left\langle\rho_{\epsilon},\left(\psi_{\epsilon}(t)-\psi(t)\right)\right\rangle=0$ since ψ_{ϵ} approaches ψ uniformly for $0 \leq t \leq \tau$ and $|x| \leq R$ (including $x=0$), while $\lim _{\epsilon \rightarrow 0}\left\langle\rho_{\epsilon}, \psi(t)\right\rangle=\psi(0, t)$ since ψ is continuous in x (due to the finiteness of H^{1}-norm of ψ that follows from (5.1)). We have:

$$
\mathscr{H}(\psi(t))=\frac{\|\nabla \psi(x, t)\|_{L^{2}}^{2}}{2}+U(\psi(0, t)) \leq \lim _{\epsilon \rightarrow 0}\left\{\frac{\left\|\nabla \psi_{\epsilon}(x, t)\right\|_{L^{2}}^{2}}{2}+U\left(\left\langle\rho_{\epsilon}, \psi_{\epsilon}\right\rangle\right)\right\}=\mathscr{H}(\phi),
$$

where we used the relation (5.3) and (4.1). We also used the conservation of the values of the functional \mathscr{H}_{ϵ} for the approximate solutions ψ_{ϵ} (see Lemma 3.1). Proceeding just as with $Q(\psi(t))$ above, we conclude that $\mathscr{H}(\psi(t))=$ const for $0 \leq t \leq \tau$.

Corollary 5.3 (Global well-posedness). There is a unique solution $\psi \in L^{\infty}\left(\left[\mathbb{R}, H^{1}(\mathbb{R})\right) \cap\right.$ $C_{b}(\mathbb{R} \times \mathbb{R})$ to equation (1.1) with $\left.\psi\right|_{t=0}=\phi$. The values of the functionals \mathscr{H} and Q are conserved in time.

Proof. The solution $\psi \in L^{\infty}\left([0, \tau], H^{1}\right)$ constructed in Lemma 5.1 exists for $0 \leq t \leq \tau$, where the time span τ defined in (2.10) depends only on U_{2} from (2.3). Hence, the bound (1.11) at $t=\tau$ allows us to extend the solution ψ constructed in Lemma 5.1 to the time interval $[\tau, 2 \tau]$. We proceed by induction.

For the conclusion of Theorem 1.1, it remains to prove that $\psi \in C\left(\mathbb{R}, H^{1}(\mathbb{R})\right)$. This follows from the next two lemmas.

Lemma 5.4. $\psi \in C\left(\mathbb{R}, H_{\text {weak }}^{1}(\mathbb{R})\right)$.
Proof. Fix $f \in H^{-1}(\mathbb{R})$ and pick any $\delta>0$. Since H^{1} is dense in H^{-1}, there exists $g \in H^{1}(\mathbb{R})$ such that

$$
\begin{equation*}
\|f-g\|_{H^{-1}}<\frac{\delta}{4 \Lambda(\phi)}, \tag{5.5}
\end{equation*}
$$

where $\Lambda(\phi)$ given by (2.2) is the a priori bound on $\|\psi(t)\|_{H^{1}}$ proved in Lemma 2.1 on the grounds of the energy and the charge conservation for $\psi(t)$. Then

$$
\begin{align*}
& \left|\left\langle f, \psi(t)-\psi\left(t_{0}\right)\right\rangle\right| \leq\left|\left\langle f-g, \psi(t)-\psi\left(t_{0}\right)\right\rangle\right|+\left|\left\langle g, \psi(t)-\psi\left(t_{0}\right)\right\rangle\right| \tag{5.6}\\
& \leq\|f-g\|_{H^{-1}}\left(\|\psi(t)\|_{H^{1}}+\left\|\psi\left(t_{0}\right)\right\|_{H^{1}}\right)+\|g\|_{H^{1}}\left\|\psi(t)-\psi\left(t_{0}\right)\right\|_{H^{-1}} . \tag{5.7}
\end{align*}
$$

By (5.5), the first term in the right-hand side of (5.7) is bounded by $\delta / 2$. By (1.1), $\psi \in$ $C\left(\mathbb{R}, H^{-1}(\mathbb{R})\right)$, hence the second term in the right-hand side of (5.7) becomes smaller than $\delta / 2$ if t is sufficiently close to t_{0}. Since $\delta>0$ was arbitrary, this proves that $\lim _{t \rightarrow t_{0}}\langle f, \psi(t)-$ $\left.\psi\left(t_{0}\right)\right\rangle=0$.
Proposition 5.5. $\psi \in C\left(\mathbb{R}, H^{1}(\mathbb{R})\right)$.
Proof. Let us fix $t_{0} \in \mathbb{R}$ and compute

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}}\left\|\psi(t)-\psi\left(t_{0}\right)\right\|_{H^{1}}^{2}=\lim _{t \rightarrow t_{0}}\left(\|\psi(t)\|_{H^{1}}^{2}-2\left\langle\psi(t), \psi\left(t_{0}\right)\right\rangle_{H^{1}}+\left\|\psi\left(t_{0}\right)\right\|_{H^{1}}^{2}\right) \tag{5.8}
\end{equation*}
$$

The relation

$$
\|\psi(t)\|_{H^{1}}^{2}=2(Q(\psi(t))+H(\psi(t)))-2 U(\psi(0, t)),
$$

together with the conservation of the energy and charge and the continuity of $\psi(0, t)$ for $t \in \mathbb{R}$ (see Corollary 5.3), shows that

$$
\lim _{t \rightarrow t_{0}}\|\psi(t)\|_{H^{1}}^{2}=\left\|\psi\left(t_{0}\right)\right\|_{H^{1}}^{2}
$$

By Lemma 5.4, $\lim _{t \rightarrow t_{0}}\left\langle\psi(t), \psi\left(t_{0}\right)\right\rangle_{H^{1}}=\left\langle\psi\left(t_{0}\right), \psi\left(t_{0}\right)\right\rangle_{H^{1}}$. This shows that the right-hand side of (5.8) is equal to zero.

Now Theorem 1.1 is proved.

6 Hölder regularity of solution

In this section, we prove Theorem 1.2.
Lemma 6.1. If $\phi \in H^{1}$, then $\mathbf{W}_{(\cdot)} \phi(x) \in C^{(1 / 4)}[0, \tau]$, uniformly in $x \in \mathbb{R}$.
Proof. Let $t, t^{\prime} \in[0, \tau]$. We have by the Cauchy-Schwarz inequality:

$$
\begin{array}{r}
\left|\mathbf{W}_{t^{\prime}} \phi(x)-\mathbf{W}_{t} \phi(x)\right| \leq C\left|\int e^{-i k x}\left(e^{i \frac{t^{\prime} k^{2}}{2}}-e^{i \frac{t k^{2}}{2}}\right) \hat{\phi}(k) d k\right| \\
\leq C \int \min \left(1,\left|t^{\prime}-t\right| k^{2}\right)|\hat{\phi}(k)| d k \leq C\left[\int_{\mathbb{R}} \frac{\min \left(1,\left|t^{\prime}-t\right| k^{2}\right)^{2}}{1+k^{2}} d k\right]^{\frac{1}{2}}\|\phi\|_{H^{1}} .
\end{array}
$$

We bound the last integral as follows:

$$
\int_{\mathbb{R}} \frac{\min \left(1,\left|t^{\prime}-t\right| k^{2}\right)^{2}}{1+k^{2}} d k \leq \int_{|k|<\left|t^{\prime}-t\right|^{-\frac{1}{2}}} \frac{\left|t^{\prime}-t\right|^{2} k^{4}}{1+k^{2}} d k+\int_{|k|>\left|t^{\prime}-t\right|^{-\frac{1}{2}}} \frac{d k}{1+k^{2}} \leq \text { const }\left|t^{\prime}-t\right|^{\frac{1}{2}}
$$

Lemma 6.2 (Regularity of $\psi(0, t))$. The unique solution $\psi \in C_{b}(\mathbb{R} \times[0, \tau])$ to equation (1.1) with the initial data $\left.\psi\right|_{t=0}=\phi$ constructed in Lemma 2.3 satisfies

$$
\psi(0, \cdot) \in C^{(1 / 4)}[0, \tau]
$$

Proof. Due to Lemma 6.1, it suffices to consider the regularity of $\mathbf{Z} \psi(0, t)$. For any $t, t^{\prime} \in$ $[0, \tau], t^{\prime}<t$, we have:

$$
\begin{equation*}
\mathbf{Z} \psi\left(0, t^{\prime}\right)-\mathbf{Z} \psi(0, t)=\int_{0}^{t}\left[\frac{F(\psi(0, s))}{\sqrt{2 \pi\left(t^{\prime}-s\right)}}-\frac{F(\psi(0, s))}{\sqrt{2 \pi(t-s)}}\right] d s+\int_{t}^{t^{\prime}} \frac{F(\psi(0, s))}{\sqrt{2 \pi\left(t^{\prime}-s\right)}} d s \tag{6.1}
\end{equation*}
$$

The first integral in the right-hand side of (6.1) is bounded by

$$
C_{1} \int_{0}^{t}\left|\frac{1}{\sqrt{t^{\prime}-s}}-\frac{1}{\sqrt{t-s}}\right| d s \leq C_{2}\left|t^{\prime}-t\right|^{1 / 2}
$$

The second integral in the right-hand side of (6.1) is also bounded by $C\left|t^{\prime}-t\right|^{1 / 2}$.
Lemma 6.3. $\psi(x, \cdot) \in C^{(1 / 4)}(\mathbb{R})$, uniformly in $x \in \mathbb{R}$.
Proof. We have the relation

$$
\begin{equation*}
\psi(x, t)=\mathbf{W}_{0}\left(t-t_{0}\right) \psi\left(x, t_{0}\right)+\int_{0}^{t-t_{0}} \frac{e^{i \frac{x^{2}}{2 s}}}{\sqrt{2 \pi s}} F(\psi(0, t-s)) d s \tag{6.2}
\end{equation*}
$$

By Lemma 6.1, the first term in the right-hand side of (6.2), considered as a function of time, belongs to $C^{(1 / 4)}(\mathbb{R})$ (uniformly in $x \in \mathbb{R}$). The second term in the right-hand side of (6.2) is bounded by const $\left|t-t_{0}\right|^{1 / 2}$. This proves that $\psi(x, \cdot) \in C^{(1 / 4)}(\mathbb{R})$, uniformly in x.

It remains to mention that the Hölder continuity in x follows from the inclusion $H^{1}(\mathbb{R}) \subset$ $C^{(1 / 4)}(\mathbb{R})$. Theorem 1.2 is proved.

Acknowledgments

The authors are grateful to David Stuart for helpful remarks.

References

[KK06a] Alexander Komech and Andrew Komech, On global attraction to solitary waves for the Klein-Gordon equation coupled to nonlinear oscillator, C. R., Math., Acad. Sci. Paris 343 (2006), 111-114.
[KK06b] _, Global attractor for a nonlinear oscillator coupled to the KleinGordon field, Arch. Ration. Mech. Anal. (2006), to appear. MaxPlanck Institute for Mathematics in the Sciences, Preprint Nr. 121/2005, http://www.mis.mpg.de/preprints/2005/prepr2005_121.html.

[^0]: * On leave from Department of Mechanics and Mathematics, Moscow State University, Moscow 119992, Russia. Supported in part by DFG grant 436 RUS 113/615/0-1, FWF grant P19138-N13, Max-Planck Institute for Mathematics in the Sciences (Leipzig), and the Wolfgang Pauli Institute of Vienna University.
 ${ }^{\dagger}$ Supported in part by Max-Planck Institute for Mathematics in the Sciences (Leipzig) and by the NSF Grants DMS-0434698 and DMS-0600863.

