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Abstract

In this paper we propose and analyse a new hierarchical Cholesky (H-Cholesky)

factorization based preconditioner for iterative solving the elliptic equations with

highly jumping coefficients arising in the so-called skin-modelling problem in 3D [8].

First, we construct the block-diagonal approximation to the FE stiffness matrix,

which is well suited to the “perforated” structure of the coefficients. We apply the

H-Cholesky factorization of this block-diagonal matrix as a preconditioner in the

pcg iteration. It is shown that the new preconditioner is robust with respect to

jumps in the coefficients and it requires less storage and computing time than the

standard H-Cholesky factorization.

Key words: skin problem, H-matrix approximation, hierarchical Cholesky,
jumping coefficients, domain decomposition.

1 Introduction

In papers [1, 9, 11] the authors successfully applied the pcg, gmres, bicgstab
iterations with H-matrix based preconditioners to different types of second
order elliptic differential equations. In some cases H-matrix inverse can be
used even as a direct solver [6, 4]. In this paper we consider the elliptic equation
with highly jumping coefficients,

−div(α(x)∇u) = f(x) x ∈ Ω ⊂ R
d, d = 2, 3,

u = 0 x ∈ γ,
∂u
∂n = g x ∈ Γ \ γ,

(1)

where Γ = ∂Ω, γ ⊂ ∂Ω corresponds to a piece of the boundary with the
Dirichlet boundary condition. This equation was used for the numerical mod-
eling of the so-called skin problem that describes penetration of drugs through
the skin (cf. [8]). To simplify the model we choose Ω as a fragment with 8 cells
Ωc and the lipid layer Ωl (see Fig. 2), where Ω = Ωc ∪ Ωl, Ωc = ∪8

i=1Ωc,i,
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Fig. 1. (left) A skin fragment consists of the lipid layer and disjoint cells. (right)
The simplified model of a skin fragment contains 8 cells with the lipid layer in
between. Ω = [−1, 1]3, α(x) = ε inside the cells and α(x) = 1 in the lipid layer.

Ωl is a closed set. Fig. 1 (right) shows cells and the lipid layer in between.
Typical feature for the skin problem is the highly jumping coefficients: the
penetration coefficient inside the cells is very small, α(x) = ε ∈ [10−5 −10−3],
but it is relatively large in the lipid layer (α(x) = 1). In this problem the
Dirichlet boundary condition describes the presence of drugs on the bound-
ary γ of the skin fragment. The nonzero Neumann condition on Γ\γ specifies
the penetration through the surface Γ\γ. The right-hand side in (1) presents
external forces.

It is known that for problems with jumping coefficients (see (1)) the
condition number cond(A) of the FE stiffness matrix A is proportional to
h−2 supx,y∈Ω α(x)/α(y), where α(x) denotes the jumping coefficient and h is
the step size of a finite element scheme. In the case of a large condition number
one requires the efficient preconditioner W , so that cond(W−1A) ≃ 1.

The rest of this paper is structured as follows. In Section 2 we describe the
FEM discretisation of (1). We recall the main idea of the H-matrix techniques
in Section 3. Section 4 describes the new preconditioner and presents the
condition number estimates. Numerics for the 3D model problem is discussed
in Section 5.

2 Discretisation by FEM

We choose a rectangular quasi-uniform triangulation τh which is compatible
with the lipid layer, i.e., τh := τ l

h ∪ τ c
h, where τ l

h is a triangulation of the lipid
layer and τ c

h is a triangulation of cells (see Fig. 2). In the presented example
Ωl contains only two grid layers.

Let Vh := span{b1, ..., bn} be the set of piecewise linear functions with
respect to τh such that

Vh ⊂ H1
0,γ(Ω) := {u ∈ H1(Ω) : u|γ = 0}, (2)

where bj , j ∈ IΩ := {1, ..., n}, is the set of corresponding hat-functions. The
related Galerkin discretisation of the problem (1) reads as:
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Fig. 2. a) A 2D grid of the lipid layer of width h (bounded by bold lines). b)
Fragments of four cells (α = ε). The finite elements restricted by dotted lines in (a)
and (b) are needed for constructing the stiffness matrices A11 and A22, respectively.

find uh ∈ Vh, so that a(uh, v) = c(v) for all v ∈ Vh (3)

with respective bilinear form a and linear functional c given by

a(u, v) =

∫

Ω

α(x)(∇u,∇v)dx, c(v) :=

∫

Ω

fvdx +

∫

Γ\γ

gvdΓ . (4)

The system of linear algebraic equations for the coefficients vector u reads as

Aεu = c, where Aε = {a(bj , bi)}i,j∈IΩ
∈ R

n×n, c = {c(bi)}i∈IΩ
∈ R

n. (5)

The lipid layer Ωl between the cells specifies the natural decomposition of Ω.
The thickness of this layer is proportional to the step size h. Note that with
the proper ordering of the index set IΩ , we can represent the global stiffness
matrix in the following block form

Aε =

[
A11 εA12

εA21 εA22

]
, A11 = A0 + εB11. (6)

Here A11, εA22 are the stiffness matrices which correspond to the lipid layer
and to the rest of the domain, respectively, εA12 and εA21 are coupling ma-
trices. In turn, A0 discretises the Neumann problem in Ωl with homogeneous
Neumann data on the inner boundaries ∂Ωc. In the case ε = 1, the matrix Aε

corresponds to the discrete Laplace operator.
In the following we focus on a construction of the efficient preconditioner

to the matrix Aε, while the analysis of the discretisation accuracy remains
beyond the scope of the present paper. However, the error analysis can be
based on the standard FEM theory under certain regularity assumptions.

3 Hierarchical Matrices

The hierarchical matrices (H-matrices) (cf. [3]) provide the efficient data-
sparse representation of fully-populated matrices arising in a wide range of
FEM/BEM applications. The main idea of H-matrices is to approximate cer-
tain subblocks R ∈ R

n×m of a given matrix by the rank-k matrices, i. e.,



4 B.N. Khoromskij and A. Litvinenko

R ∼= ABT , with A ∈ R
n×k and B ∈ R

m×k, k ≪ min(n,m). The storage
requirement for both matrices A and B is k(n + m) instead of n · m for the
matrix R. The advantage of the H-matrix technique is that the complexity of
the H-matrix addition, multiplication and inversion is O(kn logq n), q = 1, 2
(see [3, 5]). Let I be an index set. To build an H-matrix M ∈ R

I×I one needs
an admissible block partitioning (see Fig. 3) built on a block cluster tree TI×I

by means of an admissibility condition (see [3, 2]). The admissible block par-
titioning indicates which blocks can be approximated by low-rank matrices.

H-matrixvertices

finite elements

cluster tree
block
cluster tree 

admissibility
condition

admissible
partitioning

H-Cholesky
factorization

Fig. 3. The scheme of building an H-matrix and its H-Cholesky factorization.

Definition 1. We define the set of H-matrices with the maximal rank k as

H(TI×I , k) := {M ∈ R
I×I | rank(M |b) ≤ k for all admissible leaves b of TI×I}.

Suppose that A =

[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
. The algorithm that

computes the H-LU factorization (cf. [10, 1]) is the following:

1. compute L11 and U11 as H-LU factorization of A11;
2. compute U12 from L11U12 = A12 (recursive block forward substitution);
3. compute L21 from L21U11 = A21 (recursive block backward substitution);
4. compute L22 and U22 as H-LU factorization of L22U22 = A22 − L21U12.

Note that all the steps are executed approximately via truncation to the class
of H-matrices.

4 Block H-LU Preconditioner W̃2

Let us introduce the H-Cholesky factorisation of the following symmetric ma-
trices

Aε =

[
A11 εA12

εA21 εA22

]
∼= L1L

T
1 =: W̃1, W2 :=

[
A11 0
0 εA22

]
∼= L2L

T
2 =: W̃2.

(7)
H-Cholesky factorisation L1L

T
1 was successfully applied in [1, 9]. As a new

preconditioner we use the H-Cholesky factorisation of W2, which we denote
by W̃2. Examples of the H-Cholesky factors L1 and L2 are shown in Fig. 4.
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Remark 1. Note that W̃
−1/2
2 AεW̃

−1/2
2 = L−T

2 AεL
−1
2 , i.e., W̃

−1/2
2 AεW̃

−1/2
2 is

positive definite and symmetric (the same holds for W̃1). Thus, for solving the

initial problem (5) one may apply the pcg method with preconditioner W̃2.

Lemma 1. For a symmetric and positive definite matrix A =

[
A11 A12

A21 A22

]
and

any vectors u1 and u2 of the respective size it holds that

|(A12u2, u1)| ≤ (A11u1, u1)
1/2 · (A22u2, u2)

1/2.

Lemma 2. For any u ∈ R
n we have (Aεu, u) ≤ 2(W2u, u) with W2 defined

by (7).

Proposition 1. Let the component u2 be discrete harmonic extension of u1

into Ωc ⊂ Ω. Then ∃c1 > 0 : c1(A11u1, u1) ≥ (A22u2, u2) with c1 independent
of h.

Proof: This estimate corresponds to the case of the Laplace operator in Ω and
can be verified by using standard properties of the harmonic elliptic extension
operator and trace estimates. Applying Theorem 4.1.3 in [12], where we set
Ω1 = Ωl and Ω2 = Ωc, leads to the desired bound with constant c1 depending
only on the geometry.

Lemma 3. Assume that Proposition 1 holds. Then ∃ε0 ∈ (0, 1) such that
∀ε ∈ (0, ε0] we have ((Aε − cW2)u, u) ≥ 0 with c = 1−ε

1+c1ε , where c1 is defined
in Proposition 1.

Proof: We choose c = 1−ε
1+c1ε and then apply Lemma 1 to obtain

((Aε − cW2)u, u) = (1 − c)(A11u1, u1) + ε(1 − c)(A22u2, u2) + 2ε(A12u2, u1)

≥ (1 − c)(A11u1, u1) + ε(1 − c)(A22u2, u2) − 2ε|(A12u2, u1)|

≥ (1 − c)((A11u1, u1) + ε(A22u2, u2)) − ε((A11u1, u1) + (A22u2, u2))

≥ (1 − c − ε)(A11u1, u1) − cε(A22u2, u2).

Now Proposition 1 ensures

((Aε − cW2)u, u) ≥ (A11u1, u1)(1 − c − ε − c1cε) = 0.

Thus, ((Aε − cW2)u, u) ≥ 0 holds with c = 1−ε
1+c1ε .

Notice that the constant c = 1−ε
1+c1ε depends on the geometry of Ω.

In Fig. 4(right) one can see two blocks on the first level of the H-Cholesky
factorisation of W2. The first block corresponds to the lipid layer Ωl, the
second one (with 8 subblocks) corresponds to 8 cells. The problems inside the
cells can be treated in parallel.

Remark 2. The set of all nodal points in the lipid layer (Fig. 1 (right)) can be
decomposed into 12 parts Ωl = ∪12

i=1Ωl,i, which will lead to further simplifi-
cations.
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Fig. 4. H-Cholesky factors of the global stiffness matrix Aε (left) and of the block
matrix W2 (right). The dark blocks ∈ R

36×36 are dense matrices, the gray blocks
are low-rank matrices and the white blocks are zero ones. The steps in the grey
blocks show the decay of the singular values in a logarithmic scale. The numbers
inside the subblocks indicate the local ranks.

5 Numerical tests

In this Section we present numerical results for the 3D Dirichlet problem (see
[7] for the 2D case). Figure 2 explains the discretisation of the lipid layer. For
simplicity the width of the lipid layer is chosen as h, but it can be a multiple
of h.

Table 1 gives the theoretical estimates on the sequential and parallel com-
plexities of W̃1 and W̃2.

Table 1. Computational complexities of the preconditioners fW1 and fW2. The num-
ber of processors is p. The number of degrees of freedom in the lipid layer is nI

(handled by one processor) and the number of dofs on each processor is n0 := n−nI

p−1
.

Sequential Complexity Parallel Complexity
fW1 O(n log2 n) O(n log2 n)
fW2 O(nI log2 nI) + O((n − nI) log2(n − nI)) max{O(nI log2 nI) + O(n0 log2 n0)}

Remark 3. The sparsity constant Csp is an important H-matrix parameter
that effects all H-matrix complexity estimates (see [3, 5]). The smaller Csp

the better complexity bound is. For instance, for the problem with 453 dofs
Csp(Aε) = 108, while Csp(W2) = 30. For the model geometry with a larger
number of cells the difference between the sparsity constants will be even more
significant.
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Table 2. Comparison of fW1 and fW2 in 3D, 403 dofs, ‖Aεu− c‖ = 10−8, ε = 10−5.

rank k time t(1), t(2) storage S(1), S(2) ♯iter(1),(2)

1 34.6, 18.7 2e+2, 1e+2 69, 99
2 81.3, 35 3.8e+2, 1.8e+2 46, 91
4 220.5, 81.5 7.5e+2, 3.5e+2 17, 60
6 565.7, 149 1.1e+3, 5.1e+2 11, 74

Table 2 illustrates storage requirements (denoted by S(1), S(2) and measured
in MB) and computing times (denoted by t(1), t(2) and measured in sec.)

for the preconditioners W̃1 and W̃2, respectively, depending on the H-matrix
rank k. The columns t(1), t(2) contain the total computing times for setting
up the preconditioners W̃1 and W̃2 and for performing the pcg iterations. The
columns iter(1) and iter(2) show the number of pcg iterations in both cases
(see [7] for more details). One can see that the preconditioner W̃2 requires less
storage (S(1) > S(2)) and less computing time (t(1) > t(2)). Notice that the
computation with a smaller rank k in the H-matrix arithmetic (but with a
larger number of iterations) leads to a better performance than in the case with
a larger k (but with a smaller number of iterations). Table 3 illustrates linear-
logarithmic scaling of the computational time and storage in the problem size
n (with fixed maximal rank k = 5). Choosing the smaller maximal rank k leads
to almost linear complexities. Table 4 shows the number of iterations and the

Table 3. Dependence of the computing time and storage requirements on the prob-
lem size, ‖Aεu − c‖ = 10−8, max. rank= 5 (see Def. 1).

♯dofs time t(2)(sec.) memory S(2)(Mb) ♯iter(2)

2200 0.27 5.4 33
15600 7.9 90 59
91100 119.4 1007 98

Table 4. The number of iterations and the computing times depending on the
coefficient α for 403 dofs, ‖Aεu − c‖ = 10−8, k = 1.

ε 1 10−1 10−2 10−4 10−6 10−8

♯iter(1),iter(2) 86, 89 77, 100 79, 113 79, 113 82, 116 85, 120

t(1), t(2) sec. 70, 33 67, 35 63, 37 65, 37 67, 37 67, 38

computing times depending on the coefficient α. The number of iterations is
relatively large since we use the low-rank H-matrix approximation with k = 1.
The computing time in the case of W̃2 is in a factor two smaller than in the
case of W̃1. This factor is getting larger for problems with increasing number
of cells.
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We conclude that the preconditioner W̃2 is efficient and robust with respect
to the small coefficient α = ε characterising the skin problem (see Tables 1,

4). It requires less storage and computing time than W̃1 (see Tables 2, 3).

The preconditioner W̃2 becomes more efficient for problems with increasing
number of cells. The possible disadvantage of W2 could be a relatively large
number of pcg iterations, but it is compensated by their low computational
cost (see Table 2).
Acknowledgement: The authors wish to thank Prof. Dr. Hackbusch for
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