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DANS LES DOMAINES MINCES

MARTA LEWICKA AND STEFAN MÜLLER
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Abstract. We study the Korn-Poincaré inequality:

‖u‖
W1,2(Sh) ≤ Ch‖D(u)‖

L2(Sh),

in domains Sh that are shells of small thickness of order h, around an arbitrary
smooth and closed hypersurface S in Rn. By D(u) we denote the symmetric

part of the gradient ∇u, and we assume the tangential boundary conditions:

u · ~nh = 0 on ∂Sh.

We prove that Ch remains uniformly bounded as h → 0, for vector fields u in
any family of cones (with angle < π/2, uniform in h) around the orthogonal
complement of extensions of Killing vector fields on S.

We show that this condition is optimal, as in turn every Killing field admits
a family of extensions uh, for which the ratio ‖uh‖

W1,2(Sh)/‖D(uh)‖
L2(Sh)

blows up as h → 0, even if the domains Sh are not rotationally symmetric.

1991 Mathematics Subject Classification. 74B05.
Key words and phrases. Korn inequality, Killing vector fields, thin domains, Poincaré

inequality.
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Abstract. On étudie l’inégalité de Korn-Poincaré:

‖u‖
W1,2(Sh) ≤ Ch‖D(u)‖

L2(Sh),

dans les domaines Sh de type des coques d’épaisseurs d’ordre h autour d’une
hypersurface regulière et fermée S de Rn. Par D(u), on réfère à la partie
symmetrique du gradient ∇u et on suppose la condition au bord

u · ~nh = 0 on ∂Sh.

On démontre que Ch reste uniformément borné comme h → 0, pour tout
champ de vecteurs dans une famille de cônes donnée (faisant un angle < π/2,
uniforme en h) autour du complément orthogonal des extensions de champs
de vecteurs de Killing sur S.

On montre que cette condition est optimale comme tout champ de Killling
u sur S admet une famille d’extensions uh sur Sh pour lesquelles le rapport
‖uh‖

W1,2(Sh)/‖D(uh)‖
L2(Sh) tend à l’infini comme h → 0, même si les Sh

ne possèdent pas de symmetrie axiale.

1. Introduction

The objective of this paper is to study the Korn-Poincaré inequality:

(1.1) ‖u‖W 1,2(Sh) ≤ Ch‖D(u)‖L2(Sh),

under the tangential boundary conditions:

(1.2) u · ~nh = 0 on ∂Sh,

in domains Sh that are shells of small thickness of order h, around an arbitrary
smooth and closed hypersurface S in Rn. By D(u) = 1

2 (∇u + (∇u)T ) we denote
the symmetric part of the gradient ∇u.

Korn’s inequality was discovered in the early XXth century, in the context
of the boundary value problem of linear elastostatics [12, 13]. There is by now
an extensive literature on the subject, relating to various contexts and various
boundary conditions (see for example a review [8], and the references therein). If

(1.2) is replaced by u = 0 on ∂Sh, one can easily prove that ‖∇u‖L2 ≤
√

2‖D(u)‖L2,
and so (1.1) follows by the Poincaré inequality. In the absence of this boundary
condition, or with its weaker versions, the bound (1.1) requires an extra criterion.
Roughly speaking, it serves to eliminate pure rotations, when D(u) = 0 but ∇u 6= 0.
In particular, (1.1) holds for all W 1,2(Sh) vector fields u with (1.2), which are L2-
orthogonal to the space of those linear vector fields on Sh with skew-symmetric
gradient that are themselves tangent on the boundary.

We are interested in the behaviour of the constant Ch, as h → 0. It turns out
that in general, Ch may blow up, even if Sh are not rotationally symmetric (that
is when the aforementioned spaces are trivial). The correct way of looking at this
problem is to consider the asymptotic inequality as h → 0, i.e. the related Korn
inequality on S (see also [2]):

(1.3) ‖v‖W 1,2(S) ≤ C‖D(v)‖L2(S).

This inequality holds true for all tangent vector fields v on S, which are L2-
orthogonal to the the space of Killing fields on S. A Killing field is defined to
be a smooth tangent vector field which generates a one-parameter family of isome-
tries on S. It is well known that the space of Killing fields on a given surface is a
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finite dimensional Lie algebra. An equivalent characterisation of Killing fields on S
is:

(1.4) D(u) = 0, i.e.: τ∇v(x)τ = 0 ∀x ∈ S ∀τ ∈ TxS.

In this paper, we first notice that any v satisfying (1.4) admits a family of
extensions uh : Sh → Rn, such that the boundary conditions (1.2) hold and so that
the ratio ‖uh‖W 1,2(Sh)/‖D(uh)‖L2(Sh) goes to infinity as h → 0. This construction
turns out to be the worst case scenario for the possible blow-up of Ch. Our main
results state that the constants Ch remain uniformly bounded for vector fields u
inside any family of cones (with angle < π/2, uniform in h) around the orthogonal
complement of the space of extensions of Killing fields on S.

Our main motivation in this work has been its application to dynamics of Navier-
Stokes equations in thin 3-dimensional domains. Thin domains are encountered in
many problems in solid or fluid mechanics. For example, in ocean dynamics, one
is dealing with the fluid regions which are thin compared to the horizontal length
scales. Other examples include lubrication, meteorology, blood circulation etc.;
they are a part of a broader study of the behaviour of various PDEs on thin n-
dimensional domains, where n ≥ 2 (for a review see [17]).

The study of the global existence and asymptotic properties of solutions to the
Navier-Stokes equations in thin 3d domains began with Raugel and Sell in [18].
They proved global existence of strong solutions for large initial data and in presence
of large forcing, for the sufficiently thin 3d product domain Ω = Q × (0, ǫ), with
the boundary conditions either purely periodical or combined periodic-Dirichlet.
Further generalisations to other boundary conditions followed (see the references in
[9]). Towards analysing thin domains other than simple product domains, Iftimie,
Raugel and Sell [9] treated domains of the type: Ω = {x ∈ R3; (x1, x2) ∈ Q, 0 <
x3 < ǫg(x1, x2)}, with the mixed boundary conditions: periodic on the lateral
boundary and the Navier boundary conditions:

(1.5) D(u)~nh||~nh and u · ~nh = 0 on ∂Sh

on the top and on the bottom.
The Korn inequality arises naturally when one considers the incompressible flow

subject to (1.5), for the following reason (see [19]). In order to define the Stokes
operator relevant to the boundary conditions (1.5), one uses the symmetric bilinear
form B(u, v) =

�
D(u) : D(v) rather than the usual

�
∇u : ∇v. Hence, the energy

methods give suitable bounds for ‖D(uh)‖L2(Sh), for a solution flow uh in Sh. On
the other hand, in order to establish compactness while studying the limit problem
as h → 0, one needs bounds for the W 1,2 norm of uh, with constants independent
of h. The inequality (1.1) (with uniform constants Ch) provides thus a necessary
uniform equivalence of the two norms ‖u‖W 1,2 and ‖D(u)‖L2 on Sh.

In this spirit, it is hoped that we can apply the result of this paper to study the
dynamics of the Navier-Stokes equations, under the Navier boundary conditions, in
thin shells with various geometries of the reference surface S and of the boundaries
of Sh.

Starting with the original papers of Korn [12, 13], Korn’s inequality has also
been widely used as a basic tool for the existence of solutions of the linearised
displacement-traction equations in elasticity [4, 3, 8]. In this context, for a given
displacement vector field u, the matrix field D(u) is the linearised strain, which
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measures the pointwise deviation of the deformation Id + ǫu from a rigid motion,
up to the first order terms in ǫ. Hence, Korn’s inequality can be interpreted as
a rigidity estimate for small displacement deformations: they are W 1,2 close to
Id, by the error given in the right hand side of (1.1). A nonlinear version of this
rigidity estimate, obtained recently in [5], has been extensively applied to problems
in nonlinear elasticity and plate theories (see eg [5, 6]). Earlier, Korn’s inequalites
in thin neighbourhoods of flat surfaces have been discussed in series of papers by
Kohn and Vogelius [11]. They derive an estimate which degenerates as h → 0 for
clamped boundary conditions at the side of the plate. An analogous result in our
settting is given in Theorem 2.3 below.

Acknowledgments. M.L. was partially supported by the NSF grant DMS-0707275.

2. The main theorems

Let S be a smooth, compact hypersurface (a boundaryless manifold of co-
dimension 1) in Rn. Consider a family {Sh}h>0 of thin shells around S:

Sh = {z = x + t~n(x); x ∈ S, −gh
1 (x) < t < gh

2 (x)},
given by a family of smooth positive functions gh

1 , gh
2 : S −→ R. We will use the

following notation: ~nh for the outward unit normal to ∂Sh, ~n(x) for the outward
unit normal to S (seen as the boundary of some bounded domain in Rn), TxS for
the tangent space to S at a given x ∈ S. The projection onto S along ~n will be
denoted by π, so that:

π(z) = x ∀z = x + t~n(x) ∈ Sh.

The standard Korn inequality (see Theorem 9.1 in Appendix A) on bounded Lip-
schitz domains implies that for each u ∈ W 1,2(Sh,Rn) satisfying the orthogonality
condition:

(2.1)

�
Sh

u(z) · (Az + b) dz = 0, ∀A ∈ so(n), ∀b ∈ Rn

one has:

(2.2) ‖u‖W 1,2(Sh) ≤ Ch‖D(u)‖L2(Sh)

and the constant Ch depends only on the domain Sh, but not on u. Here, so(n)
stands for the linear space of all n × n skew-symmetric matrices:

so(n) = {A ∈ Mn×n; A = −AT } = {A ∈ Mn×n; τAτ = 0 ∀τ ∈ Rn}
while by D(u) we mean the symmetric part of ∇u:

D(u) =
1

2

(
∇u + (∇u)T

)
.

The same result is true for u satisfying additionally:

u · ~nh = 0 on ∂Sh,

when in (2.1) we take only linear functions Az + b ∈ R∂(Sh); with skew-symmetric
gradient, and satisfying the same boundary condition as u:

R∂(Sh) = {w = Az + b; A ∈ so(n), b ∈ Rn, v · ~nh = 0 on ∂Sh}.
The standard proof by contradiction (see Theorem 9.2 in Appendix A) shows that
the constant Ch in (2.2) again does not depend on u but it may depend on the
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geometry of Sh. In particular, as shown in the example in section 4, Ch may indeed
converge to infinity as the thickness of Sh (that is ‖gh

1 + gh
2‖L∞(S)) converges to 0.

Our goal is to investigate the behaviour of Ch in two frameworks, relating to the
following hypotheses:

(H1) For some positive constants C1, C2 and C3, and all small h > 0 there holds:

C1h ≤ gh
i (x) ≤ C2h, |∇gh

i (x)| ≤ C3h ∀x ∈ S, i = 1, 2.

(H2) For some smooth positive functions g1, g2 : S −→ R, there holds:

1

h
gh

i → gi in C1(S) as h → 0, i = 1, 2.

Notice that clearly (H2) implies (H1) with, for example: C1 = 2 max{gi(x); x ∈
S, i = 1, 2}, C2 = 1/2 min{gi(x); x ∈ S, i = 1, 2}, C3 = maxi ‖∇gi‖L∞(S) + 1.

Before stating our main results, we need to recall the notion of a Killing vector
field. The Lie algebra of smooth Killing vector fields on S will be denoted by I(S).
That is, v ∈ I(S) if and only if:

(i) v : S −→ Rn is smooth and v(x) ∈ Tx(S) for every x ∈ S,

(ii)
∂v

∂τ
(x) · τ = 0 for every x ∈ S and every τ ∈ TxS.

Condition (ii) implies that

(2.3)
∂v

∂τ
(x) · η +

∂v

∂η
(x) · τ = 0 ∀τ, η ∈ TxS ∀x ∈ S.

Recall that Killing vector fields are infinitesimal generators of isometries on S, in
the sense that if Φ is the flow generated by v:

d

ds
Φ(s, x) = v(Φ(s, x)), Φ(0, x) = x,

then for every fixed s the map S ∋ x 7→ Φ(s, x) ∈ S is an isometry.
It is known that the linear space I(S) has finite dimension [10, 16]. We recall

this fact in Appendix C.

Given positive smooth functions g1, g2 : S −→ R, define:

Ig1,g2
(S) = {v ∈ I(S); v(x) · ∇(g1 + g2)(x) = 0 for all x ∈ S} .

Our main results are the following:

Theorem 2.1. Assume (H1) and let α < 1 be any constant. Then, for all h > 0
sufficiently small and all u ∈ W 1,2(Sh,Rn) satisfying one of the following tangency
conditions:

u · ~nh = 0 on ∂+Sh = {x + gh
2 (x)~n(x); x ∈ S},

or:
u · ~nh = 0 on ∂−Sh = {x − gh

1 (x)~n(x); x ∈ S},
together with:

(2.4)

∣∣∣∣
�

Sh

u(z)v(π(z)) dz

∣∣∣∣ ≤ α‖u‖L2(Sh) · ‖vπ‖L2(Sh) ∀v ∈ I(S),

there holds:

(2.5) ‖u‖W 1,2(Sh) ≤ C‖D(u)‖L2(Sh),

where C is independent of u and of h.
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Theorem 2.2. Assume (H2) and let α < 1 be any constant. Then for all h > 0
sufficiently small and all u ∈ W 1,2(Sh,Rn) satisfying u · ~nh = 0 on ∂Sh and:

(2.6)

∣∣∣∣
�

Sh

u(z)v(π(z)) dz

∣∣∣∣ ≤ α‖u‖L2(Sh) · ‖vπ‖L2(Sh) ∀v ∈ Ig1,g2
(S),

there holds (2.5) with C independent of u and of h.

The example constructed in section 4 shows that conditions (2.4) (or (2.6))
are necessary for the bound (2.5). In particular, any Killing field v on S can be
extended to a vector field vh on Sh, satisfying the boundary condition and such
that ‖∇vh‖2

L2(Sh) ≥ Ch but ‖D(vh)‖2
L2(Sh) ≤ Ch3. Hence, if one naively assumes

that u satisfies the angle condition only with the space of generators of appropriate
rotations on S, rather than the whole I(S), the constant Ch has a blow-up rate of
at least h−1, as h → 0. The following theorem shows that this is the actual blow-up
rate, under the abovementioned conditions.

More precisely, define:

R(S) =
{
v : S −→ Rn; v(x) = Ax+b, A ∈ so(n), b ∈ Rn, v ·~n = 0 on S

}
⊂ I(S),

Rg1,g2
(S) =

{
v ∈ R(S); v(x) · ∇(g1 + g2)(x) for all x ∈ S

}
⊂ Ig1,g2

(S).

Theorem 2.3. Let α < 1 be any constant. Then, for all h sufficiently small and
all u ∈ W 1,2(Sh,Rn), there holds:

(2.7) ‖u‖W 1,2(Sh) ≤ Ch−1‖D(u)‖L2(Sh),

in any of the following situations:

(i) (H1) holds, u · ~nh = 0 on ∂+Sh or u · ~nh = 0 on ∂−Sh, and:
∣∣∣∣
�

Sh

u(z)v(π(z)) dz

∣∣∣∣ ≤ α‖u‖L2(Sh) · ‖vπ‖L2(Sh) ∀v ∈ R(S).

(ii) (H2) holds, u · ~nh = 0 on ∂Sh, and:
∣∣∣∣
�

Sh

u(z)v(π(z)) dz

∣∣∣∣ ≤ α‖u‖L2(Sh) · ‖vπ‖L2(Sh) ∀v ∈ Rg1,g2
(S).

Notice that (i) is implied by the hypotheses of Theorem 2.1 and (ii) by the hy-
potheses of Theorem 2.2, as the spaces R(S) and Rg1,g2

(S) are contained in I(S)
or Ig1,g2

(S), respectively. The bound (2.7) was obtained also in [11], but in a differ-
ent context of thin plates with clamped boundary conditions and rapidly varying
thickness.

3. Remarks and an outline of proofs

Remark 3.1. Conditions (2.4) and (2.6) may be understood in the following way:
the cosine of the angle (in L2(Sh)) between u and its projection onto the linear
space Wh ⊂ L2(Sh) of ‘trivial’ extensions vπ of certain Killing fields v ∈ I(S) (or
v ∈ Ig1,g2

(S)) should be smaller than α.
Equivalently, one considers vector fields u ∈ W 1,2(Sh), which for a given constant

β ≥ 1 (related to α through: β = (1 − α2)−1/2) satisfy:

(3.1) ‖u‖L2(Sh) ≤ β‖u − vπ‖L2(Sh) ∀v ∈ I(S) (or ∀v ∈ Ig1,g2
(S)).

That is, the distance of u from the space Wh controls (uniformly) the full norm
‖u‖L2(Sh).
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By Theorems 2.1 and 2.2, inside each closed cone around (Wh)⊥, of fixed angle
θ < π/2 in L2(Sh), the bound (2.5) holds, with a constant C, that is uniform
in u and h. One could therefore argue that Wh is the kernel for the uniform
Korn-Poincaré inequality, in the same manner as the linear maps Az + b with skew
gradients A ∈ so(n) constitute the kernel for the standard Korn inequality (2.1),
(2.2). This is not exactly the case, as the uniform Korn inequality is true for the
extensions vπ (see Remark 4.1). The role of the aforementioned kernel is played by

the space W̃h of other, ’smart’ extensions vh of the Killing fields v (see the formula
(4.3)).

Still, with vπ replaced by vh in (2.4) or (2.6), both Theorems 2.1 and 2.2 remain

true. Indeed, notice that the spaces Wh and W̃h are asymptotically tangent at
h = 0:

‖vπ − vh‖L2(Sh) ≤ Ch‖vπ‖L2(Sh) ∀v ∈ I(S).

Hence, if |〈u, vh〉L2 | ≤ α‖u‖L2 · ‖vh‖L2 for some α < 1, then |〈u, vπ〉L2 | ≤ (α +
Ch)‖u‖L2 · ‖vπ‖L2, and the angle conditions in main theorems hold, with another
α < 1, when h is sufficiently small. Thus, the fact that we chose to work with
’trivial’ extensions, in Wh (giving a simpler condition), instead of the real kernel

W̃h, is not restrictive.
In the particular case when ∂Sh is parallel to S, say gh

i = h, we have

~nh(x + g2(x)~n(x)) = ~n(x) ~nh(x − g1(x)~n(x)) = −~n(x),

I(S) = Ig1,g2
(S).

If w ∈ R∂(Sh) then w|S is tangent to S and, as shown in Appendix A (Theorem

9.4) it generates a rotation on S. Actually, one has: w = (w|S)h ∈ W̃h and so by
the preceding comment we see that the condition (2.1) is asymptotically contained
in (2.4) (or (2.6)).

Remark 3.2. A natural question is whether I(S) may contain other vector fields
than the restrictions of generators of rigid motions on the whole Rn. This is clearly
the case when n = 2: any tangent vector field of constant length is a Killing field.

The same question for higher dimensions and even for n = 3 and general (noncon-
vex) hypersurfaces is, to our knowledge, still open. It is closely related to another
open problem of whether the class of rotationally symmetric surfaces is closed under
intrinsic isometries. A further related question is whether every intrinsic isometry
on S is actually a restriction of some isometry of R3. When S is convex, it is well
known that it is the case, while for non-convex surfaces it is false. The answer to
the same question, formulated for 1-parameter families of isometries is not known
(see [20] vol. 5).

An outline of proofs of Theorems 2.1 and 2.2.
The general strategy is as follows. Suppose that D(u) is small. The main idea

is to study the map ū : S −→ Rn which is obtained by averaging u in the normal
direction:

ū(x) =

 gh
2 (x)

−gh
1
(x)

u(x + t~n(x)) dt.

By the boundary condition, one has ū · ~n ≈ 0, i.e. ū is almost tangential to S.
Moreover, D(ū) is essentially bounded by the average of D(u). Hence if D(u) is
small, by Korn’s inequality on surfaces, the field ū must be close to a Killing field
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v. If v is not small, we will get a contradiction to the angle condition (2.4) or (2.6).
If v is small then we get good estimates for ū and ultimately for u.

More precisely, the proof proceeds as follows. First (see Theorem 5.1), an ap-
plication of Korn’s inequality to cylinders of size h and an interpolation argument
yield a smooth field R : S −→ so(n) such that:�

Sh

|∇u − R|2 ≤ C

�
Sh

|D(u)|2,(3.2) �
S

|∇R|2 ≤ Ch−3

�
Sh

|D(u)|2.(3.3)

From this we deduce (see Lemma 6.1):

(3.4)

�
S

|∇ū − Rtan|2 ≤ Ch−1

�
Sh

|D(u)|2 + Ch

�
Sh

|∇u|2,

where Rtanτ = Rτ for all tangent fields τ and Rtan~n = 0.
Using the boundary conditions it is easy to show that (see Lemma 6.3):

(3.5)

�
S

|ū · ~n|2 ≤ Ch

�
Sh

|∇u|2.

It is thus natural to study the tangent field:

ūtan = ū − (ū · ~n)~n.

Now Korn’s inequality on S implies that there exists a Killing field v such that:

‖ūtan − v‖W 1,2(S) ≤ C‖D(ūtan)‖L2(S).

By the angle condition, v must be small in L2(S), and hence in W 1,2(S) since the
Killing fields form a finite dimensional space. Thus, ‖ūtan‖W 1,2(S) is controlled,
and by (3.5) ‖ū‖L2(S) is also controlled. Now the crucial step is to combine (3.3)
and (3.4) to deduce that:

(3.6)

�
S

|∇(ū ·~n)|2 + |R~n|2 ≤ Ch−3/2‖D(u)‖L2(Sh) ·‖ū ·~n‖L2(S) + harmless terms

(see Lemma 6.4). From (3.6) and (3.5) we obtain control on ∇ū. By (3.4) this
controls Rtan, hence R, and finally (3.2) gives the estimate for ∇u.

The actual argument is by contradiction, assuming that h−1/2‖uh‖W 1,2(Sh) = 1

and h−1/2‖D(uh)‖Lh(Sh) −→ 0 (see section 7).

Above and in all subsequent proofs, C denotes an arbitrary positive constant,
depending on the geometry of S and constants C1, C2, C3 in (H1) or the functions
g1, g2 in (H2). The constant C may also depend on the choice of α, but it is always
independent of u and h.

4. An example where the constant Ch blows up

Let g1, g2 : S −→ R be some positive and smooth functions, and let

gh
i = hgi, i = 1, 2.

Assume that on S there exists a nonzero Killing vector field v such that:

(4.1) v ∈ Ig1,g2
(S).
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We are going to construct a family vh ∈ W 1,2(Sh,Rn) satisfying the boundary
condition

(4.2) vh · ~nh = 0 on ∂Sh,

for which the uniform bound (2.5) is not valid (after we take uh = vh).

By Π(x) = ∇~n(x) we denote the shape operator on S, that is, the (tangential)
gradient of ~n. For all x ∈ S and all t ∈ (−hg1(x), hg2(x)) define:

(4.3) vh(x + t~n(x)) =
(
Id + tΠ(x) + h~n(x) ⊗∇g2(x)

)
v(x).

By (4.1) we easily obtain:

vh(x + t~n(x)) =
hg1(x) + t

h(g1(x) + g2(x))
·
(
Id + hg2(x)Π(x) + h~n(x) ⊗∇g2(x)

)
v(x)

+
hg2(x) − t

h(g1(x) + g2(x))
·
(
Id − hg1(x)Π(x) − h~n(x) ⊗∇g1(x)

)
v(x),

which means that each vh is a linear interpolation between the push-forward of the
vector field v from S onto the external part ∂+Sh of the boundary of Sh and the
other push-forward onto the internal part ∂−Sh of ∂Sh (see figure 4). Indeed, the
derivative of the map:

S ∋ x 7→ x ± hgi(x)~n(x)

is given through:

Id ± hgi(x)Π(x) ± h~n(x) ⊗∇gi(x).

In particular, we see that (4.2) holds.

Svv

−h g (x)1

h g (x)
2

hv

Figure 4.1. The vector fields vh and v.

Write now vh = w + (vh − w), with:

w(z) =
(
Id + tΠ(x)

)
v(x), z = x + t~n(x).
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We wish to estimate the order of different coefficients in ∇w and D(w). For every
τ ∈ TxS, x ∈ S, there holds:

∂w

∂~n
(z) = Π(x)v(x),

∂w

∂τ
(z) = t

(
∇Π · (Id + tΠ(x))−1τ

)
· v(x)

+ (Id + tΠ(x)) · ∇v(x) · (Id + tΠ(x))−1τ.

(4.4)

Observe that:(
∂w

∂τ
· ~n +

∂w

∂~n
· τ
)

(z) =

(
−∂~n

∂τ
· w +

∂w

∂~n
· τ
)

(z)

= −
(
Π(x) · (Id + tΠ(x))−1τ

)
· (Id + tΠ(x))v(x) + Π(x)v(x) · τ

= 0,

(4.5)

because ~n · w = 0 and the symmetric form Π(x) commutes with (Id + tΠ(x))−1.
Likewise:

(4.6)

(
∂w

∂~n
· ~n
)

(z) = 0.

To estimate ηD(w)(z)τ , for τ, η ∈ TxS, notice that:
∣∣η(Id + tΠ(x)) · ∇v(x) · (Id + tΠ(x))−1τ

− η(Id + tΠ(x))−1 · ∇v(x) · (Id + tΠ(x))−1τ
∣∣ ≤ Ct|∇v(x)|,

because |(Id + tΠ(x)) − (Id + tΠ(x))−1| ≤ Ct. Above and in the sequel, C denotes
any positive constant independent of h. Since τ(Id + tΠ(x))−1 ∈ TxS, by (2.3) and
(4.4) we obtain:

(4.7) |ηD(w)(z)τ | ≤ Ct(|v(x)| + |∇v(x)|).
We also have: |∇(vh − w)(z)| ≤ Ch and by (4.5), (4.6) and (4.7): |D(w)(z)| ≤ Ch
for every z ∈ Sh. Hence:

‖D(vh)‖2
L2(Sh) ≤ Ch3.

On the other hand, inspecting the terms in (4.4) and recalling that v 6= 0 (and
therefore ∇v 6= 0 as well) we see that:

‖∇vh‖2
L2(Sh) ≥

1

2
‖∇v‖2

L2(Sh) − Ch3 ≥ Ch.

The two last inequalities imply that the uniform bound (2.5) is not valid, without
the restriction (2.6). Even if S has no rotational symmetry, the constants Ch in
(2.2) become unbounded as h → 0.

Remark 4.1. Our construction (4.3) is crucial for the counterexample to work.
Indeed, one cannot simply take the ’trivial’ extensions vπ ∈ W 1,2(Sh) to obtain
the blow-up of Ch. The reason is that, for any τ ∈ TxS, one has:

∂(vπ)

∂τ
(z) · ~n = −∂~nπ

∂τ
(z) · (vπ)(z) = −Π(x) · (Id + tΠ(x))−1τ · v(x) = O(1),

∂(vπ)

∂~n
(z) = 0,

and thus both ∇(vπ)(z) and D(vπ)(z) are of the order O(1). Hence:

‖∇(vπ)‖2
L2(Sh) ≤ Ch‖v‖2

W 1,2(S) ≤ Ch ≤ Ch‖v‖2
L2(S) ≤ C‖D(vπ)‖2

L2(Sh),
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where C denotes, as usual, any uniform constant.

5. An approximation of ∇u

In this section we construct a smooth function R with skew-symmetric matrix
values, approximating ∇u on Sh with the error ‖D(u)‖L2(Sh). This function will
play a crucial role in future analysis.

The construction relies on Appendix B, where the constant in Korn’s inequality
on a fixed, star-shaped domain is proved to depend only on the ratio of the diameters
of the domain and the Lipschitz constant of its boundary (Theorem 10.1). We apply
this estimate locally and then use a mollification argument as in [5].

As always, C denotes any uniform constant, independent of u and h.

Theorem 5.1. Assume (H1). For every u ∈ W 1,2(Sh,Rn) there exists a smooth
map R : S −→ so(n) such that:

(i) ‖∇u − Rπ‖L2(Sh) ≤ C‖D(u)‖L2(Sh),

(ii) ‖∇R‖L2(S) ≤ Ch−3/2‖D(u)‖L2(Sh).

Proof. 1. For x ∈ S consider balls in S and ’cylinders’ in Sh defined by:

Dx,h = B(x, h) ∩ S, Bx,h = π−1(D(x, h)) ∩ Sh.

The main observation is that an application of Korn’s inequality on Bx,h (see The-
orem 10.1) yields a skew-symmetric matrix Ax,h ∈ so(n) such that:

(5.1)

�
Bx,h

|∇u(z) − Ax,h|2 dz ≤ C

�
Bx,h

|D(u)|2.

Indeed, recalling the assumption (H1) we see that for h sufficiently small, Bx,h

are star-shaped with respect to x and that both the Lipschitz constants of their
boundaries and the ratios of their diameters have common bounds.

Our goal is to replace Ax,h by a matrix R(x) which depends smoothly on x. This
will allow us to replace Ax,h by R(πz) in (5.1). The desired estimate on Sh then
follows by summing over a suitable family of cylinders. The smoothness of R will
also play essential role in the key estimate in Lemma 6.4.

2. To define R(x) consider a cut-off function ϑ ∈ C∞
c ([0, 1)), with ϑ ≥ 0, ϑ

constant in a neighbourhood of 0, and
� 1

0 ϑ = 1. For each x ∈ S define:

ηx(z) =
ϑ(|πz − x|/h)�

Sh ϑ(|πz − x|/h) dz
.

Then ηx(z) = 0 for z 6∈ Bx,h and:�
Sh

ηx(z) dz = 1, |ηx| ≤
C

hn
, |∇xηx| ≤

C

hn+1

Define R(x) as the average:

R(x) =

�
Sh

ηx(z) skew(∇u(z)) dz,

where skew(F ) = (F − FT )/2 denotes the skew-symmetric part of a given matrix
F . Since

�
ηx = 1, we have:

R(x) − Ax,h =

�
Sh

ηx(z) skew(∇u(z) − Ax,h) dz,
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and by the Cauchy-Schwarz inequality, noting that |skew(F )| ≤ |F | we obtain:

(5.2) |R(x) − Ax,h|2 ≤
(�

Sh

ηx(z)|∇u(z) − Ax,h| dz

)2

≤ C

hn

�
Bx,h

|D(u)|2.

To estimate the derivative of R we use that:�
Sh

∇xηx(z) dz = ∇x

(�
Sh

ηx(z) dz

)
= 0.

Thus:

∇R(x) =

�
Sh

(∇xηx) skew(∇u) =

�
Sh

(∇xηx) skew(∇u − Ax,h)

and by (5.1):

(5.3) |∇R(x)|2 ≤
�

Bx,h

|∇xηx|2 ·
�

Bx,h

|∇u − Ax,h|2 ≤ C

hn+2

�
Bx,h

|D(u)|2.

Similarly, we get for all x′ ∈ Dx,h:

(5.4) |∇R(x′)|2 ≤ C

hn+2

�
Bx′,h

|D(u)|2 ≤ C

hn+2

�
2Bx,h

|D(u)|2,

where 2Bx,h = π−1(Dx,2h)∩Sh. From this, by the fundamental theorem of calculus:

|R(x′′) − R(x)|2 ≤ C

hn

�
2Bx,h

|D(u)|2 ∀x′′ ∈ Dx,h.

In combination with (5.1) and (5.2) this yields:

(5.5)

�
Bx,h

|∇u(z) − R(πz)|2 dz ≤ C

�
2Bx,h

|D(u)|2.

Now cover Sh with a family {Bxi,h}N
i=1 so that the covering number of the family

{2Bxi,h}N
i=1 is independent of h. Summing (5.5) over i = 1 . . .N proves (i).

Finally, integrating (5.4) on Dx,h we get;�
Dx,h

|∇R(x′)|2 dx′ ≤ C

h3

�
2Bx,h

|D(u)|2,

and using the same covering as before we obtain (ii).

Following the same argument, we will prove a uniform Poincaré inequality in
thin domains - see Theorem 12.2 in Appendix D.

6. Key estimates

Let ū : S −→ Rn be the average of u in the normal direction:

(6.1) ū(x) =

 gh
2 (x)

−gh
1
(x)

u(x + t~n(x)) dt ∀x ∈ S.

In this section we will establish four useful estimates on various components of ū
and their derivatives.

The first estimate, on ∇ū is a natural extension of the previous Theorem 5.1:
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Lemma 6.1. Assume (H1). For every u ∈ W 1,2(Sh,Rn) there holds:

‖∇ū − Rtan‖L2(S) ≤ Ch1/2‖u‖W 1,2(Sh) + Ch−1/2‖D(u)‖L2(Sh),

where the subscript ’tan’ refers to the tangential components of the appropriate
matrix valued function, that is: Rtan(x)~n(x) = 0 and Rtan(x)τ = R(x)τ for all
x ∈ S and τ ∈ TxS.

Proof. Through a direct calculation one checks that for every x ∈ S and τ ∈ TxS
there holds:
∣∣∣∣∣∂τ ū(x) −

 gh
2 (x)

−gh
1
(x)

∇u(x + t~n(x)) · {τ + t∂τ~n(x)} dt

∣∣∣∣∣

≤ C

h

(
|∂τgh

1 (x)| + |∂τgh
2 (x)|

)
·
� gh

2 (x)

−gh
1
(x)

|∂~nu(x + t~n(x))| dt ≤ C

� gh
2 (x)

−gh
1
(x)

|∇u| dt

and:  gh
2 (x)

−gh
1
(x)

|∇u(x + t~n(x)) · (τ + t∂τ~n(x)) − R(x)τ | dt

≤ C

� gh
2 (x)

−gh
1
(x)

|∇u| dt +

 gh
2 (x)

−gh
1
(x)

|∇u(x + t~n(x)) − R(x)| dt.

Hence, by Theorem 5.1 (i):

‖∇ū − Rtan‖2
L2(S) ≤ C

�
S

{
h

� gh
2 (x)

−gh
1
(x)

|∇u|2 dt + h−1

 gh
2 (x)

−gh
1
(x)

|∇u − Rπ|2 dt

}
dx

≤ Ch‖∇u‖2
L2(Sh) + Ch−1‖D(u)‖2

L2(Sh).

In order to estimate the normal part ū, we will use the following simple bounds:

Lemma 6.2. Recall that ∂Sh = ∂−Sh ∪ ∂+Sh, with:

∂−Sh = {x − gh
1 (x)~n(x); x ∈ S},

∂+Sh = {x + gh
2 (x)~n(x); x ∈ S}.

(6.2)

(i) If (H1) holds then |~nh(z) − ~n(π(z))| ≤ Ch for all z ∈ ∂+Sh and |~nh(z) +
~n(π(z))| ≤ Ch for all z ∈ ∂−Sh.

(ii) If (H2) holds then:

|~nh(z) + ~n(π(z)) + ∇gh
1 (π(z))| ≤ Ch2 ∀z ∈ ∂−Sh,

|~nh(z) − ~n(π(z)) + ∇gh
2 (π(z))| ≤ Ch2 ∀z ∈ ∂+Sh.

Let now u ∈ W 1,2(Sh,Rn).

(iii) |∂~n(u · ~n)(z)| ≤ |D(u)(z)| for all z ∈ Sh.
(iv) If (H1) holds and u · ~nh = 0 on ∂+Sh, then:

‖u · ~n‖L2(∂+Sh) ≤ Ch1/2‖u‖W 1,2(Sh).
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(v) If (H2) holds and u · ~nh = 0 on ∂Sh:�
S

|u(x − gh
1 (x)~n(x)) · ∇gh

1 (x) + u(x + gh
2 (x)~n(x)) · ∇gh

2 (x)|2 dx

≤ Ch

�
Sh

|D(u)|2 + Ch3‖u‖2
W 1,2(Sh).

Proof. (i) is obvious. To prove (ii) observe, for example, that on ∂+Sh the normal
~nh(z) is parallel to ~n(π(z)) − ∇gh

2 (π(z)) + w, where |w| ≤ C|g(π(x))∇g(π(z))| ≤
Ch2. Normalising this vector we conclude the second inequality in (ii). The first
one follows in the same manner.

(iii) follows from: ∂~n(u · ~n) = D(u)~n · ~n.
To prove (iv), use (i) and the trace theorem in Appendix E:

‖u · ~n‖L2(∂+Sh) = ‖u · (~n − ~nh)‖L2(∂+Sh) ≤ Ch1/2‖u‖W 1,2(Sh).

For (v), use (ii), (iii) and Theorem 12.3:�
S

|u(x + gh
2 (x)~n(x)) · ∇gh

2 (x) + u(x − gh
1 (x)~n(x)) · ∇gh

1 (x)|2 dx

≤
�

S

|u(x + gh
2 (x)~n(x)) · ~n(x) − u(x − gh

1 (x)~n(x)) · ~n(x)|2 dx + Ch4

�
∂Sh

|u|2

=

�
S

∣∣∣∣∣

� g2(x)

−g1(x)

|∂~n(u · ~n)(x + t~n(x))| dt

∣∣∣∣∣

2

dx + Ch4

�
∂Sh

|u|2

≤ Ch

�
Sh

|D(u)|2 + Ch3‖u‖2
W 1,2(Sh).

Lemma 6.3. Assume (H1) and let u ∈ W 1,2(Sh,Rn) satisfy u · ~n = 0 on ∂+Sh.
Then:

‖ū · ~n‖L2(S) ≤ Ch1/2‖u‖W 1,2(Sh).

Proof. By Lemma 6.2 (iv) and (i), for every z = x + t~n(x) ∈ Sh we obtain:

|u(x+t~n(x)) · ~n(x)|2 ≤
(
|u(x + gh

2 (x)~n(x)) · ~n(x)| +
� gh

2 (x)

−gh
1
(x)

|D(u)|
)2

≤ C ·
∣∣u(x + gh

2 (x)~n(x)) ·
(
~n(x) − ~nh(x + gh

2 (x)~n(x))
)∣∣2 + Ch

� gh
2 (x)

−hh
1
(x)

|D(u)|2

≤ Ch2|u(x + gh
2 (x)~n(x))|2 + Ch

� gh
2 (x)

−hh
1
(x)

|D(u)|2.

Hence by Theorem 12.3:

‖ū · ~n‖2
L2(S) ≤

C

h

�
S

� gh
2 (x)

−gh
1
(x)

|u(x + t~n(x)) · ~n(x)|2 dt dx

≤ C

h

(
h3‖u‖2

L2(∂Sh) + h2‖D(u)‖2
L2(Sh)

)
≤ Ch‖∇u‖2

L2(Sh).

(6.3)
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The next, key estimate, is on the gradient of ū · ~n. It is obtained using the
divergence theorem on the surface S:

Lemma 6.4. Assume (H1) and let u ∈ W 1,2(Sh,Rn) satisfy u · ~n = 0 on ∂+Sh.
Then:

‖∇(ū · ~n)‖L2(S) + ‖R~n‖L2(S) ≤ C
(
‖ū‖L2(S) + ‖u‖W 1,2(Sh) + h−1/2‖D(u)‖L2(Sh)

)

+ C
(
h−1‖u‖W 1,2(Sh) · ‖D(u)‖L2(Sh)

)1/2
.

Proof. First note that ‖R~n‖L2(S) = ‖~nRtan‖L2(S), since ~nR~n = 0 and R ∈ so(n).
To prove the desired estimate we use the Hilbert space identity:

‖a‖2 + ‖b‖2 = ‖a − b‖2 + 2〈a, b〉

with a = ∇(ū · ~n) and b = ~nRtan.
Integration by parts shows that:

< a, b > =

∣∣∣∣
�

S

(~nRtan) · ∇(ū · ~n)

∣∣∣∣ ≤ C‖ū · ~n‖L2(S)

(
‖R‖L2(S) + ‖∇(~nRtan)‖L2(S)

)

≤ C‖ū · ~n‖L2(S)‖R‖W 1,2(S)

≤ C‖ū · ~n‖L2(S)

(
h−3/2‖D(u)‖L2(Sh) + h−1/2‖∇u)‖L2(Sh)

)

≤ Ch−1‖u‖W 1,2(Sh) · ‖D(u)‖L2(Sh) + C‖u‖2
W 1,2(Sh),

(6.4)

where we applied the divergence theorem, Theorem 5.1 and Lemma 6.3.
On the other hand a = ~n∇ū + ū · ∇~n, so by Lemma 6.1:

‖a − b‖ ≤ C
(
‖ū‖L2(S) + ‖∇ū − Rtan‖L2(S)

)

≤ C‖ū‖L2(S) + Ch1/2‖u‖W 1,2(Sh) + Ch−1/2‖D(u)‖L2(Sh).
(6.5)

Combining (6.4) and (6.5) proves the result.

Finally, in presence of the stronger condition (H2), we have an additional bound:

Lemma 6.5. Assume (H2) and let u ∈ W 1,2(Sh,Rn), u · ~nh = 0 on ∂Sh. Then:

1

h

�
S

|ū · ∇(gh
1 + gh

2 )| ≤ Ch1/2‖u‖W 1,2(Sh) + Ch−1/2‖D(u)‖L2(Sh).

Proof. We have:

1

h

�
S

|ū·∇(gh
1 + gh

2 )|

≤ 1

h

�
S

|u(x − gh
1 (x)~n(x)) · ∇gh

1 (x) + u(x + gh
2 (x)~n(x)) · ∇gh

2 (x)| dx

+ C‖u − ūπ‖L1(∂Sh)

≤ Ch−1/2‖D(u)‖L2(S) + Ch3/2‖u‖W 1,2(Sh) + Ch1/2‖∇u‖L2(Sh).

The last inequality follows from Lemma 6.2 (v) and from an easy bound: ‖u −
ūπ‖L1(∂Sh) ≤ Ch1/2‖∇u‖L2(Sh).
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7. A proof of main theorems

In this section we will prove the uniform Korn’s estimate:

(7.1) ‖u‖W 1,2(Sh) ≤ C‖D(u)‖L2(Sh),

under the angle constraints (2.4) or (2.6). We argue by contradiction; assume thus
that (7.1) is not valid, for any uniform constant C. Hence, there exist sequences
hn −→ 0 and uhn ∈ W 1,2(Shn) (for simplicity we will write h instead of hn) such
that the assumptions of Theorem 2.1 or 2.2 are satisfied, but:

(7.2) h−1/2‖uh‖W 1,2(Sh) = 1 and h−1/2‖D(uh)‖L2(Sh) −→ 0 as h −→ 0.

For the proof of Theorem 2.1 we will assume that uh · ~nh = 0 on ∂+Sh. The case
of the tangency condition on ∂−Sh is proven exactly the same.

Notice that (7.2) immediately gives, through Lemmas 6.3, 6.1 and 6.4, that:

lim
h→0

(
‖ūh · ~n‖L2(S) + ‖∇ūh − Rh

tan‖L2(S)

)
= 0,(7.3)

lim
h→0

(
‖∇(ūh · ~n)‖L2(S) + ‖Rh~n‖L2(S)

)
≤ C lim

h→0
‖ūh‖L2(S).(7.4)

Also, Lemma 6.5 implies that under the assumption (H2):

(7.5) lim
h→0

�
S

|ūh · ∇(g1 + g2)| = 0,

where we used that the sequence ūh is bounded in L1(S), again in view of (7.2).
A contradiction will be derived in several steps. In particular, the tangential

component of the average ū:

ūh
tan(x) = ūh(x) − (ūh · ~n) · ~n(x) ∈ TxS.

will be estimated using the Korn inequality on hypersurfaces (see Appendix C).
The conditions (2.4) and (2.6) assumed in Theorems 2.1 and 2.2 will be used in full
(not just for rotations as in Theorem 2.3).

Proof of Theorems 2.1 and 2.2.
1. Applying Theorem 11.2 to each tangent vector field ūh

tan, we obtain a sequence
vh
0 ∈ I(S) such that:

‖ūh
tan − vh

0 ‖W 1,2(S) ≤ C‖D(ūh
tan)‖L2(S).

For every x ∈ S and τ ∈ TxS there holds:

|∂τ ūh
tan(x) · τ | = |∂τ ūh(x) · τ − (ūh · ~n)(x) · ∂τ~n(x)|

≤ |∂τ ūh(x) − Rh(x)τ | + C|(ūh · ~n)(x)|,

as Rh(x) ∈ so(n). Thus, by (7.3):

‖D(ūh
tan)‖L2(S) ≤ C

(
‖∇ūh − Rh

tan‖L2(S) + ‖ūh · ~n‖L2(S)

)
−→ 0 as h −→ 0.

Therefore:

(7.6) lim
h→0

‖ūh
tan − vh

0 ‖W 1,2(S) = 0.

2. Let P be the orthogonal projection (with respect to the L2(S) norm) of
the space I(S) onto its subspace V , which we take to be the whole I(S) in case
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of Theorem 2.1 and Ig1,g2
(S) in case of Theorem 2.2. Call vh

1 = Pvh
0 ∈ V and

vh
2 = vh

0 − vh
1 ∈ V ⊥. In both cases (3.1) implies:

(7.7) ‖uh‖L2(Sh) ≤ C‖uh − vh
1 π‖L2(S).

We now prove that:

(7.8) lim
h→0

‖vh
2 ‖L2(S) = 0.

In case of Theorem 2.1, when V ⊥ = {0}, (7.8) is trivial, so we concentrate on the
case of Theorem 2.2. Notice that then, (7.5) and (7.6) yield:�

S

|vh
2 · ∇(g1 + g2)| =

�
S

|vh
0 · ∇(g1 + g2)|

≤ C‖ūh
tan − vh

0 ‖L1(S) + C

�
S

|ūh · ∇(g1 + g2)| −→ 0 as h −→ 0.

(7.9)

Since all norms in the finitely dimensional space V ⊥ are equivalent, we have:

(7.10) ‖vh
2 ‖L2(S) ≤ C

�
S

|vh
2 · ∇(g1 + g2)|.

Indeed, the right hand side of (7.10) provides a norm on the space in question.
Now, (7.9) and (7.10) clearly imply (7.8).

3. Using the Poincaré inequality on each segment [−gh
1 (x), gh

2 (x)], and by (7.2):

(7.11) h−1/2‖ūhπ − uh‖L2(Sh) ≤ Ch1/2‖∇uh‖L2(Sh) −→ 0 as h −→ 0.

We now obtain convergence to 0 of various quantities:

h−1/2‖ūh
tanπ − uh‖L2(Sh) ≤ h−1/2‖ūhπ − uh‖L2(Sh) + C‖ūh · ~n‖L2(S) −→ 0

by (7.11) and (7.3),

h−1/2‖vh
0 π − vh

1 π‖L2(Sh) −→ 0 by (7.8),

h−1/2‖uhπ − vh
1 π‖L2(Sh) −→ 0 by (7.6) and convergences above.

Consequently, by (7.7):

(7.12) lim
h→0

h−1/2‖uh‖L2(Sh) = 0.

Hence:

‖ūh‖L2(S) −→ 0,(7.13)

‖∇(ūh · ~n)‖L2(S) + ‖Rh~n‖L2(S) −→ 0 by (7.4) and (7.13),(7.14)

‖vh
0 ‖L2(S) −→ 0 by (7.6) and (7.13).(7.15)

Because of the equivalence of all norms on the finitely dimensional space I(S),
(7.15) implies:

(7.16) lim
h→0

h−1/2‖vh
0 ‖W 1,2(S) = 0.

Now, we may estimate the quantity h−1‖∇uh‖L2(Sh) by the following norms: h−1/2‖∇uh−
Rhπ‖L2(Sh), ‖Rh~n‖L2(S), ‖Rh

tan−∇ūh‖L2(S), ‖∇(ūh ·~n)‖L2(S), ‖∇ūh
tan−∇vh

0 ‖L2(S),

‖∇vh
0 ‖L2(S), and use Theorem 5.1, (7.14), (7.3), (7.6) and (7.16) to conclude that:

lim
h→0

h−1/2‖∇uh‖L2(Sh) = 0.

Together with (7.12) this contradicts (7.2).
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8. Estimates without Killing fields

In this section we prove Theorem 2.3. The first step is to give a bound for
the distance of u from the generators of rigid motions in Rn. This follows from
Theorem 5.1 and the uniform Poincaré inequality (12.2):

Lemma 8.1. Assume (H1). For every u ∈ W 1,2(Sh,Rn) there exists a linear
function v(z) = Az + b, A ∈ so(n), b ∈ Rn, such that:

‖u − v‖W 1,2(Sh) ≤ Ch−1‖D(u)‖L2(Sh).

Proof. Recall the results of Theorem 5.1 and define:

A =

 
S

R(x) dx ∈ so(n).

By Theorem 5.1 and the Poincaré inequality on S, we obtain:�
Sh

|∇u − A|2 ≤ C

{�
Sh

|∇u − Rπ|2 + h

�
S

|R(x) − A|2 dx

}

≤ C

{�
Sh

|D(u)|2 + h

�
S

|∇R|2
}

≤ Ch−2

�
Sh

|D(u)|2.
(8.1)

We now apply Theorem 12.2 to the function u(z)− Az, by which for some b ∈ Rn

there holds:

(8.2)

�
Sh

|u(z)− Az − b|2 dz ≤ C

�
Sh

|∇u − A|2 ≤ Ch−2

�
Sh

|D(u)|2.

Now (8.1) and (8.2) imply the result.

Proof of Theorem 2.3. The proof of part (i) will be carried out assuming that
u · ~nh = 0 on ∂+Sh. For the other case (u · ~nh = 0 on ∂−Sh) the argument is the
same.

1. We argue by contradiction. If (2.7) was not true, then there would be sequences
hn −→ 0 and uhn ∈ W 1,2(Shn) satisfying the conditions in (i) or (ii) and such that:

(8.3) h−1/2‖uh‖W 1,2(Sh) = 1,

(8.4) h−3/2‖D(uh)‖L2(Sh) −→ 0 as h −→ 0

(to simplify the notation, we write h instead of hn). By Corollary 8.1, there exists
a sequence vh(z) = Ahz + bh, Ah ∈ so(n), bh ∈ Rn, such that:

(8.5) h−1/2‖uh − vh‖W 1,2(Sh) −→ 0 as h −→ 0.

Because of (8.3), the sequence h−1/2vh is bounded in W 1,2(Sh) and so, without
loss of generality, we may assume that:

(8.6) Ah −→ A ∈ so(n), bh −→ b ∈ Rn as h −→ 0.

Moreover, by (8.3) and (8.5):

lim
h→0

h−1/2‖vh‖W 1,2(Sh) = lim
h→0

h−1/2‖uh‖W 1,2(Sh) = 1,

and therefore:

(8.7) |A| + |b| 6= 0.



KORN INEQUALITY IN THIN DOMAINS 19

2. We now prove that if (H1) holds together with uh · ~nh = 0 on ∂+Sh, then
we must have Ax + b ∈ R(S). Indeed, by Theorem 12.3 and Lemma 6.2 (iv):

‖vh · ~n‖L2(∂+Sh) ≤ ‖uh − vh‖L2(∂+Sh) + ‖uh · ~n‖L2(∂+Sh)

≤ C
(
h−1/2‖uh − vh‖W 1,2(Sh) + h1/2‖uh‖W 1,2(Sh)

)
−→ 0 as h −→ 0,

where the convergence above follows from (8.3) and (8.5). Thus:�
S

|(Ax + b) · ~n(x)|2 dx = lim
h→0

�
S

|vh(x) · ~n(x)|2 dx = lim
h→0

‖vh · ~n‖2
L2(∂+Sh) = 0.

We now prove that if (H2) holds, together with uh · ~nh = 0 on ∂Sh, then
Ax + b ∈ Rg1,g2

(S). By Theorem 12.3 and Lemma 6.2 (v):

1

h2

�
S

|vh(x + gh
2 (x)~n(x)) · ∇gh

2 (x) + vh(x − gh
1 (x)~n(x)) · ∇gh

1 (x)|2 dx

≤ 1

h2

{
Ch2‖vh − uh‖2

L2(∂Sh)

+

�
S

|uh(x + gh
2 (x)~n(x)) · ∇gh

2 (x) + uh(x − gh
1 (x)~n(x)) · ∇gh

1 (x)|2 dx
}

≤ C

h

{
‖vh − uh‖W 1,2(Sh) + ‖D(uh)‖2

L2(Sh) + h2‖u‖2
W 1,2(Sh)

}
−→ 0 as h −→ 0,

(8.8)

where (8.5) with (8.4) justify the convergence. Hence, by (8.8):�
S

|(Ax + b) · ∇(g1 + g2)(x)|2 dx = lim
h→0

1

h2

�
S

|vh · ∇(gh
1 + gh

2 )|2 = 0

3. We see that in both cases (i) and (ii) there holds (using condition (3.1)):

‖uh‖L2(Sh) ≤ C‖uh − (Aπ(z) + b)‖L2(Sh).

Thus, by (8.5) and (8.6):

h−1/2‖uh‖L2(Sh) ≤ Ch−1/2‖uh − (Aπ(z) + b)‖L2(Sh)

≤ Ch−1/2‖uh − vh‖L2(Sh) + Ch−1/2‖vh − (Aπ(z) + b)‖L2(Sh) −→ 0.

We deduce that limh→0 h−1/2‖vh‖L2(Sh) = 0 as well, which contradicts (8.7).

9. Appendix A - The Korn-Poincaré inequality in a fixed domain

In this section Ω ⊂ Rn is a fixed open, bounded domain with Lipschitz boundary.
For x ∈ ∂Ω, by ~nΩ(x) we denote the outward unit normal to ∂Ω at x. We first
recall the standard Korn inequality [3, 7, 5]:

Theorem 9.1. (i) There holds:
{
u ∈ L2(Ω,Rn); D(u) ∈ L2(Ω, Mn×n)

}
= W 1,2(Ω,Rn)

and the following equivalence of norms:

‖u‖W 1,2(Ω) ≤ CΩ

(
‖u‖L2(Ω) + ‖D(u)‖L2(Ω)

)
≤ C2

Ω‖u‖W 1,2(Ω).

(ii) For every u ∈ W 1,2(Ω,Rn) there exists A ∈ so(n) and b ∈ Rn so that:

‖u − (Ax + b)‖W 1,2(Ω) ≤ CΩ‖D(u)‖L2(Ω).

The constants CΩ above depend only on the domain Ω and not on u.
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Notice that Theorem 9.1 (ii) implies that for each u ∈ W 1,2(Ω,Rn) satisfying
the orthogonality condition:�

Ω

u · v = 0 ∀v ∈ R(Ω) = {Ax + b; A ∈ so(n), b ∈ Rn}

one has:

‖u‖W 1,2(Ω) ≤ CΩ‖D(u)‖L2(Ω).

As we show below, the same is true if we restrict our attention to vector fields
tangential on ∂Ω. Define:

R∂(Ω) = {v ∈ R(Ω); v · ~nΩ = 0 on ∂Ω} .

Theorem 9.2. For every u ∈ W 1,2(Ω,Rn) such that u · ~nΩ = 0 on ∂Ω and:

(9.1)

�
Ω

u · v = 0 ∀v ∈ R∂(Ω),

there holds:

‖u‖W 1,2(Ω) ≤ CΩ‖D(u)‖L2(Ω),

and the constant CΩ depends only on Ω.

Proof. We argue by contradiction, starting with a sequence un ∈ W 1,2(Ω) satisfying
un · ~nΩ = 0 on ∂Ω, (9.1) and:

(9.2) ‖un‖W 1,2(Ω) = 1, ‖D(un)‖L2(Ω) −→ 0 as n −→ ∞.

Without loss of generality, un converges hence weakly to some u in W 1,2(Ω), and
the convergence is strong in L2(Ω). Clearly u · ~nΩ = 0 on ∂Ω and (9.1) still
holds. By Theorem 9.1 (ii), there exist sequences An ∈ so(n) and bn ∈ Rn so that
un − (Anx + bn) converges to 0 in W 1,2(Ω).

Therefore Anx+bn converges weakly to u in W 1,2(Ω) and we see that u ∈ R∂(Ω).
By (9.1) there hence must be u = 0 and un converges then (strongly) to 0 in
W 1,2(Ω). This contradicts the first condition in (9.2).

Example 9.3. Let Ω = B1 ⊂ R3. Since A ∈ so(3), there must be Ax = a × x, for
some a ∈ R3 and we obtain:

R∂(B1) = {a × x; a ∈ R3.}
Condition (9.1) reads:

0 =

�
B1

(a × x) · u(x) dx = a ·
�

B1

x × u(x) dx ∀a ∈ R3.

Thus the class of functions u for which the hypotheses of Theorem 9.2 are satisfied
is the following:

{
u ∈ W 1,2(Ω); u · ~nΩ = 0 on ∂B1,

�
B1

x × u(x) dx = 0

}
.

As observed in the next result, condition (9.1) is not void if and only if our
bounded domain Ω is rotationally symmetric.

Theorem 9.4. If R∂(Ω) 6= {0} then Ω must be rotationally symmetric.
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Proof. Let v(x) = Ax + b ∈ R∂(Ω). We will prove that the flow generated by the
tangent vector field v|∂Ω is a rotation.

Since A ∈ so(n) we have that Rn = Ker(A) ⊕ Im(A) is an orthogonal decom-
position of Rn. Write b = bker + Ab0, bker ∈ Ker(A), and consider the translated
domain Ω0 = Ω + b0. Now:

Ax + b = A(x + b0) + bker ∀x ∈ Ω,

so y 7→ Ay + bker is a tangent vector field on ∂Ω0. Consider the flow α which this
field generates in Rn: {

α′(t) = Aα(t) + bker

α(0) ∈ ∂Ω0.

Then α(t) = β(t) + δ(t), where:
{

β′(t) = Aβ(t), β(0) ∈ Im(A)
δ′(t) = bker, δ(0) ∈ Ker(A), β(0) + δ(0) = α(0).

Notice that:
d

dt
|β(t)|2 = 2β(t) · Aβ(t) = 0,

so β(t) remains bounded, while δ(t) = δ(0)+ tbker is unbounded for bker 6= 0. Since
α(t) ∈ ∂Ω0 for all t ≥ 0, there must be bker = 0. Hence the flow α is a rotation
(generated by A ∈ so(n)) on ∂Ω0, which proves the claim.

From the proof above it follows that each v ∈ R∂(Ω) has the form v(x) =
A(x+ b0), A ∈ so(n), b0 ∈ Rn. We thus obtain the following characterisation when
Ω ⊂ R3:

R∂(Ω) =





{0} if Ω has no rotational symmetry
a 1-parameter family if Ω has one rotational symmetry
a 3-parameter family if Ω = Br.

10. Appendix B - The uniform Korn inequality on star-shaped domains

Throughout this section, Ω is an open Lipschitz domain in Rn, star-shaped with
respect to the origin and such that:

Br ⊂ Ω ⊂ BR ⊂ B1,

for some r > 0 and R ≤ 1. The Lipschitz constant of the boundary of Ω is denoted
by L. Our goal is to prove:

Theorem 10.1. For every u ∈ W 1,2(Ω,Rn) there exists A ∈ so(n) such that:

(10.1) ‖∇u − A‖L2(Ω) ≤ Cn,r/R,L · ‖D(u)‖L2(Ω),

and the constant Cn,r/R,L above depends only on the quantities n, r/R and L.

The proof is essentially a combination of the arguments in [15, 14], where we
need to keep track of the magnitude of various constants, and of [5]. In [5], the L2

distance of ∇u from a single proper rotation is estimated in terms of the L2 norm
of the pointwise distance of ∇u from the space of proper rotations SO(n). Note
that so(n) is the tangent space to SO(n) at Id. Hence (10.1) can be seen as the
“linear” version of the result in [5].
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Lemma 10.2. For every φ ∈ W 1,2(Ω) there holds:�
Ω

|φ|2 ≤ Cn,r,L

�
Ω

(
|φ|2 + |∇φ|2

)
dist2(x, ∂Ω) dx.

Proof. Without loss of generality we may assume that φ ∈ C∞(Rn). We adopt the
proof of Theorem 8.2. in [14].

1. Let θ : [0,∞) −→ [0, 1] be a smooth non-decreasing function satisfying:

θ(s) = 0 for s ≤ r

4
√

n
, θ(s) = 1 for s ≥ r

2
√

n
,

|θ′(s)| ≤ 8
√

n

r
for s ≥ 0.

Fix a point p ∈ ∂Ω and consider the function θf on the segment [0, p] joining the
origin and p. Using Hardy’s inequality and noting that

∣∣∣|p| − |x|
∣∣∣ ≤ Ldist(x, ∂Ω) ∀x ∈ [0, p],

we obtain:� |p|

r/2
√

n

|φ|2 d|x| ≤
� |p|

0

|θφ|2 d|x| ≤ 4

� |p|

0

∣∣∣∣
∂(θφ)

∂|x|

∣∣∣∣
2

·
∣∣∣|p| − |x|

∣∣∣
2

d|x|

≤ 4L2

� |p|

r/4
√

n

((8
√

n

r

)2

+ 1
) (

|φ|2 + |∇φ|2
)
dist2(x, ∂Ω) d|x|.

Hence:� |p|

r/2
√

n

|x|n−1|φ|2 d|x| ≤ Cn,r,L

� |p|

r/4
√

n

|x|n−1
(
|φ|2 + |∇φ|2

)
dist2(x, ∂Ω) d|x|,

which after integration in spherical coordinates gives:

(10.2)

�
Ω\Br/2

√
n

|φ|2 dx ≤ Cn,r,L

�
Ω\Br/4

√
n

(
|φ|2 + |∇φ|2

)
dist2(x, ∂Ω) dx.

2. Consider now a box D such that Br/2
√

n ⊂ D ⊂ Br/2 and let ϑ : [0,∞) −→
[0, 1] be a smooth non-increasing function such that:

ϑ(s) = 1 for s ≤ r

2
√

n
, ϑ(s) = 0 for s ≥ 3

4

r√
n

,

|ϑ′(s)| ≤ 8
√

n

r
for s ≥ 0.

We now apply Hardy’s inequality to the function ϑφ on segments [0, |p|] collinear
with the x1 direction, in the box D1 inscribed in B3r/4. Taking p ∈ ∂D1, for all x
in the corresponding segment we have:

∣∣∣|p1| − |x1|
∣∣∣ ≤ 3

4

r√
n
≤ Cn

r

4
≤ Cn,rdist(x, ∂Ω).

Using iterated integrals, we obtain:

(10.3)

�
Br/2

√
n

|φ|2 dx ≤
�

D

|φ|2 dx ≤ Cn,r

�
D1

(
|φ|2 + |∇φ|2

)
dist2(x, ∂Ω) dx.

Combining the inequalities (10.2) and (10.3) proves the lemma.
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Lemma 10.3. For every φ ∈ W 1,2(Ω) there exists a ∈ R such that:�
Ω

|φ − a|2 ≤ Cn,r,L

�
Ω

|∇φ|2dist2(x, ∂Ω) dx.

Proof. We adopt the method of proof from Theorem 3.1. in [5].
For a small δ ∈ (0, r/2), consider the domain:

Ωδ = {x ∈ Ω; dist(x, ∂Ω) > δ}.
By the Poincaré inequality on star-shaped domains we obtain:

(10.4)

�
Ωδ

∣∣∣∣φ −
 

Ωδ

φ

∣∣∣∣
2

≤ Cn,r

�
Ωδ

|∇φ|2.

The above inequality follows, for example, from Theorem 12.1 in Appendix D, in
view of Br/2 ⊂ Ωδ ⊂ B1. Therefore:

(10.5)

�
Ωδ

∣∣∣∣φ −
 

Ωδ

φ

∣∣∣∣
2

≤ Cn,r
1

δ2

�
Ωδ

|∇φ|2dist2(x, ∂Ω) dx.

Applying Lemma 10.2 to the function φ −
�
Ωδ

φ on Ω we get:�
Ωδ

∣∣∣∣φ −
 

Ωδ

φ

∣∣∣∣
2

≤ Cn,r,L

�
Ω

( ∣∣∣∣φ −
 

Ωδ

φ

∣∣∣∣
2

+ |∇φ|2
)
dist2(x, ∂Ω) dx

≤ Cn,r,L

{
δ2

�
Ω\Ωδ

∣∣∣∣φ −
 

Ωδ

φ

∣∣∣∣
2

+

�
Ωδ

∣∣∣∣φ −
 

Ωδ

φ

∣∣∣∣
2

+

�
Ω

|∇φ|2dist2(x, ∂Ω) dx

}

≤ Cn,r,L ·
{

δ2

�
Ω

∣∣∣∣φ −
 

Ωδ

φ

∣∣∣∣
2

+

(
Cn,r

δ2
+ 1

)�
Ω

|∇φ|2dist2(x, ∂Ω) dx

}
,

where the last inequality follows from (10.5).
Taking now δ sufficiently small, the first term in the right hand side is annihilated

by the left hand side, which proves the lemma for a =
�
Ωδ

φ.

We now recall the following result from [15]:

Lemma 10.4. Let φ ∈ W 1,2(Ω) be such that ∆φ = 0 in D′(Ω). Then:�
Ω

|∇φ|2dist2(x, ∂Ω) dx ≤ 20

�
Ω

|φ|2.

Proof of Theorem 10.1.
The left hand side of (10.1) may be written as the distance (in L2(Ω)) of ∇u from
the closed subspace of constant functions A ∈ so(n). Since the distance function is
continuous, we may without loss of generality assume that u ∈ C(Rn,Rn).

1. Consider the problem:
{

∆v = ∆u in Ω,
v = 0 on ∂Ω.

Since:

(10.6) ∆u = 2 div

{
D(u) − 1

2
(tr D(u)) · Id

}
,
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we see that:�
Ω

|∇v|2 =

�
Ω

∇v :

(
D(u) − 1

2
(tr D(u)) · Id

)
≤ 2‖∇v‖L2(Ω)‖D(u)‖L2(Ω).

Therefore:

(10.7) ‖∇v‖L2(Ω) ≤ 4‖D(u)‖L2(Ω).

2. We are going to study the remaining part w = u − v, which is harmonic:
∆w = 0 in Ω. Write:

(10.8) Ω =

∞⋃

i=1

Bri(ai),

where each radius ri satisfies: 2ri ≤ dist(ai, ∂Ω) ≤ 3ri. In particular, this implies:

(10.9)
1

4
dist(x, ∂Ω) ≤ ri ≤ dist(x, ∂Bri(ai)) ∀x ∈ Bri(ai)

It is also clear that the covering number of (10.8) is bounded by some constant
Cn,L depending only on n and L.

On each doubled ball B2ri(ai) we use the standard Korn inequality (see Theorem
9.1) to obtain:

‖∇w − Ai‖L2(B2ri
(ai)) ≤ Cn‖D(w)‖L2(B2ri

(ai)),

for some matrices Ai ∈ Mn×n. Use now Lemma 10.4 to the components of the
harmonic vector function ∇w − Ai on B2ri(ai):�

B2ri
(ai)

|∇2w|2dist2(x, ∂B2ri(ai)) dx ≤ Cn

�
B2ri

(ai)

|D(w)|2.

In view of (10.9) the above estimate implies:�
Ω

|∇2w|2dist2(x, ∂Ω) dx ≤ 16Cn

∑

i

�
B2ri

(ai)

|D(w)|2 ≤ Cn,L

�
Ω

|D(w)|2.

Now by Lemma 10.3 applied to the function ∇w, there exists B ∈ Mn×n so that:

(10.10)

�
Ω

|∇w − B|2 ≤ Cn,r,L

�
Ω

|D(w)|2.

3. Define A = (B − BT )/2 ∈ so(n) and notice that for every x ∈ Ω there holds:

|B − A| = distMn×n(B, so(n)) ≤ |B −∇w(x)| + distMn×n(∇w(x), so(n))

= |B −∇w(x)| + |D(w)(x)|.
Therefore:

(10.11)

�
Ω

|B − A|2 ≤ Cn,r,L

�
Ω

|D(w)|2.

Now by (10.7), (10.10) and (10.11):

‖∇u − A‖L2(Ω) ≤ ‖∇v‖L2(Ω) + ‖∇w − B‖L2(Ω) + ‖B − A‖L2(Ω)

≤ Cn,r,L

(
‖D(u)‖L2(Ω) + ‖D(w)‖L2(Ω)

)

≤ Cn,r,L‖D(u)‖L2(Ω),

(10.12)

the last inequality following from D(w) = D(u) − D(v) and the bound (10.7).
4. All the previous calculations were done assuming that R = 1. If R < 1, we

may apply (10.12) to the rescaled domain Ω̃ = 1
RΩ and note that Br/2 ⊂ Ω̃ ⊂ B1,
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while the Lipschitz constant of ∂Ω̃ remains the same as of ∂Ω. This proves the
desired bound of the Theorem.

11. Appendix C - The Killing fields and the Korn inequality on

hypersurfaces

For a tangent vector field u ∈ W 1,2(S,Rn), define D(u) as the symmetric part
of its tangential gradient:

D(u) =
1

2

[
(∇u)tan + (∇u)T

tan

]
.

That is, for x ∈ S, D(u)(x) is a symmetric bilinear form given through:

τD(u)(x)η =
1

2

(
τ · ∂ηu(x) + η · ∂τu(x)

)
∀τ, η ∈ TxS.

Recall that a smooth vector field u as above is a Killing field, provided that
D(u) = 0 on S. We first prove that in presence of this last condition, the reg-
ularity u ∈ W 1,2(S) actually implies that u is smooth. Further, we directly recover
a generalisation of Theorem 9.1 (ii) to the non-flat setting (Theorem 11.2). Actu-
ally, the bound in Theorem 9.1 (i) remains true also in the more general framework
of Riemannian manifolds [2].

The following extension of u on the neighbourhood of S will be useful in the
sequel:

(11.1) ũ(x + t~n(x)) = (Id + tΠ(x))−1 · u(x) ∀x ∈ S ∀t ∈ (−h0, h0)

for some small h0 > 0. Here Π(x) = ∇~n(x) is the shape operator on S. We have

ũ ∈ W 1,2(S̃,Rn) where S̃ = Sh0 is open in Rn. Notice that for each z = x+t~n(x) ∈
S̃ and τ1 ∈ TxS there holds:

∂τ1
ũ(z) =

{
∇
[
(Id + tΠ(x))−1

]
· (Id + tΠ(x))−1τ1

}
· u(x)

+ (Id + tΠ(x))−1 · ∇u(x) · (Id + tΠ(x))−1τ1.

The first component above is bounded by C|tu(x)|. Taking the scalar product of
the second component with any τ2 ∈ TxS gives:

(
(Id + tΠ(x))−1τ2

)
· ∇u(x) ·

(
(Id + tΠ(x))−1τ1

)
.

Since (Id + tΠ(x))(TxS) = TxS we obtain:

τ2D(ũ)(z)τ1 =
(
(Id + tΠ(x))−1τ2

)
· D(u)(x) ·

(
(Id + tΠ(x))−1τ1

)

+ Z(t, x) · u(x),

|Z(t, x)| ≤ C.

(11.2)

On the other hand, ~n(x) · ũ(z) = 0, so for any τ ∈ TxS:

~n · ∂τ ũ(z) = −
(
Π(x)(Id + tΠ(x))−1τ

)
· ũ(z)

= −
(
(Id + tΠ(x))−1 · Π(x) · (Id + tΠ(x))−1u(x)

)
· τ = τ · ∂~nũ(z).

Hence:

~nD(ũ)(z)τ = −
(
(Id + tΠ(x))−1 · Π(x) · (Id + tΠ(x))−1u(x)

)
· τ,

~nD(ũ)(z)~n = 0.
(11.3)
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Lemma 11.1. Let u ∈ W 1,2(S,Rn) be a tangent vector field such that D(u) = 0
almost everywhere on S. Then u ∈ I(S).

Proof. We only need to prove that u is smooth. Consider the extension ũ ∈
W 1,2(S̃,Rn) as above. By (11.2), (11.3) and the formula (10.6) we see that

D(ũ) ∈ W 1,2(S̃) and hence:

∆ũ ∈ L2(S̃).

The result follows now by the elliptic regularity and a bootstrap argument.

Theorem 11.2. For every tangent vector field u ∈ W 1,2(S,Rn) there exists v ∈
I(S) such that:

‖u − v‖W 1,2(S) ≤ CS‖D(u)‖L2(S)

and the constant CS depends only on the surface S.

Proof. Since I(S) is a finitely dimensional subspace of the Banach space E of all
W 1,2(S) tangent vector fields, its orthogonal complement I(S)⊥ is a closed subspace
of E. We will prove that:

(11.4) ‖u‖W 1,2(S) ≤ CS‖D(u)‖L2(S) ∀w ∈ I(S)⊥

which implies the Theorem.
If (11.4) was not true, there would be a sequence un ∈ I(S)⊥ such that:

‖un‖W 1,2(S) = 1, ‖D(un)‖L2(S) −→ 0 as n −→ ∞
Without loss of generality, un converge weakly in W 1,2(S) to some u ∈ I(S)⊥.
Moreover D(u) = 0 by the second condition above, so by Lemma 11.1 we obtain
that u ∈ I(S).

As the spaces I(S) and I(S)⊥ are orthogonal, there must be u = 0, and hence the
sequence un converges to 0 (strongly) in L2(S). This contradicts ‖un‖W 1,2(S) = 1,
because:

‖un‖W 1,2(S) ≤ CS

(
‖un‖L2(S) + ‖D(un)‖L2(S)

)
.

The last inequality follows from Theorem 9.1 (i) applied to the extensions ũn ∈
W 1,2(S̃) as in (11.1). Indeed, by (11.2) and (11.3) it follows that:

‖ũn‖L2(S̃) ≈ h
1/2
0 ‖un‖L2(S),

‖∇un‖L2(S) ≤ Ch
−1/2
0 ‖ũn‖W 1,2(S̃),

‖D(ũn)‖L2(S̃) ≤ Ch
1/2
0

(
‖un‖L2(S) + ‖D(un)‖L2(S)

)
.

We now want to gather a few remarks relating to the fact that the linear space
I(S) of all Killing fields on S is of finite dimension. This is a classical result [10],
and it implies that in I(S) all norms are equivalent. In particular, one has:

(11.5) ∀u ∈ I(S) ‖∇u‖L2(S) ≤ CS‖u‖L2(S),

for some constant CS depending only on the hypersurface S.
The bound (11.5), together with an estimate of CS , can also be recovered directly,

using the following identity [16], valid for Killing vector fields u:

(11.6) ∆S

(
1

2
|u|2
)

=
∣∣∣∇̃u

∣∣∣
2

− Ric (u, u).
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Here ∆S is the Laplace-Beltrami operator on S, ∇̃u = (∇u)tan is the covariant
derivative of u on S, and Ric stands for the Ricci curvature form on S.

To calculate Ric (u, u) in our particular setting, notice that by Gauss’ Teorema
Egregium ([20], vol 3), the Riemann curvature 4-tensor on S satisfies:

∀x ∈ S ∀τ, η, ξ, ϑ ∈ TxS R(τ, η)ξ·ϑ = (Π(x)τ ·ϑ)(Π(x)η·ξ)−(Π(x)τ ·ξ)(Π(x)η·ϑ).

Thus, seeing the Ricci curvature 2-tensor as an appropriate trace of R, we obtain:

∀x ∈ S ∀η, ξ ∈ TxS Ric (η, ξ) = tr (τ 7→ R(τ, η)ξ)

= (tr Π(x))Π(x)η · ξ − Π(x)ξ · Π(x)η

=
(
(tr Π(x))Π(x) − Π(x)2

)
η · ξ.

(11.7)

Integrating (11.6) on S and using (11.7) we arrive at:

(11.8) ‖∇̃u‖2
L2(S) =

�
S

(
(tr Π(x))Π(x) − Π(x)2

)
u(x) · u(x).

Notice that in the special case of a 2 × 2 matrix Π, that is when n = 3 and S is a
2-d surface in R3, the Cayley-Hamilton theorem implies:

(tr Π)Π − Π2 = (det Π) · Id,

and so:

‖∇̃u‖2
L2(S) =

�
S

det Π(x)|u|2.

In this case det Π(x) is the Gaussian curvature of S at x (see [16]).
To calculate the L2 norm of the full gradient ∇u on S, notice that:

‖∇u‖2
L2(S) − ‖∇̃u‖2

L2(S) =

�
S

n−1∑

i=1

∣∣∣∣~n · ∂

∂τi
u

∣∣∣∣
2

=

�
S

n−1∑

i=1

|u · Π(x)τi|2 =

�
S

|Π(x)u|2 .

Hence we arrive at:

(11.9) ‖∇u‖2
L2(S) =

�
S

(tr Π(x))Π(x)u(x) · u(x),

which clearly implies (11.5).

Remark 11.3. An equivalent way of obtaining the formula (11.9), but without
using the language of Riemannian geometry, is to look at the ’trivial’ extension of
u:

w(x + t~n(x)) = u(x) ∀x ∈ S ∀t ∈ (−h0, h0).

Since ∂~nw = 0 and w · ~n = 0 on the boundary of S̃ = Sh0 , by (10.6) one has:

(11.10) ‖∇w‖2
L2(S̃)

= −2

�
S̃

div D(w) · w − ‖div w‖2
L2(S̃)

.

Calculating
�

div D(w) · w in terms of Π(x), dividing both sides of (11.10) by 2h
and passing to the limit with h −→ 0, one may recover (11.9) directly.

Remark 11.4. From the equivalence of the L2 and the W 1,2 norms on I(S), proven
in (11.9), it follows that the linear space I(S) is finitely dimensional.

For otherwise the space (I(S), ‖ · ‖W 1,2(S)) would have a countable Hilbertian
(orthonormal) base {ei}∞i=1 and thus necessarily the sequence {ei} would converge
to 0, weakly in W 1,2(S). But this implies that limh→0 ‖ei‖L2(S) = 0, which by the

norms equivalence gives the same convergence in W 1,2(S), and a clear contradiction.
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12. Appendix D - The uniform Poincaré inequality and the trace

theorem in thin domains

Theorem 12.1. Assume that Ω ⊂ Rn is open, Lipschitz, star-shaped with respect
to the origin and such that:

Br ⊂ Ω ⊂ BR ⊂ B1.

Then for every u ∈ W 1,2(Ω,R) there holds:

‖u −
 

Ω

u‖L2(Ω) ≤ Cn,r/RR · ‖∇u‖L2(Ω),

where the constant Cn,r/R depends only on the quantities n and r/R.

Proof. The proof follows, for example, from [1] where the first nonzero eigenvalue

α1 of the Neumann problem for −∆ on Ω is estimated from below by Cn · rn

Rn+2 ,
the constant Cn depending on n only. Recalling that the best Poincaré constant

equals to α
−1/2
1 , the result follows.

Theorem 12.2. Assume (H1) and let h > 0 be sufficiently small. For every
u ∈ W 1,2(Sh,R) there exists a constant a ∈ R so that:

‖u − a‖L2(Sh) ≤ C‖∇u‖L2(Sh)

and C is independent of h, a or u.

Proof. The argument is a combination of the proof of Theorem 5.1 and the Poincaré
inequality on the fixed surface S.

Let Dx,h, Bx,h, ηx be as in the proof of Theorem 5.1. Define a smooth function
ã : S −→ R:

ã(x) =

�
Sh

ηx(z)u(z) dz.

We will prove the theorem for:

a =

 
S

ã(x) dx.

First of all, by Theorem 12.1, we see that the local estimate (5.1) is in our new
setting replaced by: �

Bx,h

|u − ax,h|2 ≤ Ch2

�
Bx,h

|∇u|2,

with ax,h =
�

Bx,h
u ∈ R and C being, as usual, a uniform constant. Repeating the

calculations leading to (5.2) and (5.3), we thus obtain:

|ã(x) − ax,h|2 ≤ Ch2−n

�
Bx,h

|∇u|2,

|∇ã(x′)|2 ≤ Ch−n

�
2Bx,h

|∇u|2 ∀x′ ∈ Dx,h,

which imply, exactly as in (5.5):�
Sh

|u − ãπ|2 ≤ Ch2

�
Sh

|∇u|2,
�

S

|∇ã|2 ≤ Ch−1

�
Sh

|∇u|2.
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Now by the above inequalities and the standard Poincaré inequality on surfaces:�
Sh

|u − a|2 ≤ C

{�
Sh

|u − ãπ|2 + h

�
S

|ã(x) − a|2 dx

}

≤ C

{
h2

�
Sh

|∇u|2 + h

�
S

|∇ã|2
}

≤ C

�
Sh

|∇u|2,

which proves the result.

Theorem 12.3. Assume (H1). For every u ∈ W 1,2(Sh,R) there holds:

(12.1) ‖u‖L2(S) ≤ Ch−1/2‖u‖L2(Sh) + Ch1/2‖∇u‖L2(Sh),

(12.2) ‖u‖L2(∂Sh) ≤ Ch−1/2‖u‖L2(Sh) + Ch1/2‖∇u‖L2(Sh),

where in the left hand side we have norms of traces of u on S and ∂Sh, respectively.
The constant C is independent of u or h.

Proof. Since |gh
i (x)| ≥ Ch, (12.1) will be implied by the same inequality for Sh

with gh
1 = gh

2 = Ch. The latter one can be obtained covering Sh with the cylinders
Bx,h of size h and applying the scaled version of the usual trace theorem to Bx,h.

Notice, that the constant C in (12.1) depends only on n and the Lipschitz con-
stant of S. Since |∇gh

i (x)| ≤ Ch and |gh
i (x)| ≥ Ch for each s ∈ S, we may use the

same argument as before on {x − t~nh(x); x ∈ ∂Sh, t ∈ (0, Ch)} ⊂ Sh to prove
(12.2).
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