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Abstract

We derive plate theory for (possibly slightly stressed) heterogeneous
multilayers in the regime of finite bending energies from three-dimensional
elasticity theory by means of Γ-convergence. This extends results in [6, 19]
to non-homogeneous materials. As expected from the homogeneous case
we obtain a limiting energy functional depending on the second funda-
mental form of the plate surface. The effective elastic constants of the
heterogeneous films will turn out to depend on the moments of the point-
wise elastic constants of the materials.

1 Introduction

The derivation of effective theories for thin elastic structures is a classical prob-
lem in elasticity theory (see, e.g., the work of Euler, Kirchhoff, von Kármán
[3, 12, 11] etc., also compare [16]). However, rigorous results deriving mem-
brane, plate, rod or shell theories from three-dimensional elasticity have been
obtained only recently (cf. [13, 14, 15, 5, 6, 7, 8, 9]). By now there has emerged
a whole hierarchy of plate theories according to different scalings of the stored
energy (cf. [7]). In these derivations one usually assumes the material of the elas-
tic objects under consideration to be homogeneous, which in three-dimensional
elasticity theory amounts to requiring that the stored energy function W , mea-
suring the elastic energy

E(y) =
∫

Ω
W (x,∇y(x))dx

of a body Ω ⊂ R
3 subject to a deformation y : Ω → R

3, does not explicitly
depend on x.

In their seminal paper [6] for much of the subsequent Γ-convergence results
for effective theories, Friesecke, James and Müller derived Kirchhoff’s plate the-
ory for homogeneous materials from 3D-elasticity for bending dominated con-
figurations. In the sequel these results have been extended in various directions.
Up to now, however, it seems that the ‘multilayer case’ (cf. [6], page 1465) has
remained open. This amounts to stored energy functions W which explicitly
depend on x in the ‘small film direction’. For multilayers it is natural to relax
the requirement that W (x, ·) be minimized precisely at SO(3) slightly in order
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to include models for internally stressed films, e.g., epitaxially grown multilay-
ers, stressed due to mismatching lattice constants. A first step in this direction
was given in [20, 19] where an effective plate theory was derived for material
mixings with possibly mismatching equilibria but equal elastic constants. Such
an assumption is, e.g., satisfied for internal stresses within a monolayers caused
by a temperature gradient.

It is not only mathematically interesting to discuss the more general case of
heterogeneous multilayers, but also from the point of view of applications. If
a stressed film is freed from the substrate, it will assume a geometrically non-
trivial configuration in order to reduce its elastic energy. This phenomenon is
used, e.g., in the waver-curvature measurement, where one tries to deduce ma-
terial (mismatch) properties from measurements of the curved substrate. An-
other, recent application is the fabrication nanotubes (nanoscrolls, nanobelts,
etc.) by growing bilayers of films with mismatching lattice constants and re-
lieving them from the substrate (see, e.g., [21, 17]).

In the present paper we will derive a limiting energy functional for thin
heterogeneous multilayers in the regime of finite bending energies (and thus
give a solution to point (iv) in the list of open problems in [6]). Note that this
is the appropriate regime for objects as nanotubes etc. mentioned above.

More precisely, assume that Ωh = S× (−h/2, h/2) ⊂ R
3, S ⊂ R

2 a bounded
convex domain, h� 1, is the reference configuration of a thin film. The elastic
energy of a deformation v : Ωh → R

3 is given by∫
Ωh

W (z3/h,∇v(z))dz.

Here W : (−1/2, 1/2) × R
3×3 → R is the stored energy function. The depen-

dence on z3 through z3/h allows for considering multilayers made of laminated
monolayers at fixed volume fraction. Changing variables to x = (z1, z2, z3/h)
and defining y by y(x′, x3) = v(h)(x′, hx3), x′ = (x1, x2), the 3-dimensional
energy functional is

E(h)(v(h)) =
∫

Ωh

W (z3,∇v(h)(z))dz

= h

∫
Ω1

W (x3,∇′y(x),
1
h
y,3(x))dx =: hIh(y) (1)

for y ∈W 1,2(Ω1; R3). Here ∇′ denotes the planar gradient (∂1, ∂2). To incorpo-
rate mismatch of energy wells we introduce W0 : (−1/2, 1/2) × R

3×3 → R and
assume that

W (x3, F ) = W (h)(x3, F ) = W0(x3, F (Id + hB(h)(x3))) (2)

for some B(h) : (−1/2, 1/2) → R
3×3. As we will see, the scaling |hB(h)| = O(h)

will precisely lead to non-trivial energy configurations at finite bending energies.
For multilayers we have to make sure that the usual assumptions on the

pointwise energy densities W (x3, ·) are satisfied uniformly.

Assumption 1.1 We will assume that W given by (2) satisfies the following
hypotheses.
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(i) For almost all t ∈ (−1/2, 1/2), W0(t, ·) is continuous on R
3×3 and C2 in

a neighborhood of SO(3) which does not depend on t. For all F ∈ R
3×3,

W (·, F ) ∈ L∞((−1/2, 1/2); R).

(ii) If Q3(t, ·) denotes the Hessian of W0(t, ·) at Id, then t �→ Q3(t, ·) belongs
to L∞((−1/2, 1/2); R9×9). Furthermore,

ω(s) := ess sup
−1/2<t<1/2

sup
|F |≤s

|W0(t, Id + F ) − 1
2
Q3(t, F )|

shall satisfy s−2ω(s) → 0 as s→ 0.

(iii) Frame indifference: There exists C > 0 such that for a.e. t ∈ (−1/2, 1/2),

W0(t, F ) = W0(t, RF )

for all F ∈ R
3×3 and all R ∈ SO(3).

(iv) Energy well: For a.e. t ∈ (−1/2, 1/2), W (t, F ) = 0 if F ∈ SO(3) and

ess inf
−1/2<t<1/2

W0(t, F ) ≥ C dist2(F, SO(3))

for all F ∈ R
3×3.

(v) B(h) → B in L∞((−1/2, 1/2),R3×3) as h→ 0.

In contrast to the homogeneous case, the proof of our central Γ-convergence
result requires a thorough understanding of the geometry of isometric immer-
sions of R

2 into R
3. The basic results in this direction where obtained by Pakzad

in [18] and are reviewed and slightly extended in Section 2.
In Section 3 we first prove compactness of sequences of deformations with

finite bending energy, i.e., sequences satisfying suph I
h(y(h)) <∞. This is quite

easily achieved by a comparison with homogeneous films whose flat reference
configuration is stress free. The main result of this paper is Theorem 3.2, where
the convergence of the functionals h−2Ih is investigated. The lower bound in
this Γ-convergence result can be obtained by a modification of the corresponding
result for monolayers (see [6]), and we do not re-derive all the steps contained
in that paper. Rather we focus on the parts of the derivation that differ from
[6]. Similar as in [6] we obtain an integral expression for the energy in terms of
the second fundamental form of the film surface. The relevant quadratic form
can be computed from the first moments of the pointwise quadratic forms of
Kirchhoff’s plate theory (see Proposition 3.5 for a precise statement). However,
the reference state is not a state of minimal energy any more; the thin film can
reduce energy by rolling up.

The most interesting part is to prove the upper bound in the Γ-limit. We
have to provide test functions with almost optimal energy. To construct these
test functions we have to prove a representation result for matrix valued func-
tions on the two-dimensional film domain in terms of symmetrized gradients
and the second fundamental form of the film surface, see Lemma 3.3. In the
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proof of this lemma one is led to a system of two first order partial differential
equations. Using the results of Pakzad (cf. [18]) on the developability of W 2,2

isometric immersions, we can give an explicit formula for its solution.
In section 4 we consider convergence of the rescaled strain in the spirit of

[6] and discuss the geometry of energy minimizers with free boundary condi-
tions analogous to [19]. This yields an ansatz free justification of calculations
of minimal energy configurations used in the physics literature, where so far
(mostly linear) three-dimensional elasticity theory is used to describe the en-
ergy of such objects (cf., e.g., [10], [22]), and in order to discuss the geometry
of energy minimizers one uses appropriate ansatz functions and optimizes with
respect to certain parameters (e.g., radius, winding direction for nanoscrolls).

Finally, in Section 5 we give a specific example of the applicability of our
results and discuss the size of nanoscrolls that were fabricated by Paetzeldt
et. al., see [17]. The calculations of the radii of optimal energy are in good
agreement with the measured values.

2 The geometry of isometric immersions

As in the homogeneous setting the class of plate deformations with finite bend-
ing energy will turn out to coincide with the set of (Sobolev-) isometric immer-
sions of S into R

3

A := {u ∈W 2,2(S; R3) : ∇u ∈ O(2, 3) a.e.}. (3)

To prove our main Γ-limit result for x3-dependent stored energy functions, we
have to study this class of functions more thoroughly. In particular, we will
need a slightly refined version of the following density result for smooth maps
in A, first proved by Pakzad in [18].

Theorem 2.1 (cf. [18]) C2-maps are W 2,2-strongly dense in A.

The main purpose of this section is to collect some of the results of [18] that
will be used in the sequel and to indicate how the approximation scheme can
be modified to show that indeed C∞-maps are strongly dense in A. In fact,
only minor changes in the proofs of [18] are necessary, so we will not repeat
all the arguments here, but rather focus on describing their modifications and
refer the reader to [18] for more details.

Suppose u lies in A, and denote by II its second fundamental form, i.e.,
IIij = u,i · (u,1 ∧ u,2),j. Then II is singular, and there exists fu ∈ W 1,2 such
that ∇fu = II. We call γ : [0, l] → S, parameterized by arclength, a leading
curve if it is orthogonal to the inverse images of fu on regions where fu is not
constant. We denote by κ and ν the curvature and unit normal, respectively,
i.e., γ′′ = κν. In fact, κ must be bounded, hence γ ∈ W 2,∞. A subdomain
S′ ⊂ S is said to be covered by a curve γ if

S′ ⊂ {γ(t) + sν(t) : s ∈ R, t ∈ [0, l]}.
As shown in [18], S can be partitioned into so-called bodies and arms.

Here a body is a connected maximal subdomain on which u is affine and whose
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boundary contains more than two segments inside S. An arm is a maximal
subdomain S(γ) covered by some leading curve γ. The boundary segments
S ∩ (γ(t) + Rν(t)), t ∈ {0, l}, are referred to as the free hands of the arm S(γ).

Lemma 2.2 (cf. [18], Lemmas 3.3 and 3.4) The set of mappings which allow
for a partition of S into a finite number of bodies and arms is W 2,2-strongly
dense in A.

The approximation by smooth isometric immersions consists of first approx-
imating u on covered domains (linearly near the free hands) and then patching
together the different pieces appropriately. We only need to consider arms. So
suppose S(γ) ⊂ S is covered by γ. We can transform coordinates according to

Φγ : S(l, sγ
−, s

γ
+) → S(γ), Φγ(t, s) = γ(t) + sν(t),

where

S(l, sγ
−, s

γ
+) := {(t, s) ∈ [0, l] × R : γ(t) + sν(t) ∈ S(γ)}

= {(t, s) ∈ [0, l] × R : sγ
− < s < sγ

+}.
Consider the Darboux frame (t,v,n) of γ̃ = u ◦ γ in u(S) with⎧⎨

⎩
t := γ̃′,
v := ∇u(ν),
n := t × v,

and

⎧⎨
⎩

t′ = κgv + κnn,
v′ = −κgt + τgn,
n′ = −κnt − τgv.

For a given curve γ̃ with frame (t,v,n) the basic observation is that the surface
u satisfying

u(Φγ(t, s)) = γ̃(t) + sv(t)

is an isometry if and only if κg = κ and τg = 0. In order to construct um ∈
C2 ∩ A such that um → u in W 2,2, Pakzad approximates γ by curves γm with
continuous curvature κm and κn by continuous κn;m. The original frame is then
approximated by solutions of⎛

⎝ t′m
v′

m

n′
m

⎞
⎠ =

⎛
⎝ 0 κm κn;m

−κm 0 0
−κn;m 0 0

⎞
⎠
⎛
⎝ tm

vm

nm

⎞
⎠ ,

and finally um is defined by um(Φγm(t, s)) = γ̃m(t)+ svm(t), possibly extended
by a linear map.
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To guarantee smoothness of um, it suffices to assure that κm and κn;m are
smooth. It is not hard to see that κm can be chosen in C∞, vanishing near its
starting and final point. Now set

κ̃n;m(t) := ψ(m(t− l∗m))
√
ϕm

ϕ
(t)gm(t)

for some cut-off function ψ, some gm → κn a.e., vanishing near 0, and ϕm, ϕ as
defined in [18]. In [18], κn;m is defined to be κ̃n;m. Clearly we may assume that
gm be smooth. However,

√
ϕm/ϕ can only be guaranteed to be continuous. But

still we can choose κn;m C∞-smooth with |κn;m| ≤ κ̃n;m and κn;m − κ̃n;m → 0
uniformly on [0, l]. Note that this is an admissible choice in the sense that
Propositions 3.3 and 3.4 of [18], showing that um is an isometry approximating
u, still apply.

Having matched the approximations on different arms and bodies smoothly,
applying a dilation argument as in the proof of [18], Proposition 3.1, we may
even assume that ϕm ≥ ρm > 0 and um is smooth up to the boundary. Sum-
marizing, this shows the following.

Proposition 2.3 We say that u ∈ A0 if u is a C∞(S)-smooth isometric im-
mersion which allows for a finite partition of S into bodies and arms, and u is
affine on the bodies and in a neighborhood of the free hands of the arms. Then
A0 is W 2,2-strongly dense in A.

For later use we finally infer from [18] (also compare the proof of Theorem
3.2 in [19]) that on covered domains S(γ) the second fundamental form II can
be written as

II(Φγ(t, s)) =
λ(t)

1 − sκ(t)
µ(t) ⊗ µ(t),

where µ = dγ/dt. If u ∈ A0, then there exists ρ > 0 such that 1−sκ(t) ≥ ρ > 0
wherever II �= 0.

3 Plate theory for stressed multilayers

In this section we prove our main Γ-limit result deriving plate theory for het-
erogeneous multilayers from three-dimensional elasticity theory. Throughout
we will assume that the energy functional Ih defined in (1) with stored energy
density W satisfies Assumption 1.1.

The following compactness result is a direct consequence of the correspond-
ing result for homogeneous W proven in [6].

Theorem 3.1 (Compactness) Suppose a sequence (y(h)) ⊂ W 1,2(Ω; R3) has
finite bending energy, i.e.,

lim sup
h→∞

1
h2
Ih(y(h)) <∞.

Then ∇hy
(h) := (∇′y(h), 1

hy
(h)
3 ) is precompact in L2(Ω) as h → 0: there exists

a subsequence (not relabeled) such that

∇hy
(h) → (∇′y, b) in L2(Ω1) as h→ 0,
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(∇′y, b) ∈ SO(3) a.e. Furthermore, (∇′y, b) ∈ H1(Ω) is independent of x3.

Proof. Note that by Assumptions 1.1 (iv) and (v), dist2(F, SO(3)) is bounded
by

2 dist2
(
F (Id + hB(h)(t)), SO(3)

)
+ 2

∣∣∣FhB(h)(t)
∣∣∣2 ≤ C

(
W (t, F ) + |F |2h2

)
for a.e. t ∈ (−1/2, 1/2) and all F ∈ R

3×3. But then

dist2(F, SO(3)) ≤ C
(
W (t, F ) + h2

)
.

So if h−2Ih(y(h)) is bounded, then∫
Ω1

dist2(∇hy
(h)(x), SO(3)) ≤ C

(∫
Ω1

W (x3,∇hy
(h)(x)) + h2

)
≤ Ch2.

The claim therefore directly follows from the homogeneous case (cf. [6]). �
Recall the definition of A from (3). We view A as a set of functions on

Ω1, independent of x3. To be consistent with the terminology used in elasticity
theory, the surface normal to y ∈ A is denoted by b = y,1 ∧ y,2.

Depending on Q3(t, ·), the Hessian of W0(t, ·) at the identity, we define a
relaxed quadratic form on 2 × 2-matrices by

Q2(t, F ) := min
c∈R3

Q3(t, F̂ + c⊗ e3) = min
c∈R3

Q3

(
t, F̂ +

c⊗ e3 + e3 ⊗ c

2

)
,

where F̂ is the 3× 3-matrix
∑2

i,j=1 Fijei ⊗ ej . Furthermore define Q̄2 : R
2×2 →

R+ (independent of t) by

Q̄2(F ) := min
A∈R2×2

∫ 1/2

−1/2
Q2(t, A+ tF + B̌(t))dt,

where B̌ is derived from B by omitting the last row and the last column. Since
Q2(t, ·) vanishes on antisymmetric matrices for a.e. t, we may replace R

2×2 by
R

2×2
sym and B̌ by 1

2(B̌T + B̌) in this definition. Note that Q̄2 is a quadratic
function of F .

Theorem 3.2 (Γ-limit) The functionals h−2Ih Γ-converge to I0 in W 1,2 (with
respect to the strong and the weak topology) as h→ 0:

(i) If y(h) ⇀ y in W 1,2 as h→ 0, then

lim inf
h→0

Ih(y(h)) ≥ I0(y).

(ii) For all y ∈ W 1,2 there exists a sequence y(h) → y in W 1,2 as h → 0 such
that

lim
h→0

Ih(y(h)) = I0(y).
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The two-dimensional limiting energy functional I0 is given by

I0(y) =
{

1
2

∫
S Q̄2(II)dx for y ∈ A,

∞ else,

where II is the second fundamental form of y.

By our definition of Q̄2, a proof of the lower bound (i) can be given following
along the lines of the corresponding results for homogeneous materials (cf. [6]
and [19]).
Proof of Theorem 3.2 (i). In the proof of Theorem 3.1 we noted that sequences
(y(h)) with bounded energy converging to y satisfy∫

Ω1

dist2(∇hy
(h), SO(3)) ≤ Ch2.

As shown in [6], one therefore can construct a piecewise constant approximation
R(h) : S′

h ⊂ S → SO(3) to ∇hy
(h) such that (for a subsequence)

G(h)(x′, x3) =
R(h)(x′)T∇hy

(h)(x′, x3) − Id
h

⇀ G in L2.

(G(h) is extended by 0 outside S′
h × (−1/2, 1/2).) If Ǧ denotes the 2× 2-matrix

obtained by ommiting the third row and third column of G, it is further shown
that

Ǧ(x′, x3) = Ǧ(x′, 0) + x3II(x′), II = (∇′y)T∇′b,

and
χhG

(h) ⇀ G in L2(Ω1),

where χh is the characteristic function of the set S′
h ∩ {|G(h)(x)| ≤ h−1/2}.

It remains to estimate the energy in terms of G. This is done in analogy to
[6] and [19] by a careful Taylor-expansion of W0(x3, ·) around the identity. By
Assumptions 1.1 (iii) and (ii),

1
h2

∫
Ω1

W (x3,∇hy
(h))dx ≥ 1

h2

∫
Ω1

χhW0

(
x3, (R(h))T∇hy

(h)(Id + hB(h))
)
dx

=
1
h2

∫
Ω1

χhW0

(
x3, Id + hA(h)

)
dx

≥
∫

Ω1

1
2
Q3

(
x3, χhA

(h)
)
− 1
h2
χhω

(
|hA(h)|

)
dx

with A(h) = G(h) + (R(h))T∇hy
(h)B(h) ⇀ G+B. (Note that |hA(h)| ≤ C

√
h on

{χ �= 0}.) Using lower semicontinuity and Q3(x3, F ) ≥ Q2(x3, F̌ ), we find by
integrating over x3 that

lim inf
h→0

1
h2

∫
Ω1

W (x3,∇hy
(h))dx ≥ 1

2

∫
Ω1

Q3 (x3, G(x) +B(x3)) dx

≥ 1
2

∫
Ω1

Q2

(
x3, Ǧ(x′, 0) + x3II(x′) + B̌(x3)

)
dx

≥ 1
2

∫
S
Q̄2

(
II(x′)

)
dx′.

�
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The proof of Theorem 3.2 (ii), i.e., the construction of recovery sequences
for I0 can not be adapted in a straightforward manner from [6] or [19]. Our test
functions need to contain additional terms. The main new technical ingredient
is the following representation result for matrix valued functions.

Lemma 3.3 Suppose y ∈ A0. Let A ∈ C∞(S; R2×2
sym) be a smooth function

taking values in the symmetric 2×2-matrices such that A ≡ 0 in a neighborhood
of {II = 0}. Then there exist smooth functions g1, g2, α ∈ C∞(S; R) such that

A = ∇sym g + αII,

where ∇sym g denotes the symmetrized gradient 1
2(∇T +∇) of g = (g1, g2)T . In

addition, g and α can be chosen vanishing on {II = 0}.
Proof. On bodies (where II ≡ 0, cf. Section 2) we let g1 ≡ g2 ≡ α ≡ 0. On a
covered domain S(γ) we can introduce variables t, s such that y is of the form

y(x1, x2) = y(Φγ(t, s)) = γ̃(t) + sv(t),

where t is arclength of γ̃, and

II(x1, x2) = II(Φγ(t, s)) = λ(t, s)µ(t) ⊗ µ(t),

where λ(t, s) = λ(t)/(1 − sκ(t)), µ is the unit vector dγ/dt and v = ∇u · ν,
ν = µ⊥, see Section 2.

If λ(t) = 0, we set g1(Φγ(t, s)) = g2(Φγ(t, s)) = α(Φγ(t, s)) = 0. Now
suppose λ(t) �= 0 for t1 < t < t2 and consider the matrices

F1 =
1
|II|

(
II22 −II12
−II12 II11

)
, F2 =

1√
2|II|

(
2II12 II22 − II11

II22 − II11 −2II12

)
.

Also define F3 = II/|II|. Then for every fixed (t, s), (F1, F2, F3) forms an
orthonormal basis of R

2×2
sym and we have to find g = (g1, g2) and α such that the

three equations

Fi : ∇sym g + Fi : αII = Fi : A, i = 1, 2, 3,

are satisfied.
The first two of these equations read

II22g1,1 − II12(g1,2 + g2,1) + II11g2,2 = |II|F1 : A,

2II12g1,1 + (II22 − II11)(g1,2 + g2,1) − 2II12g2,2 =
√

2|II|F2 : A.

Writing the left hand sides as

−λµ2(−µ2g1,1 + µ1g1,2) + λµ1(−µ2g2,1 + µ1g2,2) = λµ⊥ · ∂µ⊥g,

respectively,

−λµ1(−µ2g1,1 + µ1g1,2) − λµ2(−µ2g2,1 + µ1g2,2)
+λµ2(µ1g1,1 + µ2g1,2) − λµ1(µ1g2,1 + µ2g2,2)

= − λµ · ∂µ⊥g − λµ⊥ · ∂µg,
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with λ = λ(t, s) and absorbing the (definite) sign of λ = ±|II| into A, we arrive
at

µ⊥ · ∂µ⊥g = F1 : A,

−µ · ∂µ⊥g − µ⊥ · ∂µg =
√

2F2 : A.

Changing variables to (t, s) yields ∂µ⊥ = ∂s and ∂µ = (1 − sκ)−1∂t, where
κ is the curvature of γ. Define u = (u1, u2) by u1 = µ · g, u2 = µ⊥ · g (i.e.,
g = u1µ+ u2µ

⊥). Then the above system is equivalent to

u2,s = F1 : A,

−u1,s − κ

1 − sκ
u1 − 1

1 − sκ
u2,t =

√
2F2 : A.

Since y ∈ A0, this is a linear differential equation with bounded and smooth
coefficients for u on S(l, sγ

−, s
γ
+), and we can find a solution by first solving the

first equation for u2 and then the second one for u1. For definiteness we choose
initial conditions at s = 0 requiring that u(t, s = 0) = 0.

To finish the proof we have to make sure that also the third equation (for
i = 3) is satisfied. But this is trivial. Just choose α such that

1
|II|F3 : ∇sym g + α =

1
|II|F3 : A.

Note that this way we obtain a C∞-solution u on S(γ) since A and g vanish
on lines {t = const.} near λ(t) = 0. For the same reason we can patch together
solutions on two arms or an arm and a body since near the free hands of an
arm and on all of a body u is affine, i.e., II ≡ 0, whence g1 = g2 = α = 0. �
Remark. The proof also gives bounds of the form

‖g‖W k,p , ‖α‖W k,p ≤ C‖A‖W k+1,p

with C = C(k, p, y), 1 ≤ p ≤ ∞. In fact it is easy to verify that u calculated
above is given explicitly by

u2(t, s) =
∫ s

0
(F1 : A)(t, s′)ds′,

u1(t, s) = (1 − sκ(t))
∫ s

0

(
− ∫ s′

0
∂
∂t(F1 : A)(t, s′′)ds′′

(1 − s′κ(t))2
−

√
2(F2 : A)(t, s′)
1 − s′κ(t)

)
ds′.

We can now finish the proof of Theorem 3.2.
Proof of Theorem 3.2 (ii). Since Q̄2 is a quadratic function on R

2×2, the limit
functional I0 is W 2,2-continuous on A. By Proposition 2.3 and a standard argu-
ment in Γ-convergence, we therefore only have to construct recovery sequences
for y ∈ A0.

So suppose y ∈ A0 (⊂ W 2,∞). Let d ∈ C∞
0 (Ω1; R3), g1, g2, α ∈ C∞(S̄; R),

g = (g1, g2), and define

y(h)(x′, x3) = y(x′) + h

[
(x3 − α(x′))b(x′) + ∇′y(x′) · g(x′)

]
+ h2D(x′, x3)

10



for D(x′, x3) =
∫ x3

0 d(x′, t)dt. Furthermore, denote R(x′) := (∇′y(x′), b(x′))
and

RT∇hy
(h) = RT

(
(∇′y, b) + h(∇′[(x3 − α)b+ ∇′y · g],D,3) + h2(∇′D, 0)

)
=: Id + hA(h)

with |A(h)| ≤ C for all h ≤ h0. Using that W0(x3, Id + F ) ≤ C dist2(Id +
F, SO(3)) in a neighborhood of SO(3) by Assumptions 1.1 (ii) and (iii), we
obtain for all h ≤ h0

1
h2
W0(x3, (Id + hA(h))(Id + hB(h))) ≤ C

h2

(
|hA(h)|2 + |hB(h)|2

)
≤ C.

Furthermore,

1
h2
W0(x3, (Id+hA(h))(Id+hB(h))) → 1

2
Q3(x3, R

T (∇′[(x3−α)b+∇′y·g],D,3)+B)

a.e. So by frame indifference and dominated convergence

1
h2

∫
Ω1

W
(
x3,∇hy

(h)
)
dx =

1
h2

∫
Ω1

W0(x3, R
T∇hy

(h)(Id + hB(h)))dx

→ 1
2

∫
Ω1

Q3(x3, R
T (∇′[(x3 − α)b+ ∇′y · g], d) +B)dx.

Now ∇′[(x3 − α)b] = (x3 − α)∇′b− b∇′α, and therefore

RT∇′[(x3 − α)b] = (x3 − α)

⎛
⎝ II11 II12

II21 II22
0 0

⎞
⎠−

⎛
⎝ 0 0

0 0
α,1 α,2

⎞
⎠ .

Furthermore, for i = 1, 2, ∇′[giy,i] = gi∇′y,i + y,i∇′gi, and therefore

RT∇′[giy,i] = −gi

⎛
⎝ 0 0

0 0
IIi1 IIi2

⎞
⎠+ ei∇′gi,

i.e.,

RT∇′[∇′y · g] = −
⎛
⎝ 0 0

0 0
g1II11 + g2II21 g1II12 + g2II22

⎞
⎠+

⎛
⎝ g1,1 g1,2

g2,1 g2,2

0 0

⎞
⎠ .

Since C∞
0 (Ω1; R3) is dense in L2(Ω1; R3), by a standard diagonalization argu-

ment choosing d = d(h) suitably leads to (y(h)) such that

1
h2

∫
Ω1

W
(
x3,∇hy

(h)
)
dx

→ 1
2

∫
Ω1

Q2(x3, (x3 − α)II + ∇′
symg +

1
2
(B̌ + B̌T ))dx,

where we have used that Q3 vanishes on antisymmetric matrices.
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To finish the proof by another application of this diagonalization argument,
we have to show that

Amin = argmin
A∈R

2×2
sym

∫ 1/2

−1/2
Q2(t, A+ tII +

1
2
(B̌ + B̌T ))dt ∈ L2(S; R2×2

sym) (4)

can be approximated in L2 by smooth functions A = ∇′
symg−αII for appropri-

ately chosen g and α.
But this is not hard: First, note that Amin ≡ A0 on {II = 0} for some

constant matrix A0. Then choose g̃ and −α according to Lemma 3.3 for
A ∈ C∞(S; R2×2

sym), where A is supported on {II �= 0} and approximates x �→
Amin(x) −A0 in L2. Setting g(x) = g̃(x) +A0x, we obtain

‖∇sym g − αII −Amin‖L2 = ‖χ{II �=0}(A+A0 −Amin)‖2
L2 .

Therefore ∇sym g − αII approximates Amin. �
The above theorems imply convergence of (almost) minimizers under ap-

propriate body forces (cf. [7] for the homogeneous counterpart). Suppose f (h) :
Ω1 → R

3 is a body force such that h−2f (h) → f in L2(Ω1; R3) with
∫
Ω1
f (h)(x)dx =

0 for all h. Define the energy functionals under the load f (h) resp. the limiting
energy functional by

Jh(y) :=
∫

Ω1

(
W (x3,∇hy(x)) − y(x) · f (h)(x′)

)
dx resp.

J0(y) :=
{

1
2

∫
S

(
Q̄2(II(x′)) − y(x′) · f̄(x′)

)
dx′ for y ∈ A,

∞ else,

where f̄ =
∫ 1/2
−1/2 f(·, t)dt.

Corollary 3.4 If (y(h)) is a sequence of almost minimizers of Jh, i.e.,

1
h2

(
Jh(y(h)) − inf Jh

)
→ 0,

then there exists y ∈ A such that y(h) → y in W 1,2 (for a subsequence) and y
minimizes J0.

Proof. The test function y(x′, x3) = (x′, hx3) shows that inf Jh ≤ Ch2. Using
that

∫
Ω1
f (h)(x)dx = 0, from Poincaré’s inequality we deduce

Ih(y(h)) ≤ Jh(y(h)) + ‖f (h)‖L2‖∇y(h)‖L2

≤ Ch2 + Ch2

(
1 +

√
Ih(y(h))

)

along almost minimizing sequences. So Ih(y(h)) ≤ Ch2. The claim now follows
from Theorems 3.1 and 3.2. �

For applications it is useful to give a more explicit formula for Q̄2 in terms
of the moments of Q2. To this end, we view elements of R

2×2
sym as vectors in R

3

that are referred to by the corresponding bold lowercase letters via

f = (F11, F22, F12)T for F ∈ R
2×2
sym.

12



To the quadratic formsQ2(t, ·) we can then associate symmetric positive definite
3 × 3-matrices M(t) in the usual manner.

Define the symmetric 3 × 3-matrices M1, M2, M3 by

M1 :=
∫

M(t), M2 :=
∫
tM(t), M3 :=

∫
t2M(t),

the vectors b1,b2 ∈ R
3 and the constant β by

b1 :=
∫

M(t)b(t), b2 :=
∫
tM(t)b(t), β :=

∫
bT (t)M(t)b(t),

where b(t) represents 1
2(B̌(t)T + B̌(t)). It is not hard to see that

M0 := M3 −M2M−1
1 M2

is a positive definite matrix. We can therefore define

f0 := M−1
0 (M2M−1

1 b1 − b2) and α := −fT
0 M0f0 + β − bT

1 M−1
1 b1.

Proposition 3.5 Denote the quadratic form on R
2×2
sym corresponding to M0 by

Q∗
2. As before let Amin denote the minimizer of (4). Then

Q̄2(F ) = Q∗
2(F − F0) + α,

and Amin(F ) is given by

amin(f) = −M−1
1 (M2f + b1).

Proof. This is elementary matrix algebra. �
Remarks.

(i) Perturbing the reference configuration slightly by Ωh → (Id + hB0)Ωh

where B0 is a constant 3 × 3-matrix, we can minimize over in-plane de-
formations and assume that

b1 =
∫

M(t)b(t) = 0.

(ii) For stress free layers, i.e., B ≡ 0, we obviously obtain F0 = 0, α = 0 and
amin = −M−1

1 M2f .

(iii) If Q2(t, ·) does not depend on t, then Q∗
2 = 1

12Q2 and F0 = −12
∫
tB(t).

If in addition B ≡ 0, this leads to the formula

Q̄2(F ) =
1
12
Q2(F ),

i.e., we recover Kirchhoff’s plate theory for homogeneous materials as
derived in [6].
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4 Low energy sequences and energy minimizers

The main task of this section is to investigate the convergence of the rescaled
nonlinear strain

1
h

((
(∇hy

(h))T∇hy
(h)
)1/2

− Id
)

on low energy sequences. In contrast to the homogeneous case, the limiting
strain will in general not be linear in x3 any more.

Recall that for F ∈ R
2×2, F̂ is the 3× 3-matrix F̂ =

∑2
i,j=1 Fijei ⊗ ej . The

last column of the matrix 1
2(B +BT ) will be denoted bs·3.

Theorem 4.1 Assume ∇hy
(h) converges to (∇′y, b) in L2(Ω1) and has limiting

bending energy h−2Ih(∇hy
(h)) = I0(y) <∞. Then y ∈ A and

1
h

((
(∇hy

(h))T∇hy
(h)
)1/2 − Id

)

→ x3ÎI + Âmin +
(cmin + bs·3) ⊗ e3 + e3 ⊗ (cmin + bs·3)

2

in L2(Ω1). As before, Amin is given uniquely by (4), and and cmin is the unique
minimizer in R

3 of

min
c
Q3

(
Âmin + x3ÎI +B +

c⊗ e3 + e3 ⊗ c

2

)

depending on Amin and II.

Proof. Inspect the proof of the lower bound in Theorem 3.2 (i): On low energy
sequences, all the inequalities in

I0(y) = lim sup
h→∞

1
h2

∫
Ω1

W (x3,∇hy
(h))

≥ lim sup
h→∞

1
h2

∫
Ω1

χhW0(x3,∇hy
(h)(Id + hB(h)))

≥ lim sup
h→∞

1
2

∫
Ω1

Q3(x3, χhA
(h))

≥ 1
2

∫
Ω1

Q3(x3, G(x) +B(x3))

≥ 1
2

∫
Ω1

Q2(x3, Ǧ(x′, 0) + x3II(x′) +
1
2
(B̌(x3) + B̌T (x3)))

≥ 1
2

∫
Ω1

Q2(x3, Amin(x′) + x3II(x′) +
1
2
(B̌(x3) + B̌T (x3))) (5)

are in fact equalities. So first from the last inequality we deduce

(Ǧ(x′, 0))T + Ǧ(x′, 0)
2

= Amin(x′) a.e.
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and then, from the last but one,

(G+B)T + (G+B)
2

= x3ÎI(x′) + Âmin(x′) +
1
2
(B̌ + B̌T )̂ +

c̃min(x) ⊗ e3 + e3 ⊗ c̃min(x)
2

= x3ÎI(x′) + Âmin(x′) +
1
2
(B +BT ) +

cmin(x) ⊗ e3 + e3 ⊗ cmin(x)
2

, (6)

where c̃min ∈ R
3 is the unique minimizer of

min
c
Q3

(
Âmin + x3ÎI + (B̌)̂ +

c⊗ e3 + e3 ⊗ c

2

)
.

In fact, by Assumption 1.1, the mappings Q3(t, ·) are uniformly strictly
convex on symmetric matrices uniformly in t: there exists γ > 0 such that for
all F0, F ∈ R

3×3
sym and a.e. t ∈ (−1/2, 1/2),

D2Q3(t, F0)(F,F ) = 2Q3(t, F ) ≥ γ|F |2.
By a standard argument (see, e.g., [4], page 21) we therefore deduce from the
third (in-)equality above and χhA

(h) ⇀ G+B

χh
(A(h))T +A(h)

2
→ (G+B)T + (G+B)

2
(7)

strongly in L2.
Now, since on {χ = 1}

A(h) =
1
h

(R(h))T∇hy
(h)(Id + hB(h)) − 1

h
Id

with hA(h) ≤ √
h+ Ch, |hB(h)| ≤ Ch and thus

(R(h))T∇hy
(h) = (Id + hA(h))(Id + hB(h))−1 = Id + hA(h) − hB(h) + O(h3/2),

we obtain

(∇hy
(h))T∇hy

(h) = ((R(h))T∇hy
(h))TR(h)∇hy

(h)

= Id + (hA(h) − hB(h))T + hA(h) − hB(h)

+h2(A(h))TA(h) + O(h3/2)

and ∣∣∣∣((∇hy
(h))T∇hy

(h)
)1/2 −

(
Id +

h

2

(
(A(h) −B(h))T +A(h) −B(h)

))∣∣∣∣
≤ C

(
|hA(h)|2 + h3/2

)
.

Multiplying by 1
hχh yields∥∥∥∥∥χh

((
(∇hy

(h))T∇hy
(h)
)1/2 − Id

h
− (A(h) −B(h))T +A(h) −B(h)

2

)∥∥∥∥∥
L2

≤ C‖A(h)‖L2‖χhhA
(h)‖L∞ + C

√
h.
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Since A(h) ⇀ G+B in L2 and ‖χhhA
(h)‖L∞ ≤ 2

√
h, we have from (7)

χh

(
(∇hy

(h))T∇hy
(h)
)1/2 − Id

h
→ (G+B)T +G+B

2
− BT +B

2

in L2.
To remove χh, we estimate, using that |

√
F TF − Id| ≤ dist(F, SO(3)) ≤

C(
√
W (x3, F ) + h) for F ∈ R

3×3,

lim sup
h→∞

∫
Ω1

(1 − χh)

∣∣∣∣∣
(
(∇hy

(h))T∇hy
(h)
)1/2 − Id

h

∣∣∣∣∣
2

≤ lim sup
h→∞

C

h2

∫
Ω1

(1 − χh)
(
W (x3,∇hy

(h)) + h2
)

= lim sup
h→∞

C

h2

∫
Ω1

(1 − χh)W (x3,∇hy
(h))

= 0

since the first inequality in (5) is an equality. This finishes the proof by (6). �
For applications it is particularly interesting to investigate the minimizers of

the limiting energy functional I0 under free boundary conditions. The following
proposition was proved in [19] under slightly different conditions. We include
the short proof for the convenience of the reader.

Proposition 4.2 The minimizers of I0 are cylinders, i.e., their second funda-
mental form is constant.

Proof. Minimizers satisfy II ∈ N a.e., where N is the set of minimizers F ∈
R

2×2
sym of Q∗

2(F −F0) subject to det(F ) = 0. If for F ∈ N , Q∗
2(F −F0) = c, then

N , viewed as a subset of R
3, is the intersection of the cone {f : f1f2 − f2

3 = 0}
with the ellipsoid {(f − f0)TM0(f − f0) = c}. It is easily seen that, since M0 is
positive definite, any two elements of N are linearly independent, in particular
0 /∈ N . As

II(Φγ(t, s)) =
λ(t)

1 − sκ(t)
µ(t) ⊗ µ(t)

on covered domains, this implies that κ ≡ 0, and therefore also µ ≡ const. and
λ ≡ const. in a neighborhood of any point x ∈ S. �
Remarks.

(i) This is essentially the same reasoning as in [19]. There it is also shown
that minimizers need not be unique. However, under the more restrictive
assumptions in [19], F0 turns out to be a multiple of the identity matrix
which implies that the optimal radius of energy minimizing cylinders is
uniquely determined (see [19] for details). This is no longer true under our
general assumptions here. Generically, however, minimizers are unique up
to rotations.

(ii) A similar argument shows that for fixed winding direction (µ ≡ µ0, κ ≡ 0)
the optimal radius λ−1 of a cylinder is unique.
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5 An application to nanoscrolls

Propositions 3.5 and 4.2 induce an algorithm to determine optimal shapes of
thin stressed multilayers: One only has to minimize Q∗

2(· − F0) with respect to
the constant second fundamental form λn⊗ n, |n| = 1. To deduce the optimal
radius for fixed winding direction n simply amounts to solving a linear equation.
Then, in order to optimize with respect to the direction n, one needs to solve
an algebraic equation. For general energy functions the calculations quickly
become very messy, so we confine ourselves to a specific example to illustrate
our results.

Consider the BGaAs/InGaAs bilayer discussed in [17], where the thickness
of the BGaAs layer is approximately 0.8 times the thickness of the InGaAs
layer. The linearized energy within the layers is of the form

Q3(F ) = C11

(
F 2

11 + F 2
22 + F 2

33

)
+ C44

(
F 2

12 + F 2
23 + F 2

31

)
+2C12 (F11F22 + F22F33 + F33F11) ,

and therefore Q2 is given by

Q2(F ) =
(
C11 − C2

12

C11

)(
F 2

11 + F 2
22

)
+ C44F

2
12 + 2

(
C12 − C2

12

C11

)
F11F22.

For InGaAs, resp., BGaAs, we have (in GPa)

CInGaAs
11 = 105.8, CBGaAs

11 = 123.0,
CInGaAs

12 = 50.4, resp., CBGaAs
12 = 54.0,

CInGaAs
44 = 52.2, CBGaAs

44 = 59.6

(see, e.g., [17]). So Q2(t, ·) is represented by the 3 × 3-matrix

M(t) =

⎛
⎝ 81.8 26.4 0

26.4 78.2 0
0 0 52.2

⎞
⎠ , resp.,

⎛
⎝ 99.3 30.3 0

30.3 99.3 0
0 0 59.6

⎞
⎠ ,

for −1/2 < t < 1/18 resp., 1/18 < t < 1/2, whence

Q∗
2(F ) ≈ 7.5

(
F 2

11 + F 2
22

)
+ 4.6F 2

12 + 4.7F11F22.

The lattice constants are 0.58031nm for InGaAs resp. 0.56313nm for BGaAs.
Since the film is grown epitaxially, the flat reference configuration is under
stress. The misfit being of the order ∼ 1%, our theory applies to films whose
aspect ratio is of the order ∼ 1%. To calculate the optimal radius, w.l.o.g. we
let h = 1/100 and B(t) ≈ 1.50 · Id resp. 1.51 · Id for −1/2 < t < 1/18 resp.
1/18 < t < 1/2 (so that b1 = 0, b2 ≈ (43.44, 43.44, 0)T ).

Assuming the film rolls up in (1, 0, 0)-direction, i.e., II = diag(κ, 0), F0

turns out to be −4.49 · Id. Now minimizing the energy with respect to κ
yields an energetically optimal cylinder with BGaAs in its interior of radius
R = 1/|κ| ≈ 0.17. Since the aspect ratio is h = 0.01, assuming that the film is
of microscopic thickness d (in nanometers), we obtain

Ropt(d) ≈ 17d nm.

for the optimal radius in (1, 0, 0)-direction. This is in good agreement with the
measurements in [17].

17



Acknowledgements

This work was initiated by my PhD-work supervised by Prof. S. Müller, whom I
would like to thank for having chosen interesting topics and for his helpful advice
during the preparation of my thesis. I am also grateful to M. R. Pakzad for
interesting discussions on isometric immersions and to H. Paetzelt for answering
all my questions on rolled-up nanosheets with great patience.

This work was supported by the German science foundation (DFG) within
the Research Group FOR 522.

References

[1] P. G. Ciarlet. Mathematical elasticity Vol. II: Theory of plates. North-Holland,
Amsterdam · New York · Oxford · Tokyo 1997.

[2] G. Dal Maso. An introduction to Γ-convergence. Birkhäuser, Boston · Basel ·
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