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T. Kuna G. Manzi

Abstract

The time spent by a ferromagnetic system, ruled by a Kac potential Jγ , in one of the two
phases has the order of magnitude of 1 divided by the probability of observing so a strong
fluctuation that an interface is produced and move until the opposite phase is reached. That
probability is exponentially small in the intensity γ of the potential and the free energy gap
between one of the phase and the next stationary state, where both phases are present in the
same quantity separated by an interface.

1 Introduction

We want to prove an estimate for the time needed by an Ising spin system on [−L, L] with Kac
type potential, Neumann boundary conditions (the profiles are extended to the whole line by
reflecting them around the points kL, k odd) and Glauber dynamics starting in a neighbourhood
of the plus phase to reverse to the minus one, due only to fluctuations.

The picture we have in mind is a double well, whose minima are the ± phases and the saddle
is the instanton.

The time for the tunneling can not be small, because large fluctuations are improbable and
after a normal one has occurred, the system flows again around the initial phase according to the
behaviour of the deterministic evolution. But it can not be too large, too. In fact one can exhibit
explicitly paths performing the tunneling whose probability is not zero. Basically the system tries
a lot of times to tunnel until it finds the right path to follow.

2 Notation and definitions

2.1 Ising system, Kac potentials and Glauber dynamics

The Ising system is a model for magnetic materials. For any point x on the grid S := [−L, L]∩γZ

we consider a spin σ(x), namely a variable that can take the values 1 or −1. We call configuration
the collection of spin σ = {σ(x)}x∈S . Let H(σ) be the energy of the configuration σ:

H(σ) = −
∑

x,y∈S, x<y

Jγ(x, y)σ(x)σ(y)

where Jγ is a Kac potential, namely Jγ(x, y) = γJ(|x − y|), and J is positive (ferromagnetic),
J(x) = 0 if |x| > 1 and

∫
J = 1.

On a macroscopic scale we disregard the details of each configuration; we only measure local
averages. Since a macroscopic system in equilibrium is characterized by well defined quantities
(e.g. the magnetization), not all configurations can correspond to them. Then there are configu-
rations that can be considered typical. We formalize this notion by introducing a weight for each
configuration:

µγ({σ}) =
e−βH(σ)

Zγ

1



where Zγ is a normalization factor and β is the reciprocal of the temperature. µγ is a probability
measure (Gibbs measure) on the space of all possible configurations. Equipping that space with
a suitable topology (see below) it is possible to prove a large deviation principle for µγ with
speed γ−1 and rate functional given by the free energy defined in (1). It means basically that
the equilibrium of the system is characterized by configurations with low energy, but also that
are quite common (high entropy). When the temperature is high (β small) the disorder prevails
on the energy and the average magnetization is zero; when β > 1, the average magnetization is
different from zero and it can be either positive (mβ) or negative (−mβ). The choice between the
two values can be modulated by a vanishing external magnetic field.

Of course we do not expect that microscopically the system stays forever in the same configu-
ration, even though it is typical. Rather we imagine some mechanism through which the system
switches from one configuration to another, staying typical if it was at the beginning or converging
to some equilibrium in the other case. We then define a Markov process that leaves µγ invari-
ant; an example is the so called Glauber dynamics (non conservative dynamics), defined by the
following generator:

Lf(σ) =
∑
x∈S

c(x, σ)[f(σx) − f(σ)]

where f depends on finitely many spins and σx is the configuration obtained by σ flipping the
spin in x. c(x, σ) are the jump rates:

c(x, σ) =
e−σ(x)

P
y∈S\{x} Jγ(x,y)σ(y)

e
P

y∈S\{x} Jγ(x,y)σ(y) + e−
P

y∈S\{x} Jγ(x,y)σ(y)

On each site of S there is a Poissonian clock with intensity c(x, σ); when the first clock rings we
flip the corresponding spin and restart all the clocks.

The Glauber dynamics induces a measure on the path space of the realizations of the process.
Again it is possible to prove an l.d.p. for that measure with speed γ−1 and rate functional given
by the Comets cost functional IT , see [3]. It implies that the process will try to follow in average
the solution of the mean field equation (2).

When β > 1, the constant profiles ±mβ are stationary points of (2) and global minimizer of the
free energy; a lot of configurations are attracted by them. The next stationary point in the scale
of free energy is the so called instanton, m̂, that is the unique antisymmetric, strictly increasing
stationary solution of (2) on [−L, L] and Neumann boundary conditions.

A tunneling is a large deviation from the average behaviour.

2.2 Local averages topology

Let B be the set of profiles whose absolute value is not greater than 1, B := L∞([−L, L]; [−1, 1]).
The weak topology on B is defined by the requirement that a sequence {mn} ⊂ B converges to
m ∈ B if and only if for any f ∈ C([−L, L])

< f, mn >→< f, m >

where < f, g >=
∫
[−L,L]

fg. It can be shown that it is equivalent to the following topology. Let
us consider a partition D(�) of [−L, L] in intervals ∆ whose length is �. Then we introduce the
local average P(�)m of the profile m through

P(�)m(x) :=
∑

∆∈D(�)

(
1
|∆|

∫
∆

dx′ m(x′)
)

11∆(x)

We say that mn converges to m with respect to the local averages if P(�)mn → P(�)m for any �.
We denote by ρ a metric compatible with the weak topology (see below); Wr(φ) is a ball of

radius r around the profile φ: Wr(φ) = {m ∈ B : ρ(m, φ) < r}.
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We define stopping times as τ(A) = inf{t ≥ 0 : σt ∈ A}, where σt is a realization of the
Glauber dynamics.

We call profiles functions defined on the line periodic of period 4L and symmetric around kL,
K odd.

2.3 Energy landscape

We call D+ and D− the basins of attraction of mβ and −mβ respectively with respect to the mean
field equation (2), the convergence is in L∞. D± are open domains in the weak topology (the flow
defined by (2) is continuous with respect to the initial data, see below).

The free energy is defined by

F(m) =
∫ L

−L

φβ(m)dx +
1
4

∫ L

−L

∫ L

−L

Jneum(x, x′)(m(x) − m(x′))2dxdx′ (1)

where β > 1,

φβ(m) = φ̃β(m) − min
|s|≤1

φ̃β(s), φ̃β(m) = −m2

2
− 1

β
E(m)

E(m) = −1 − m

2
ln

1 − m

2
− 1 + m

2
ln

1 + m

2
and

Jneum(x, y) = J(x, y) + J(x, RL(y)) + J(x, R−L(y))

with Rξ(y) = 2ξ − y. We also notice that a system with von Neumann boundary conditions
on the interval [−L, L] can be seen as a system with periodic boundary conditions on [−L, 3L]
with the additional constrain of reflection symmetry around L, i.e. m(x + 4L) = m(x) and
m(2L− x) = m(x). For this type of function the set

{
cos

(
2πk
4L (x − L)

)}
k∈N

is a basis. Moreover

∫ L

−L

dyJneum(x, y)m(y) = J ∗ m(x)

If we consider the set of all profiles whose free energy is less than that of the instanton plus
some positive (small) constant, i.e. G := {m ∈ B : F(m) ≤ F(m̂) + σ}, then we know that there
are only three stationary points in this set: the two phases and the instanton, citeBDP. Moreover
this set is compact in the weak topology (it is a level set for a good rate functional) and it is
invariant under the deterministic evolution described by

∂tm = −m + tanh(βJ ∗ m) (2)

because F is a Lyapunov functional for that evolution.
Notice that D− ⊂ Dc

+ because Dc
+ is closed and D+ ∩ D− = ∅.

3 Main result

Theorem 1. For any δ > 0, σ ∈ D+ and r− > 0 such that Wr−(−mβ) ⊂ D− we have

lim
γ→∞Pγ,σ(T− < τγ < T +) = 1

where Pγ,σ is the path measure on the space of realizations of the Glauber dynamics starting from
the configuration σ; T± = exp{γ−1(F(m̂) ± δ)} and τγ = τ(Wr− (−mβ)).

The global strategy is standard (see [5]), but there are several technical points that needed
some fresh new ideas, especially in taking care of the lack of continuity of F and IT in the weak
topology.
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4 D+ and D− are open

Here we prove that the basins of attraction of the two pure phases are open sets in the weak
topology. The key ingredient is the continuity of the flow with respect to the initial data; to be
precise we will use a stronger property of the evolution, namely that after a suitable long time, if
the evolution starts from two points close in a weak sense, then the flows will be close in L∞ sense.
The strategy is the following: given m ∈ D+ (for D− the argument is the same), we follow its
evolution until a time t̄ when it enters an L∞ ball Bδ/2(mβ) around mβ such that the free energy
in Bδ(mβ) is strictly smaller than the one of the instanton and the magnetization is positive and
also 2e−t̄ < δ/4. This is possible because the free energy is continuous in L∞. Then we can choose
a weak ball Wδ′(m) such that for any m̃ ∈ Wδ′(m) m̄ := Tt̄m̃ ∈ Bδ/2(Tt̄m) (see below). Now Ttm̄
will converge to mβ because the only available stationary points are the two pure phases ([1]), but
the evolution cannot reach −mβ because otherwise there would be a time when the magnetization
is zero, but in this class of profiles, the least free energy is attained at the instanton ([4]).

4.1 Continuity of the flow w.r.t. the initial data

We want to show that for any m
(1)
0 , m

(2)
0 and any time t and ε > 0, if ρ(m(1)

0 , m
(2)
0 ) < δ, then

ρ(m(1)
t , m

(2)
t ) < ε for δ sufficiently small, where m

(i)
t = Ttm

(i)
0 . We write (2) in the following

integral form:

mt = e−tm0 +
∫ t

0

ds e−(t−s) tanh(βJ ∗ ms)

The whole point is to show that | tanh(βJ ∗m
(1)
s )− tanh(βJ ∗m

(2)
s )| is small for all s ≤ t. Notice

that βJ ∗ ms is a solution of the following system

∂tF = −F + βJ ∗ tanhF, F0 = βJ ∗ m0

whose flow is clearly continuous w.r.t. the initial data even in L∞ sense. This is sufficient to
conclude, because J ∗ (m(1)

0 − m
(2)
0 ) is small if m

(1)
0 and m

(2)
0 are close in a weak sense.

From the proof it is clear that if the time t is such that 2e−t < ε/2 and J ∗ (m(1)
0 −m

(2)
0 ) is so

small that | tanh(βJ ∗ m
(1)
s ) − tanh(βJ ∗ m

(2)
s )| is smaller than ε/2, then |m(1)

t − m
(2)
t | < ε. This

is the stronger property of the flow that we are using in the previous section.

5 Lower bound

In this section we will show

Theorem 2. For all δ > 0 and all σ ∈ D+

lim
γ→0

Pγ,σ

(
τγ < T−)

= 0

where T−, τγ and r− are as in theorem (1).

We perform the proof in three steps: a) we show the lower bound for an initial data distributed
according to the stationary Gibbs measure restricted to a sufficiently small ball around mβ using
the l.d.p. that holds for this measure; b) then we extend the result to any initial data in a
possibly smaller ball through a coupling method and, finally, c) we complete the proof thanks to
the closeness of the process to the deterministic path.

5.1 Step a)

Given a set A ⊂ B, Ac := B \ A, we call Aθ and ∂θA the sets

Aθ = {m ∈ B : ρ(A, m) < θ}
∂θA = {m ∈ Ac : ρ(A, m) < θ}
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We introduce U = {m ∈ B : F(m) > F(m̂) − ε}, ε < δ; being U c a level set, it is compact. It
follows by a general result (the distance between two disjoint sets, one closed, the other compact,
is strictly positive) that there exists θ > 0 such that 2θ = ρ(U c ∩ D+, D−) because U c ∩ D+ is a
subset of the compact set U c ∩D+ and we only need to prove that (U c ∩D+)∩D− = ∅. We argue
by contradiction: let us suppose that there is m ∈ U c ∩ D+ ∩ D−. Then m /∈ D+ and m /∈ D−
because otherwise D+ ∩ D− 	= ∅ or D− ∩ D+ 	= ∅, which is not possible. But we know that there
exists u such that the flow starting from m converges to u (by subsequences) and u is a stationary
solution of (2) and F(u) ≤ F(m) (see Presutti et al.). Then u cannot be m̂ because m ∈ U c, the
set of profiles with free energy less or equal to F(m̂) − ε and obviously it cannot be either mβ or
−mβ, because otherwise m would belong to D+ or to D−. This leads to the desired contradiction
because according to a recent result by Bellettini, De Masi and Presutti ([1]) the only stationary
points below the instanton are the two pure phases.

Now we can prove that ∂θ(U c ∩D+) ⊂ U . In fact, since ρ(U c ∩D+, D−) = 2θ, ∂θ(U c ∩D+) ∩
D− = ∅; but then ∂θ(U c∩D+) ⊂ (U∪Dc

+)∩D−
c

= [U∪(Dc
+∩U c)]∩D−

c
. By the above mentioned

result about the energy levels of the free energy we know that U c ⊂ D+ ∪ D−. It follows that
Dc

+ ∩ U c ⊂ D− and then Dc
+ ∩ U c ∩ D−

c
= ∅. We are left with ∂θ(U c ∩ D+) ⊂ U ∩ D−

c
which is

sufficient to conclude.
Let µγ,W be the stationary Gibbs measure restricted to the set W : µγ,W = 11W µγ/µγ(W )

(provided µγ(W ) > 0). We will choose W as a set containing mβ and contained in (U c ∩ D+)θ.
Actually, since D+ is open we take a sufficiently small weak ball around mβ contained in (U c)θ,
e.g. W = Wθ/2(mβ).

Let Pµγ,W be the law of the process whose initial state is distributed according to µγ,W . We
have for any given δ′ and for γ small enough

Pµγ,W (σT ∈ ∂θ(U c ∩ D+)) ≤ Pµγ (σT ∈ ∂θ(U c ∩ D+))
µγ(W )

≤ e−γ−1(F(m̂)−ε−δ′)

e−γ−1(infm∈W F(m)+δ′) = e−γ−1(F(m̂)−ε−2δ′)

and we note that infm∈W F(m) = 0 since mβ ∈ W ; for the numerator we exploited the fact that
∂θ(U c ∩ D+) ⊂ U . Here we have used the stationarity of the Gibbs measure w.r.t. the Glauber
dynamics and the large deviation principle for µγ .

Given θ/2 there is a partition of [−L, L] in subintervals I and a number θ′ such that if∑
I |

∫
I
m1 − m2| < θ′ then ρ(m1, m2) < θ/2. Let ∆t be a small time interval, say ∆t = γa,

a > 0. Since the jump rates are bounded by a constant cM , we can estimate the probability of
having more than N jumps in a time interval ∆t by

(2Lγ−1cM∆t)N

N !
≈ exp{−N ln

N

2LcMγ−1∆t
+ . . .}

If we choose N = γ−1/(ln γ−1)b, 0 < b < 1, then the above probability goes to zero, when γ

vanishes, faster than e−γ−1c, for any possible c (e.g. c = F(m̂) + 2σ). If the number of spin
flips is not greater than N , the largest change in magnetization in a coarse cell I is (2γ/|I|)N =
2/(|I|(ln γ−1)b). It follows that

∑
I

|
∫

I

σt+∆t − σt| <
4L

|I|(ln γ−1)b
< θ′

provided γ sufficiently small. With an abuse of notation we denoted with σt the following function:∑
y∈S σt(y)11y≤x<y+γ.
For any realization σ̄t such that σ̄0 is distributed according to µγ,W and there is some T > 0

such that σ̄T ∈ Wr−(−mβ), we define the sequence σi := σ̄i∆t. With overwhelming probability
(see above) ρ(σi+1, σi) < θ/2; since the process starts in (U c ∩ D+)θ and after a while enters D−
and these two sets are disjoint, we can conclude that there is l such that σl ∈ (U c ∩ D+)θ but
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σl+1 /∈ (U c ∩ D+)θ. It follows that σl ∈ ∂θ(U c ∩ D+), because otherwise the distance between σl

and σl+1 would be larger than θ.
Define M = [T−/∆t], then

Pµγ,W (τγ < T−) ≤ (M + 1) (2LcMγ−1∆t)N

N ! +
∑M

i=1 Pµγ,W (σi ∈ ∂θ(U c ∩ D+))

≤ eγ−1(F(m̂)−δ)γ−a
(
e−cγ−1

+ e−γ−1(F(m̂)−ε−2δ′)
) → 0

If we choose δ′ < (δ − ε)/2. This concludes the first step.

5.2 Step b)

We consider the following metric of the weak topology

ρ(m1, m2) := sup
k∈N

∣∣ ∫ L

−L dx(m1(x) − m2(x)) cos
(

2πk
4L (x − L)

)∣∣
1 + k

ρt(σ′, σ′′) := sup
0≤τ≤t

ρ(σ′
τ , σ′′

τ )

Using the reflection symmetry one sees that
∫ 3L

−L
m(x)dx = 2

∫ L

−L
m(x)dx. The reason to introduce

this metric is the following lemma

Lemma 1. Let m1 and m2 be two profiles, then

ρ(J ∗ m1, J ∗ m2) ≤ ρ(m1, m2) (3)

and, for sufficiently smooth J , there exists a constant CL > 0 such that

|J ∗ m(x)| ≤ CLρ(m, 0).

The first inequality holds because of the following calculation∣∣∣∣∣2
∫ L

−L

dxJ ∗ m(x) cos
(2πk

4L
(x − L)

)∣∣∣∣∣ =

∣∣∣∣∣
∫ 3L

−L

dxJ ∗ m(x)�ei 2πk
4L (x−L)

∣∣∣∣∣
=

∣∣∣∣∣�
(∫ 3L

−L

dxJ(x)ei 2πk
4L x

∫ 3L

−L

dxm(x)ei 2πk
4L (x−L)

)∣∣∣∣∣
≤

∣∣∣∣∣
∫ 3L

−L

dxJ(x)ei 2πk
4L x

∣∣∣∣∣
∣∣∣∣∣�

∫ 3L

−L

dxm(x)ei 2πk
4L (x−L)

∣∣∣∣∣
where the last equality follows from the fact that by the symmetry 
( ∫ 3L

−L dxm(x)ei 2πk
4L (x−L)

)
= 0.

Of course we can assume L > 1. Observing that
∣∣ ∫ 3L

−L
dxJ(x)ei 2πk

4L x
∣∣ ≤ 1 one obtains the inequality

(3).
In order to prove the second inequality we express the convolution in terms of the Fourier

transform

J∗m(x) =
1
2

[
1

2L

∫ 3L

−L

dyJ ∗ m(y)

]
+

∞∑
k=1

cos
(

2πk

4L
(x − L)

) [
1

2L

∫ 3L

−L

J ∗ m(y) cos
(

2πk

4L
(y − L)

)]

Then

|J ∗ m(x)| ≤ 1
2L

∞∑
k=0

∣∣∣∣∣
∫ 3L

−L

dyJ ∗ m(y) cos
(

2πk

4L
(y − L)

)∣∣∣∣∣
and since ∣∣∣∣

∫
J(x)ei 2πk

4L xk3

∣∣∣∣ ≤
(

4L

2π

)3

2||J ′′′||∞

6



we can conclude that
|J ∗ m(x)| ≤ ρ(m, 0)CL2||J ′′′||∞

Of course this estimate is rough and can be improved in terms of L and of smoothness of J .
These two inequalities can be used to derive that in a sufficiently small ball around mβ the

metric decays exponentially in time. The integral form of the mean field equation yields

ρ(mt, mβ) ≤ ρ(m0, mβ)e−t +
∫ t

0

dse−(t−s)ρ
(
tanh(βJ ∗ ms), tanh(βJ ∗ mβ)

)
According to Taylor expansion

tanh(βJ ∗ ms)− tanh(βJ ∗ mβ) =
β

cosh2(βmβ)
(J ∗ms − J ∗ mβ)− β2 tanh(ξ)

cosh2(ξ)
(J ∗ ms − J ∗mβ)2

one gets for the distance

ρ
(
tanh(βJ ∗ms), tanh(βJ ∗mβ)

) ≤ β(1−m2
β)ρ(J ∗ms, J ∗mβ) + β22L sup

x
|J ∗ms(x)− J ∗mβ |2

Applying the first inequality to the first summand on the r.h.s. and the second one to the second
summand, one obtains, where C′ > 0, C′ ≈ L3,

ρ(mt, mβ) ≤ ρ(m0, mβ)e−t +
∫ t

0

dse−(t−s)
(
β(1 − m2

β)ρ(ms, mβ) + C′ρ(ms, mβ)2
)

As β(1 − m2
β) < 1, we proved

Lemma 2. There exists an r0, δ0 > 0 such that if ρ(m0, mβ) ≤ r0 then

ρ(mt, mβ) ≤ e−δ0tρ(m0, mβ).

In this part we prove that if one starts from a small ball, Wr1(mβ), around mβ in the weak
topology, the process will leave the ball Wr(mβ), r > 2r1, only after a very long time, i.e. the
following proposition hold:

Proposition 1. There exists c > 0 such that

sup
σ∈Wr1 (mβ)

Pγ,σ

(
τ(Wr(mβ)c) < ecγ−1

)
≤ e−cγ−1

, (4)

where r1 < min{r/2, r0}.
Due to the uniform (exponential) decay of the metric ρ under the dynamics, there exists a

time T such that any deterministic trajectory which starts from a point σ ∈ Wr1(mβ) will be in
Wr1/2(mβ) at time T . Therefore, by the large deviation principle, for any σ0 ∈ Wr1(mβ)

Pγ,σ0

(
τ(Wr(mβ)c) > T, σT ∈ Wr1(mβ)

) ≥ Pγ,σ

(
ρT (σt, m

σ
t ) < r1/2

) ≥ 1 − e−c1γ−1
,

where

c1 := inf
{IT (m̃)

∣∣σ ∈ Wr1(mβ), m̃ such that ρT (m̃, mσ) ≥ r1/2 and m̃0 = σ
}

and mσ denotes the deterministic path started at σ. In more generality, we used that for compact
W , r̃ > 0 by the large deviation principle

sup
σ∈W

Pγ,σ

(
ρT (σt, m

σ
t ) ≥ r̃

) ≤ e−cW γ−1
(5)

and that the corresponding constant

cW := inf
{IT (m̃)

∣∣σ ∈ W, m̃ such that ρT (m̃, mσ) ≥ r̃ and m̃0 = σ
}
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is strictly greater than zero. As we want to prove this by contradiction we assume that cW = 0.
Then there exists a sequence of pairs (σ(n), m̃(n))n such that m̃

(n)
0 = σ(n), ρT (m̃(n), mσ(n)

) ≥ r̃
and limn→∞ IT (m̃(n)) = 0. Due to the convergence of the rate function the sequence (m̃(n))n lies
in a level set and hence has a convergent subsequence. The corresponding subsequence of (σ(n))n

converges in the weak topology. Without loss of generality we hence assume that there exists
a pair (σ, m̃) such that ρT (m̃(n), m̃) and ρ(σ(n), σ) converge to zero. By lower semi-continuity
also IT (m̃) = 0. But the deterministic flow is continuous w.r.t. the initial data, in other words
ρT (mσ(n)

, mσ) converges to zero, then also ρT (m̃, mσ) ≥ r̃ holds. Hence m̃ is not the deterministic
path started at σ which contradicts IT (m̃) = 0.

Applying the result ec1/2γ−1
times one obtains the result for c < c1/2 by the Markov property.

5.2.1 Coupling and memory loosing

In the following we want to show that after a time of order (ln γ−1)2 the process loses is memory
near the minimum. More precisely, we want to show that there exists a coupling Qγ of Pγ,σ′ with
Pγ,σ′′ such that

Qγ

({
σ′

t 	= σ′′
t for t ≥ (ln γ−1)2

}) → 0

when γ goes to zero. One coupling which fulfils this is the so-called best coupling, defined as the
path measure of the process generated by the following generator

L(c)f(σ′, σ′′) :=
∑
x∈S

11σ′(x) �=σ′′(x)

(
c(x, σ′)[f(σ′x, σ′′) − f(σ′, σ′′)] + c(x, σ′′)[f(σ′, σ′′x) − f(σ′, σ′′)]

)

+11σ′(x)=σ′′(x)

(
c(x, σ′) ∧ c(x, σ′′)[f(σ′x, σ′′x) − f(σ′, σ′′)]

+(c(x, σ′) − c(x, σ′) ∧ c(x, σ′′))[f(σ′x, σ′′) − f(σ′, σ′′)]

+(c(x, σ′′) − c(x, σ′) ∧ c(x, σ′′))[f(σ′, σ′′x) − f(σ′, σ′′)]
)

with initial condition (σ′
0, σ

′′
0 ).

The idea of the best coupling is to make the two process to coincide: if σ′(x) 	= σ′′(x) we
look at two Poissonian clocks with parameters c(x, σ′) and c(x, σ′′) that can ring independently
from each other. If σ′(x) = σ′′(x) then the clocks are different: the first clock has parameter
c(x, σ′) ∧ c(x, σ′′), the second |c(x, σ′) − c(x, σ′′)|. So there are 2(2Lγ−1) clocks. When the first
clock rings we check to which site it is associated; if σ′ and σ′′ differ there, then we flip the spin
of the configuration whose clock rang; if σ′ and σ′′ are the same, then we flip the spins of both
the configurations if the clock that rang is the one with parameter c(x, σ′) ∧ c(x, σ′′), otherwise
we flip only the spin of the configuration corresponding to the largest parameter. After that we
restart all the clocks.

As L(c) is obviously a generator of a Markov process, Q is a probability measure. In order to
show that the marginals of Q are given by P , we use that the generator L(c) has, for functions
which depend only on one variable, the form

L(c)f(σ′) =
∑
x∈S

11σ′(x) �=σ′′(x)

(
c(x, σ′)[f(σ′x) − f(σ′)]

+11σ′(x)=σ′′(x)

(
c(x, σ′) ∧ c(x, σ′′)[f(σ′x) − f(σ′)]

+(c(x, σ′) − c(x, σ′) ∧ c(x, σ′′))[f(σ′x) − f(σ′)]
)

=
∑
x∈S

c(x, σ′)[f(σ′x) − f(σ′)] = Lf(σ′).

Hence, the marginal in the first variable is Pγ,σ′ . The marginal in the second variable can be
treated analogously. It remains to show that the coupling gives coalescence.
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Consider the function α(σ′, σ′′) :=
∑

y |σ′(y) − σ′′(y)|. First, we compute for any summand
separately

L|σ′(y) − σ′′(y)| = 11σ′(y) �=σ′′(y)

(
c(y, σ′) + c(y, σ′′)

)
[−2] +

11σ′(y)=σ′′(y)

∣∣c(y, σ′) − c(y, σ′′)
∣∣2 (6)

Using the form of c(x, σ) ≡ e−σ(x)hγ (x,σ)

ehγ (x,σ)+e−hγ (x,σ) where hγ(x, σ) ≡ ∑
y∈S\{x} Jγ(x, y)σ(y). Then one

can rewrite for σ′(x) = −σ′′(x)

c(x, σ′) + c(x, σ′′) =
e−σ′(x)hγ(x,σ′)

ehγ(x,σ′) + e−hγ(x,σ′) +
eσ′(x)hγ(x,σ′′)

ehγ(x,σ′′) + e−hγ(x,σ′′)

=
e−σ′(x)hγ(x,σ′)

ehγ(x,σ′) + e−hγ(x,σ′) − e−σ′(x)hγ(x,σ′′)

ehγ(x,σ′′) + e−hγ(x,σ′′) + 1

Therefore, it remains to estimate for σ′, σ′′ such that σ′(y) = σ′′(y)

2|c(y, σ′) − c(y, σ′′)| =
∣∣∣ e±hγ(x,σ′)

cosh(hγ(x, σ′))
− e±hγ(x,σ′′)

cosh(hγ(x, σ′′)]

∣∣∣
≤

∫ 1

0

ds
1

cosh2(shγ(x, σ′) + (1 − s)hγ(x, σ′′))
|hγ(x, σ′) − hγ(x, σ′′)|

where we use that the derivative

d

dx

e±x

cosh(x)
=

±e±x cosh(x) − e±x sinh(x)
cosh2(x)

=
±1

cosh2(x)

Working as before in proving lemma (2), this can be bounded by

≤ β(1 − m2
β)

∑
x �=y

Jγ(x, y) |σ′(x) − σ′′(x)| + β2
∣∣∣ ∑

x �=y

Jγ(x, y) (σ′(x) − σ′′(x))
∣∣∣2

where x and y are running in S. Inserting this in (6) we get

L|σ′(y) − σ′′(y)| ≤ −211σ′(y) �=σ′′(y) + β(1 − m2
β)

∑
x �=y

Jγ(x, y) |σ′(x) − σ′′(x)| (7)

+β2
( ∑

x �=y

Jγ(x, y) |σ′(x) − σ′′(x)|
)2

(8)

Then we use the bounds∑
y

∑
x �=y

Jγ(x, y) |σ′(x) − σ′′(x)| =
∑

x

∑
y �=x

Jγ(x, y) |σ′(x) − σ′′(x)| ≤
∑

x

Jγ(x, 0) α(σ′, σ′′)

and

∑
y

( ∑
x1 �=y

Jγ(x1, y) (σ′(x1) − σ′′(x1))
)( ∑

x2 �=y

Jγ(x2, y) (σ′(x2) − σ′′(x2))
)

≤ (
sup
y′

∣∣J ∗ (σ′ − σ′′)(y′)
∣∣ + cγ

)∑
y

∑
x1 �=y

Jγ(x1, y) |σ′(x1) − σ′′(x1)|

≤ (
CLρ(σ′, σ′′) + cγ

)∑
x

Jγ(x, 0)α(σ′, σ′′)
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Finally, we note that, since J is a probability kernel, |∑x Jγ(x, 0) − 1| ≤ cγ. Then

Lα(σ′, σ′′) ≤ −2
∑

y

11σ′(y) �=σ′′(y) + β(1 − m2
β)

∑
y

∑
x �=y

Jγ(x, y) |σ′(x) − σ′′(x)| (9)

+β2
∑

y

( ∑
x �=y

Jγ(x, y) |σ′(x) − σ′′(x)|
)2

(10)

≤
(
− 1 + β(1 − m2

β)(1 + cγ) + β2(1 + cγ)
(
Cρ(σ′, σ′′) + cγ

))
α(σ′, σ′′) (11)

As β(1 − m2
β) < 1, for γ small enough one can choose an r > 0 independent of γ such that for all

σ′, σ′′ with ρ(σ′, σ′′) < 2r the pre-factor is less than zero, i.e. less or equal to −ω.

EQ [Lαt] ≤ −ωEQ [αt] + C′γ−1 Q
(
σ′

t /∈ Wr(mβ) or σ′′
t /∈ Wr(mβ)

)
≤ −ωEQ [αt] + C′γ−1

(
Pσ′

(
σ′

t /∈ Wr(mβ)
)

+ Pσ′′
(
σ′′

t /∈ Wr(mβ)
))

,

where C′ = 16LcM and we use that the marginals of Q are Pσ′ and Pσ′′ . In order to estimate the
last summand uniformly in times of order ecγ−1

we use stopping times and the bound (4)

EQ [Lαt] ≤ −ωEQ [αt] + 2C′γ−1 sup
σ∈Wr1 (mβ)

Pσ

(
τ(Wr(mβ)c) ≤ ecγ−1)

≤ −ωEQ [αt] + 2C′γ−1e−cγ−1
.

Therefore, by iterating the estimate one obtains that for all t ≤ ecγ−1

EQ [αt(σ′, σ′′)] ≤ e−ωtα0(σ′, σ′′) + 2C′γ−1e−cγ−1
ω−1

Hence one has, according to the dynamics defining the coupling, since if at some point σ′ = σ′′

then this remains true forever, that

Q
(
σ′

t 	= σ′′
t for some t ≥ ln2(γ−1)

) ≤ Q
(
σ′

ln2(γ−1) 	= σ′′
ln2(γ−1)

) ≤ Q(αln2 γ−1 ≥ 1) ≤ EQ

[
αln2(γ−1)(σ

′, σ′′)
]

which goes to zero when γ goes to zero uniformly for σ′, σ′′ ∈ Wr1(mβ).
After this preparation we are able to conclude from limγ→0 Pµγ,B (τγ < T−) = 0 that also

limγ→0 supσ∈Wr1 (mβ) Pσ(τγ < T−) = 0 in the following way

∣∣Pσ′ (τγ < T−) − Pσ′′(τγ < T−)
∣∣ =

∣∣ ∫
Q(dσ′, dσ′′)

(
11τγ<T−(σ′) − 11τγ<T−(σ′′)

)∣∣
≤

∫
Q(dσ′, dσ′′)11τ(Wr(mβ)c)>ln2(γ−1)(σ

′)11τ(Wr(mβ)c)>ln2(γ−1)(σ
′)

∣∣11τγ<T−(σ′) − 11τγ<T−(σ′′)
∣∣

+Pσ′
(
τ(Wr(mβ)c) < ln2(γ−1)

)
+ Pσ′′

(
τ(Wr(mβ)c) < ln2(γ−1)

)
The first summand is bounded by 2Q

(
σ′

t 	= σ′′
t for some t ≥ ln2(γ−1)

)
, because τγ > τ(Wr(mβ)c)

and σ′ and σ′′ coalesce before τ(Wr(mβ)c), hence τγ(σ′) = τγ(σ′′); the second summand can
be bounded by (4). Therefore,

∣∣Pσ′ (τγ < T−) − Pσ′′(τγ < T−)
∣∣ tends to zero uniformly in

σ′, σ′′ ∈ Wr1(mβ) when γ tends to zero. Finally, it remains to be observed that if we choose
w.l.o.g. r1 ≤ θ/2

∣∣Pσ(τγ < T−)
∣∣ =

∣∣ ∫
µγ,Wr1(mβ)(dσ′)Pσ(τγ < T−)

∣∣ ≤ µγ(B)
µγ(Wr1(mβ))

Pµγ,B (τγ < T−)

+ sup
σ′∈Wr1(mβ)

∣∣Pσ′(τγ < T−) − Pσ(τγ < T−)
∣∣

this converges to zero. Note that µγ(B)/µγ(Wr1(mβ)) = 1 + µγ(B \Wr1(mβ))/µγ(Wr1(mβ)) and
the second summand goes to zero exponentially fast in γ−1, because of the l.d.p. for µγ .
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5.3 Step c)

For each σ ∈ D+, by definition, the deterministic motion mσ starting in σ enters in Wr1/2(mβ) in
a finite time Tσ independent of γ. As the deterministic motion is continuous in the weak topology
there exists a δσ ∈ (0, r1/2) such that ρTσ (mσ

t , Dc
+) ≥ δσ for all t. According to (5) there exists a

c′ such that
Pγ,σ

(
ρTσ (mσ

t , σt) ≥ δσ/2
) ≤ e−c′γ−1

.

This estimate holds uniformly on compact sets. Then by Markov property we have that

Pγ,σ

(
τγ < T−) ≤ Pγ,σ

(
τγ < T−, ρTσ(mσ

t , σt) < δσ/2
)

+ e−c′γ−1

≤ Pγ,σ

(
Tσ ≤ τγ < T−, σTσ ∈ Wr1(mβ)

)
+ e−c′γ−1

= Eγ,σ

[
Pγ,σTσ

(
τγ < T− − Tσ

)
11Wr1(mβ)(σTσ )

]
+ e−c′γ−1

≤ sup
σ∈Wr1 (mβ)

Pσ(τγ < T−) + e−c′γ−1

6 Upper bound

We are going to prove

Theorem 3. For all δ > 0 and all σ ∈ D+

lim
γ→0

Pγ,σ

(
τγ > T +

)
= 0

where T +, τγ and r− are as in theorem (1).

Repeating the arguments of the third step of the lower bound (section 5.3), one can reduce the
problem to initial points in a small neighbourhood of mβ. The last part of the argument has to
be changed in the following way

Pγ,σ

(
τγ > T +

) ≤ Pγ,σ

(
τγ > T +, ρTσ(mσ

t , σt) < δσ/2
)

+ e−c′γ−1

≤ Pγ,σ

(
Tσ ≤ τγ , τγ > T +, σTσ ∈ Wr1(mβ)

)
+ e−c′γ−1

= Eγ,σ

[
Pγ,σTσ

(
τγ > T + − Tσ

)
11Wr1(mβ)(σTσ )

]
+ e−c′γ−1

≤ sup
σ∈Wr1 (mβ)

Pσ(τγ > T +/2) + e−c′γ−1
.

First, we want to construct the channel of exit from the minimum. This can be done in a finite
time T and with a cost w.r.t. the rate functional IT as near to the free energy of the saddle m̂ as
we want, say IT − F(m̂) ≤ δ̃, 0 < δ̃ < δ, uniformly in the initial point in G. For this we choose
L∞ balls B(mβ), B(m̂), B(−mβ), B(−mβ) ⊂ Wr−(−mβ), around the three stationary points of
G, so small that the cost of the interpolation between any two points picked up in one of them is
less than δ̃/2. This is possible because of a result in Comets (chap. 6, prop. VI.1 c) of [3]). Then
it is known (see [2]) that there exists a manifold W linking the two pure phases and going through
the instanton according to the solution of the mean field equation and to its time reversal. Thus
we take in B(m̂) two points m− and m+ respectively on the branches of W going to −mβ and to
mβ and we call m−

β and m+
β two points in B(−mβ) and B(mβ) reached in a finite time by the

deterministic evolution starting from m− and by its time reversal starting from m+. The cost for
going from m− to m−

β is zero because we are following the deterministic flow. The cost for going
from m+

β to m+ is bounded by F(m̂) (see [3], prop VI.1 a,b)). Then the cost for the path going
from m+

β to m+, interpolating to m− and arriving in m−
β is less than F(m̂) + δ̃/2. If the initial

point belongs to B(mβ) or to B(m̂), then the result is trivial because we just interpolate to m+
β

or to m−, adding to the final cost a contribution less than δ̃/2.
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Now we want to show that there exists a finite time T ′ such that the deterministic flow starting
from any point in G enters B(±mβ) or B(m̂) at least once within T ′. We argue by contradiction:
for any K there is a point mK in G such that the flow starting from it stays away from the balls
above for a time larger than K. Then there is a sequence of points mK with diverging K. Since
G is compact there is a converging subsequence; let us call m̄ ∈ G the limit point. We know that
the flow starting from m̄ will converge to ±mβ or to m̂ and then it will enter one of the balls B in
a finite time; since the deterministic flow is continuous w.r.t. the initial data, we get the desired
contradiction.

At this point we just follow the deterministic evolution until it reaches one of the balls and
then we interpolate to the suitable point on W . Denote the path resulting from this construction
which starts in m by vm.

There exists for δ′ > 0 and each m ∈ G an rm such that by Theorem IV.1 of [3]

inf
σ0:ρ(m,σ0)≤rm

Pγ,σ0

(
ρT (vm, σ) < r−/2

) ≥ e−γ−1(It(v
m)+δ′) ≥ e−γ−1(F(m̂)+δ̃+δ′)

where σ is the process started at σ0. Note that σT ∈ Wr−(−mβ) for all σ as above. By compactness
there exists a finite cover of G by balls of the from (Wrmi

/2(mi))I
i=1. Choose r′ := mini rmi/2 and

one has
inf

σ0∈Gr′
Pγ,σ0

(
min

i
ρT (vmi , σ) < r−/2

) ≥ e−γ−1(F(m̂)+δ̃+δ′)

because if σ0 ∈ Gr′ , then there is some m ∈ G such that ρ(σ0, m) < r′. But m belongs to some
ball Wrmi

/2(mi), so ρ(σ0, mi) < r′ + rmi/2 ≤ rmi and we can apply the result above.
Hence divide the interval [0, T+] in intervals of length T

Pγ,σ

(
τγ > T +, τ(Gc

r′) > T +
) ≤ Pγ,σ

(
σkT /∈ Wr−(−mβ) for all k = 0, . . . , [T +/T ], τ(Gc

r′) > T +
)

≤
[T+/T ]∏

k=0

sup
σ∈Gr′

Pγ,σ

(
σkT /∈ Wr−(−mβ)

) ≤ (
1 − inf

σ∈Gr′
Pγ,σ

(
min

i
ρT (vmi , σ) <

r−
2

))T+/T

≤ (
1 − e−γ−1(F(m̂)+δ̃+δ′))eγ−1(F(m̂)+δ)/T → 0

provided that δ′ < δ − δ̃.
Let r < r′, so that Wr(mβ) ⊂ Gr′ . We have for δ̂ > 0

Pµγ,Wr(mβ)(σT ∈ ∂r′G) ≤ Pµγ (σT ∈ ∂r′G)
µγ(Wr(mβ))

≤ e−γ−1(F(m̂)+σ−δ̂)

e
−γ−1(infm∈Wr(mβ ) F(m)+δ̂)

and we note that infm∈Wr(mβ) F(m) = 0. Here we have used the stationarity of the Gibbs
measure w.r.t. the Glauber dynamics and the large deviation principle for µγ . Given r′/2 there
is a partition of [−L, L] in subintervals I and a number θ′ such that if

∑
I |

∫
I m1 −m2| < θ′ then

ρ(m1, m2) < r′/2. Let ∆t be a small time interval, say ∆t = γa, a > 0. Since the jump rates are
bounded by a constant cM , we can estimate the probability of having more than N jumps in a
time interval ∆t by

(2Lγ−1cM∆t)N
N !

≈ exp{−N ln
N

2LcMγ−1∆t
+ . . .}

If we choose N = γ−1/(ln γ−1)b, 0 < b < 1, then the above probability goes to zero, when γ

vanishes, faster than e−γ−1c, for any possible c. If the number of spin flips is not greater than N ,
the largest change in magnetization in a coarse cell I is (2γ/|I|)N = 2/(|I|(lnγ−1)b). It follows
that ∑

I

|
∫

I

σt+∆t − σt| <
4L

|I|(ln γ−1)b
< θ′
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provided γ sufficiently small. For any realization σ̄t such that σ̄0 is distributed according to
µγ,Wr(mβ) and that there is some T > 0 such that σ̄T /∈ Gr′ , we define the sequence σi := σ̄i∆t.
With overwhelming probability ρ(σi+1, σi) < r′/2; since the process starts in Wr(mβ) and after a
while enters Gc

r′ we can conclude that there is l such that σl ∈ Gr′ but σl+1 /∈ Gr′ . It follows that
σl ∈ ∂r′G, because if σl belonged to G then the distance between σl+1 and G would be smaller
than r′/2 implying that σl+1 ∈ Gr′ .

Let M = [T +/∆t], then

Pµγ,Wr(mβ)(τ(Gc
r′ ) < T +) ≤ (M + 1)

(2LcMγ−1∆t)N

N !
+

M∑
i=1

Pµγ,Wr(mβ )(σi ∈ ∂r′G)

which goes to zero, because without loss of generality we can assume that σ > δ. Applying the
second step as before (see section 5.2), we obtain that there exists r1 > 0 such that

sup
σ∈Wr1 (mβ)

Pγ,σ(τ(Gc
r′ ) < T +) → 0.

So we just derived that
sup

σ∈Wr1 (mβ)

Pγ,σ(τγ > T+) → 0.

7 Conclusions

We proved that the time needed to observe a tunneling between two equally stable states of a
ferromagnetic system is given in terms of the free energy gap with the first excited state, namely
the instanton.
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