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Abstract

We derive probabilistic limit theorems that reveal theitdte structure of the phase
transitions in a mean-field version of the Blume-Emery-f&hi§ model [4]. These prob-
abilistic limit theorems consist of scaling limits for thatal spin and moderate deviation
principles (MDPs) for the total spin. The model under stuslgéfined by a probability
distribution that depends on the parameters, and K, which represent, respectively, the
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number of spins, the inverse temperature, and the interastrength. The intricate struc-
ture of the phase transitions is revealed by the existent8 staling limits and 18 MDPs
for the total spin. These limit results are obtained @sK’) converges along appropriate
sequence$s,, K,,) to points belonging to various subsets of the phase diagndrich
include a curve of second-order points and a tricriticahpoiThe forms of the limiting
densities in the scaling limits and of the rate functionshia MDPs reflect the influence
of one or more sets that lie in neighborhoods of the criticahts and the tricritical point.
Of all the scaling limits, the structure of those near theritical point is by far the most
complex, exhibiting new types of critical behavior whenet®d in a limit-theorem phase
diagram in the space of the two parameters that paramelwzectling limits.

American Mathematical Society 2000 Subject Classificatidarimary 60F10, 60F05, Sec-
ondary 82B20

Key words and phrasescaling limit, moderate deviation principle, second-onulease transi-
tion, first-order phase transition, tricritical point, Bhe-Emery-Griffiths model, Blume-Capel
model

1 Introduction

The purpose of this paper is to analyze a new set of phenonssagiated with the critical
behavior of probabilistic limit theorems for a mean-fieldsien of an important lattice-spin
model due to Blume, Emery, and Griffiths [4]. These probatdilimit theorems consist of
scaling limits for the total spin and moderate deviatiompiples (MDPSs) for the total spin.

We will refer to the mean-field model studied in this papeh@BEG model; itis equivalent
to the Blume-Emery-Griffiths model on the complete graphovertices. In contrast to the
mean-field version of the Ising model known as the Curie-$/emdel, whose only phase
transition is a continuous, second-order phase transatidime critical inverse temperature [17,
§IV.4], the BEG model exhibits both a curve of continuous,ss&torder points; a curve of
discontinuous, first-order points; and a tricritical poimhich separates the two curves [22, 29].
It is one of the few models, and certainly one of the simpléstt exhibit this intricate phase-
transition structure.

Applications of the Blume-Emery-Griffiths model to a diverange of physical systems are
discussed in [22§1] and in [29,§3.3], where the model is called the Blume-Emery-Giriffiths-
Rys model. As the latter reference points out, the modelatld the present paper is actually
a mean-field version of a precursor of the Blume-Emery-@ngfiRys model due to Blume [3]
and Capel [8, 9, 10]. With apologies to these authors, weviolhe nomenclature of our earlier
paper [22] by referring to this mean-field version as the BEGzleh.
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The BEG model is defined by a probability distributiff s x, wheren equals the number
of spins, 3 is the inverse temperature, aid is the interaction strength. We investigate the
complex structure of the phase transitions in the model byidg 36 different limit results for
the total spinS,, as(/3, K') converges along appropriate sequengks K,) to points belonging
to three separate classes: (1) the tricritical point, (2)dtrve of second-order points, and (3)
the single-phase region lying under that curve. In case lgohtain 13 scaling limits and 13
MDPs; in case 2, 4 scaling limits and 4 MDPs; and in case 3, llngchmit and 1 MDP. As
we will see, the numbers 13, 4, and 1 represent natural aralisiitle enumerations of three
classes of polynomials that arise in the related settingiseo$caling limits and the MDPs.

The existence of8 = 13 + 4 + 1 scaling limits and 18 MDPs reflects the intricate structure
of the phase transitions in the BEG model. It is hoped thatimsights can also be applied
to other statistical mechanical models that exhibit otlgpes of phase transitions and critical
phenomena and thus, presumably, other possibilities &dmgrlimits of macroscopic random
variables like the total spin in the BEG model [19].

Before saying more about the limit theorems in the BEG moddltheir critical behavior,
we summarize a number of facts concerning the phase-ti@nsiructure of the model [22].
For > 0 and K > 0 we denote bys i the set of equilibrium macrostates of the model
corresponding to the macroscopic variable of the spin ger $n [22] it is proved that there
exists a critical inverse temperatuse = log 4 and that forg > 0 there exists a critical value
K.(#) > 0 having the following properties.

1. Forg > 0and0 < K < K.(0), £s.x consists of the unique pure phase 0.
2. Forg > 0 andK > K.((), £k consists of two distinct, nonzero phases.

3. For0 < g < j., asK increases through.(3), £ x undergoes a continuous bifurcation,
which corresponds to a second-order phase transition.

4. Forp > f., asK increases through (), £s x undergoes a discontinuous bifurcation,
which corresponds to a first-order phase transition.

5. The point(3., K.(5.)) = (log4,3/[2log4]) in the positive quadrant of the-K plane
separates the second-order phase transition noted in itBonRthe first-order phase
transition noted in item 4. The poif8,, K.(5.)) is called the tricritical point.

The limit theorems to be considered in the present papersfoouhe values of and K
initems 1, 3, and 5. For each sugh, K), £s x consists of the unique pure phase 0. Figure 1
shows the corresponding portion of the phase diagram, wdxhblbits three setsl, B, andC.
C'is the singleton set containing the tricritical point, K.(5.)), B is the curve of second-order
points defined by

B={(8,K)eR*:0< (<, K =K(3))}, (1.1)
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andA is the single-phase region lying underJ C' and defined by

A={(3,K)eR*:0< < B.,0< K < K.(p)}. (1.2)

K

C
. 8
BC
Figure 1:The sets4, B, andC

In the remainder of this introduction we focus on the scaliimits for the total spinS,, when
(8, K') converges to the tricritical points., K.(3.)) along appropriate sequencgs,, K,).
These scaling limits describe the limiting distribution®f/n' =" with respect taP, s, r,, for
appropriate choices of € (0, 1/2). The simplest sequences for which the full range of scaling
limits appear are defined in terms of parameters 0, ¢ > 0, b # 0, andk # 0 by

B, = log(e” —b/n*) and K,, = K(B,) — k/n’, (1.3)

where K () = (ef + 2)/(43) for 3 > 0. K(3) coincides withK.(3) for0 < g < /3, and
satisfiesk'(3) > K.(0) for 8 > (.[22, Thms. 3.6, 3.8]. A detailed overview of all the limit
theorems in the paper, including those discussed herejasa gi the next section.

In each of the scaling limits the form of the limiting densigflects the influence of one or
more of the setsl, B, andC that lie in a neighborhood of the tricritical point. The iréghce of
those sets, which depends only @randé and not orb or £ in (1.3), is shown in Figure 2. In
that figure the positive quadrant of thef) plane is partitioned into the following sets.

1. Three open sets labeled B, andC.
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2. Three line segments labeldd+ B, A + C', andB + C that separate the three open sets
initem 1.

3. The point equal t91/3,2/3) and labeledd + B + C at which the three line segments in

item 2 meet.
0 E v=1/6
gl c
(1/6,1/4)
B QXO
2/3 o P A+C
s A ~O(1/6, 1/4]
129 — — — — — — — — —
A YO(1/4, 1/2)
® o
1/3

Figure 2:Influence ofC, B, andA when(8,,, K,,) — (8., Kc(8:))

Figure 2 is a limit-theorem phase diagram that summarizestritical behavior of the scal-
ing limits in a neighborhood of the tricritical point. Thisitical behavior consists of the fol-
lowing phenomena, which can be verified by examining theestant of the scaling limits in
Theorem 7.1.

1. When(a, 6) lies in one of the open sets labeldd B, or C, then the limiting density in
the corresponding scaling limit shows the influence onlyhat single set. Hence these
three open sets correspond to the pure phases of the saalitg] |

2. When(a, 0) lies in one of the line segments labeldd+ B, A + C, or B + C, then
the limiting density shows the influence of both setsand B, A andC, or B andC,
respectively. Hence these three line segments correspahé toexistence of the pure-
phase scaling limits noted in item 1.

3. When(«, #) equals the point labeled+ B +C, then the limiting density shows the influ-
ence of all three setd, B, andC'. This point is the analogue of the tricritical point in the
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standard phase diagram, a portion of which is shown in Figuiedeed, any neighbor-
hood of the tricritical point in thg- K plane contains values gfand K corresponding to
all the different phase-transition behaviors of the mo&amilarly, any neighborhood of
the analogue of the tricritical point in the limit-theoreimgse diagram contains values of
« andd corresponding to all the different forms of the scaling tenivhich number 13.

4. As(a, ) crosses any of the line segments labeled B, A+ C, or B + C, the values of
~ in the scaling limits change continuously, which correstoto a second-order phase
transition; by contrast, the forms of the limiting denstehange discontinuously, which
corresponds to a first-order phase transition.

As noted in items 1, 2, and 3, the influence of the sets uponattmesf of the limiting den-
sities reveals a fascinating geometric feature of the BE@ehoThis feature is completely
unexpected because the model has no geometric structufactjreach spin interacts equally
with all the other spins via a mean-field Hamiltonian, andts®model is independent of di-
mension. The discussion of the scaling limits given hereuoiing the notion of the influence
of a set on the form of the limiting density, will be greatly piffied in the next section.

The scaling limits ofS,, /n'~ corresponding to the choices@findd in Figure 2 are derived
in Theorem 7.1, where we determine the valuea,of, and~ leading to the various forms of
the limit. In Figure 2 the value or range of valuesoére also shown fofca, #) lying in the
sets labeledi, B, andC'. The set labeled! is divided into two subsets by the lifle= 1/2; the
ranges of values of are differentin the two subsets.

The three seeds from which the present paper grew are [ZR] d&d [14]. In the first paper
the phase-transition structure of the BEG model is analylzethe second paper scaling limits
are proved for a class of models that includes the Curie4Neisdel as a special case. In the
third paper 4 different MDPs are obtained for the Curie-Wem®del when the inverse temper-
ature converges to the critical inverse temperature in théatalong appropriate sequengks
The results derived in the present paper greatly extendthetlscaling limits in [20] and the
MDPs in [14]. This is the case because the BEG model has a mooh intricate structure of
phase transitions than the Curie-Weiss model and so eglaloituch richer class both of scaling
limits and of MDPs. As we will outline near the end of the nexttson, both the scaling limits
and the MDPs are proved by a unified method.

This unified method is based, in part, on properties of a fane¥; i defined in (3.4). This
function plays a central role in every aspect of the analysike BEG model considered in the
present paper as well as in its prequel [22]. In summary theséhe following.

e The set; i of equilibrium macrostates for the BEG model is defined asét®f zeroes
of the rate function in the LDP for thé&, s x-distributions ofS,,/n given in Theorem
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3.1. In turn, this set coincides with the set of global minimpoints ofG 3  [see (3.5)].
This characterization ofs  allowed us to carry out the detailed analysis of the phase-
transition structure of the model in [22].

e The canonical free energy( 5, K') equals the global minimum value 6f;  [see item 2
after (3.4)].

e The distribution ofS,,/n'~ can be expressed directly in terms®jf x [Lem. 4.1].

e (3 i is the rate function in a second LDP involviit /n given in part (b) of Lemma
4.4. The estimates derived from this LDP and given in pajtarid (d) of the lemma are
the key estimates needed to control error terms in the paddfse scaling limits and the
MDPs forS,,/n'~7. Lemma 4.4 is the main technical innovation in the paper.

e When a certain quantity defined in terms ofy, #, and~ equals 0, the 13 different
forms of the Taylor expansion @fGg, x, (x/n") for appropriate sequenceés,, K,,) and
v € (0,1/2) yield the 13 different forms of the scaling limits 6f, /n'~7 [Thm. 7.1].

e Whenw < 0, the 13 different forms of the Taylor expansion:df™ Gy, r, (z/n") for
appropriate sequencgs,, K,,) andy € (0, 1/2) yield the 13 different forms of the MDPs
of S,/n'= [Thm. 8.3].

This discussion shows that all the magic is in the functigoni. The fact that the wide
variety of phenomena derived in the present paper and inc@2e obtained via properties of
a single function is an appealing feature of the BEG modesidgs the Curie-Weiss model and
generalizations studied in [14, 20, 21, 30] and numerousrqtlpers, this feature is shared with
a number of other mean-field models, including a mean-fietdioe of the nearest neighbor
Potts model known as the Curie-Weiss-Potts model [25], tean¥field XY Heisenberg model
[1], and the Hopfield model of spin glasses and neural nets@X]. These mean-field models
have in common the fact that the interaction terms in theimbtanians can be written as a
quadratic function. Scaling limits and MDPs for these med®ve either been proved, or
in principle could be proved, by techniques similar to thased in the present paper. Some
of these techniques are generalized in [11], in which thedrptec term in the Hamiltonian is
replaced by the moment generating function of suitablesanehriables. Other generalizations
are given in [5, 6, 23, 24]. The analysis of the equilibriumcnostates and the associated
phase transitions in the BEG model, which underlies thegmteisaper, is carried out in [22]
using large deviation techniques. While this is an elegaethod that provides exact, analytical
results, it has the restriction that it works most efficigimlmodels with long-range interactions,
as explained in [2].
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The Hopfield model of spin glasses and neural networks hasvest a great deal of at-
tention, and limit theorems for this model have been agtigaéldied. The Hamiltonian in the
Hopfield model can be written as a quadratic function of therleyp parameter, a feature that
it shares with the Curie-Weiss model and the BEG model, irctvithe Hamiltonian can be
written as a quadratic function of the spin per site. For tlopfield model both central limit
theorems and non-classical scaling limits for the overk@ameter are studied in [7, 26, 27, 28],
and MDPs are studied in [15]. These limit theorems incluéectises when the inverse temper-
ature is constant and when the inverse temperature panacogigerges to the critical inverse
temperature at an appropriate rate [15, 28].

We next preview the contents of the present paper. In se@iandetailed overview is
given of the scaling limits and the MDPs that will be derivéd.section 3 we summarize the
results in [22] on the structure of the set of equilibrium neastates of the BEG model and the
associated phase transitions. In section 4 we introduckutietion G x, properties of which
are integral to the proofs of the scaling limits and MDPs. Sehproperties include a formula
for the distribution of the total spin in terms 6f5 x [Lem. 4.1], several forms of the Taylor
expansions ofs 3 x that will be used to derive the limit theorems [Thm. 4.3], &vd estimates
in Lemma 4.4 for controlling error terms in the proofs of tlealéng limits and the MDPs.

In sections 5-8 we apply the results in the previous sectiorgerive the scaling limits
and the MDPs. Sections 5 and 6 are devoted to scaling limits,fon'= when appropriate
sequencess,, K,,) converge to point§g, K) € A and to point§5, K.(3)) € B, whereA and
B are the sets defined in (1.2) and (1.1). Wkén K,,) — (5, K) € A we obtain only 1 scaling
limit, which is independent of the sequenck, K,,) [Thm. 5.1]. The situation fof3, K.((5)) €
B is much more interesting; for appropriate choiceg®f, K,,) — (5, K) € B, 4 different
forms of the scaling limits arise [Thm. 7.1]. The scaling ilsnproved in these two sections
are warm-ups for the even more complicated scaling limibs'gad in section 7. In that section,
for appropriate choices dfs,,, K,,) converging to the tricritical points., K.(5.)) we obtain
13 different forms of the scaling limits [Thm. 7.1]. Finglip section 8 we obtain 1 MDP for
S,/n'~7" when(8,, K,,) — (8, K) € A[Thm. 8.2], 4 MDPs wheti3,, K,,) — (3, K.(3)) €
B [Thm. 8.1], and 13 MDPs whe{p,,, K,,) — (5., K.(3.)) [Thm. 8.3]. The MDPs are proved
by showing the equivalent Laplace principles, which isiearout by a method closely related
to that used to prove the scaling limits in the earlier sextidBeing able to prove both classes
of limit theorems via a unified method is one of the attracteagures of this paper.

Acknowledgements. We would like to thank an anonymous referee of [22] who sutgges
studying scaling limits fotS,, /n'~7 in the BEG model using sequendgs,, K,,) converging to
various point§ 3, K'). We would also like to thank Jonathan Machta for useful dismns on
the material of the present paper. The research of Richd&HtiSis supported in part by a grant
from the National Science Foundation (NSF-DMS-060407 he flesearch of Peter Otto was
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2 Overview of the Limit Theorems

This paper is devoted to scaling limits and MDPs for the tsfah in the BEG model. In
order to highlight the novelty of these results, we intraglsome notation. The BEG model
is a lattice-spin model defined on the complete grapm orertices1, 2,...,n. The spin at
sitej € {1,2,...,n} is denoted byv;, a quantity taking values in = {—1,0,1}. The joint
distribution of the spinsy; is defined by a probability measurg, 5 x on the configuration
spaceA” [see (3.1)]. The sequend®, 5 x for n € N defines the canonical ensemble for the
BEG model.

Through the particular form of the interactions among thaspghe measureB, s x incor-
porate an alignment effect that underlies the phase-transtructure of the model. AS — 0,

P, 5k converges weakly to the product measureAdnwith marginals equal to the uniform
measure om\. Similarly, asKk* — 0, P, s x converges weakly to another product measure on
A™. By contrast, ag{’ — oo, P, g x concentrates on the configuratiams andw™ in which the
spins are alll or —1; by symmetry, as< — oo, P, 3 x converges weakly to the sum of point
masse%(éw +4,,-). The phase-transition structure of the model reflects ¢énsigtence of this
alignment effect in the limit — oo.

We definesS,, = ngzl w;, Which represents the total spin. In this paper we will cdesi
numerous weak limits of the distributions 8f /n'~, wherey € [0,1). The distributions are
with respect taP, 5 i for fixed 3 > 0 and K > 0 and, more generally, with respect® s, ..,
where(g,, K,,) are appropriate sequences converging to specific valugs éf). The use of
P, s, K, to study weak limits in place aF, s x is the basic innovation of this paper, which will
reveal the intricate phase-transition structure of theehold » is a probability measure dR,
then the notatio®, s, x,{S./n'™" € dz} = v means that the distributions 6f, /n'~ with
respect tab, s, x,, converge weakly te asn — oo. If f is a nonnegative integrable function
on R, then the notatior, g, x,{S./n'~" € dx} = fdz means that the distributions of
S,/n'~7 converge weakly to the probability measure®maving a density proportional tp
with respect to Lebesgue measure.

The first hint of the intricacy of the phase-transition stune of the BEG model can be seen
by examining the law of large numbers and its breakdown, whie consider with respect to
P, sk for fixed 3 > 0 and K > 0. The intuition is that for sufficiently smallkl’ > 0 the
interactions among the spins are sufficiently weak so treatialogue of the classical law of
large numbers holds. However, for sufficiently lafge> 0 the interactions among the spins
are sufficiently strong to cause the classical law of largalmers to break down. This intuition
isin fact correct. In[22] it is proved that there exist(5) > 0, defined fors > 0, andz(5, K),



Costeniuc, Ellis, and Otto: Critical Behavior of Probadtit Limit Theorems 10

defined forg > 0 and K > K.(f3), in terms of which the following limits hold. The form of
the limits for K = K.(() is given in (2.3) and (2.4).

e Foranys > 0and0 < K < K.(f9)
P,sx{Sn/n € dx} = . (2.1)

e Foranys > 0andK > K.(3) we havez(3, K) > 0 and

Pog{Sn/n € dr} = 5 (08,5 + 0—2(8,K)) - (2.2)

The proofs of these two limits are indicated at the end ofiee@&, where they are derived from
the LDP given in part (a) of Theorem 3.1.

As we explain in section 3, for ea¢h> 0 and K’ > 0 the sets of mass points of the limiting
measures represent the sets of equilibrium macrostatee &G model, which we denote by
Es k. Thus, forg > 0 and0 < K < K.(0), Esx = {0} while for 8 > 0 andK > K.((),
Esx = {£2(B, K)}. The quantityz(/3, K) is a positive, increasing, continuous function for
K > K.3). The limit of (3, K) asK — K.(3)" depends on whethet < 3. or g > 3.,
whereg. = log 4 represents the critical inverse temperature of the modelsFE 5. we have
2(08, K.(8)) >0, and

: [0 if0<f8<p
i, 26, K) = { 2B, KB)) i 5> b

Consistent with this limit behavior is the fact th&t x5 equals{0} for 0 < g < 3. and equals
{0, £2(6, K.(3))} for 3 > (.. The limit behavior ofz(3, K') exhibited in the last display
shows that the setS; x undergo a continuous bifurcation &t = K.(3) for 0 < § < (.
and a discontinuous bifurcation &t = K.(3) for 5 > .. From the viewpoint of statistical
mechanics, the dual bifurcation behavior of the model gmweds to a continuous, second-
order phase transition &t5, K.(3)) for 0 < § < (. and a discontinuous, first-order phase
transition at(3, K.(3)) for 8 > .. The point(3., K.(5.)) = (log4,3/[2log 4]) separates the
second-order phase transition from the first-order phasesition and is called the tricritical
point.

The different behavior of the two phase transitions is réfi@in the form of the limits of
Sn/nwhenK = K.(3). For0 < 5 < ., we have the law of large numbers

Pog.k.3){Sn/n € dz} = 0y, (2.3)

while for 3 > j. the limit is expressed in terms of a measure supported ahtiee points in

Ep.Ku(8)’
Pop i p){Sn/n € dr} = Ado + M1 (52(5,Kc(5)) + 5_2(57;(6(5))) . (2.4)
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In the last limit)\, and )\, are positive numbers satisfying + 2\; = 1 and given explicitly in
(4.4). As we point out at the end of section 3, (2.3) followsnediately from the LDP given in
part (a) of Theorem 3.1. However, the proof of (2.4) is motatlsuand is postponed until after
Theorem 4.2.

Further evidence of the intricacy of the phase-transitioucsure of the model can be seen
if one jumps from the context of the law of large numbers aadbreakdown to the context of
scaling limits forS,, that are related to the central limit theorem and its breakdd&Ve consider
three cases, in all of whici; x = {0}. Case 1 is defined by > 0 and0 < K < K.(3). For
these values gf andK the interactions among the spins are sufficiently weak, hednalogue
of the classical central limit theorem holds. As we prove lredrem 5.1 whefi < 5 < 3.,

Pn757K{Sn/nl/2 €dr} = exp(—czxz) dz, (2.5)

wherec, = c»(5, K) is defined in (5.1). The same limit holds whgn> g. and0 < K <
K ().
Case 2is defined by < 3 < 3. andK = K.(§3). In this case the central limit scaling/?
in (2.5) must be replaced hy*/*, which reflects the onset of long-range order represented by
the second-order phase transitiori@t£.(3)). We have the nonclassical limit

Pn757Kc(5){Sn/n3/4 € dz} = exp(—cqa?) dz, (2.6)

wherec, = ¢4(8, K) > 0 is defined in (6.5). The limit in the last display is a speciase of
one of the limits proved in Theorem 6.1 [see the note aftesthment of the theorem].

Case 3 focuses on the tricritical poifit., K.(3.)). Not only is there an onset of long-range
order represented by the second-order phase transitibis gtdint, but also this point separates
the second-order phase transitionfot. 3. and the first-order phase transition for- 3. This
more intricate phase-transition behavior in a neighbodrafdhe tricritical point is reflected in
the replacement of the scalimg/ for 0 < 3 < 3. by n%/®. In this case

Pn7gc7Kc(5c){Sn/n5/6 €dr} = exp(—cﬁxﬁ) dz, (2.7)

wherecs = 9/40. The limit in the last display is a special case of one of that proved in
Theorem 7.1 [see the note after the statement of the theorem]

For all other values off > 0 and K > 0 — those satisfying < 5 < g., K > K.() and
8 > B., K > K.(3) — the limit theorems have different forms because the€set of equi-
librium macrostates consists of more than one point. In bbthese cases, for any equilibrium
macrostaté, (S, —nz)/n'/? satisfies a central-limit-type limit whe$}, /» is conditioned to lie
in a sufficiently small neighborhood af The explicit form of the limit is given in part (b) of
Theorem 6.6 in [22].
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We are now ready to outline the main contribution of this papéich is to exhibit the
intricate probabilistic behavior of the BEG model in neighfooods of the tricritical point
(B, K.(5.)), second-order poin{s?, K.(3)) for0 < 3 < f., and pointg3, K) for0 < 5 < .
and0 < K < K.(3). We do this by studying scaling limits and MDPs {8 /n'~" with re-
spect toP, s, x, for appropriate sequencés,, K ) that converge to points belonging to these
three classes and for appropriate choices ef (0, ] In order to facilitate the discussion, we
denote byC' the singleton set containing the tricritical poirt., K.(5.)), by B the curve of
second-order points defined by

B={(8,K)eR*:0< <, K =K(3)},
and byA the single-phase region lying undBru C' and defined by
A={(B,K)eR*:0<3<3,0< K< K.}

The setsA, B, andC are shown in Figure 1 in the introduction. In the rest of thest®n

we focus mainly on the scaling limits and MDPs f&y/n'~" when(3,, K,,) is an appropriate
sequence that converges(t&, K.(3.)). Scaling limits and MDPs whe(s,,, K,,) converges to
(6,K.(8)) € Bandto(g,K) € A are treated, respectively, in Theorems 6.1 and 8.1 and in
Theorems 5.1 and 8.2.

Corresponding to eadl, K) € AUBUC there exists a unique equilibrium macrostate at 0.
We do not consider scaling limits and MDPs in the neighbodsaxf other points corresponding
to which there exist nonunique equilibrium macrostates.allror most cases of nonunique
equilibrium macrostates, we expect that the scaling liilmd MDPs are conditioned limits as
in [22, Thm. 6.6(b)] and [14, Thm. 1.1]; however, we have notked out the details.

Through the limits (2.5), (2.6), and (2.7), each of the skt®, andC' is associated, respec-
tively, with the termz?, 24, andxz®. Specifically, for fixed 3, K)

exp(—cex?)dz  withy =1/21if (3,K) €
Popr{Sny/n'™ € dr} = { exp(—cyzt)dr withy =1/4if (3,K) € B (2.8)
exp(—cex®)dz  withy=1/61if (3,K) €

wherec, andc, are positive and depend ghand K, andcg = 9/40. Theorem 7.1 shows
that for appropriate sequencgs,, K,,) converging to( 3., K.(53.)), for appropriate choices of
v € (0,1/2), and for appropriate coefficients, ¢,, andés

PnﬁmKn{Sn/nl_”’ € dr} = exp(—c1? — Gt — E2°%) du. (2.9)

As we show in Table 2.1G(z) = éa® + éax + ce2° takes all of the 13 possible forms of an
even polynomial of degree 6, 4, or 2 satisfyi@0) = 0 andG(z) — oo as|z| — oco. Each of
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the 13 cases shows the influence of one or more of the’§els and A through the presence
of the termaz®, 2%, or 22 associated with that set by the limit (2.8). The coefficignt 9/40 is

the same as in (2.7§, = 3/16, andb andk are any nonzero real numbers subject only to the
requirement thatxp(—G) is integrable. Because in every case (0, 1/2), the scaling of5,,

by n'~7 is non-classical.

| case | influence | Png, k,{Sn/n'"7 € de} => exp[—G(x)]dx |

1 C G(x) = cx®, cg >0
2 B G(z) = begx?, b>0,¢, >0
3 A G(x) = kBua®, k>0
4-5 B+C G(x) = begxr? + g%, b # 0
6-7 A+C G(z) = kB.a* + ce2®, k #0
8-9 A+ B G(z) = kBea* + beyx?, k#0,b> 0
10-13| A+ B+ C | G(z) = kB.x* + begz* + cgx®, k #0,b# 0

Table 2.1:13 cases of the scaling limits in (2.9) fg8,,, K,,) in (2.10) andy € (0,1/2)

The forms of the scaling limits in (2.9) depend crucially be appropriate choices of the
sequencess,, K,,) converging to 5., K.(3.)). The simplest sequences for which all 13 cases
of the limit (2.9) arise are defined in terms of parameters 0, 6 > 0, b # 0, andk # 0

B, = log(e’ —b/n*) and K,, = K(3,) — k/n’, (2.10)

where K (3) = (e’ + 2)/(4p3) for 8 > 0. K () coincides withK.(3) for 0 < 8 < 3. and
satisfiesK (3) > K.(8) for 8 > (. [22, Thms. 3.6, 3.8]. Sincg,, — (. and sinceK(-) is
continuous, we hav& (,) — K.; thus the convergend®,, K,,) — (0., K.(3.)) is valid. In
section 7 we will explain how this particular sequeriog, K,,) was chosen.

Depending on the signs bfindk, the sequences,,, K,,) in (2.10) converges t@3., K.(5.))
from regions exhibiting markedly different physical belwav For example, ib > 0 andk >
0, theng, < . and K, < K(f,), and so(g,, K,) converges tq3, K) from the region
A, corresponding to each point of which there exists a uniguelierium macrostate [Thm.
3.2(a)]. On the other hand, if < 0, thenK,, > K(3,), and so(,, K,,) converges tqj, K)
from a region of points corresponding to each of which th&rgt éwo equilibrium macrostates.
If, in addition, b > 0, then this region lies above the curi®of second-order points [Thm.
3.2(b)], while if b < 0, then this region lies above the curve of first-order poirgsadibed in
Theorem 3.3. Despite the markedly different physical beraassociated with these various
regions, all the scaling limits in this paper are proved byndied method, regardless of the
direction of approach afg,,, K,,) to (5, K'). The situation with respect to the MDPs is the same.
These remarks concerning the proofs of the scaling limitstae MDPs will be amplified in
section 4 after we introduce the tools that will be used inpiro®fs.
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The occurrence of a particular one of the scaling limits eerated in Table 2.1 depends on
~ and on the values of and# and thus on the speed at whigh,, K,,) — (5., K.(5.)) and on
the direction of approach. Only case 1 expresses the inf#uaitc alone, giving the same limit
for (6,, K,,) in (2.10) as the limit in (2.7), which holds for the constaatjsenceg3,, K,,) =
(6., K.(B.)). Case 1 occurs if the convergenge,, K,,) — (0., K.(5.)) is sufficiently fast;
namely,a > 1/3 andf > 2/3. Case 2, which expresses the influencé&adlone, occurs if the
convergence off3,,, K,,) — (8., K.(3.))is sufficiently slow bu# is relatively large compared
to . Case 3, which expresses the influencel@lone, occurs if the convergence is sufficiently
slow but, in contrast with case 2, is relatively large compared té. Finally, cases 4-13,
which express the influence of more than one 4¢3, andC', occur if the convergence of
(Bn, Kn) — (B, K.(B.)) occurs at an appropriate critical rate. For example, cafed3l
express the influence of all three setsB, andC' and so correspond to the most complicated
form of the limiting density. This case occurs whenr-= 1/3, § = 2/3, andy = 1/6.

The scaling limits forS,, /n' =7 listed in Table 2.1 are analyzed in Theorem 7.1, where we
determine the values af, 0, and~ leading to the 13 different cases. The dependen¢g,of<,,)
in (2.10) uponn andf is complicated; becausg, is a function ofa, K, is both a function of
f and, through3,, a function ofa. However, as we will see, for the appropriate choice of
v € (0,1/2), in the expression for the scaling limit 6f, /n'!~ the« and the? decouple in such
a way that the limits given in Theorem 7.1 can be read off insesyiatic way.

In Figure 2 in the introduction we indicate the subsets ofgbsitive quadrant of the--6
plane leading to all the cases in Table 2.1. The subsetseldbgél B, and A correspond to
cases 1, 2, and 3, respectively, and the subsets labeled’, A+ C, A+ B,andA + B + C
correspond to cases 4-5, 6-7, 8-9, and 10-13, respectiMatyrelationship between thed
plane exhibited in Figure 2 and the K’ plane, inside which lies the tricritical point, is that each
point in thea-0 plane corresponds, through the formulas fgrand K, given in (2.10), to a
curve in the3-K plane.

In Figure 3 we exhibit three different curves in theK plane, labeled (a), (b), and (abc).
These curves correspond to three different choicesasfdd, three different choices @fs,,, K,,)
in (2.10), and three different limits in Table 2.1. The culabeled (a) corresponds to= 1
and# = 1/3, which in turn corresponds to case 3 of the scaling limits ttse shows the
influence only of region A. The curve labeled (b) correspailmds = 1/4 andd = 1, which
in turn corresponds to case 2 of the scaling limit; this cdmm®vs the influence only of region
B. Finally, the curve labeled (abc) correspondsite- 1/3, b > 0, 0 = 2/3, andk > 0; the
associated scaling limit in case 10 shows the influence ohade setsA, B, andC.

It is worth noting a contrast between the scaling limits irBf2and those in Table 2.1. In
(2.8) the three scaling limits fa$, /n'~ hold with respect tab, s i for fixed (3, K) € A,
(8,K) € B, and(p,K) € C. In each of these three cases the valuey a$ fixed to be,
respectively,1/2, 1/4, and1/6. By contrast, we will see in Theorem 7.1 that in 4 of the 13
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Figure 3:Three choices ofs3,,, K,,) that show the influence of, of B, and ofA, B, andC in (2.9)

cases of the scaling limits fdt, /n'~ stated in Table 2.1, the limit theorems hold for a range
of values ofy. These are cases 2, 3, 8, and 9. In the other cases, each &f wtiedes the
influence of the tricritical points., K.(5.)), v equals the fixed valug/6.

We now make a transition from the scaling limits to the MDPs.wke have seen, the scaling
limits state that for appropriate choices(of,, K,,) and ofy =

PnﬂmKn{Sn/nl_“’O € dz} = exp[—G(z)] dx, (2.11)

whereG takes one of the 13 forms in Table 2.1. For any (0, ), one can show that ib is
any Borel set whose closure does not contain 0, then

lim Pn75n7Kn{Sn/n1_7 € D} = 0.

A natural question is to determine the rate at which theseaaated probabilities converge to
0 when(g,, K,,) is defined in (2.10). In Theorem 8.3 we define a quantitin terms ofq,

6, and~ having the property that whem < 0, S,,/n'~" satisfies an MDP with exponential
speedn " and rate functior(z) — G, whereG is the same function appearing in (2.11) and
G = inf,er G(y). This MDP implies that for suitable sef$

Pog, 1, {Sn/n' ™7 € D} — 0 like exp[—n~" inf (G(z) — G)].

zeD

In order to emphasize the similarity with the scaling limii® summarize this class of MDPs
by the formal notation

Pog, 1, {Syn'™7 € do} < exp[-n""G(z)], (2.12)
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in which the constant is not shown.

The situation with the MDPs is completely analogous to theasion for the scaling limits.
Specifically, as we exhibit in Table 2.2, there are 13 caseéhedoMDP (2.12), each of which
shows the influence of one or more of the s€{$3, and A depending on the speed at which the
sequencés,, K,,) defined in (2.10) converges t6., K.(.)) and on its direction of approach.
The coefficients = 9/40 is the same as in (2.7, = 3/16, andb andk are the nonzero real
numbers appearing in (2.10) and subject only to the req@rethatG(x) — oo as|z| — oo.
The MDPs forS,,/n' 7 listed in Table 2.2 are analyzed in Theorem 8.3, where weriéte
the values ofy, 6, and~ that lead to each of the cases.

| case | influence | P,g, k,{Sn/n'" € dz} X exp[-n "G(x)]dz |

1 C G(x) = cga%, c5 >0
2 B G([L’) = 1)641'4, b>0, ¢y >0
3 A Gx) = kB, k>0
4-5 B+C | G(z) =begx* + 2% b#£0
6-7 A+C G(z) = kBx® + 62 k # 0
8-9 A+ B G(z) = kB.a® + beyx?, k#0,b>0

10-13| A+ B+ C | G(x) = kBexo + begx® + c2% k # 0,0 # 0
Table 2.2:13 cases of the MDPs in (2.12) f¢8,,, K,) in (2.10) andy € (0,1/2)

The MDPs forS,,/n'~7 have an unexpected consequence concerning a new classrief dis
bution limits forS,,/n!~ that give deeper insight into the fine structure of the phasesitions
in a neighborhood of the tricritical point. In an effort toderstand the physical significance of
these new limits, analogs of them are now being investigateal class of non-mean-field mod-
els, including the Blume-Emery-Griffiths model [19]. In erdo appreciate these new results,
we first consider a consequence of the large deviation pimsttated in part (a) of Theorem
3.1. Sincegs x = {0} for (6,K) € AU B U C, it follows that for any positive sequence
(Bn, Ky) — (B, K) e AUBUC

Pop, k,{Sn/n € dv} = do.

The MDPs forS,,/n' 7 listed in Table 2.2 lead to refinements of this limit fa}., K.(5.)) €
C inthose cases in which the set of global minimum point§ @bntains nonzero points. These
are precisely the cases in which the coefficients/adre not all positive: cases 5 & 0), 7
(k<0),9k<0,11¢k<0,b>0),12¢k >0,b<0),and 13§ < 0,b < 0). In all these
cases except for case 12, the set of global minimum point obnsists of two symmetric,
nonzero points-z(b, k). Hence, using the appropriate valueyadind the appropriate sequence
(Gn, K,,) given in Theorem 8.3, we deduce from the corresponding MI2Hinit

Po ko {Sn/n' 77 € doy = %(%(b,k) + 6—1’(b7k))- (2.13)
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In each of these cas€s,,, K,,) approachess., K.(5.)) from a region of point§3, K) cor-
responding to each of which there exist two equilibrium roatatest-z (3, k) [Thms. 3.2(b),
3.3(c)]. As we have already seen, for edch K) in this region the limit (2.2) holds. The
new limit (2.13) shows that 8$3,,, K,,) — (8., K.(5.)) from this two-phase region, the model
retains a trace of the two equilibrium macrostates 5, K), replacing them by the quantities
+x(b, k). The physical significance of this limit as well as the linft14) to be stated in the
next paragraph is currently under investigation [19]. Aiamphenomenon occurs in case 4 of
Theorem 8.1, which proves MDPs {6}, /n' =7 for appropriate sequencés,,, K,,) converging
to (3, K) lying in the curveB of second-order points.

The situation in case 12 in Table 22 £ 0, b < 0) is even more fascinating than in the other
cases. For fixed < 0, fixedn € N, and decreasing > 0, the set of global minimum points
of G undergoes a discontinuous bifurcation, changing from guaglobal minimum point at
0 for k large, to three global minimum points@t:-x (b, k) for a critical value oft = const b2,
to two global minimum points at-x(b, k) for £ small. Ask decreases,s,, K,,) crosses the
first-order critical curve from below; the changing formgloé sets of global minimum points
of GG replicate the changing forms &k x for fixed 5 > (3. and increasings’ > 0 [Thm.
3.3]. In particular, when the set of global minimum pointsbéquals{0, £xz(b, k)}, the MDP
corresponding to case 12 together with other informatiefdgi the limit

Prgn i {Sn/n' ™7 € dz} = Xodo + M (Guior) + O—a(vr)) (2.14)

where)\, and)\; are positive numbers satisfying 4+ 2\, = 1. This limit is reminiscent of the
limit (2.4), in which the equilibrium macrostateés: (3, K') are replaced by their traces:(b, k).

Although in general the values of 0, and~ leading to each of the 13 cases of the MDPs
in Table 2.2 differ from the values of these parameters feath the corresponding case of the
scaling limit in Table 2.1, the tables have a number of obsisimilarities. This resemblance
between the two tables reaches deeper. In fact, both setsuolts are proved by a unified
method. In order to explain this, l¢tbe any bounded, continuous function mappkgto R
and let(5,, K,,) be any positive sequence. The starting point of the prooboti the scaling
limits and the MDPs [see Lem. 4.1] is that wheneyeF (0,1/2), we have

E{f(S,/n' " +¢,)} = Zin . /]R f(x) exp][-nGg, k, (x/n7)] dx. (2.15)

The functionGpg k in this display is defined in (3.4); its global minimum valuguals the
canonical free energy for the model. In additiep represents a sequence of random variables
that converges to 0 as— oo, andZ,, is a normalizating constant.

The quantityw in the MDP (2.12) is defined by = min{2y +6 — 1,4y + a— 1,6y — 1}.
This quantity also plays a key role in the scaling limits fgr/n! =7, which like the MDPs arise
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from the choice of 5,,, K,,) in (2.10). Whenw = 0, the scaling limits listed in Table 2.1 follow
at least formally from (2.15) and the fact that for eaca R

lim nGg, k,(x/n") = G(x).

The proof of this limit relies on an analysis of the Taylor arpion ofGs, x, at 0, which has
13 different forms depending on the choicesyadnd of the parameters andé appearing in
the definition (2.10) of3,,, K,,). Details are given in Theorem 7.1.

We now assume that < 0. Giveny be any bounded, continuous function, we substitute
f = exp(n~"v) into (2.15), obtaining

E{exp[ P(Sn/n' ™ + )]}
= — /exp v {1/) nH“’Gngn(x/n“’)H dx.
Whenw < 0, the last dlsplay, the fact that for eache R

lim 't G, ., (x/n7) = G(z),
and the fact that,, — 0 in probability at a rate faster thawp(—n~—") give the formal asymp-
totics

E{exp[n™¢(S,/n' ™7 +&,)]}
~ /Rexp[n_w {v(2) = (G(z) = G)}] do
A exp [n‘”’ SUpP,cRr {w(x) - (G(z) - G)H’

whereG = inf,cg G(y). In section 8 we show to convert this formal calculation iatbmit
known as the Laplace principle, which is equivalent to theRgOor S,,/n!~ listed in Table
2.2. As in the proof of the scaling limits, the proof of the lage limit relies on an analysis of
the Taylor expansion afr3, , at 0. Despite the similarity in the proofs of the scaling bsni
and the Laplace principles, the proof of the latter is muchexdelicate, requiring additional
estimates not needed in the proof of the former.

We start our analysis of the BEG model in the next section.

3 Phase-Transition Structure of the BEG Model

After defining the BEG model, we summarize its phase-tramrsistructure in Theorems 3.2
and 3.3. In (3.4) we introduce the functidfy x, in terms of which the scaling limits and the
MDPs for S,, /n'~7 will be deduced later in the paper.
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The BEG model is a lattice-spin model defined on the completglgon: verticesl, 2, . . . , n.
The spin at sitg € {1,2,...,n} is denoted by;, a quantity taking values in = {—1,0, 1}.
The configuration space for the model is the/setontaining all sequences= (w;, ws, ..., wy,)
with eachw; € A. In terms of a positive parametér representing the interaction strength, the
Hamiltonian is defined by

n n 2
H, k(w) = ijz - %(Z U)j)
j=1 =1

for eachw € A". Forn € N, inverse temperaturé > 0, and K > 0, the canonical ensemble
for the BEG model is the sequence of probability measurdsagsagn to each subsgtof A"

the probability

Posx(B) = m /B exp[—BH, ] dP,. (3.1)

In this formulaP, is the product measure oY with identical one-dimensional marginals
p = %(5_1 + 50 + 51),

andZ, (4, K) is the normalizing constanf, , exp|—GH,, k]dP,.

In [22] the analysis of the canonical ensemblg; x was facilitated by expressing it in the
form of a Curie-Weiss-type model. This is done by absorbirggrtoninteracting component of
the Hamiltonian into the product measurg, obtaining

S"é”)) Prs(dw). (3.2)

P g,k (dw) ZZZ??éi?%S'eXp[nﬁf(<

In this formulas,,(w) equals the total spiE;;1 w;, P, 1s the product measure oki* with
identical one-dimensional marginals

o7 b= ). (33)
Z () is the normalizing constarf, exp(—pgw?)p(dw;) = 1 + 2e77, andZ,(3, K) is the nor-
malizing constantZ (3)]|"/Z. (5, K).

Although P, 3 x has the form of a Curie-Weiss model when rewritten as in (&8 much
more complicated because of thedependent product measuf s and the presence of the
parameters. These complications introduce new features not prese¢hei@urie-Weiss model
[17, §IV.4, §V.9]; these features include the existence of a second-pitese transition for all

ppdw;) =
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sufficiently smallg > 0 and all sufficiently largex’ > 0 and a first-order phase transition for
all sufficiently larges > 0 and all sufficiently large< > 0. The existence of a second-order
phase transition and a first-order phase transition alsbasihe existence of a tricritical point,
which separates the two phase transitions and is one of threfotaises of the present paper.

The starting point of the analysis of the phase-transittaucture of the BEG model is the
large deviation principle (LDP) satisfied by the spin pee Sif /n with respect toP, s . In
order to state the form of the rate function, we introducectimaulant generating functiar of
the measureg defined in (3.3); for € R this function is defined by

eolt) = log [ explten) pafden)

oo | LT e Flet+e)
BT 28 ‘

We also introduce the Legendre-Fenchel transforaypivhich is defined for € [—1, 1] by
Jp(2) = sup{tz — cs(1) };
teR

Js(z) is finite for z € [—1, 1]. J; is the rate function in Cramér’s theorem, which is the LDP fo
Sn/n with respect to the product measuréss [17, Thm. 11.4.1] and is one of the components
of the proof of the LDP forS,,/n with respect taP, s . This LDP and a related limit are stated
in parts (a) and (b) of the next theorem. Part (a) is provedieofem 3.3 in [22], and part (b)
in Theorem 2.4 in [18].

Theorem 3.1. For all 3 > 0 and K > 0 the following conclusions hold.
(a) With respect to the canonical ensembiles ., S, /n satisfies the LDP ofi-1, 1] with
exponential speed and rate function

Is.x(2) = Jo(z) = BK 2 — inf {Jp(y) — BKY).
(b) We define the canonical free energy
1

whereZ, (3, K) is the normalizing constant i8.1). Theny(3, K) = inf,cr{J3(y) — BKy*}.

The LDP in part (a) of the theorem implies that thase [—1, 1] satisfying/s x(z) > 0
have an exponentially small probability of being obseruedhie canonical ensemble. Hence
we define the set of equilibrium macrostates by

557]( = {Z S [—1, 1] : 157]((2) = O}
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In [22] we used the notatiofi; x to describe this set, using the notatiény to describe a
different but related set of equilibrium macrostates. k& phesent paper we write; x instead
of £ x in order to simplify the notation.
Forz € R we define
Gsx(2) = BK2* — c5(28K2). (3.4)

The calculation of the zeroes 6f x — equivalently, the global minimum points dg x (z) —
BK z*> — is greatly facilitated by the following observations madéroposition 3.4 in [22]:

1. The global minimum points of; x(2) — 8K z* coincide with the global minimum points
of G3.x, which are much easier to calculate.

2. The minimum valuesiin,cg{Js x(2) — 3K 2%} andmin,cr G i (z) coincide and both
equal the canonical free energy(, K') defined in part (b) of Theorem 3.1.

Item 1 gives the alternate characterization that
Es.x = {7 € [-1,1] : z minimizesGg k(2)}. (3.5)

In the context of Curie-Weiss-type models, the forntfy is explained on page 2247 of [22].

As shown in the next two theorems, the structur€gj, depends on the relationship be-
tweeng and the critical valugl. = log4. We first describ&s i for 0 < 5 < . and then for
B > B.. In the first cas&; x undergoes a continuous bifurcation sincreases through the
critical value K. (3) defined in (3.6); physically, this bifurcation correspomals second-order
phase transition. The following theorem is proved in Theo86 in [22].

Theorem 3.2.For 0 < < 3., we define

1 e?+2
200,0) 45 (36)

For these values of, &3  has the following structure.

@Fro< K < Kc(ﬁ), 557]( = {0}

(b) For K > K.(3), there exists(3, K) > 0 such thatts x = {+z(5, K)}.

(c) z(p, K) is a positive, increasing, continuous function fler > K.(3), and ask —
(K.(0))*, z2(8, K) — 0. Therefore£; i exhibits a continuous bifurcation &.(3).

KC(/B)

For g € (0, 3.), the curve(3, K.((3)) is the curve of second-order points. As we will see
in @ moment, for? € (4., o) the BEG model also has a curve of first-order points, which we
denote by the same notati¢fi, K.(3)). In order to simplify the notation, we do not follow the
convention in [22], where we distinguished between the sgarder phase transition and the
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first-order phase transition by writing.(5) for 0 < g < g. asK? (6) and writing K.(3) for
8> peask(p).

We now describ€s i for 3 > .. Inthis cas&’s x undergoes a discontinuous bifurcation as
K increases through an implicitly defined critical value. 8ibglly, this bifurcation corresponds
to a first-order phase transition. The following theoremr®/pd in Theorem 3.8 in [22].

Theorem 3.3.For all 3 > 3., £s k has the following structure in terms of the quantity(5),
denoted byx!"(3) in [22] and defined implicitly fo3 > 3. on page22310f[22].

(@Foro< K < Kc(ﬁ), 557]( = {0}

(b) There exists (3, K.(3)) > 0 such thats k.5 = {0, £2(5, K.(5))}.

(c) For K > K.() there existz (3, K) > 0 such thats x = {£2(8, K)}.

(d) z(8, K) is a positive, increasing, continuous function feér > K.((5), and ask —
K.(8)%, 2(8,K) — z(08, K.(8)) > 0. Therefore £5 x exhibits a discontinuous bifurcation at

We end this section by outlining the proofs of the laws of éangimbers in (2.1) and (2.3)
and its breakdown in (2.2). The upper large deviation bounithé LDP stated in part (a) of
Theorem 3.1 implies that for any > 0 and X' > 0 the limiting mass ofS,, /n with respect
to P, 3 x concentrates on the elements&fx. According to Theorems 3.2(a) and 3.3(a),
Esx = {0} when0 < g8 < B.and0 < K < K.f) and wheng > . and K < K.(().
For these values gf and K, the laws of large numbers in (2.1) and (2.3) follow immeeliat
Forg > 0andK > K (), we havegs x = {£+z(, K)}, and so by symmetry the limit (2.2)
follows. The proof of the limit (2.4) is postponed until affEheorem 4.2 because it requires
more detailed information about the elementggf, wheng > g. andK = K.(5).

In the next section we present additional properties oftinetionG s i introduced in (3.4).
These properties will be used in later sections to prove ¢théng limits and the MDPs for
Sp/nt=7.

4 Properties of Gg,k
As we saw in (3.5), the global minimum points of

Gpr(2) = BK2*—cs(26K2)
1+ e P (e2PK= 4 ¢=26K%)

= [Kz*—1
FR2"—log 1+ 25

coincide with the elements &f; x, the set of equilibrium macrostates for the BEG model. In
this section we study further properties@} x that will be used in later sections to prove the
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scaling limits and the MDPs fdf,, /n'~ with respect taP, 5 x and with respect t@, s, , for
appropriate sequenc¢g,,, K,,) and for appropriate choices of

We first show that for any € [0, 1) the P, s, r,-distribution ofS,, /n' = can be expressed
in terms ofG3, x,, and an independent normal random variable. The next lemmbegaroved
like Lemma 3.3 in [20], which applies to the Curie-Weiss mode like Lemma 3.2 in [25],
which applies to the Curie-Weiss-Potts model. In an eganalorm, the next lemma is well
known in the literature as the Hubbard-Stratonovich tramsation, where it is invoked to an-
alyze models with quadratic Hamiltonians (see, e.g., [2363]). After the statement of the
lemma, we outline how we will use it in order to deduce theisgdimits of S,, /n' .

Lemma 4.1. Given a positive sequengs,,, K,,), let W,, be a sequence a¥ (0, (23,K,)™")
random variables defined on a probability spgée F, ). Then for anyy € [0,1) and any
bounded, measurable functign

Sh, W,
/AnXQ f(ﬁ + W) d(Pr gk, % Q) (4.1)

1

= fRexp[—nGg x,(z/n7)] dz /Rf(x) exp|—nGp, k, (z/n")] dz.

As we will see in Theorems 5.1, 6.1, and 7.1, the scaling $irave different forms de-
pending on which of the following three sdts, K) lies in: the singleton set' containing the
tricritical point (5., K.(53.)), the curveB of second-order points

B={(8,K)eR?*:0< < B, K = K.(3)},

and the single-phase region
A={(B,K)eR*:0< < [3,0< K < K3}

These sets are shown in Figure 1 in the introduction.

We now indicate how we will use Lemma 4.1 to prove the scalimgt$ of S, /n'~7 for
v € (0,1/2]. Let (5, K,,) be a suitable positive sequence convergingtak') € AUBUC.
Assume that 3, K,,) and~ are chosen so that the limit of the right hand side of (4.13texi
asn — oo. We first considery < 1/2. Sinceg, and K,, are bounded and uniformly positive
overn, rewriting the limit of the left hand side in terms of chaextstic functions shows that
W, /n'/?>~7 does not contribute. Hence it follows that

hm f(Sn/nl_ﬁf) dPn,ﬁn,Kn (42)

n—o0 Jan

: 1 N de
B nh—>n<30 [z exp[—nGp, K, (x/n7)] dx /Rf(x) exp[—nGis, i, (z/n)] do.
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From this formula we will be able to determine the scalingtsof S, /n'~ when(3,, K,,) —
(6,K) € BUC [Thms. 6.1, 7.1]. Using an analogous formula, we will be a@bléetermine
the MDPs ofS,,/n'=” when(3,, K,,) — (3, K) € BUC [Thms. 8.1, 8.3].

Now considery = 1/2, which corresponds to the central-limit-type scaling $qrin (2.5).
In this case (4.1) yields

lim F(Sn/n'? + W) d(Prg, k., X Q) (4.3)
=00 JAnxQ
1
_ : — Y2 dz.
o s 1(8) PG

In contrastto when € (0, 1/2), W,, now contributes to the limit. Again the use of charactegisti
functions enables one to determine the scaling limi,gfn'/? when(3,, K,,) — (3, K) € A
[Thm. 5.1].

Formulas (4.2) and (4.3) suggest how to proceed in proviagtaling limits ofS,, /n!™.
First conside(,, K,,) for whichGp, x, has a unique global minimum point at 0 [Thms. 3.2(a),
3.3(a)]. As (4.2) and (4.3) suggest, the forms of the scdlings of S,,/n'~ with respect to
P, s, k., depend on the forms of the Taylor expansiong:gf r,, in the neighborhood of the
global minimum point 0. One of the attractive features of analysis is that the same Taylor
expansions can be used to handle sequefigedy,,) for which G, x, has nonunique global
minimum points. Such sequences arise naturally in thersghihits and the MDPs to be proved
later in the paper; in fact, it is precisely such sequencewliich the MDPs yield the new class
of distribution limits of the form (2.13) and (2.14). What ke it possible to use the same
Taylor expansions regardless of the nature of the globaimmim points ofGj, x, is Lemma
4.4, the main technical innovation in this paper.

Preliminary information on the forms of the relevant Taydapansions is presented in Theo-
rems 4.2 and 4.3. In the proofs of the scaling limits, in otdgustify replacingnGg, x,, (x/n7)
in (4.2) byn times the Taylor expansion evaluated:at” and taking limits under the integral,
one invokes the dominated convergence theorem, for whiglappropriate bounding function
depends on the particular sequerigg, k). This will be handled on a case-by-case basis in
subsequent sections. Finally, one must show that the botityns to the limit in (4.2) and (4.3)
by all = for which z/n” lies in the complement of a neighborhood of 0 is exponewtsihall.
The relevant error estimate is given in part (c) of Lemma &#nilar considerations apply to
the proofs of the MDPs in section 8, for which the relevanbeestimate is given in part (d) of
Lemma 4.4.

The steps outlined in the preceding paragraph for dedutiagtaling limits ofS,, /n!~
from (4.2) and (4.3) are well known in the related contextshef Curie-Weiss model and the
Curie-Weiss-Potts model. Scaling limits for these modetsstudied in [20, 21] and in [25]
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for fixed values of the inverse temperature defining the spoading canonical ensemble. In
contrast to those earlier papers, our study of scaling difiut the BEG model necessitates a
considerably more careful analysis because we work withctiv®nical ensembl®, 5, &,
allowing sequencess,, K,,) rather than only fixed values 6, K).

The analysis of the Taylor expansions@f x in the neighborhood of a global minimum
point involves the notion of the type of a global minimum goiwhich we next introduce. We
temporarily consider ang > 0 and anyK > 0 and then specialize tg5, K) € AU B U C.
Let Z be an element of3 . SinceGj i is real analytic and is a global minimum point, there

exists a positive integer= r(Z) such thaGG'; () > 0 and

GiR(2)
(2r)!

Gpk(z) =Gs(2) + (2= 2" +0((z — 2)**!) asz — 2.

We call r(2) the type of the global minimum poirit. If » = 1, thenG(ﬁ%)K(,%) = 20K —
(26K)%(cp)"(26K%), and ifr > 2, thenGS" (2) = —(26K)% " ().

In Theorem 6.3 in [22] the types of the elements&fx are determined for alb > 0
and K > 0. In our study of scaling limits of5, /n'~7 in the present paper, we focus on
(B,K) € AuBUC, for which & x = {0} [Thm. 3.2(a)]. Although the conclusion in

[22] that for (5, K) € B the type of 0 equals 2 is correct, the formula @}%)K(O) given in

(6.6) in that paper has a small error. The correct formuli;fg)fi((()) is given in (4.10) with
(ﬁmKn) = (ﬁvK)

Theorem 4.2. Forall (5,K) € AUBUC, &k ={0}.
(@)Forall (8,K) € A, Z=0has typer = 1.
(b) For all (5, K.(B)) € B,z =0 has typer = 2.
(c) For (8, K) = (B, K.(:)) € C, 2= 0 has typer = 3.

For all other values off > 0 and K > 0 not considered in Theorem 4.2, the elements of
Es i all have typer = 1. This includes the valuegs < 5 < . and K > K.(3) [Thm. 3.2(b)]
and the valueg > 3., K > 0 [Thm. 3.3]. In these two cases the fact that the elements af
all have typer = 1 is proved in [22] in part (c) of Theorem 6.3 and in Theorem 6.4.

We now point out how to prove the breakdown of the law of largmhers stated in (2.4),
which holds forg > 3. and K = K.(3). In this case&s k.3 = {0,£2(3,K)}. Since
each of the elements &% x5 has typer = 1, the limit in (2.4) is proved exactly as in part
(c) of Theorem 2.3 in [25], which treats the breakdown of #w bf large numbers for the
Curie-Weiss-Potts model gt= j3.. In (2.4),

Ko R1

Ao = and \; =

Ko + 2K1 Ko + 2K1’

(4.4)
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wherer =[Gy (5 (0)] "/ andr, =[G 5 (=(8, Ko(5)))] /2

We return to Lemma 4.1 and in partlcular to (4.2)—(4.3), whegpress the scaling limit of
S,/n'~7 in terms of the functiomGg, k., (x/n?). Using the information about the three differ-
ent types of the global minimum point 6fs  at 0 for (3, K) € A, (5,K) € B,and(3, K) €
C', we now indicate the three different forms of the Taylor exgdan ofnGjy, k, (z/n”) needed

to deduce the scaling limits &, /n'~7. These involve the quantitie@(ﬁ?xn(o), G(ﬁ‘iKn(O),

and Ggi)ﬁKn(O), for the first two of which explicit formulas in terms ¢f, and K, are given.
As we will see in later sections, these formulas will guidenie how we should choose the
sequence$s,, K,,) so that all the different scaling limits &, /n'~ appear. Sinc&s, x, is
symmetric around 0, all odd-order derivatives of this fumtevaluated at O vanish; in addition,
Gg, k,(0) =0.
In order to state part (d) of the theorem, we definefor 0

1 e +2
K(p) = 26%(0) = 5 (4.5)
For0 < 8 < (. this function coincides with the functioA.() defined in (3.6), while for
B > B, K(B) > K.(8)[22, Thm. 3.8]. Thus fof3, K) € B we haveK = K. () = K(()
while for (5, K') € C'we haves = . and K = K.(8.) = K(B.).

Theorem 4.3.Let (53, K,,) be any positive bounded sequence arahy positive number. The
following conclusions hold.

(a) Assume thats,, K,,) — (8, K) € A. Then the type di € &; i equalsl. In addi-
tion, for any R > 0 and for all x € R satisfying|z/n?| < R there exist€ = &(x/n?) €
[—x/n7, xz/n"] such that

(2)
RS AC RS SR (4.6)

nG5n7Kn(x/n7) = n271-1 9 n31-1

The error termsA,,({(z/n”)) are uniformly bounded ovet € N andx € (—Rn", Rn").
Furthermore, as: — co, G ;. (0) — G5 .(0) > 0.

(b) Assume thats,, K,,) — (8, K.(8)) € B. Then the type od € &z k. iS 2. In
addition, for anyR > 0 and for allz € R satisfying|z/n”| < R there exist§ = &(x/n") €
[—z/n", 2 /n7] such that

(2) (4)
1 G nKn(O) 1 G nKn(O) 1
NG, () = e 4 e SOt B (/). (47)

The error termsB,,({(z/n")) are uniformly bounded ovet € N andx € (—Rn", Rn").

Furthermore, as: — oo, G . (0) — G} ;(0) = 0while G} . (0) = G 5(0) > 0.
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(c) Assume thatg3,, K,) — (8., K.(3:)). Then the type db € &3 k. (3, is 3. In addi-
tion, for any R > 0 and for all x € R satisfying|z/n?| < R there exist€ = &(x/n?) €
[—x/n7, xz/n"] such that

nGp, i, (x/n7) = (4.8)
(2) 4) (6)
1 GﬁnyKn (0) 2 1 Gﬁn,Kn(O) 4 1 Gﬁ,,“Kn (0) 6 1 7
) o -+ o 1 "+ 1 ol x’ + nh_lCn(S(x/n”’))x )

The error termsC,,(&(x/n”)) are uniformly bounded ovet € N andx € (—Rn”, Rn").

Furthermore, as, — zo G e (0) =GP 5 (0) =0andGE) . (0) = G\ o 1(0) =0
; 6
while G . (0) — G 1 (0) =2 3% |
(d) For g > 0 we definei' () in (4.5). Then in(4.6){4.8)
(2) 2ﬁnKn(6ﬁn +2 - 4ﬁnKn) 2ﬁnKn [K(ﬁn) — Kn]
G, k6, (0) A %(5,) (4.9)
and A 5
G (0) = 22 Kn) (4 = €) (4.10)

(e +2)°

Proof. In parts (a), (b), and (c) the type of the global minimum pair is specified in Theorem
4.2. The formulas foG(ﬁﬁKn(O) andG(ﬁ‘iKn(O) in part (d) follow from an explicit calculation
of the derivatives and from the formula féf(3) given in (4.5). In addition, one evaluates the
limits of the Taylor coefficients given in the last sententeaxch part (a), (b), and (c) using the
continuity of the derivative@ﬁﬁ(o) with respect tg5 and K and the fact that the type of the
global minimum point ofzs  at O is, respectively; = 1, r = 2, andr = 3.

We now prove the form of the Taylor expansion given in part {le¢ forms of the Taylor
expansions given in parts (a) and (b) are proved similayyT8ylor's Theorem, for any? > 0
and for allu € R satisfying|u| < R there existg = {(u) € [—u, u] such that

G (0) GW (0) el (0)
G, x, (u) = 5; u? + 55 ut + 55 uS + Cp(E(u))u’, (4.11)

whereC,(&(u)) = G(ﬁ?ﬂn (&(u))/7!. Because the sequeng@,, K,,) is positive and bounded,
there exist$ € (0, co) suchthab < 5, < band0 < K,, < bforalln. As a continuous function
of (8, K, =) on the compact s, b] x [0, b] x [~ R, R], G/ . (x) is uniformly bounded. It follows
thatG(ﬁgKn(g(u)), and thug’,, (¢(w)), are uniformly bounded over € N andu € (—R, R).
Multiplying both sides of (4.11) by, and substituting. = x/n" yields part (c). R
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This completes our preliminary discussion of the Tayloramgions oinGy, , (z/nY) as
they are needed to deduce the scaling limit§,ofn! = via Lemma 4.1. In order to finalize our
analysis of these scaling limits, we will have to prove tteg tontributions to the integrals in
(4.2) and (4.3) byr € R satisfying|z/n”| > R converge to 0 as& — oo. In part (c) of the
next lemma we prove that the convergence to 0 is expongntgst. The technical hypothesis
in part (c) is satisfied in each of the theorems that provestiaéng limits [Thms. 5.1, 6.1,
7.1]. In part (d) of the next lemma we prove the exponentif@st convergence to 0 of a related
integral that arises in the proof of the MDPs. As we verify tie fproof of Theorem 8.1, the
technical hypothesis in part (d) is satisfied in that settimpe estimates in parts (c) and (d)
are consequences of the LDP proved in part (b), which in tallows from part (a) and the
representation formulain Lemma 4.1.

Lemma 4.4 is the main technical innovation in this paper. Wédapted to the BEG model,
the precursors of Lemma 4.4 given in Lemma 3.5 in [20] and Lan33 in [25] are able to
handle only positive sequencgs,, K,,) converging ta 3, K) € AU B U C for whichGjp, k,
has a unique global minimum point at 0. In order to handle seges(j3,,, K,,) for which
G3, .k, has nonunique global minimum points, the modifications thatild be necessary in
the precursors of Lemma 4.4 would introduce serious teahommplications in the proofs of
the scaling limits and the MDPs. By allowing us to handle angifive sequencég,, K,,)
converging to(5, K) € AU B U C, parts (c) and (d) of Lemma 4.4 are universal bounds that
enable us to avoid these technical complications altogethe

Lemma 4.4. Let (5, K,,) be any positive sequence converging oK) € AU B U C and
as in Lemmad.1, let W,, be a sequence a¥ (0, (23,K,)~') random variables defined on a
probability spacg(2, F, ). The following conclusions hold.

(a) There existz; > 0 anday > 0 such that for alln € N and allz € R, G, k,(z) >
ai(|z| — 1)? — as.

(b) With respect taP, 5, x,, X @, Sn/n + W, /n'/? satisfies the LDP of® with exponential
speedr and rate functiorGg k.

(c) Giveny > 0 andR > 0, we define

Yn = / exp|—nGg, i, (x/n7)] dx. (4.12)
{lz|<Rn7}

If the sequence,, is bounded, then there exists > 0 anda, > 0 such that for all sufficiently
largen

/ exp|—nGg, k,(x/n")] dx < azexp(—nay) — 0.
{lz|=Rn7}

(d) Assume that there exist> 0, R > 0, u € (0, 1), a5 > 0, andag € R such that for all
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sufficiently largen
Yp = / exp|—nGp, i, (z/n7)] dz < asexp(n“ag).
{|z|<Rn7}
Then there existg; > 0 such that for all sufficiently large
/ exp|—nGg, k,(x/n")] dr < 2a5 exp(—naz) — 0.
{lz|>Rn"}

Proof. (a) Because the sequengg,, K,) is bounded and remains a positive distance from the
origin and the coordinate axes, there eXist b, < by < oo such thath; < 5, < by, and

by < K, < by foralln € N. The conclusion of part (a) is a consequence of the elementar
inequalities

> BuKua? —25,Ka] ~ logd = B(|a] 1) — B — log .

(b) We prove that for any bounded, continuous function

lim ~ log / exp {nw (S— + W/)] d(Pog, 1, x Q) =sup{y)(x) — Gox(z)}. (4.13)
n—oo M A7 %O n n z€R

This Laplace principle implies the LDP stated in part (b),[TBm. 1.2.3].G3 x is continuous,
and by part (a) of this lemma applied to the constant sequghcé,,) = (3, K), this function
has compact level sets. Singe, ) € AU B U C, Gg x has a unique global minimum point
at 0, and thereforenf,cr Gg x(x) = 0. It follows thatG  is a rate function. We now use
Lemma 4.1 withy = 0 to rewrite the integral in the last display as

S, W,
/AnXQexp {nw (; + nl/z)} d(Png, k, X Q) (4.14)

1

5Mm%%Kmmgkmwmw%Mmmm

By part (a) of this lemma, there exidt/ > 0 andag > 0 having the following three
properties:

1. Gg, k., (z) > agz® foralln € N and allz € R satisfying|z| > M.

2. The supremum ap — G5 x onR is attained on the intervg- M, M].
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3. LetA = sup, p{v(z) — Gpx(x)}. Then||t||e — asM? < —|A| — 1.
SinceGyg, k, converges uniformly t@+5 x on [—M, M], we have for any > 0 and all suffi-
ciently largen
exp(=nb) [ explnfu(e) = Goxla)}] da
{lz|<M}
<[ expln{vle) - Gar (@) do
{lz|<M}

< exp(né)/ exp[n{Y(z) — Gg k(x)}] d.

{lz|<M}
In addition, by items 1 and 3
| enl{vln) - Ga, o)} ds
{lz|>M}
<explallvll] [ explonasa?)do

{lz[>M}

<
nM(lg

<
nM(lg

exp[n[loo — nasM?]

exp[—n(|A| + 1)].
We now put these estimates together. For all sufficientydarwe have
exp(-n6) [ explnfu(e) - Gauela)}] da
{lz|<M}
< [ explnfv (o) - o, (0))) do
R

<expnd) [ explnfu(e) - Gucla))do +

{lzl<M} n

1
exp[—n(]A] + 1)].
as
Since by item 2

n—oo M,

= sup {Y(z) — Gpx(v)} =sup{v(z) — G k(z)},

{lz|<M} z€R

1
lim —lo explni{v(x) — Gg k() } dx
o /{MSM} pln{1(z) — Go.x(2)}]
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we see that

sup{¢)(z) — G x(v)} — 6

zeR

1
< liminf - log/Rexp[n{z/)(a?) — Gp, K, (x)}] dz

n—oQ

< Timsup ~ log / expln{1(z) — G, k. (1)} de
R

n—oo I

< sup{u(r) — Gox ()} +9,
xre
and since) > 0 is arbitrary, it follows that

lim log / expln{t(z) — Gy s, (1)}] do = sup{th(x) — G () ).

n— oo zeR

We combine this limit with the same limit fap = 0 and use (4.14) together with the fact that
infyer G (2) = Gg x(0) = 0, concluding that

n—oo M,

- i‘ég{w(if) — G (2)} — nf Gp (1) = sup{y(2) — G ()}

zeR

o1 Sn W,
lim — log /Anxﬂexp {nw (Z + n1/2)] d(P,g, Kk, X Q)

This is the Laplace principle (4.13). The proof of part (b¢asnplete.
(c) SinceGj i has a unique global minimum point at O, the LDP proved in g@rtrplies
the existence ody > 0 such that for alh € N

S, W,
Ps, .k, X Q{; + Yo ¢ (—R, R)} < exp(—nay). (4.15)

Using Lemma 4.1, we rewrite the probability in the last dagphs

S, W,
Pnﬂn,Kn X Q{Z + m € (—R, R)} (416)

— o N g ReY Ry
= P, K, X Q{ + pypE= ¢ (—Rn”, Rn )}

nt—

1
/ expl—nGp, x. (x/n7)] da
{|z|>Rn7}

B Jp exp[—nGg, i, (x/n7)] dx .
Zn

T
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wherey, is defined in (4.12) and

Zp = / exp[—nGg, K, (x/n7)] dz.
{lz|=Rn7}

Since by hypothesis the sequenges bounded, there exists> 0 such thaty,, < y for all n.
It follows from (4.15) and (4.16) that for all sufficientlyrigen

220 < zn(1 — exp(—nag)) < yn exp(—nag) < y exp(—nay)

and thus for all sufficiently large, z,, < 2y exp(—nayg). This completes the proof of part (c).
(d) Exactly as in the proof of part (c), we have for all suffrdig largen

220 < 2,(1 — exp(—nay)) < yy, exp(—nay).
Since by hypothesig, < as exp(n“ag) andu € (0, 1), it follows that for all sufficiently large:
zn < 2a5 exp(—nag + n"ag) < 2as exp(—nag/2).

This completes the proof of part (dH

In the next section we begin our analysis of the scaling #roitS, /n' = in the simplest
case by considerin@gs,, K,,) — (8, K) € A. In the two sections following the next one, we
will uncover a wider variety of scaling limits by considegisequence§&s,, K,,) converging to
(8. K()) € B and to(f, K.(5.)) € C.

5 1 Scaling Limitfor (8,, K,,) — (8, K) € A

In this short section, we deduce the unique scaling limitSpfn'= when (3,, K,,) is any
positive sequence converging (6, ) € A. The unique global minimum point @f s x at
0 has typer = 1 [Thm. 4.2(a)]. As the next theorem shows, the scaling limthwespect
to P, s, K, has the form of a central limit-type theorem that is indegemadf the particular
sequence chosen. In addition, the only value ér which S,,/n'=" has a nontrivial limit is
~v = 1/2. We are including this scaling limit in order to highligh&timuch more complicated
behavior of the scaling limits of,,/n'~ in the subsequent two sections, in whigh, K,,) —
(6,K.(B)) € Band(8,, K,) — (6., K.(8.)) € C and in which different forms of the limit
can be obtained by choosing different sequences.

The following theorem, stated for< g < 5. and0 < K < K.(/3), is also valid forg > (.
and0 < K < K.((), and the proof is essentially the same. The key observaditimat for
B> 3., we haveK (3) = (e + 2)/(43) > K.(3) [22, Thm. 3.8]. Hence i < K.(3), then
also K < K(3) and thusi'y)(0) in (5.2) is positive.
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Theorem 5.1. Let (3, K,,) be an arbitrary positive sequence that convergesiok’) € A;
thusg and K satisfy0 < 8 < . and0 < K < K.((). Then

Pnﬂm;(n{Sn/nl/2 € dz} = exp(—co2?) dx,

wherec, > 0 is defined by

1 1
= = - — B[K () — K]. 5.1
2 GO0 = ok BIK(B) — K] (5.1)

Thus the limit is independent of the particular sequefite K, ) that is chosen.

Proof. We use the Taylor expansion in part (a) of Theorem 4.3 with 1/2. By continuity,
G . (0) given in (4.9) converges to

G0 = =

which is positive sinc® < K < K.(3) = K(3). For anyR > 0 the error termsi,,(z/n'/?) in
the Taylor expansion are uniformly bounded owee N andz € (—Rn'/?, Rn'/?). It follows
that for allx € R

lim G, x, (z/n"/?) = 1G5} (0)a”

and thatR > 0 can be chosen to be sufficiently small so that for all suffityelarge» and all
r € R satisfying|z/n'/?| < R

nGp, i, (x/n''?) > LG (0)a?.

Since exp[—G(ﬁ%)K(O)xz/él]da? < 00, the dominated convergence theorem implies that for any
bounded, continuous functigh

lim f(x) exp[—nGngn(x/nl/z)] dr = /Rf(x) exp[—G(ﬁ%)K(O)xz/ﬂ dx.

=0 J{|z|<Rnl/2}

The existence of this limitimplies that the sequepge= [, _p,.1/2y exp[—nGp, k., (z/n'/?)|dx
is bounded. Hence, combining this limit with part (c) o* Lemdh4 yields

lim [ f(z) exp[—nGngn(x/nl/z)] dr = /Rf(x) exp[—G(ﬁ%)K(O)xz/ﬂ dx.

n—oQ R
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We now augment this limit with the same limit fgr= 1 and use (4.3) to obtain

lim F(Sn/n'? + W) d(Po g x.5) X Q)

=00 JAnxQ
1

" Jpexp[- G022 dr /R f (@) exp[-G{ic(0)a* /2] da.

We omit the straightforward argument using characterfatictions that enables one to deduce
from the last display that

PnﬁmKn{Sn/nl/2 €dr} = exp(—czxz) dz,

wherec; is given by the first equality in (5.1). A similar argumentahving moment generating
functions is given on pages 70-71 of [25]. The positivityepfand the second formula fes
given in (5.1) follow from (5.2). This completes the prooftbé theorem.l

In Theorem 8.2 we prove an MDP f6t, /n!~ that is related to the scaling limit proved in
Theorem 5.1. As in the latter theorem, the form of the MDP dependent of the particular
sequence 3, K,,) converging to(3, K) € A. In the next section we see the first example
of scaling limits forS,,/n'= where different forms of the limit can be obtained by chogsin
different sequence$s,, K,,) — (3, K.(3)) € B.

6 4 Scaling Limits for (8,, K,,) — (8, K.(8)) € B

In this section we determine the scaling limits &f/n'~" with respect toP, s, x,, Where
(Gn, K,,) is an appropriate positive sequence convergingtd<.(5)) € B andy € (0,1/2) is
appropriately chosen. We recall thatis the curve of second-order points for the BEG model.
For any(g, K) € B, we have) < # < (3. = log4 and

1 e +2

T 2645(0) 4P

The scaling limits that we obtain involve limiting densgi@roportional toexp[—G(z)],
whereG takes one of the 4 forms of an even polynomial of degree 4 oti&wag G(0) = 0
andG(z) — oo as|z| — oco. There are 3 such’s of degree 4; namely7(z) = c,z*, where
cy > 0andG(z) = kBx? + ¢y, wherec, > 0 and eithelk > 0 or k < 0. There is also 1 such
G of degree 2; namely;(z) = k3z?, wherek > 0. These 4 cases are all obtained in Theorem
6.1; the forms of the limits depend on the choice/gf — K.(/3) but are independent of the
choice of3, — (.
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In order to determine the forms of the scaling limits®f/n'~" with respect toP, s, ..,
we start by recalling the Taylor expansion given in part {)leeorem 4.3. For any > 0 and
R > 0 and for allz € R satisfying|z/n"| < R there existg € [—z/n", z/n"] such that

(2) (4)
1 Gy, (0) 1 Gy k,(0)
nGpg, k,(x/n7) = 21 : ol w® + a1 : 1l ot + v Bn(&(z/n))a’. (6.1)

The error termsB,,({(xz/n”)) are uniformly bounded over € N andz € (—Rn”, Rn?).
According to part (b) of Theorem 4.2, the unique global miummpoint of Gg k. (3) at 0 has
type 2. Hence by continuity, as— oo,

o 2ﬁnKn [K(ﬁn) B Kn]

(2) (2)
Gﬁn,Kn(O) - K(5,) - Gﬁ,Kc(ﬁ)

0) =0

while GgiKn(O) — G(ﬁ‘f)Kc(ﬁ)(O) > 0. We recall that in the last display/ (3) = (¢” + 2)/(45)
for 3 > 0.

Fixing 7 € (0, 5.), we letj, be an arbitrary positive sequence that converges tnd we
let & be a positive number. The key insight is to cho@Sgso thatG(ﬁi{Kn(O) — 0 at a rate
1/n?, wherel/n’ counterbalances the tertin®~! appearing in (6.1). Sinc3,K,,/K(3,)
has the positive limi2s asn — oo, we achieve this by choosirig# 0 and defining

K, = K(B,) - k/n". 6.2)
Sincef, — fandK(-) is continuous, it follows thak,, — K(3) = K.(3). Hence

ko 28,K, k
G (0) = = —

= K —-C?, where C{?) >0 and C{?) — 2.
n - n

With these choices (6.1) becomes

1 kC® 1 GW . (0 1
nGg, k,(x/n”) = ¢ %+ 5”’K”( )x4+ B (é”(x/rﬂ))x5 (6.3)

n2v+6-1 9| niv—1 4! nsy—1-"

As we will see in Theorem 6.1, the scaling limits depend onviilae ofy and onkK,, through
the value o, but are independent of the sequepge— 3.

In the last display we assume that the coefficients multiglyi’ andz* both appear with
nonnegative powers of and that at least one of these two coefficients/has the power.
Then in the limitn — oo any coefficient including the error term that has a positioegr ofn
will vanish while any coefficient that hasto the powei) will converge to a positive constant.
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This preliminary analysis shows the possibility of muléigcaling limits for different choices
of v andé. In order to confirm this possibility, we define

v=min{2y + 0 — 1,4y — 1}

and focus on the cases in which= 0. As we will see in the final section of the paper< 0
corresponds to 4 different MDPs f&k, /n'=. On the other hand, if > 0, then one obtains
neither scaling limits nor MDPs.

In the next theorem we show that= 0 corresponds to 3 different choicespéndd, which
in turn correspond to 4 different sequendéesin (6.2). The additional sequence arises because
whenz? is not the highest order term in the scaling limit (cases 3k4jan be chosen to be
either positive or negative. As shown in Table 6.1 in partdfsbhe theorem, for each of these
4 different sequences we obtain 4 different scaling limftsSp/n'~. In case 1 we can also
choosek to be any real number; this affects only the definition of thguencey,,, not the form
of the scaling limit.

1/2 e

1/4 172

Figure 4:Influence ofA and B on scaling limits wherig,,, K,,) — (3, K.(3)) € B

The results of the theorem confirm one’s intuition concegrtime influence of the regions
on the scaling limits. Of the 4 cases, case 1 correspond®tiathest values af — namely,
0 > 1/2 — and thus the most rapid convergencé@f — K.((). In this case onlyB influences
the form of the limiting density, which is proportional tap(—c,z*); ¢, defined in (6.5) is
positive sincee’® < e’ = 4. By contrast, case 2 corresponds to the smallest valués-ef
namely,f € (0,1/2) — and thus the slowest convergencegf — K.((). In this case only
influences the form of the limiting density, which is propontal to exp(—3z?); thus we have
S,/n'=7 converging in distribution to a normal random variable etrevugh the non-classical
scaling is given by:' =, wherey = (1 — 0)/2 € (1/4,1/2). Finally, cases 3 and 4 correspond
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to the critical speed = 1/2. In this case botl and B influence the form of the limiting
density, which is proportional texp(—k3z? — c,z*) with ¢, > 0 and eithek > 0 ork < 0. In
Figure 4 we indicate the subsets of the positive quadrartesf-ty plane leading to the 4 cases
just discussed. Using Table 5.1, one easily checks thatrageases through the critical value
1/2, the values ofy in the scaling limit change continuously while the forms loé fimiting
densities change discontinuously.

Theorem 6.1. For fixed s € (0, 3.), let 3, be an arbitrary positive sequence that converges to
(5. Givend > 0 andk # 0, define

K, = K(B,) = k/n’,

where K (3) = (e + 2)/(4p) for 3 > 0. Then(3,, K,,) — (8, K.(3)) € B. Giveny € (0, 1),
we also define
G(z) = 6(v, 27+ 0 — DkBx? + 6(v, 4y — 1)cgx?, (6.4)

whered(a, b) equalslif a« = b and equalDif a # b andc, > 0 is given by

G0 BRI - ) _ (¢f 224 )

“ AT APt 23 4] ‘ (6.5)
The following conclusions hold.
(a) Assume that = min{2vy + 6 — 1,4~ — 1} equals0. Then
PnﬂmKn{Sn/nl_”’ € dx} = exp|—G(x)] dz. (6.6)

(b) We havev = 0 if and only if one of thel cases enumerated in TalBel holds. Each of
the4 cases corresponds to a set of values ahd~, to the influence of one or more sétsand
A, and to a particular scaling limit ir(6.6). In casel the choice ok € R does not affect the
form of the scaling limit.

case | valuesoff | values ofy scaling limit of S,, /n'=7
influence
1 0> 3 y=1 exp(—cyx?) do
B c, >0,keR
2 0e(0,) [v=5%€( )| exp(—kpa?) da
A k>0
3-4 0= y=1 exp(—kBz* — cyzt) dx

A+ B kE#0
Table 6.1 Values of § and~ and scaling limits in part (b) of Theorem 6.1
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Note. Let 3, = 3 for all n. The constant sequen¢é,, K,,) = (3, K.()) for all n corresponds
to the choic#) = ~c in case 1. As in the proof of case 1, one shows thaf k.5 {S./n' /4 €
dr} = exp(—cyx?)dx. This scaling limit was mentioned in (2.6).

Proof of Theorem 6.1.We first prove part (b) assuming part (a), and then we provie(@gar

(b)v = min{2y+60—1,4y—1} equals 0 if and only if each of the quantities in this minimum
is nonnegative and one or more of the quantities equals 0643 fhakes cleary — 1 = 0
corresponds to the influence &f and2y + 6 — 1 = 0 to the influence ofA. We have the
following 4 mutually exclusive and exhaustive cases, wltctrespond to the 4 cases in Table
6.1.

e Case 1: Influence ofB alone. 2y +60 — 1 > 0, 4y — 1 = 0, andk € R. In this case
v =1/4andf > 1 — 2y = 1/2, which corresponds to the second and third columns for
case 1in Table 6.1.

e Case 2: Influence ofA alone.2v+6—1 = 0,4y—1 > 0, andk > 0. In thiscasey > 1/4
andf = 1 — 2y < 1/2. Sinced must be positive, we have= (1 — 6)/2 € (1/4,1/2).
Hence case 2 corresponds to the second and third columras®r2an Table 6.1.

e Cases 3—4: InfluenceoA and B. 2y +6 —1=10,4y—1 =0, k > 0 for case 3, and
k < 0 for case 4. Inthese 2 cases= 1/4 andd = 1 — 2y = 1/2, which corresponds to
the second and third columns for cases 3 and 4 in Table 6.1.

In cases 1, 2, 3, and 4 we have, respectively;) = c,z?, G(z) = kfz? with k > 0, G(z) =
kBx? + cqxt with k > 0, andG(z) = kBz? + c,z* with £ < 0. In combination with part (a),
we obtain the 4 forms of the scaling limits listed in the lasiuenn of Table 6.1.

(b) We prove the 4 scaling limits corresponding to the 4 céisesd in Table 6.1. As the
discussion prior to the statement of the theorem indictttegguantityy = min{2y+6—1,4v—
1} is defined in such a way that in each of the 4 cases defined byhtiees off, v, andk in
Table 6.1, we have for eache R

7L1Lm nGg, k,(x/n") = G(x).
Since in each case we hayec [1/4,1/2), the termi¥,, /n'/2~7 in (4.1) does not contribute to
the limitn — oco. Hence we can determine the scaling limitsSaf/n' = by using (4.2). In
order to justify taking the limit inside the integrals on nﬁ@ht hand side of (4.2), we return to
(6.3) and use the fact that for all sufficiently Iarge(]( > 0 andG(4 x,(0) > 0. It follows
thatR > 0 can be chosen to be sufficiently small so that for all sufflkb;dargen andallr € R
satisfying|z/n"| < R there exists a polynomidl (x) satisfying

nGp, k,(r/n") > H(z) (6.7)
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and [, exp[—H (z)]dx < cc. In case 1 whek > 0 aswell as in cases 2 andB(z) = G(z)/2;
in case 1 whert < 0 and in case 4, which correspondsktec 0,

H(z) = —2|k|Bz* + caz* /2. (6.8)

The last two displays in combination with the dominated evgence theorem imply that for
any bounded, continuous functigh

lim f(z) exp[—nGg, k, (x/n")] dx = /Rf(x) exp|—G(x)] dz.

=0 J{|z|<Rn}

The existence of this limit implies that the sequepge= f (2| <R exp|—nGg, Kk, (z/n7)|dx
is bounded. Hence, combining this limit with part (c) of Lenmzfylelds

lim f( ) exp|—nGp, i, (z/n7)] de = /Rf(x) exp|—G(x)] dz.

n—oQ

If we augment this limit with the same limit fof = 1 and use (4.2), then we conclude that in
each of the 4 cases

7L1Lr£10 f(Sn/nt™)dP, g, x, = oGl o /f exp|—G(z)] dx.

This yields the scaling limits in part (a). The proof of thedhem is completel

This finishes our analysis of scaling limits 6, /n'~ with respect taP, s, «,, where the
sequencéf,, K,) converging to(3, K.(3)) € B is defined in Theorem 6.1. This analysis is
a warm-up for the even more interesting analysis of the rsgdiimits for sequencegs,,, K,,)
converging to the tricritical point.

7 13 Scaling Limits for (8,, K,) — (B¢, Kc(B:))

In Theorem 6.1 we obtained 4 forms of scaling limits fy/n'~" using sequencess,, K,,)
converging to a second-order poit, K.(3)) € B. The limiting densities are proportional to
exp|—G(x)], whereG takes of the 4 forms of an even polynomial of degree 4 or 2fgaits
G(0) = 0 andG(x) — oo as|z| — oo. In each case the form of the limit is independent of
the choice of3, — ([ but depends on the choice &f, — K.(3). Like the BEG model at
(8, K.(B)) € B, the Curie-Weiss model has a second-order phase tranattearitical inverse
temperaturgd.. The 4 scaling limits and the 4 MDPs analyzed in Theorem & anslogous to
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the scaling limits and MDPs that hold in the Curie-Weiss medeen the inverse temperature
converges t@, along appropriate sequencgs[14]. However, the 13 scaling limits proved in
the present section and the 13 analogous MDPs obtained ordine8.3 depend on the nature
of the tricritical point, a feature not shared with the CeNieiss model.

We now use the insights gained in the preceding section tiystie more complicated
problem of scaling limits fotS,, /n' =" using sequencess,,, K,,) converging to the tricritical
point (5., K.(6.)) = (log4,3/[2log4]). As in the preceding section, we chodke 0, k # 0,
and

K, = K(B,) — k/n’, (7.1)

whereK (3) = (e’ +2)/(4/3) for 3 > 0. In contrast to the preceding section, we now also have
to pick the sequence, appropriately. Theorem 7.1 shows that 13 scaling limitsesfor differ-
ent choices of, v, and the parameter appearing in the definitiom,af The limiting densities
are proportional texp[—G(z)|, whereG takes one of the 13 forms of an even polynomial of
degree 6, 4, or 2 satisfying(0) = 0 andG(x) — oo as|z| — oo.

In order to determine the forms of the scaling limits fy/n'~ with respect taP, g, ..,
we use the Taylor expansion given in part (c) of Theorem 4d@.aRy~ > 0 andR > 0 and
for all z € R satisfying|z/n"| < R there existg € [—x/n”, z/n"] such that

nGg, k,(x/n") = (7.2)

1 ﬁmKn( ) 2 1 5,.“](“( ) 4 1 5n7Kn( )x6_|_ 1_10n(€(x/n7))x7

n2y-1 21 ndr—1 4] nbr—1 6! n’

The error termg”, ({(z/n")) are uniformly bounded over € N andx € (—Rn", Rn").
According to part (c) of Theorem 4.2, the unique global mmmpoint of G, . (s.) at 0 has
type 3. Hence by continuity, as— oo,

(2) . 2ﬁnKn[K(ﬁn) - Kn] (2) -
G, (0) = K(62) — Gy k. (50(0) =0,
() _ 2(28,K0)* (4 — ™) (1) _
Conita ) = = a1 Farcepn (0 =0

. 6 6
while G§) . (0) — G(BC{KCWC)(O) — 2. 3%,

As in the preceding section, we chodsg as in (7.1) so thacfi(ﬁi)xn(()) — 0 at aratel /n?,
wherel/n? counterbalances the tertin?~! appearing in (7.2). We also choogg so that
G(ﬁ‘iKn(O) — 0 at a ratel/n®, wherel/n® counterbalances the terifn*’~! appearing in
(7.2). This is achieved by choosiag> 0 and eithel > 0 or b < 0 and then defining,, by the
logarithmic formula

B, = log(4 — b/n®) = log(e” — b/n®), (7.3)
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if b > 0, theng, is well defined for all sufficiently large.. Sinces, — (§ and K(-) is
continuous, it follows thatg,,, K,,) — (3., K.(8.)). With this choice of(3,,, K,,) we have

k26K, k

(2) == — 2 .c® (2) 9 7.4
Gﬁn,Kn (0) nf K(ﬁn) no Cn ) where Cn 607 ( )
and
(4) b 2(26,K,)" b (4) h (4) 2(28.K:(6:))* 9
- . - . —_— = — . (7.
Gy, 1, (0) e (2 e C”, where C} (" 1 2)° 5 > 0. (7.5)

The dependence @f},, K,,) in (7.1) and (7.3) upon andd is complicated; becausg, is a
function of o, K, is both a function ob and, throughs,,, a function ofa. However, thex and
6 decouple nicely when (7.4) and (7.5) are substituted int®)(yielding

nGg,,k,(x/n") (7.6)

1 kCP 1wl 1 GY L (0) ]
T 2te-1 o T +n4~,+a—1 ar v +n6~,—1 T +n77_1(]n(§(x/n”’))x.

We continue the analysis as in the preceding section. Laipsose that in the last display
the coefficients multiplying:2, z*, andz° all appear with nonnegative powers:ofind that at
least one of the coefficients hasto the power). Then in the limitn — oo any coefficient
including the error term that has a positive powenafill vanish while any coefficient that has
n to the powei) will converge to positive constants. In order to analyzevtigous cases, we
define

w=min{2y+0 — 1,4y +a— 1,6y — 1}, (7.7)

and focus on the cases in whigh= 0. As we will see in the final section of the paper,< 0
corresponds to 13 different MDPs {8}, /n'~. On the other hand, i» > 0, then one obtains
neither scaling limits nor MDPs.

In the next theorem we show that = 0 corresponds to 7 different choices ¢f 6, and
a, which in turn correspond to 13 different sequen@gs K, ) defined in (7.1) and (7.3). The
additional sequences arise because witeis not the highest order term in the scaling limit
(cases 4-5, 8-13),can be chosen to be either positive or negative; similarhen? is not
the highest order term in the scaling limit (cases 6—k3)an be chosen to be either positive
or negative. As shown in Table 7.1 in part (b) of the theorewnefich of these 13 different
sequences we obtain a different scaling limitSgf/n' .

The limiting densities in cases 1, 4—7, and 10-13 are newases?2, 3b, 8, and 9 we obtain
the same forms of the limiting densities as in Theorem 6.Jrevhve considere(s,,, K,,) —
(6, K) € B. However, the values of in the corresponding scaling limits in the two theorems
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are different. By contrast, the valuespéndf as well as the forms of the limiting densities are
the same in case 3ain Theorem 7.1 and in case 2 in Theorem 6.1.

There are yet further possibilities concerning the sigh ahd k. In all the cases in which
no z* term appears in the scaling limit (cases 1, 3, 6, 7), we cansgtdo be any real number.
Similarly, in all the cases in which ne’ term appears in the scaling limit (cases 1, 2, 4, 5), we
can choosé to be any real number. Although the choicebalr £k affects the definition of the
sequencég,, K,,), it does not affect the form of the scaling limit.

Through the terma%, 2%, and2? appearing in the limiting densities, the scaling limits
correspond to the influence of one or more of the €ets3, and A. The influence of the
various sets upon the form of the scaling limits is shown igué 2 in the introduction, and
details are given in Table 7.1, which is included in part (b)he next theorem. Case 3, which
corresponds to the influence dfalone, has two subcases, labeled 3a and 3b in Table 7.1. Case
3a corresponds to the lower region labeleth Figure 2 and case 3b to the upper region labeled
Ain Figure 2. Using Table 7.1, one easily checks thdtag) crosses any of the lines in Figure
2 labeledA + B, A+ C, or B + C, the values ofy in the scaling limits change continuously
while the forms of the limiting densities change discontiusiy.

Theorem 7.1. Givena > 0,60 > 0, b # 0, andk # 0, define
B, =log(4 — b/n®) = log(e’ — b/n*) and K, = K(3,) — k/n’,

where K (3) = (e +2)/(453) for 3 > 0. Then(8,, K,,) — (8., K.(3.)). Giveny € (0, 1), we
also define

G(z) = 6(w, 2y + 0 — 1) kB2 + 6(w, 4y + a — Dbesx* + §(w, 67 — 1)cez®, (7.8)

wherec, = 3/16 andc¢s = 9/40. The following conclusions hold.
(a) Assume thaty = min{2y + 6 — 1,4y + o« — 1,6y — 1} equals 0. Then

Pog, 1, {Sn/n' 77 € dz} = exp|—G(7)] dz. (7.9)

(b) We haveav = 0 if and only if one of thd.3 cases enumerated in Taldel holds. Each of
the 13 cases corresponds to a set of value#,af, and~, to the influence of one or more sets
C, B, A, and to a particular scaling limit ir(7.9). The form of the scaling limit is not affected
by the choice ob € R in casesl, 3, 6, and7 and by the choice df € R in casedl, 2, 4, andb.
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case values ofa values of~ scaling limit of S,,/n'=7
influence | values off

1 o> < y=3 exp(—cgz®) dx

C 0> 2 cs>0,beR, kEER

2 ae(0,3) v=2€ (5 1) | exp(—besz?) da

B 0 > - ¢t >0,b>0keR

3a a>0 =52 (1, 1) | exp(—kBea?) du

A 0 € (0,3) k>0,beR

3b belz.?) v=5%€ (G 1 [ exp(—kpBa?) du

A a>20—-1 E>0,beR

4-5 a=3 v=¢ exp(—beyx? — ce2®) do
B+ C > 12 b£0,keR

6-7 o> < v=3 exp(—kB.x? — cez®) dx
A+C f=12 k#0,beR

8-9 a e (0,1) v=2€ (5, 1) | exp(—kfea® — bega?) du
A+ B 0=2H¢c(32) k#0,b>0

10-13 a = % v = % exp(—kB.x? — beyxt — cex®) dx
A+B+C[0=12 k#0,b#0

Table 7.1 Values of a, 6, and~ and scaling limits in part (b) of Theorem 7.1

Note. The constant sequen¢g,, K,,) = (0., K.(3.)) for all n corresponds to the choices
a = 6 = oo in case 1. As in the proof of case 1, one shows g}, x.(s.){S./n'"1/¢ €
dr} = exp(—cgz®)dz. This scaling limit was mentioned in (2.7).

Proof of Theorem 7.1.We first prove part (b) from part (a) and then prove part (a).

(b) w = min{2y+6 — 1,4y + a — 1,6 — 1} equals O if and only if each of the quantities
in this minimum is nonnegative and one or more of the quastiequals 0. As (7.8) makes
clear,6y — 1 = 0 corresponds to the influence 6f, 4y + o — 1 = 0 to the influence of
B, and2y + 6 — 1 = 0 to the influence ofd. We have the following 13 mutually exclusive
and exhaustive cases, which correspond to the 13 casesle 74b In each of the cases the
equalities and inequalities expressing the influence ofawmaore sets”, B, and A are easily
verified to be equivalent to the equalities and inequalitwslving «, 6, and~ given in the
second and third columns of Table 7.1. Case 3, the most coatedl, divides into two subcases
depending on the value of

e Case 1: Influence ofC alone.2v+60 —-1>0,4y4+a—-1>0,6y—1=0,b€ R, and
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ke R.

e Case 2: Influence ofB alone.2y+60—-1>0,4vy+a—-1=0,6y—1>0,b> 0, and
k € R.

e Case 3: Influence ofA alone.2y+60—-1=0,4vy+a—-1>0,6y—1> 0,k > 0, and
beR.

e Cases 4-5: InfluenceoB andC.2v+0—-1>0,4vy+a—-1=0,6y—1=0,b>0
for case 4 and < 0 for case 5, and € R.

e Cases 6—7: Influenceod andC. 2y +60—-1=0,4y4+a—-1>0,6y—1=0,k >0
for case 6 and < 0 for case 7, and € R.

e Cases 8-9: InfluenceoA andB.2v+60—-1=0,4vy+a—-1=0,6y—1>0,k >0
for case 8k < 0 for case 9, and > 0.

e Cases 10-13: Influenceold , B,andC.2y+60—-1=0,4vy+a—-1=0,6y—1=0,
k > 0 andb > 0 for case 10k < 0 andb > 0 for case 11k > 0 andb < 0 for case 12,
andk < 0 andb < 0 for case 13.

In each of the 13 cases the form@fx) follows from (7.8). In combination with part (a),
we obtain the 13 forms of the scaling limits listed in the lestumn of Table 7.1.

(a) The proof of the 13 scaling limits follows precisely thattern of the proof of the 4
scaling limits listed in part (b) of Theorem 6.1. As the dission preceding the statement of
Theorem 7.1 indicates, the quantity= min{2y + 6 — 1,4y + o — 1,6y — 1} is defined in
such a way that in each of the 13 cases defined by the choiee9ofy, k, andb in Table 7.1,
we have for each € R

lim nGg, k,(x/n") = G(x).

n—oQ

Since in each case we hayec [1/6,1/2), the termi¥,, /n'/277 in (4.1) does not contribute to
the limitn — oco. Hence we can determine the scaling limitsSaf/n' = by using (4.2). In
order to justify taking the limit inside the integrals on tght hand side of (4.2), we return to
(7.6) and use the fact that for all sufficiently largeCs” > 0, C\Y > 0, andG§’ .. (0) > 0. It
follows that R > 0 can be chosen to be sufficiently small so that for all suffitydarge» and
all z € R satisfying|z/n"| < R there exists a polynomidl (z) satisfying

nGg, k,(x/n") > H(z) (7.10)

and [, exp[—H (z)] < oo. We defineH (z) = G(x)/2 in all the cases in which both> 0 and
k > 0 (cases 1-4, 6, 8, 10). Otherwise, a suitable polynoridialn be found as in (6.8); the



Costeniuc, Ellis, and Otto: Critical Behavior of Probadtit Limit Theorems 45

details are omitted. As in the proof of Theorem 6.1, the dat&d convergence theorem and
part (c) of Lemma 4.4 imply that for any bounded, continuaugction f

lim . f(z) exp[—nGg, k, (x/n")] dx = /Rf(x) exp|—G(x)] dz.

From (4.2) we conclude that in each of the 13 cases in part (b)
PnﬂmKn{Sn/nl_“’ € dx} = exp|—G(x)] dz.
This completes the proof of the theoreil.

Two special cases of the scaling limits in Theorem 7.1 ardtwpointing out. Giverf > 0
andk # 0, the sequence
B, =B, and K,, = K(3.) — k/n’

corresponds to the choiece = oo in Theorem 7.1. With this sequence and with the same
proofs, one obtains exactly the same limits as in cases 1,&)@&7 in this theorem with the
same choices df, v, andk. Similarly, givena > 0 andb # 0, the sequence

Bn =log(4 — b/n*) and K,, = K(.)

corresponds to the choiée= oo in Theorem 7.1. With this sequence and with the same proofs,
one obtains exactly the same limits as in cases 1, 2, 4, andlbsitheorem with the same
choices ofy, v, andb.

This completes our analysis of scaling limits fy/n'~ with respect ta?, s, x, , where the
sequencég,, K,,) converging ta 3., K.(3.)) is defined in Theorem 7.1. In the next section we
study MDPs forS,, /n' =7 for appropriate sequencés,, K,,) converging ta 3, K) € AUBUC
and for appropriate choices of We obtain 1 MDP for3, K) € A, 4 MDPs for(3, K.(()) €
B, and 13 MDPs fo(g,, K.(3.)) € C.

8 18 MDPsfor(83,, K, — (8, K) € AUBUC

In this section we turn to a new problem, which is to formuld@Ps for.S,, /n'~7 with respect
to P, s, k,, first for appropriate sequencés,, K,,) converging to(3, K.(3)) € B, then for
(Bn, K,,) converging to(3, K) € A, and finally for(3,, K,,) converging to(3., K.(5.)) €
C. These results are stated, respectively, in Theorem 849rém 8.2, and Theorem 8.3. In
proving the first result, we introduce the methods that ase aked to prove the third. The
proof of the MDP when(j3,, K,,) — (6,K) € A proceeds differently from the proofs of
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the other MDPs in this section, relying on the GartnersEllheorem. After the proof of that
MDP, we will remark on why the same method cannot be used teepatl the MDPs in this
section. Although an MDP is an LDP, we shall follow the exaengfl[14], who in their study of
Curie-Weiss-type models speak about an MDP whenever thenexpial speed,, of the large
deviation probabilities satisfies,/n — 0 asn — oo. Also see [12§3.7].

When (6, K,,) — (6, K.(6)) € B U C, we will prove the MDPs by a method that is
closely related to the proofs of the scaling limits earlrethiis paper. Thus, rather than focus on
the large deviation probabilities directly, we prove thafn'~" satisfies an equivalent Laplace
principle. Despite the similarity in the proof of the scaliimmits and the Laplace principles, the
proof of the latter is much more delicate, requiring addiibestimates not needed in the proof
of the former.

We start by considering the MDPs whé#,, K,,) converges tdj, K.(3)) € B. In order
to formulate these limit theorems, we adapt the methods umssdction 6, where we proved
scaling limits for such sequencés,, K,,). Fors € (0,05,.) let 5, be an arbitrary positive
sequence that convergesioGivend > 0 andk # 0, we then defing(,, — K.(3) as in (6.2).
With this choice, part (b) of Theorem 4.3 implies that for any- 0 and R > 0 and for all
x € R satisfying|z/n?| < R there existg € [—xz/n”,z/n"] such that [see (6.3)]

1 o 1 G (0) 1
nng,Kn(x/n”)ZWTxunh_l 5’4! x4+n57_13n(5(x/m))x5. (8.1)

The error termsB,,(¢(x/n”)) are uniformly bounded over € N andx € (—Rn", Rn"),
O — 28, andGY) . (0) — G (0) > 0.
Given~y € (0,1), we define

v =min{2y + 60 — 1,4y — 1}. (8.2)
In Theorem 6.1 we prove that when= 0, S, /n'~" satisfies the scaling limit
P, k,{Sn/n' "7 € do} = exp|—G(z)]dx,

where
G(z) = 6(v, 2y + 0 — DkBz* + 6(v, 4y — 1)egn?

andc, is defined in (6.5). As enumerated in Table 6.1, the 4 diffeferms of the limiting
density depend on the valuespéndf and the sign of.

In Theorem 8.1 we prove the analogous results on the level@DP& Assume that the
quantity v defined in (8.2) is negative. Then, whéfi,, K,,) is chosen as in Theorem 6.1,
S,/n'~7 satisfies the MDP with exponential speed’ and rate functiol’(z) = G(x) —
inf,cr G(y), whereG is defined in the last display. We prove the MDP in Theorem §.1 b
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showing that when < 0, S,,/n'™ satisfies the Laplace principle with speed’ and rate
functionl’; i.e., for any bounded, continuous function

1
lim — log/ exp[n" (S, /n* )] dP, g, x, = sup{(z) — T'(z)}.
n—oo n, n zeR
By Theorem 1.2.3 in [13] the fact thét, /n!™ satisfies the Laplace principle implies that
S,/n'™7 satisfies the LDP with the same speed and the same rate functidh i.e., for any
closed subseft’ in R

1
lim sup o log Py g, 5, {Sn/n'"7 € F} < — inf ['(x)

n—00 zeF

and for any open subsétin R

ligirolf%loanﬁmKn{Sn/nl_“’ € P} > —giﬂrelgf(x).
I' is obviously a rate function. One easily checks that in athdes given in part (b) of Theorem
8.1—-v < 1. Hencen™"/n — 0 asn — oo, and so we have an MDP. In cases 1, 2, and 3, we
haveinf,cr G(y) = 0 and thud" = G; in case 4inf,cr G(y) < 0.

As in the scaling limits in Theorem 6.1, the rate function lmee@rem 8.1 takes the 4 forms
enumerated in cases 1, 2, 3, and 4 in Table 8.1. In case 2 thieaeent thatG(z) — oo as
|z| — oo forcesk > 0. By contrast, in case 4, < 0 is allowed. In case 1 we can also choose
k to be any real number; this affects only the definition of thguencey’,, not the form of the
rate function.

The forms of the rate functions reflect the influence, respagt of B, of A, and ofA andB.

In each case the particular set or sets that influence thedbédepend on the speed at which
(Bn, K,,) approaches$gs, K.(3)) and the direction of approach. Case 2, which corresponds to
the influence ofd alone, has two subcases, labeled 2a and 2b in Table 8.1.

In Figure 5 and in Table 8.1 we indicate the subsets of thetipesjuadrant of the)-~
plane leading to the 4 cases of the MDPs in Theorem 8.1. Sed&ssand 2b correspond,
respectively, to the left half and the right half of the tiggalabeledA in Figure 5. Aninteresting
connection between the MDPs in Theorem 8.1 and the scatmtslin Theorem 6.1 is revealed
by comparing Figure 5 with Figure 4, which exhibits the subsé the positive quadrant of the
0-~ plane leading to the 4 cases of the scaling limits in Theoreln Bhe subsets labeled,

B, andA + B in Figure 4 are each a subset of the boundary of the set hawngpime label in
Figure 5. The relevant boundaries in Figure 5 are labétet] 0*B, ando* (A + B), the first
two of which are indicated by dotted lines. This relatiopshétween the two figures is not a
surprise because the sets labefed3, andA + B in Figure 4 are determined by solving= 0
while the sets having the same labels in Figure 5 are deterdhiy solvingy < 0.
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Figure 5:Influence ofB and A on MDPs wher(j3,,, K,,) — (8, K.(3)) € B

Theorem 8.1. For fixed s € (0, 3.), let 5,, be an arbitrary positive sequence that converges to
(5. Givend > 0 andk # 0, define

Ko = K (Ba) — k/n”,

whereK (3) = (e +2)/(43) for 3 > 0. Then(3,, K,,) — (8, K.(3)) € B. Giveny € (0,1),
we also define
G(z) = 6(v, 27+ 0 — DkBx? + 6(v, 4y — 1)cgx?, (8.3)

wherec, > 0 is given by

G0 2RBEL(G)' (4 —¢?) _ (#4224 — )

4! 41(ef + 2)2 B 23 . 4!

Cq

The following conclusions hold.

(a) Assume that = min{2y+60 — 1,4y — 1} satisfiess < 0. Then with respect t&, s, x,,
S,/n'~7 satisfies the Laplace principle, and thus the MDP, with exymbial speed:—* and rate
functionl'(z) = G(x) — infyer G(y).

(b) We havev < 0 if and only if one of thel cases enumerated in Talel holds. Each
of the4 cases corresponds to a set of values @nd#, a choice of sign ok, the influence of
one or more set® and A, and a particular exponential speed and a particular forntled rate
function in part(a). The function7 appearing in the definition of the rate function is shown in
column5 in Table8.1; in case4 the nonzero constanif,cr G(y) in the definition of the rate
function is not shown. In cadethe choice ok € R does not affect the form of the rate function.
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case | valuesofy | values of@ exp’l function G in
influence speed | rate function T’

1 7€ (0,7) |0>2y N O
B ¢y >0,keR
2a 7€ (0,7 [0€(0,29) n' =279 | k322
A k>0

2b ve(3,1) 10€(0,1—2v) | n'277 | kBa?
A k>0

34 |[~e€(0,7) |0=2y nt= | kB2? + eyt

A+ B k#0

Table 8.1 Values of v andé, exponential speeds, and rate functions in part (b) of The@&d

Proof. We first prove part (b) from part (a) and then prove part (a).
(b) We havev < 0 in the following 4 mutually exclusive and exhaustive casas.(8.3)
makes cleary = 4y — 1 < 0 corresponds to the influence 6fandv = 2+ + 6 — 1 to the

influence ofA.

49

e Case 1: Influence ofB alone.v =4y -1 < 0,4y -1 < 2y+ 60 —1,andk € R. In
this casey € (0,1/4) andd > 2+, which corresponds to the second and third columns
for case 1 in Table 8.1.

e Case 2: Influence ofd alone.v =2y +60—-1<0,2yv+60 —1 < 4y — 1, andk > 0.
In this case) < # < min{2v,1 — 2v}. Since0 < 2y <1 -2y < v € (0,1/4] and
0<1-2y<2y<~ve(1/4,1/2), case 2 corresponds to the second and third columns
for case 2a and case 2b in Table 8.1.

e Cases 3—4: InfluenceoA and B.v =4y —-1=2y+60—1<0, k > 0forcase 3, and
k < 0 for case 4. In these cases< v < 1/4 andf = 2v. Hence case 3—4 correspond to
the second and third columns for cases 3—4 in Table 8.1.

In cases 1, 2, 3, and 4 we have, respectively;) = c,z?, G(z) = kfz? with & > 0, G(z) =
kBx? + cqxt with k > 0, andG(z) = kBz? + c,z* with £ < 0. In combination with part (a),
we obtain the 4 rate functions given in the last column of &&bll.
(a) Our strategy is to prove that with respectRQs, r, x Q, S,/n'~" + W, /n'/?>77 sat-
isfies the Laplace principle with exponential speed and rate functiori’. In order to prove
the Laplace principle foiS,,/n'~" alone, we need the following estimate, which shows that
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W, /n'/?>~7 is superexponentially small relative éap(n—"): for anyd > 0

1
lim sup Flog Q{|W,/n'*7| > 6§} = —o0. (8.4)

n—oQ

According to Theorem 1.3.3 in [13], if with respect &) 45, x, x Q, W, /n*/>=7 + S, /n'~7
satisfies the Laplace principle with speed’ and rate functio’, then with respect t&, s, x,.,
S,/n'™7 satisfies the Laplace principle with speed’ and rate functioi’. Since the Laplace
principle implies the MDP [13, Thm. 1.2.3], part (a) of theepent theorem will be proved.

We now prove (8.4). Denote the varian@$, K,,)~! of W, by ¢2. Sinces, andK,, are
bounded and uniformly positive over the sequence? is bounded and uniformly positive over
n. We have the inequality

Q{IWo/n'?71 > 8} = Q{IN(0,07) > n'/*774}
V20

n 1-2v¢2 2
m . eXp(—n 76 /[20n])
Hence (8.4) follows ifl — 2v > —wv. Sincey andé are both positive, this is easily verified to
hold when eithep =4y —1orv =2y +60 — 1.
We now turn to the Laplace principle fa, /n'=" + W, /n'/277. Let v be an arbitrary
bounded, continuous function. Choosifig= exp[n~—"%| in Lemma 4.1 yields

—v Sn Wn
/AnXQ exp {n ’(/)<F + W)] d(Pn,ﬁn,Kn X Q) (85)

1

N Jg exp[—nGp, i, (x/n7)] dx '/ReXp[n‘W(x) —nGg, k,(x/n7)] dz,

In order to obtain the appropriate expansiom6fs, x,(x/n") in this display, we multiply the
numerator and denominator of the right hand side of (8.1) 1y obtaining

nGg, k,(x/n") =n""G,(z),

1 cP 9 1 G(gi)xn (0)

1
_ 4 5
Gn(x) = T + o m Tt + s B,(&(z/n7))z”.

The proof of the Laplace principle fd, /n'=" + W, /n!/?>=7 rests on the following prop-
erties ofnGp, k, (x/n") = n~"G,(x), which in turn are consequences of the Taylor expansion
of G,,(x) just given. Because of the estimate (8.4)1dh/n'/>~", the inequality in (8.6), and
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the uniform convergence @f,, to GG expressed in item 3 below, the proof of the MDPs, though
analogous, is more delicate than the proof of the scalingdim section 6, for which the a.s.
convergence ofV,, /n'/2=7 to 0, the pointwise convergence @, x, (z/n”) to G(z), and the
lower bound (6.7) suffice.

1. There exist®R? > 0 and a polynomiaH with the properties that/ (z) — oo as|z| — oo
and for all sufficiently large: and allx € R satisfying|z/n?| < R

nGg, k,(x/n") > n""H(x).

In case 1 whek > 0 as well as in cases 2 andBz) = G(z)/2; in case 1 whelk < 0
and in case 4, which correspondsite: 0, H(x) = —2|k|B3z* + c42* /2.

2. LetA = sup,p{¢(z) — G(z)}. SinceH(z) — oo andG(z) — oo, there exists\/ > 0
with the properties that

sup {¢(z) — H(x)} < —|A] -1,

the supremum of) — G onR is attained on the interval- 1/, M|, and the supremum of
—G onR is attained on the intervél-1, M]. In combination with item 1, we see that
for all n € N satisfyingRkn” > M

sup  {n""P(x) = nGp, k, (x/n7)} < —n""(JA[+1). (8.6)

M<|z|<RnY

3. Let M be the number selected in item 2. Then foralle R satisfying|z| < M,
Gn(z) = n'™ Gy, k, (x/n") converges uniformly t@7(z) asn — oo.

SincenGg, k,(x/n?) = n~"G,(x), item 3 implies that for any > 0 and all sufficiently
largen

exp(—n~"d expn Y (W(x) — G(x))] dx
p(—n~"0) /{MSM} Pl ((z) — G())]
< exp\n” “Y(x) — nGp, k,(r/n7)| dx
< /{MSM} p[n " (x) — nG, i, (x/n")
<exp(nd) [ explnt(0(a) - (o)) de

{le|<M}

In addition, item 2 implies that

/ exp[n "Y(x) —nGg, ik, (z/n7)] de < 2Rn” exp[—n""(J]A]| + 1)].
{M<|z|<Rn"}
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Sincey is bounded, the last two displays show that there exist 0 andag € R such that for
all sufficiently largen

/ exp|—nGg, i, (x/n")] dr < asexp(n"ag).
{|z|<Rn"}

Since—v € (0,1), we conclude from part (d) of Lemma 4.4 the existence-of 0 such that
for all sufficiently largen

/ exp|—nGp, i, (x/n)] dr < 2a5 exp(—naz).
{lz|>Rn"}
We now put these three estimates together. For all sufflgienge n we have
exp(-n0) [ expl " (0(a) - o) ds
{lz|<M}
< /exp[n‘”w(x) —nGp, k,(x/n7)] dx
R

<exp(n™'d) [ expln " (w(e) - G(o)))de + 6

{le|<M}

where
On < 2Rn" exp[—n""(JA| + 1)] + 2a5 exp(—nar +n" ||V ]|x)-

Since—v < 1 and since by item 2

1
lim — lo expln " (Y(x) — G(x))| dx
log /{MSM} Pl ($(x) — G(x))

n—oo N~

= sup {¢(z) — G(z)} = ilelg{?/’@) - G(z)},

|| <M
we have

sup{¢(z) — G(z)} =0

zeR
n—oo M~

1
< liminf — log/ exp[n "Y(x) — nGg, k,(x/n7)] dx
R

n—oQ

< sup{y(w) = Glz)} +9,

1
< limsup —1og | expln " (x) ~ G, (/7)) do
R
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and becausé > 0 is arbitrary, it follows that

lim Lv log /]R exp[n "¢Y(x) — nGg, k,(x/n”)] de = sup{(z) — G(x)}.

n—oo N z€R

Combining this limit with the same limit fop = 0, we conclude from (8.5) that

lim

1 Sh W,
sy IOg /AnXQ exp |in_vw<F + W)] d(Pn,ﬁn,Kn X Q)
- Stelg{w(x) —G(2)} + ;gﬂgG(y) = Stelg{w(x) —I(z)}.

This completes the proof that with respectRg, ., x @, Sn/n'™ + W, /n'/*77 satisfies
the Laplace principle with exponential speed” and rate functiod’. SinceW,,/n'/?>=7 is

superexponentially small, we obtain the desired Laplageciple for S, /n'~" with respect to
P, s, k., The proof of the theorem is completll

We next formulate the MDP fo§,,/n'~" when(3,, K,,) is an arbitrary positive sequence
that converges t¢3, K) € A; thusp and K satisfy0 < g < . and0 < K < K.(). Because
in this case the normal random variablg, contributes to the limit, we are not able to prove
the MDP as we proved Theorem 8.1. Instead we use the G&tleiFheorem. The following
theorem is also valid fof > (. and0 < K < K.((), and the proof is essentially the same.
The key observation is that fgr > (3., we haveKk (3) = (e + 2)/(43) > K.(3) [22, Thm.

3.8]. Hence ifK < K.(f3), then alsokK < K () and thusG(;)K(O) in (8.7) is positive.

Theorem 8.2. Let (3, K,,) be an arbitrary positive sequence that converge§iok’) € A.
Lety be any number iif0, 1/2). Then with respect t&, s, «,, S./n' ™" satisfies the MDP with
exponential speed' 7 and rate function3| K (3) — K|z2. Thus the limit is independent of the
particular sequencég,, K,,) that is chosen.

Proof. Forn € N andt € R we use the monotone convergence theorem to reglacéemma
4.1 byexp(n'~*'tz). We then use the Taylor expansion in part (a) of Theorem 4d3famfact

thatG' . (0) given in (4.9) converges to

) _ 28K[K(B) — K|
which is positive sincé < K < K.(3) = K(f). As in the proof of part (a) of Theorem 8.1,
there exists\/ > 0 such that the supremum of — G(;)K(O)x2/2 is attained on the interval
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[—M, M] and the following calculation is valid:

. 1 1-2 Sn W,
n— oo ’)”1,1_27 log /A”XQ P |in Aft(’n,l_ﬁf T W)] d(Pn7ﬁn7Kn x Q)

1
= lim ——— log/ exp[n' "tz — nGg, k,(z/n")] dx
R

1
— lim ——— log/exp[—nGngn(a?/n”’)] dx
— hm %log/ eXp |:n1—2’*/<tl,_G(ﬁ2K( ) 2/2):|
n—oo i {|e|<M}
1 2)
— lim —log/ exp [—G( 2 2} dx
n—oo 172 o<y 07/
= su tr — G _(0)a2 2}—|— inf {G(z) 0)x? 2}
{|m|<§4}{ a2+ I 3 a0
t2
2G5 (0)

SincelV,, is anN (0, (23, K,,)~!) random variable and is independentsf

' 1 _ Sn
lim ——— log/n exp {nl 2t F} dP, s, K.,

T 1 1-2v S” W
-—Jﬂggﬁf%*ogjawﬂeXle (s + s ) AP < @

1
— lim ——— log/ exp [nl/z_“’th} dQ
Q
t? ot 1

T 9GP (0) 48K 2 2B[K(8) - K]

The Gartner-Ellis Theorem [16] now implies th&t/n' " satisfies the MDP with exponential
speedr!~27 and rate function

t? 1 )
I(x) :igg{t$_§.2ﬁ[K(ﬁ)—K]} = B[K(B) — K]z~

This completes the prooll

In the context of the proof of the preceding theorem, it istiwavhile pointing out that the
Gartner-Ellis Theorem cannot be used to prove all the d#iePs for.S,,/n' = in this section.
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For example, consider the MDPs in Theorem 8.1. FortanyR one calculates

. 1 —v Sn Wn
g(t) = nh_)ngo s log /AnXQexp {n t(nl—“f + W)} d(Png, .k, X Q)

- ilelg{m —G(x)} + ;gquG(y) = i‘ég{m — [G(z) — G},

whereG = inf,cg G(y). Thusg equals the Legendre-Fenchel transfornGof- G. If G — G

is strictly convex orR, as itisin cases 1, 2, and 3 in Theorem 8.1, thendifferentiable orR
[32, p. 253]. Hence by the Gartner-Ellis Theoresp/n'~ satisfies the MDP with exponential
speedn and rate function given by the Legendre-Fenchel transfdrj avhich isG — G.

In cases 1, 2, and 3 in Theorem 8 equals 0, and we recover the form of the rate function
in column 4 of Table 8.1. However, the situation is differanthe MDP in case 4, in which
G(x) = kBa® + cuz* with k < 0. HereG < 0, G is not convex on all ofR, andg is not
differentiable oRR. As aresult, the Gartner-Ellis Theorem cannot be appbexbtain the lower
large deviation bound for all open sets and thus to obtaitMB®. In addition, the Legendre-
Fenchel transform af equals 0 on a symmetric interval containing the origin, dng it does
not coincide withG' — G on this interval. A similar situation holds in Theorem 8.8,which
we derive 13 MDPs for suitable sequen¢gs, K,,) — (., K.(3.)). In cases 1-4, 6, 8, and 10
in that theorem, the coefficients in the polynontahre all positive, and s@ is strictly convex
andG = 0. Hence the corresponding MDPs can be derived via the GéEitis Theorem.
However, in all the other cases except for case 12 wishufficiently large, the polynomiak

is not convex on all ofR; as in case 4 in Theorem 8.1, the Gartner-Ellis Theorem atalng
applied to obtain the MDP.

We now consider the final class of MDPs in this section. This<larises whe(s,,, K,,)
converges to 3., K.(3.)) along the same sequences considered in Theorem 7.1, where we
proved scaling limits forS,, /n*=7 for v € (0,1/2). Givena > 0,6 > 0, b # 0, andk # 0,
these sequences are defined by

B, = log(4 — b/n®) = log(e” — b/n*) and K,, = K(f3,) — k/n’. (8.8)
For these sequences the parameter that plays the rolemdtheorem 8.1 is
w=min{2y+60 — 1,4y +a — 1,6y — 1}.

The 13 forms of the scaling limits &, /n' =" are proved in Theorem 7.1 under the assumption
thatw = 0. We now assume that < 0. Using the same Taylor expansion that was used to
deduce these scaling limits [Thm. 4.3(c)], one deduces &rns of the Laplace principles
for S,,/n'=7. These Laplace principles and the equivalent MDPs aredsiatiae next theorem
along with the choices of, «, b, 6, andk leading to the 13 forms of the rate function. The only
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requirement o andk is thatG(xz) — oo as|xz| — oo. This requirement forces > 0 in case
2 andk > 0in case 3. The proof of the MDPs in the next theorem is omitezhbse it follows
the same pattern of proof of Theorem 8.1.

As in Theorem 7.1, there are further possibilities conaggrthe sign ob andk. In all the
cases in which ne* term appears in the scaling limit (cases 1, 3, 6, 7), we cansgheitheb
to be any real number. Similarly, in all the cases in whichrhiterm appears in the scaling limit
(cases 1, 2, 4, 5), we can choose eithéo be any real number. Although the choicebadr k
affects the definition of the sequengg,, K, ), it does not affect the form of the rate function.

Theorem 8.3.Givena > 0, 0 > 0, b # 0, andk # 0, consider the sequen¢g,,, K,,) defined
in (8.8). Then(g3,, K,,) — (6., K.(5.)). Giveny € (0,1), we also define

G(z) = 6(w, 2y + 0 — D)kB.a* + 6(w, 4y + a — 1)begr* + §(w, 67 — 1)cez®,

wherec, = 3/16 andc¢s = 9/40. The following conclusions hold.

(a) Assume that) = min{2y+60—1,4y+a—1,6v— 1} satisfiesv < 0. Then with respect
to P, s, x,, S»/n' ™" satisfies the Laplace principle, and thus the MDP, with exmial speed
n~* and rate functiol'(z) = G(z) — inf,cr G(y).

(b) We havew < 0 if and only if one of thdl3 cases enumerated in TalBe2 holds. Each
of the13 cases corresponds to a set of values ofr, and#; a choice of signs ob and k; the
influence of one or more set§ B, A; and a particular exponential speed and a particular form
of the rate function in parfa). The functiorG appearing in the definition of the rate function is
shown in columrb in Table8.2, wheninf,cr G(y) # 0, this additive constant in the definition
of the rate function is not shown. The form of the rate fumcigonot affected by the choice of
b € Rin casesdl, 3, 6, and7 and by the choice df € R in casedl, 2, 4, and5.
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case values of~ | values ofa exp’l function G in
influence values of@ speed | rate function T’

1 v€(0,5) [a>2 nt=6 cex®

C 0 > 4y s >0,beR, keR
2 7€ (0,7) |ae€(0,min{2y,1—4y}) [ n'="7* [ beya?

B 0>2v+« b>0,¢4>0,keR
3 7€ (0,3) |0¢€(0,min{dy,1—2v}) | n'=27% | kf.a?

A a > max(f — 2v,0) k>0,beR

4-5 7€(0,5) [a=2 nt=6 begxt + cea®

B+C 0 > 4~ b#0,keR

6—7 7€(0,5) [a>2 nt=% kB.x? + cex®

A+C 0 = 4~ kE#0,beR

8-9 v=1(0,7) | € (0,min{2y,1—4y}) | n'"""* | kB.a® + beyat

A+ B 0=2v+« kE#0,b>0
10-13 7€(0,5) [a=2 nt=67 kB.x? + beyrt + coa®
A+B+C 0 = 4~ kE#0,b#0

Table 8.2 Values of v, a, andé, exponential speeds, and rate functions in part (b) of The@&8

As discussed in section 2, the MDPs listed in Table 8.2 yiefebw class of distribution
limits for S,,/n'~7 in those cases in which the set of global minimum pointgzofontains
nonzero points. These are the cases in which the coefficaéritsare not all positive: cases
50<0,7k<0,9k<0,11k<0,b>0),12¢( > 0,b < 0),and 13 < 0,
b < 0). In all these cases except for case 12, we obtain the linfiBj2 Case 12 exhibits the
most complicated behavior, giving rise to the limit (2.1d) he critical valuek = 5b%/[273.].

These limits and the underlying physical phenomena are remghinvestigated for a class of

non-mean-field models, including the Blume-Emery-Griffithodel [19].

This completes our study of limit theorems for the BEG modehie neighborhood of the
tricritical point (3., K.(3.)) € C, in the neighborhood of second-order poifts K.(3)) € B,
and in the neighborhood of single-phase poifitsK’) € A. It is an unexpectedly rich and
fruitful area of research, one that we hope will inspire aminvestigations for other statistical

mechanical models.



Costeniuc, Ellis, and Otto: Critical Behavior of Probadtit Limit Theorems 58

References

[1] M. Antoni and S. Ruffo, Clustering and relaxation in Hatmmian long-range dynamics.
Phys. Rev. 52 (1995) 2361-2374.

[2] J. Barre, F. Bouchet, T. Dauxois and S. Ruffo, Large déme techniques applied to
systems with long-range interactions,Stat. Phys119(2005) 677—713.

[3] M. Blume, Theory of the first-order magnetic phase chand#O,, Phys. Rev141(1966)
517-524.

[4] M. Blume, V. J. Emery, and R. B. Griffiths, Ising model fdret\ transition and phase
separation in H&He! mixtures,Phys. Rev. A4 (1971) 1071-1077.

[5] E. Bolthausen, Laplace approximations for sums of irhelent random vector$2rob.
Th. Rel. Fields76 (1986) 167—-206.

[6] E. Bolthausen, Laplace approximations for sums of irgejent random vectors, Part Il
Degenerate maxima and manifolds of maxirRegb. Th. Rel. Field§2(1987) 305-318.

[7] A. Bovier and V. Gayrard, An almost sure central limit them for the Hopfield model,
Markov Proc. Related Field3 (1997) 151-173.

[8] H. W. Capel, On the possibility of first-order phase ti#ings in Ising systems of triplet
ions with zero-field splittingPhysica32 (1966) 966—988.

[9] H. W. Capel, On the possibility of first-order phase ti#ings in Ising systems of triplet
ions with zero-field splitting I1,Physica33 (1967) 295-331.

[10] H. W. Capel, On the possibility of first-order phase 8i¢ions in Ising systems of triplet
ions with zero-field splitting I11,Physica37 (1967) 423—441.

[11] N. R. Chaganty and J. Sethuraman, Limit theorems inttba af large deviations for some
dependent random variablesnn. Prob.15(1987) 628—645.

[12] A. Dembo and O. Zeitounilarge Deviations Techniques and ApplicatipBgcond edi-
tion, Springer, New York, 1998.

[13] P. Dupuis and R. S. EllisA Weak Convergence Approach to the Theory of Large Devia-

tions John Wiley & Sons, New York, 1997.



Costeniuc, Ellis, and Otto: Critical Behavior of Probadtit Limit Theorems 59

[14] P. Eichelsbacher, M. Lowe, Moderate deviations folegs of mean-field model&jarkov
Proc. Related Field40 (2004) 345-366.

[15] P. Eichelsbacher and M. Lowe, Moderate deviationstler overlap parameter in the
Hopfield model,Prob. Th. Related Field$30(2004) 441-472.

[16] R. S. Ellis, Large deviations for a general class of mndrectors,Ann. Prob.12 (1984)
1-12.

[17] R. S. Ellis, Entropy, Large Deviations and Statistical MechanicSpringer, New York,
1985. Reprinted in 2006 i@lassics in Mathematics

[18] R. S. Ellis, K. Haven, and B. Turkington, Large deviatjarinciples and complete equiva-
lence and nonequivalence results for pure and mixed enssndbStat. Phys101(2000)
999-1064.

[19] R. S. Ellis and J. Machta, Multiple critical behaviortbe Blume-Emery-Griffiths model
near its tricritical point, in progress, 2006.

[20] R. S. Ellis and C. M. Newman, Limit theorems for sums opeledent random variables
occurring in statistical mechanic&, Wahrsch. verw. Ged4 (1979) 117-139.

[21] R. S. Ellis, C. M. Newman, and J. S. Rosen, Limit theorémnsums of dependent random
variables occurring in statistical mechanics a1 Wahrsch. verw. Geb1(1980) 153—-169.

[22] R. S. Ellis, P. T. Otto, and H. Touchette, Analysis of pharansitions in the mean-field
Blume-Emery-Griffiths modelAnn. Appl. Prob15 (2005) 2203-2254.

[23] R. S. Ellis and J. S. Rosen, Asymptotic analysis of Gamsmtegrals, II: isolated mini-
mum points,Comm. Math. Phys$82(1981) 153-181.

[24] R. S. Ellisand J. S. Rosen, Asymptotic analysis of Gangsitegrals, I: isolated minimum
points, Trans. Amer. Math. So@73(1982) 447-481.

[25] R. S. Ellis and K. Wang, Limit theorems for the empirigakttor of the Curie-Weiss-Potts
model, Stoch. Proc. Appl35 (1990) 59-79.

[26] B. Gentz, A central limit theorem for the overlap in theplield model, Ann. Prob.24
(1996) 1809-1841.

[27] B. Gentz, An almost sure central limit theorem for thedap parameters in the Hopfield
model, Stoch. Proc. Appl62 (1996) 243—-262.



Costeniuc, Ellis, and Otto: Critical Behavior of Probadtit Limit Theorems 60

[28] B. Gentz and M. Lowe, Fluctuations in the Hopfield modethe critical temperature,
Markov Proc. Related Fields (1999) 423—-449.

[29] J. F. Nagle and J. C. Bonner, Phase transitions—beyansimple Ising model\nn. Rev.
Phys. Chem27 (1976) 291-317.

[30] F. Papangelou, Large deviations and the internal fatains of critical mean field systems,
Stoch. Proc. Appl36(1990) 1-14.

[31] L. A. Pastur and A. L. Figotin, Exactly soluble model ofgin glassSoviet J. Low Temp.
Phys.3 (1977) 378-383.

[32] R. T. RockefellerConvex AnalysisPrinceton Univ. Press, Princeton, 1970.



