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SUPPORT SETS OF DISTRIBUTIONS WITH GIVEN

INTERACTION STRUCTURE

THOMAS KAHLE AND NIHAT AY

Abstract. We study closures of hierarchical models which are exponential
families associated with hypergraphs by decomposing the corresponding in-
teraction spaces in a natural and transparent way. Here, we apply general
results on closures of exponential families.

1. Introduction

The set of probability measures on a Cartesian product of finite state sets
of nodes allows for the analysis of interaction structures among the nodes [DS].
An important class of such structures, the so-called graphical models, is induced
by graphical representations of the interactions [Lau, St]. Given an undirected
graph G, the set of strictly positive probability measures that satisfy corre-
sponding Markov properties forms an exponential family [BN, Am]. Dealing
with probability distributions associated with G that are not necessarily strictly
positive requires the study of the closure of that exponential family. In this note,
we apply general results from [BN, CMb] on closures of exponential families for
the explicit (but not constructive) description of the closure of an hierarchical

model associated with hypergraphs [Lau] which generalize the class of graphi-
cal models. By decomposing corresponding interaction spaces in terms of linear
algebra we hope to approach a constructive method that specifies the closure
of a hierarchical model.

2. Preliminaries

Given a non-empty finite set X , we denote the set of probability distributions
on X by P̄(X ). The support of P ∈ P̄(X ) is defined as supp(P ) := {x ∈ X :
P (x) > 0}. For a subset Y ⊆ X we consider the set P(Y) of probability vectors
with support equal to Y, and one obviously has

P̄(X ) =
⋃

∅6=Y⊆X

P(Y) .

With the map

exp : RX → P(X ), f 7→
exp(f)

∑

x∈X exp(f(x))
,

an exponential family (in P(X )) is defined as the image exp(V) of a linear
subspace V of RX .
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Now we assume a compositional structure of X induced by a set V of 1 ≤
N < ∞ nodes with state sets Xv, v ∈ V . Here, we will only treat the binary
case, i.e. Xv = {0, 1} for all v ∈ V . Given a finite subset A ⊆ V , we write XA

instead of ×v∈AXv, and we have the natural projections

XA : XV → XA, (xv)v∈V 7→ (xv)v∈A .

With a probability vector P on XV , the XA become random variables.

We use the compositional structure of XV in order to define exponential
families in P(XV ) given by interaction spaces. We decompose x ∈ XV in the
form x = (xA, xV \A) with xA ∈ XA, xV \A ∈ XV \A, and define IA to be the
subspace of functions that do not depend on the configurations xV \A:

IA :=
{

f ∈ RX : f(xA, xV \A) = f(xAx′
V \A)

for all xA ∈ XA, and all xV \A, x′
V \A ∈ XV \A

}

.

In the following, we apply these interaction spaces as building blocks for more
general interaction spaces and associated exponential families [DS]. The most
general construction is based on a set of subsets of V , a so-called hypergraph

[Lau]. Given such a set A ⊆ 2V , we define the corresponding interaction space
by

IA :=
∑

A∈A

IA

and consider the corresponding exponential family EA := exp(IA ).

Example 1.
(1) Graphical models: Let G = (V,E) be an undirected graph, and define

AG := {C ⊆ V : C is a clique with respect to G} .

Here, a clique is a set C that satisfies the following property:

a, b ∈ C, a 6= b ⇒ there is an edge between a and b .

The exponential family EAG
is characterized by Markov properties with respect

to G (see [Lau]).
(2) Interaction order: The hypergraph associated with a given interaction
order k ∈ {0, 1, 2, . . . , N} is defined as

Ak := {A ⊆ V : |A| ≤ k} .

This gives us a corresponding hierarchy of exponential families studied in [Am,
AK]:

EA0 ⊆ EA1 ⊆ EA2 ⊆ · · · ⊆ EAN
= P(XV ) .

In Example (3), we will discuss Ai and EAi
, i = 1, 2, in the case of two units.
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3. Problem Statement and the Main Result

Given a complete hypergraph A (i.e. A ∈ A , B ⊆ A ⇒ B ∈ A ), we
consider the closure cl EA of the exponential family EA , and the map

supp : cl EA → 2XV , P 7→ supp(P ),

that assigns to each P ∈ cl EA the support supp(P ). In our main result (The-
orem 2) we characterize the image of this map. To this end, we define the
following family of functions:

eA : XV → R, x 7→ (−1)E(A,x), (A ∈ A )(1)

where E(A,x) denotes the number of entries of x in A that are equal to one.
More formally,

(2) E(A,x) := |{v ∈ A : Xv(x) = 1}| .

Obviously, the functions eA ∈ RXV can be represented by the canonical basis
ex, x ∈ XV , as follows:

eA =
∑

x∈XV

(−1)E(A,x)ex .

Now fix an arbitrary numbering of A \ {∅}, set s := |A | − 1, and consider the
following composed map:

eA : XV → Rs, x 7→ (eA1(x), . . . , eAs(x)) .

The image of this map is a subset of the extreme points {−1, 1}s of the hyper-
cube in Rs. Note that for A1 (see Example 1), the image of eA1 coincides with
{−1, 1}s. In general this is not the case, and Example 3 will illustrate this.

Let FA denote the set of (non-empty) faces of the polytope in Rs spanned by
the image of eA . Our main result characterizes the support sets of the closure
of EA in terms of FA :

Theorem 2. A subset Y of XV is the support set of an element of cl EA if and

only if it is the preimage of a face F ∈ FA with respect to the map eA .

The proof of the theorem will follow in Section 4.4. To illustrate the statement
we consider the following instructive example:

Example 3. Consider the case of two binary units. We have V = {1, 2},
X1 = X2 = {0, 1}, and therefore XV = {(0, 0), (0, 1), (1, 0), (1, 1)}. The set of
probability distributions is the three-dimensional simplex whose extreme points
are the Dirac measures δ(x1,x2), x1, x2 ∈ {0, 1} (see Figure 1). As mentioned in
Example 1 (2), we are going to discuss interactions of order one and two:
(1) For interactions of order one we have

A1 = {∅, {1} , {2}} .

The exponential family E1 := EA1 coincides with the set of probability measures
that factor over the two units. (It can be seen that P (x1, x2) = P1(x1)P2(x2) ⇔
P ∈ E1).
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δ(1,1)

1
2

`

δ(0,0) + δ(1,1)

´

1
2

`

δ(1,0) + δ(0,1)

´

δ(1,0)

δ(0,1)

δ(0,0)

E1

Figure 1. The exponential family E1 in the simplex of proba-
bility distributions.

The interaction space IA1 has dimension three, and one natural orthonormal
basis (see Section 4.3) is the following:

e∅ = (1, 1, 1, 1)

e{1} = (1, 1,−1,−1)

e{2} = (1,−1, 1,−1) .

(3)

Here, the components are chosen with respect to the ordering (e00, e01, e10, e11)

of the canonical basis of R({0,1}2). The composed map is given as

eA1 : XV → R2, x 7→ (e{1}(x), e{2}(x)) .

The image of that map consists of the four points (−1,−1), (1,−1), (−1, 1), (1, 1)
which have the square in R2 as their convex hull. Denoting the convex hull of
points p1, . . . , pk by [p1, . . . , pk], we have the following (non-empty) faces in FA1 :

F1 = [(−1,−1), (−1, 1), (1,−1), (1, 1)]

F2 = [(−1,−1), (−1, 1)] F3 = [(−1,−1), (1,−1)]

F4 = [(−1, 1), (1, 1)] F5 = [(1,−1), (1, 1)]

F6 = {(−1,−1)} F7 = {(−1, 1)} F8 = {(1,−1)} F9 = {(1, 1)}

The face F1 is the square itself, F2 to F5 are the four edges, and F6 to F9 are
the extreme points of the square. By Theorem 2, Yi := e−1

A1
(Fi) are all support

sets of probability measures in cl E1 (compare with Figure 1):

Y1 = {0, 1}2

Y2 = {(1, 0), (1, 1)} Y3 = {(0, 1), (1, 1)}

Y4 = {(0, 0), (1, 0)} Y5 = {(0, 0), (0, 1)}

Y6 = {(1, 1)} Y7 = {(1, 0)} Y8 = {(0, 1)} Y9 = {(0, 0)} .
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(2) Now we consider the hypergraph of interactions of oder two, i.e.

A2 = {∅, {1}, {2}, {1, 2}}.

The exponential family E2 := EA2 coincides with the whole simplex shown in
Figure 1. The interaction space has dimension four, and the vector e{1,2} =
(1,−1,−1, 1) completes the basis (3) to an orthonormal basis of the space
IA2 . The image of eA2 is given by {(−1,−1, 1), (−1, 1,−1), (1,−1,−1), (1, 1, 1)}
which is a subset of the extreme points of the cube in R3. It defines a simplex
which is the image of the simplex in Figure 1 under the map P 7→ EP (eA2) (see
Figure 2).

(−1,−1,−1)

(1, 1,−1)(−1, 1,−1)

(1,−1,−1)

(−1,−1, 1)

(1, 1, 1)(−1, 1, 1)

(1,−1, 1)

Figure 2. The convex hull of im eA2 = im(e{1}, e{2}, e{1,2}) in-

side the cube in R3.

The faces in FA2 are given by

F1 = [(−1,−1, 1), (−1, 1,−1), (1,−1,−1), (1, 1, 1)]

F2 = [(−1,−1, 1), (−1, 1,−1), (1, 1, 1)] F3 = [(−1,−1, 1), (−1, 1,−1), (1, 1, 1)]

F4 = [(−1,−1, 1), (1,−1,−1), (1, 1, 1)] F5 = [(−1, 1,−1), (1,−1,−1), (1, 1, 1)]

F6 = [(−1, 1,−1), (1,−1,−1)] F7 = [(1, 1, 1), (1,−1,−1)]

F8 = [(1, 1, 1), (−1, 1,−1)] F9 = [(1, 1, 1), (−1,−1, 1)]

F10 = [(−1, 1,= 1), (1,−1,−1)] F11 = [(−1,−1, 1), (1,−1,−1)]

F12 = {(−1, 1,−1)} F13 = {(−1,−1, 1)}

F14 = {(1,−1,−1)} F15 = {(1, 1, 1)} .

The face F1 is the nothing but the simplex in Figure 2, F2 to F5 are its four
triangles, F6 to F11 are the six edges, and the remaining faces are the extreme
points. The preimages of these faces with respect to the map eA2 are exactly
the 15 non-empty subsets of {0, 1}2.
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4. Proof of the Main Result

In this section, we are going to prove our main result in several steps. In the
first step, we review a classical result of [BN, CMb] on closures of exponential
families. The second step deals with the decomposition of the interaction spaces
IA into orthogonal components, and a natural basis is constructed. Based on
these two steps, finally, the proof of Theorem 2 is a straightforward implication.

4.1. Closures of exponential families. In a recent paper [CMb] the different
closures and extensions of exponential families were studied. As a special case
of this considerations, namely the case of finite configuration spaces, a classical
result of [BN, pp. 154-155] appears. It is shown that clE can be written as
a union of certain exponential families. To explain this we have to introduce
some further notation. Let

Pθ,f (x) :=
1

Z
exp

(

〈θ, f(x)〉
)

be a Gibbs measure, where Z =
∑

x∈X exp
(

〈θ, f(x)〉
)

is a normalization, f :

X → Rd is a statistic, and θ ∈ Rd is a vector of coefficients. As θ ranges over
Rd the Pθ form an exponential family which we denote by

Ef :=
{

Pθ,f : θ ∈ Rd
}

.

Since X is finite, the image of f is a finite subset of Rd, and its convex hull F
is a polytope. For every non-empty face F of F define

(4) YF := {x ∈ X : f(x) ∈ F} = f−1(F ).

Finally, for every YF consider the restriction

EYF ,f :=

{

1
ZF exp (〈θ, f〉(x)), if x ∈ YF

0 , otherwise
, ZF :=

∑

x′∈YF

exp
(

〈θ, f〉(x′)
)

The following statement is a special case of a more general result of [CMb]:

Theorem 4.

cl(Ef ) =
⋃

F

EYF ,f

Remark. The formulation given here is a special case of the considerations in
[CMa, CMb] where more general sets X and corresponding reference measures
are studied in detail within the context of various notions of closure. In our
case of finite X all notions coincide with the natural topological closure.

4.2. Orthogonal decomposition of the interaction space. In this section,
we decompose the interaction space IA into orthogonal components by means
of the construction of a basis. We then have an explicit description of the
statistic that generates EA and can apply Theorem 4 to examine the closure
cl EA . In what follows, all concepts of projections and orthogonality are meant
with respect to the scalar product

〈f, g〉 :=
1

2N

∑

x∈XV

f(x)g(x) .
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In previous work [DS, Lau, AK], the spaces of pure interactions among elements

of A ⊆ V were defined as follows:

(5) ĨA := IA ∩





⋂

B(A

I⊥
B



 .

This implies an orthogonal decomposition

(6) IA =
⊕

B⊆A

ĨB ,

where dim ĨA = 1 (see [AK]). In particular, RXV =
⊕

A⊆V ĨA.

4.3. A basis of the pure interaction spaces. In Proposition 6, we prove that
the finctions eA, A ⊆ V , which are defined according to (1) form an orthonormal
basis of the interaction space IA . To this end we need the following lemma:

Lemma 5. Let ∅ 6= A ⊆ V , then
∑

x∈XV

(−1)E(A,x) = 0.

Proof. Let i be an element of A, and define

X− := {x ∈ XV : Xi(x) = 1}, X+ := {x ∈ XV : Xi(x) = 0}

Obviously, E(A,x) = E(A \ {i}, x) + 1 if x ∈ X−, and E(A,x) = E(A \ {i}, x)
if x ∈ X+. This implies

∑

x∈XV

(−1)E(A,x) =
∑

x∈X+

(−1)E(A\{i},x) −
∑

x∈X−

(−1)E(A\{i},x) = 0

�

Proposition 6. The vectors (eA)A∈A form an orthonormal basis of IA .

Proof. The eA are normalized with respect to our scalar product. Since A is
assumed to be complete, we have the decomposition

IA =
⊕

A∈A

ĨA ,

where dim ĨA = 1, and it is sufficient to show that eA ∈ ĨA. The case of e∅ is

clear since e∅ =
∑

x∈XV
ex and Ĩ∅ = I∅ is the space of constants. Now let A

be non-empty and observe that, denoting by ΠB the projection onto IB, the
definition (5) of the pure interaction spaces can be reformulated as

(7) f ∈ ĨA ⇐⇒ f ∈ IA and ΠBf = 0 for all B ( A .

The projection onto the space IA is given by

ΠA(f)(xA, xV \A) =
1

2|V \A|

∑

x′
V \A

∈XV \A

f(xA, x′
V \A).
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We now check property (7):

ΠA(eA)(xA, xV \A) =
1

2|V \A|

∑

x′
V \A

∈XV \A

eA(xA, x′
V \A) = eA .

This follows from the fact that changing x outside A does not alter the values
in (1). On the other hand, for a given subset B ( A we have

ΠB(eA)(xB , xV \B) =
1

2|V \B|

∑

x′
V \B

∈XV \B

eA(xB , x′
V \B)

=
1

2|V \B|

∑

x′
V \B

∈XV \B

(−1)
E(A,(xB ,x′

V \B
))

=
1

2|V \B|

∑

x′
V \B

∈XV \B

(−1)
(E(B,(xB ,xV \B))+E(A\B,(xB ,x′

V \B
)))

= 0

This equation is true since (−1)
E(B,(xB ,x′

V \B
)

does not depend on x′
V \B , and,

since A\B 6= ∅, Lemma 5 implies
∑

x′∈XV \B

(−1)E(A\B,x′) = 0 .

�

Remark (Orthonormal Basis). Since the eA form an orthonormal basis, one can
invert the transformation to find

ex =
1

2N

∑

A∈2V

(−1)E(A,x)eA ,

and obviously none of the coefficients is zero.

Combining the results of the previous sections we can now proceed with
proving Theorem 2.

4.4. Proof.

Proof of Theorem 2. ¿From the above discussion it is clear that the exponential
family under consideration can be written as

EA =

{

1

Z
exp

{

s
∑

i=1

θAieAi
(x)

}

: θ = (θAi)i=1,...,s ∈ Rs

}

Thus, the exponential family has the form of Theorem 4

EA =
⋃

F∈FA

EYF ,eA

with the definition (4) of YF now becoming

YF = e−1
A

(F ) .

�
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5. Conclusions

Applying general results on closures of exponential families from [BN, CMb]
we studied the closure of hierarchical models including graphical models. Using
a natural orthonormal basis of the corresponding interaction space allows for
an explicit description of this closure. We hope that this description in terms
of linear algebra will lead to a constructive method for specifying closures of
hierarchical models.
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