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Preprint no.: 107 2007





Moving domain walls in magnetic nanowires

Katharina Kühn
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Abstract

This paper investigates the reversal of magnetic nanowires via a per-

turbation argument from the static case. We consider the gradient flow

equation of the micromagnetic energy including the nonlocal stray field

energy. For thin wires and weak external magnetic fields we show the

existence of travelling wave solutions. These travelling waves are almost

constant on the cross section and can thus be seen as moving domain walls

of a type called transverse wall.

1 Introduction

Because of possible technical applications [1, 10] in the recent years there has
been a growing interest in magnetic nanowires and especially in their reversal
modes. It is known that the reversal of the magnetisation starts at one end of
the wire and then a domain wall separating the already reversed part from the
not yet reversed part is propagating through the wire.

In the micromagnetic model, the evolution of the magnetisation is described by
the Landau-Lifshitz-Gilbert (LLG) equation. We simplify this equation taking
the overdamped limit, that is, we consider the gradient flow equation of the
micromagnetic energy. Viewing static domain walls as travelling waves with
speed 0, we show the existence of travelling wave solutions for thin wires and
weak external magnetic fields via a perturbation argument. This argument relies
crucially on the fact that the wires are thin, since we need strong regularity of
the static domain wall. We have proved strong regularity in the case of thin
wires [7], and we cannot expect it for thick wires where the examples of low
energy configurations are vortex walls which have a singularity and are not
even continuous [6].

For thin wires, static domain walls are almost constant on the cross section
[6]. Thus, after perturbing the equation with a weak external field, the moving
domain walls are still almost constant on the cross section. Such a reversal mode
has been observed in numerical simulations [4, 5, 11] and is called transverse
mode.

Various models for the transverse mode have been analysed previously. Thiav-
ille and Nakatani [10] study a one dimensional model for the transverse mode
and compare it with numerical simulations. Carbou and Labbé [3] consider a
similar model. They prove that one dimensional domain walls are asymptot-
ically stable. Sanchez [9] considers the limit of the Landau-Lifshitz equation
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when the diameter of the domain and the exchange coefficient in the equation
simultaneously tend to zero and performs an asymptotic expansion.

The final goal in understanding the transverse mode is to find solutions to
the full Landau-Lifshitz-Gilbert equation, to describe their properties, and to
rigorously derive a reduced theory. This paper is a step towards that goal that,
contrary to the other approaches, takes into account the full three dimensional
structure of the problem. We expect that the methods developed in this paper
can be applied to find solutions for the full Landau-Lifshitz-Gilbert equation.

1.1 Static domain walls

We work in the framework of micromagnetism. This is a mesoscopic continuum
theory that assigns a nonlocal nonconvex energy to each magnetisation m from
the domain Σ ⊂ R3 to the sphere S2 ⊂ R3. Experimentally observed ground
states correspond to minimisers of the micromagnetic energy functional. When
appropriately rescaled, for a soft magnetic material with an external field of
strength h in direction of ~ex this energy is

Eh(m) =

∫

Σ

(
|∇m|2 + h~ex · m

)
+

∫

R3

|H(m)|2. (1)

Here H(m) : R3 → R3 is the projection of m on gradient fields, i.e.,

H(m) = ∇u with ∆u = div m in R
3. (2)

We consider magnetisations where the domain Σ(R) = R × DR is an infinite
cylinder with radius R and set

M(R) :=
{
m : Σ(R) → S

2 |E0(m) < ∞
}

. (3)

To specify the conditions at ±∞ we define a smooth function χ : R → R3 with
limx→±∞ χ(x) = ±~ex and set

χ : R → R
3, x 7→ tanh(x)~ex. (4)

In [6] we have shown that for m : Σ(R) → S2 the condition E0(m) < ∞ is
equivalent to the statement that one of the maps four maps m ± ~ex, m ± χ is
in H1(Σ(R)). Thus, to single out the magnetisations that correspond to a 180
degree domain wall we define

Ml(R) :=
{
m : Σ(R) → S

2 |m − χ~ex ∈ H1(Σ(R))
}

. (5)

For every R > 0 there exist energy minimising 180 degree domain walls, i.e.,
minimisers of E0 in Ml(R) [6]. For R → 0 the energy minimisation problem
Γ−converges to a reduced, one dimensional problem whose minimiser can be
calculated explicitly to be

mred : R → S
2, x 7→

(

tanh( x√
2
),

1

cosh( x√
2
)
, 0

)

. (6)

In [7] we have shown that the minimiser converge to mred not only in a topology
implied by the energy estimates but also in stronger norms.
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Theorem 1. Let mR be a minimiser of E0 in Ml(R).
(i) For R small enough, mR ∈ H2(Σ(R)) + χ ∩ C1(Σ(R)).
(ii) We have

lim
R→0

1

R
‖mR − mred‖H1(Σ(R)) = 0,

lim
R→0

‖mR − mred‖C1(Σ(R)) = 0.

1.2 The dynamic model

We assume that the evolution of the magnetisation can be described by gradi-
ent flow of the energy under the condition |m| ≡ 1 with Neumann boundary
conditions, that is,

∂tm = −δmEh(m)+ (δmEh(m) ·m)m in Σ(R), ∂νm = 0 on ∂Σ(R), (7)

where
δmEh(m) = −2∆m + 2H(m) − h~ex. (8)

This equation is the overdamped limit of the Landau-Lifshitz-Gilbert equation.
We are interested in travelling wave solutions. Because of the rotational sym-
metry of the cylinder we have to take into account that the solutions may rotate
around the axis of the cylinder. We set

Qφ :=





1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)



 , Q̃φ :=





0 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)



 , (9)

and note that ∂tQωt = ωQ̃ωt+ π
2
. Rotating travelling waves with speed c and

angular velocity ω satisfy

m(t, x, y) = Qωt m(0, Q−ωt(x − ct, y)).

Defining

Φ(m) :=





mx

my2

−my1



+





0
∂y1

my1
∂y2

my1

∂y1
my2

∂y2
my2









0
y2

−y1



 , (10)

we have

∂tm(t, x, y)

= ωQ̃ωt+π
2
m (0, Q−ωt(x − ct, y)) − cQωt ∂xm (0, Q−ωt(x − ct, y))

− Qωt∇ym(0, Q−ωt(x − ct, y)) ωQ̃−ωt+π
2
~y

= −c∂xm(t, x, y) + ωQ̃π
2

m(t, x, y) − ω∇ym(t, x, y)Q̃π
2
~y

= −c∂xm(t, x, y) − ωΦ(m(t, x, y)).

In particular, rotating travelling waves that are a solution of (7) satisfy the
stationary equation

−δmEh(m) + (δmEh(m) · m)m + c∂xm + ωΦ(m) = 0 in Σ(R),

∂νm = 0 on ∂Σ(R).
(11)
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To find solutions of (11) we consider first the case h = 0 and then use a per-
turbation argument. For this we have to work in a function space that is large
enough to contain the solutions and small enough that the left hand side of
(11) is differentiable in this function space. As we will see, H2(Σ(R), R3) + χ

is a good choice. In this space we have to restrict the search to solutions with
|m| ≡ 1. We have to include further conditions in the set of admissible solutions
to break the translation invariance and the rotation invariance of the problem.
For c = 0, ω = 0, h = 0 equation (11) simplifies to

0 = −δmE0(m) + (δmE0(m) · m)m in Σ(R), ∂νm = 0 on ∂Σ(R). (12)

This is the Euler Lagrange equation for the energy E0 under the condition
|m| = 1. Thus, Theorem 1 implies that, for R > 0 small enough, minimisers
mR of the energy E0 are solutions of (12) in H2(Σ(R), R3) + χ.

We proceed a follows.

(1.) Depending on mR we define the set of admissible functions S and show
that S is a Banach submanifold of H2(Σ(R), R3) + χ.

(2.) We find a continuously differentiable function

N : S × L2(Σ(R), R) × R
3 → L2(Σ(R), R3) × R

such that (m, c, ω, h) is a solution of (11) if and only if there exists α ∈
L2(Σ(R), R) that satisfies N(m, α, c, ω, h) = (0, h).

(3.) We show that the derivative DN of N in (mR, 0, 0, 0, 0) is invertible.

(4.) Then, according to the inverse function theorem [12, Theorem 73.B, p.552],
there exists a neighbourhood U of (mR, 0, 0, 0, 0) and a neighbourhood V

of (0, 0) such that N |U → V is bijective. In particular, there exists h0 > 0,
such that for all |h| < h0 there is mh, αh, ch, ωh with N(mh, αh, ch, ωh, h) =
0. In other words, for all |h| < h0 there exists a solution of (11).

In Section 2 we go through the steps (1.)–(4.) to show the existence of travelling
wave solutions for small radii and small external magnetic field. The arguments
of Section 2 use the invertibility of an operator representing the “interesting”
part of DN(mR, 0, 0, 0, 0). This invertibility is shown in Section 3 and relies on
the fact that mR is close to mred.

1.3 Definitions and Notation

The letter p denotes a point in R3 and has the components p = (x, y1, y2) =
(x, y). A map f with values in R

3 has the components f = (fx, fy1
, fy2

).
We write fy for (0, fy1

, fy2
), i.e., we view fy as a map to {0} × R2. For a set

A ⊂ L2(Rn), we denote the closure of A in L2(Rn) by AL2 and the characteristic
function by 11A. For a, b ∈ R

n, n ∈ N we denote the scalar product by a · b. For
Ω ⊂ R3 and f, g : Ω → Rn, n ∈ N, we set

〈f, g〉Ω :=

∫

Ω

f(p) · g(p) dp,
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whenever the integral on the right hand side is defined. Moreover we set

DR(p) := {q ∈ R
2 : |p − q| < R}, DR := DR(0), Σ := Σ(R) := R × DR.

Note that we write Σ instead of Σ(R) when the radius R is clear from the
context. The definitions of χ in (4), of Ml in (5), and of Φ in (10) remain valid.
With mred as in (6) we define

mred
R : Σ(R) → S

2, (x, y) 7→ mred(x)11DR
(y), (13)

For m : Ω ⊂ R3 → R3 let H(m) : R3 → R3 be the projection of m on gradient
fields as in (2). For m : Σ(R) → R3 the micromagnetic energy without external
magnetic field is denoted by E(m) = E(m, R) and the micormagnetic energy
incuding the external magnetic field is denoted by Eh(m) = Eh(m, R).

Finally, let mR : Σ(R) → S2 always be a minimiser of E in Ml(R). To break
the translation and rotation invariance we additionally require

‖mR − mred‖L2(Σ) ≤ ‖v − mred‖L2(Σ) for all other minimizers v ∈ Ml(R).

2 The perturbation argument

As described above, the first step in the perturbation argument is to show that
we are working on a sufficiently smooth manifold. Set

SR :=

{

f ∈ H2(Σ(R), R3) + χ

∣
∣
∣
∣
∣

|f | ≡ 1, ∂νf = 0 on ∂Σ,
〈
∂xmR, f

〉

Σ
= 0,

〈
Φ(mR), f

〉

Σ
= 0.

}

,

TSR :=

{

f ∈ H2(Σ(R), R3)

∣
∣
∣
∣
∣

f · mR ≡ 0, ∂νf = 0 on ∂Σ,
〈
∂xmR, f

〉

Σ
= 0,

〈
Φ(mR), f

〉

Σ
= 0.

}

.

Lemma 2. There exists R0 > 0, such that for all R ≤ R0 the set SR is a
submanifold of H2(Σ, R3) + χ. The tangent space of SR in mR is TSR.

Proof. We show the Lemma in two steps. We define

WR :=
{

m ∈ H2(Σ, R3)
∣
∣ ∂νm|∂Σ = 0,

〈
m, ∂xmR

〉

Σ
= 0,

〈
m, Φ(mR)

〉

Σ
= 0
}

.

First, since ∂xmR, Φ(mR) ∈ L2(Σ) and since the trace of a function in H2(Σ)
is in H1(∂Σ), the set W + χ is a closed affine subspace of H2(Σ, R3) + χ.

Second, we show that SR is a submanifold of WR + χ. Set

φ : WR + χ →
{

f ∈ H2(Σ, R)
∣
∣ ∂νf |∂Σ = 0

}
, m 7→ |m| − 1,

then SR = φ−1(0). On {m ∈ WR : |φ(m)| < 1} the function φ is continuously
differentiable and the derivative in m is

Dφ(m) : WR →
{

f ∈ H2(Σ, R)
∣
∣ ∂νf |∂Σ = 0

}
, g 7→ g · m

|m| . (14)
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If R is small enough, for every m ∈ SR the differential Dφ(m) is surjective:
Since the equality ∂xmred

R · Φ(mred
R ) = 0 implies

det

( 〈
∂xmred

R , ∂xmred
R

〉

Σ

〈
∂xmR, Φ(mred

R )
〉

Σ〈
∂xmred

R , Φ(mred
R )
〉

Σ

〈
Φ(mred

R ), Φ(mred
R )
〉

Σ

)

= πR2
(

‖∂xmred
R ‖2

L2(R) + ‖Φ(mred
R )‖L2(R)

)

,

so with Theorem 1 (ii) there exists R0 such that for all R ≤ R0 we have

det

( 〈
∂xmR, ∂xmR

〉

Σ

〈
∂xmR, Φ(mR)

〉

Σ〈
∂xmR, Φ(mR)

〉

Σ

〈
Φ(mR), Φ(mR)

〉

Σ

)

> 0.

Therefore, for every f ∈ H2(Σ, R) with ∂νf |∂Σ = 0 we can find unique numbers
b1, b2 such that

〈
fm + b1∂xmR + b2Φ(mR), ∂xmR

〉

Σ
= 0,

〈
fm + b1∂xmR + b2Φ(mR), Φ(mR)

〉

Σ
= 0,

and fm + b1∂xmR + b2Φ(mR) is a pre-image of f in WR. Moreover, since in
a Hilbert space every subspace splits, in particular Dφ−1(0) splits. Thus 0 is
a regular value of φ and we can apply [12, Thm. 73C, p.556] to conclude that
SR is a submanifold of WR + χ. Because of (14) the space TSR is the tangent
space of SR in mR.

We consider the map

s : SR → L2(Σ, R3), m 7→ −δmEh(m) + (δmEh(m) · m)m,

that is, with (8),

s(m) = 2(∆m − (∆m · m)m − H(m) + (H(m) · m)m)
︸ ︷︷ ︸

s1

+ h~ex − (h~ex · m)m
︸ ︷︷ ︸

s2

.

The space H2(Σ, R) + χ embeds into C0(Σ, R), and functions m 7→ ∆m, and
m 7→ H(m) are continuous linear maps from SR to L2(Σ, R3). For the last
statement see [8, Lemma 2.6]. Thus s1 : SR → L2(Σ, R3) is well defined and
continuously differentiable.

Moreover, we have

|h~ex − (h~ex · m)m| = h
∣
∣(1 − m2

x)~ex + mxmy

∣
∣ ≤ 2h|my|,

so s2 : SR → L2(Σ, R3) is well defined and continuously differentiable, too.

Thus we can define the continuously differentable map

NR : SR × L2(Σ, R) × R
3 → L2(Σ, R3) × R,

(m, α, c, ω, h) 7→
(−δmEh(m, R) + (δmEh(m, R) · m)m + c∂xm + ωΦ(m) + αm, h) .

Since (−δmEh(m, R)+(δmEh(m, R)·m)m+c∂xm+ωΦ(m)) ⊥ m for all m ∈ SR

we have NR(m, α, c, ω, h) = (0, h) if and only if m is a solution of (11) and α = 0.
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The differential of NR in (mR, 0L2(Σ,R), 0R3) is

DNR(mR, 0, 0): TSR × L2(Σ, R3) × R
3 → L2(Σ, R3) × R

(g, α, c, ω, h) 7→ (−LR(g) + c∂xmR + ωΦ(m0) + αmR, h),

where

LR : H2(Σ, R3) → L2(Σ, R3),

g 7→ δmE(g, R) − (δmE(g, R) · mR)mR

− (δmE(mR, R) · g)mR − (δmE(mR, R) · mR)g. (15)

We will consider the restrictions of LR to different subspaces of H2(Σ, R3). We
will call this restrictions LR as well, but name always the domain and the range.

Lemma 3. For all R > 0 and all g, f ∈ TSR we have

LR(g) = δmE(g, R) − (δmE(g, R) · mR)mR − (δmE(mR, R) · mR)g, (16)

LR(g) · f = δmE(g, R) · f − (δmE(mR, R) · mR)g · f. (17)

Moreover LR(TSR) ⊆ (TSR)L2 and the operator LR : TSR → (TSR)L2 is sym-
metric.

Proof. Since mR is a solution of (12), δmE(mR, R) is pointwise parallel to
mR. The elements of TSR are pointwise orthogonal to mR. This implies (16)
and (17). Since the elements of TSR satisfy Neumann boundary conditions, for
all g, f ∈ TSR we have

〈
LRf, g

〉

Σ
=
〈
f, LRg

〉

Σ
.

It remains to show that LR(TSR) ⊆ (TSR)L2 . We have

(TSR)L2 :=

{

f ∈ L2(Σ(R), R3)

∣
∣
∣
∣
∣

f · mR ≡ 0,
〈
∂xmR, f

〉

Σ
= 0,

〈
Φ(mR), f

〉

Σ
= 0

}

.

Looking at (16), we see that LR(g) ⊥ mR. Set v(t, x, y) := mR(x + t, y). Then
v(t, ·) satisfies for all t ∈ R the equation

0 = δmE(v(t, ·), R) − (δmE(v(t, ·), R) · v(t, ·)) v(t, ·),

therefore we have for all g ∈ TSR

0 = ∂t 〈δmE(v(t, ·), R) − (δmE(v(t, ·), R) · v(t, ·)) v(t, ·), g〉Σ
∣
∣
∣
t=0

=
〈
L(∂xmR), g

〉

Σ
=
〈
L(g), ∂xmR

〉

Σ
.

Analogously, with Qφ as in (9) we have for w(φ, x, y) := Qφ(mR(Q−φ(x, y)) the
equation

0 = δmE(w(φ, ·), R) − (δmE(w(φ, ·), R) · v(φ, ·)) w(φ, ·)

and thus for all g ∈ TSR

0 = ∂φ 〈δmE(w(φ, ·), R) − (δmE(w(φ, ·), R) · v(φ, ·)) w(φ, ·), g〉Σ|φ=0

=
〈
L(Φ(mR)), g

〉

Σ
=
〈
L(g), Φ(mR)

〉

Σ
.
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Note that DNR(mR, 0, 0) is bijective if and only if

(a) ∂xmR and Φ(mR) are linearly independent,

(b) LR : TSR → (TSR)L2 bijective.

Since limR→0 ‖mR − mred‖C1(Σ(R)) = 0 and since ∂xmred and Φ(mred) are lin-
early independent, (a) is satisfied if R is small enough. In Section 3 we will
show that (b) is satisfied for small R, too. Altogether, we have the following
theorem.

Theorem 4. (m, c, ω) is a solution of (11) if and only if there exists α ∈
L2(Σ, R) such that NR(m, α, c, ω, h) = (0, h).

The function NR is continuously differentiable and, if R is small enough, DNR(mR, 0, 0)
is bijective.

If NR is continuously differentiable and DNR(mR) is invertible, according to
the inverse function theorem [12, Theorem 73.B, p. 552] there exists a neigh-
bourhood U of (mR, 0L2(Σ,R), 0R3) and a neighbourhood V of (0L2(Σ,R3), 0R)
such that NR|U → V is bijective. So for every h small enough, we can find
mh, αh, ch, ωh such that NR(mh, αh, ch, ωh, h) = 0. That is, we have proved our
main theorem.

Theorem 5. For all R > 0 small enough there exists hR > 0 such that for all
h with h < hR there is exists a solution (mh, ch, ωh) of (11).

3 Invertibility of L
R

The goal of this section is to prove the following theorem.

Theorem 6. For R small enough, the operator LR : TSR → (TSR)L2 , as de-
fined in (15), is invertible, and its inverse is continuous.

We proceed in two steps. First, we define a map LR
0 and show that for functions

m in a certain space TSR
0 we have

〈
LR

0 (m), m
〉

Σ
≥ 1

4‖m‖2
L2(Σ). Then we prove

that, for small R, the operator LR is similar to LR
0 and the space TSR is similar

to TSR
0 .

The map LR
0 is related to the energy functional

E0(·, R) : M(R) → R, m 7→
∫

Σ

|∂xm|2 +
1

2
|my|2 + 20R2|∇ym|2.

Then we have

δmE0(m, R) = −2∂xxm + (0, my1
, my2

) − 40R2∆ym.

Lemma 7. The minimiser of E0 in Ml(R) is unique up to translation and
rotation. It is given by

mred
R : (x, y) 7→ mred(x) =

(

tanh
(

x√
2

)
,

1

cosh
(

x√
2

) , 0

)

,
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and we have

|∂xmred
R (x, y)| =

1√
2
|my(x, y)|

∂xmred
R (x, y)

|∂xmred
R (x, y)| =

(

1

cosh
(

x√
2

) ,− tanh
(

x√
2

)
, 0

)

,

Φ(mred
R (x, y)) =

(

0, 0,
1

cosh
(

x√
2

)

)

.

Proof. For every function m ∈ Ml(R) we have

E0(m) =

∫

DR

Ered(m(·, y)) dy + 20R2‖∇ym‖2
L2(Σ).

Since mred is the only minimiser of Ered in {m ∈ H1(R) + χ : |m| = 1}, up to
translation and rotation [8, Lemma 2.26], the function mred

R is the only minimiser
of E0 in Ml(R), up to translation and rotation.

A direct calculation yields the results for ∂xmred
R and Φ(mred

R ).

Remark. Since the domain of definition will not always be clear from the context,
for the rest of this section we will distinguish the functions mred and mred

R .

We now set, in analogy to (15),

LR
0 : H2(Σ, R3) → L2(Σ, R3),

g 7→ δmE0(g, R) − (δmE0(g, R) · mred
R )mred

R

− (δmE0(mred
R , R) · g)mred

R − (δmE0(mred
R , R) · mred

R )g, (18)

and define

TSR
0 :=

{

f ∈ H2(Σ(R), R3)

∣
∣
∣
∣
∣

f · mred
R ≡ 0, ∂νf = 0 on ∂Σ,

〈
∂xmred

R , f
〉

= 0,
〈
Φ(mred

R ), f
〉

= 0.

}

.

Lemma 8. For all R > 0 and all g, f ∈ TSR
0 we have

LR
0 (g) = δmE0(g, R) − (δmE0(g, R) · mred

R )mred
R − (δmE0(mred

R , R) · mred
R )g,

(19)

LR
0 (g) · f = δmE0(g, R) · f − (δmE0(mred

R , R) · mred
R )g · f. (20)

Moreover, LR
0 (TSR

0 ) ⊆ (TSR
0 )L2 , and the operator LR

0 : TSR
0 → (TSR

0 )L2 is
symmetric.

Proof. We can argue exactly as in Lemma 3.

Theorem 9. For all R > 0 and all m ∈ TSR
0 we have

〈
LR

0 (m), m
〉

Σ
≥ 1

4
‖m‖2

L2(Σ)
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Proof. The relations |∂xmred| =
|mred

y |√
2

and

∂xxmred · mred + |∂xmred|2 = ∂x(∂xmred · mred) = 0

imply

δmE0(mred
R , R) · mred

R = −2∂xxmred
R · mred

R + |(mred
R )y|2 = 2|(mred

R )y|2.

Thus, with Lemma 8, for all g, h ∈ TSR
0 we have

LR
0 (g) · h = δmE0(g, R) · h − (δmE0(mred

R , R) · mred
R )g · h

=
(
δmE0(g, R) − 2|(mred

R )y|2g
)
· h.

We define the vector ~es to be the unit vector in direction of ∂xmred, i.e.,

~es(x) :=
∂xmred(x)

|∂xmred(x)| =
(
mred

y1
(x), mred

x (x), 0
)
,

and the sets

W1 :=

{

m ∈ TSR
0 :

∫

DR

m(x, y) dy ≡ 0

}

,

W2 :=
{
m ∈ TSR

0 : m(x, y) = α(x)~ey2
for some α ∈ H2(R, R)

}
,

W3 :=
{
m ∈ TSR

0 : m(x, y) = α(x)~es(x) for some α ∈ H2(R, R)
}

.

Then TSR
0 is the direct sum of W1, W2 and W3, and we have LR

0 (Wi) ⊂ (Wi)L2

for i ∈ {1, 2, 3}.
Assume m ∈ W1. Using the Poincaré inequalitywe have

〈
LR

0 m, m
〉

Σ

= 40R2‖∇ym‖2
L2(Σ) + 2‖∂xm‖2

L2(Σ) + ‖my‖2
L2(Σ) − 2‖(mred

R )ym‖2
L2(Σ)

≥ 40

16
‖m‖2

L2(Σ) − 2‖m‖2
L2(Σ) =

1

2
‖m‖2

L2(Σ).

Assume m ∈ W2. Then m(x, y) = α(x)11DR
(y)~ey2

for some α ∈ H2(R, R), we
have

LR
0 (m)|(x,y) =

(
−2 ∂xxα(x) + α(x) − 2|mred

y (x)|2α(x)
)
11DR

(y)~ey2
. (21)

〈
LR

0 (m), m
〉

Σ
= πR2

(

2‖∂xα‖2
L2(R) +

∫

R

(1 − 2|mred
y |2)α2

)

(22)

and

1 − 2|mred
y (x)|2 ≥ 1

4
for |x| ≥ 1.6. (23)

Since Φ(mred
R ) · ~ey2

is positive (Lemma 7), and since
〈
Φ(mred

R ), m
〉

= 0, the
function α has to change sign.

First, assume that α changes sign in [−1.6, 1.6]. We have

inf
{f :[−1.6,1.6]→R,f changes sign}

(
2‖∂xf‖2

L2([−1.6,1.6])

‖f‖2
L2([−1.6,1.6])

)

=
2π2

3.22
,

10



the infimum is attained and the minimizers are multiples of x 7→ sin
(

π
3.2x

)
.

Thus we have

2‖∂xα‖2
L2([−1.6,1.6]) +

∫ 1.6

−1.6

(1 − 2|mred
y |2)α2

≥ 2‖∂xα‖2
L2([−1.6,1.6]) − ‖α‖2

L2([−1.6,1.6])

≥
(

2π2

3.22
− 1

)

‖α‖2
L2([−1.6,1.6]).

and therefore, with (23) and (22)

〈
LR

0 (m), m
〉

Σ
≥ πR2

((
2π2

3.22
− 1

)

‖α‖2
[−1.6,1.6] +

1

4
‖α‖2

L2([−1.6,1.6])

)

≥ 1

4
‖m‖2

Σ.

Now assume that α does not change sign in [−1.6, 1.6] and let S− be the set
where α has the opposite sign as in [−1.6, 1.6]. With Lemma 7 we see that
Φ(mredR(x, y)) · ~ey2

≥ 0.5 for |x| < 1.6, and since
〈
Φ(mred

R ) · ~ey2
, α
〉

R
= 0 we

have
√

1.6‖α‖L2[−1.6,1.6] ≤
∣
∣
∣

〈
Φ(mred

R ) · ~ey2
, |α|

〉

[−1.6,1.6]

∣
∣
∣ ≤

∣
∣
∣

〈
Φ(mred

R ) · ~ey2
, |α|

〉

S−

∣
∣
∣

≤
∫

S−

2e
− |x|√

2 |α| ≤
∫

S−

√
8e

− |x|√
2 |∂xα|

≤
∥
∥
∥

√
8e

− |x|√
2

∥
∥
∥

L2(R\[−1.6,1.6])
‖∂xα‖L2(R\[−1.6,1.6])

≤ 1.1‖∂xα‖L2(R\[−1.6,1.6]).

Thus (23) implies

〈
LR

0 (m), m
〉

Σ
≥ πR2

(
1

2
‖α‖2

R\[−1.6,1.6] + 2‖∂xα‖2
L2(R\[−1.6,1.6]) − ‖α‖2

L2[−1.6,1.6]

)

≥ πR2

(

1

2
‖α‖2

R\[−1.6,1.6] +

(

2
√

1.6

1.1
− 1

)

‖α‖2
L2[−1.6,1.6]

)

≥ 1

2
‖m‖2

Σ.

Assume m ∈ W3. Then m(x, y) = α(x)11DR
(y)~es(x) for some α ∈ H2(R, R).

The function LR
0 (m) is pointwise parallel to ~es, we have ∂x~es · ~es = 0 and

0 = ∂x(∂x~es · ~es) = |∂x~es|2 + ∂xx~es · ~es

= |∂xmred|2 + ∂xx~es · ~es =
1

2
|mred

y |2 + ∂xx~es · ~es.

So ∂xx(α~es) · ~es = ∂xxα + 1
2 |mred

y |2α. Moreover, we have ~es · ~ey = mred
x and

therefore

LR
0 (m) · ~es = −2∂xxα + |mred

y |2α + |mred
x |2α − 2|mred

y |2α
= −2∂xxα +

(
1 − 2|mred

y |2
)
α (24)

Comparing (24) and (21), we can conclude like in the case m ∈ W2 that
〈
LR(m), m

〉
≥ 1

4‖m‖2
L2(Σ).
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The next lemma compares the operators LR
0 and LR on the space H2(Σ).

Lemma 10. For each ǫ > 0 there exists a radius Rǫ > 0 such that
〈
LR

0 (m), m
〉

Σ
−
〈
LR(m), m

〉

Σ
≤ ǫ‖m‖2

H1(Σ)

for all R < Rǫ and all m ∈ H2(Σ).

Proof. For ǫ ∈]0, 1] we can find R̃ǫ ≤ min
(

1√
20

, ǫ
)

such that for all R < R̃ǫ the

following inequalities hold (Theorem 1):

‖mred
R − mR‖C1(Σ) ≤ ǫ, ‖mred

R − mR‖L2(Σ) ≤ ǫR, ‖∇ymR‖L∞(Σ) ≤ ǫ.

Define

A(R) := {f ∈ H1
loc(Σ(R), R3) : f is constant on each cross section}.

Because of [8, Lemma 2.24], after reducing R̃ǫ we can assume that

‖H((mred
R )x~ex, R)‖2

L2(R3) < ǫ2R2 for all R ≤ R̃ǫ,

1

2
‖gy‖2

L2(Σ) − Eσσ(g, R) < ǫ2‖gy‖2
H1(Σ) for all R ≤ R̃ǫ, g ∈ A(R).

Moreover by [8, Lemma 2.10] we know that

‖H(g)‖2
L2(R2) = ‖H(gx~ex)‖2

L2(R2) + ‖H(gy)‖2
L2(R2) for all R ≤ R̃ǫ, g ∈ A(R).

(25)

For R < R̃ǫ and m ∈ TSR we have
〈
LR

0 m, m
〉

Σ
−
〈
LRm, m

〉

Σ

=
〈
δmE0(m, R), m

〉

Σ
− 〈δmE(m, R), m〉Σ

︸ ︷︷ ︸

A

−
〈
|(mred

R )y|2, |m|2
〉

Σ
+ 2

〈
H(mR) · mR, |m|2

〉

Σ
︸ ︷︷ ︸

B

+

∫

Σ

(
−2|∂xmred

R |2 + 2|∂xmR|2 + 2|∇ymR|2
)
m2

︸ ︷︷ ︸

C

We estimate the summands separately. We decompose m in m and m̃.

m(x, y) :=

∫

DR

m(x, y) dy, m̃(x, y) := m(x, y) − m(x)

Since 40R2 ≤ 2 and since ‖f‖L2(Σ) ≥ ‖H(f)‖L2(R3) for every f ∈ L2(Σ, R3), we
get for the first summand

A = ‖my‖2
L2(Σ) +

(
40

R2
− 2

)

‖∇ym‖L2(Σ) − 2‖H(m)‖L2(R3)

≤ ‖my‖2
L2(Σ) − 2‖H(m)‖L2(R3)

= ‖my‖2
L2(Σ) − 2‖H(m)‖L2(R3) + ‖m̃y‖2

L2(Σ) − 2‖H(m̃)‖L2(R3) + 4

∫

Σ

H(m) m̃

≤ ‖my‖2
L2(Σ) − 2‖H(my)‖2

L2(R3) + ‖m̃y‖2
L2(Σ) + 4‖m‖L2(Σ)‖m̃‖L2(Σ)

≤ 2ǫ‖my‖2
H1(Σ) + ‖m̃y‖2

L2(Σ) + 4‖m‖L2(Σ)‖m̃‖L2(Σ).

12



Using the Poincaré inequality and the assumption R ≤ ǫ we obtain

A ≤ ǫ‖my‖2
H1(Σ) + 16R2‖∇m̃‖2

L2(Σ) + 16R‖∇m̃‖L2(Σ)‖m‖L2(Σ) ≤ 33ǫ‖m‖2
H1(Σ).

For the second summand we calculate

B =

∫

Σ

(
(mred

R )y − 2H(mred
R )
)
· mred

R |m|2
︸ ︷︷ ︸

B1

+ 2

∫

Σ

H(mred
R ) · (mred

R − mR) |m|2
︸ ︷︷ ︸

B2

+ 2

∫

Σ

H(mred
R − mR) · mR |m|2

︸ ︷︷ ︸

B3

,

|B1| ≤ ‖(mred
R )y − 2H(mred

R )‖L2(Σ)‖mred
R ‖L∞(Σ)‖m‖2

L4(Σ)

≤
(
‖2H((mred

R )x~ex)‖L2(Σ) + ‖(mred
R )y − 2H((mred

R )y)‖L2(Σ)

)
‖m‖2

L4(Σ)

≤ 2
√

ǫ2R2 + 2
√

ǫ2πR2‖mred
y ‖2

H1(R) ‖m‖2
L4(Σ) ≤ 6ǫR‖m‖2

L4(Σ),

|B2| ≤ 2‖H(mred
R )‖L2(Σ)‖mred

R − mR‖L∞(Σ)‖m‖2
L4(Σ)

(∗)
= 2

√

‖H(mred
R )y)‖2

L2(R3) + ‖H((mred
R )x~ex)‖2

L2(R3) ‖mred
R − mR‖L∞(Σ)‖m‖2

L4(Σ)

≤ 2

√
π

2
R2‖(mred

R )y‖2
L2(R) + ‖H((mred

R )x~ex)‖2
L2(R3) ǫ‖m‖2

L4(Σ)

≤ 2

√√
2πR2 + ǫ2R2 ǫ‖m‖2

L4(Σ) ≤ 6ǫR‖m‖2
L4(Σ),

|B3| ≤ 2‖mred
R − mR‖L2(Σ)‖mR‖L∞(Σ)‖m‖2

L4(Σ) ≤ 2Rǫ‖m‖2
L4(Σ).

For (∗) we have used (25). Because of the Sobolev embedding H1(Σ(1)) →֒
L4(Σ(1)) there exists a constant CSobolev such that

‖u‖L4(Σ(1)) ≤ CSobolev‖u‖H1(Σ(1)) for all u : Σ(1) → R
n.

Rescaling implies for all R ≤ 1

‖u‖L4(Σ(R)) ≤ 1√
R

CSobolev‖u‖H1(Σ(R)) for all u : Σ(R) → R
n.

Thus,
|B| ≤ 14C2

Sobolevǫ‖m‖2
H1(Σ).

Since ∂xmred = 1√
2
|mred

y | ≤ 1√
2

(Lemma 7) the third summand C can be esti-

mated by

C ≤ 2‖∂xmred
R − ∂xmR‖L∞(Σ)‖∂xmred

R + ∂xmR‖L∞(Σ)‖m‖2
L2(Σ) + 2ǫ‖m‖2

L2(Σ)

≤ 2ǫ

(
2√
2

+ ǫ

)

‖m‖2
L2(Σ) + 2ǫ‖m‖2

L2(Σ) ≤ 7ǫ‖m‖L2(Σ),

and therefore we have for all R ≤ R̃ǫ

〈
LR

0 m, m
〉

Σ
−
〈
LRm, m

〉

Σ
≤ (40 + 14C2

Sobolev)ǫ‖m‖2
H1(Σ).
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Using Lemma 10, we transfer the result of Lemma 8 to the operator LR.

Lemma 11. For each 0 < ǫ < 1
4 there exists Rǫ such that

〈
LR(m), m

〉

Σ
≥
(

1

4
− ǫ

)

‖m‖2
L2(Σ)

for all R < Rǫ and all m ∈ TSR.

Proof. Let P0 : H2(Σ) → TSR
0 be the L2-orthogonal projection. Since

mred
R ⊥ ∂xmred

R , mred
R ⊥ Φ(mred

R ),
〈
∂xmred

R , Φ(mred
R )
〉

Σ
= 0,

we have for all m ∈ TSR

P0(m)

= m − (m · (mred
R − mR))mred

R +
〈
m, ∂xmR − ∂xmred

R

〉

Σ

∂xmred
R

‖∂xmred
R ‖2

L2(Σ)

+
〈
m, Φ(mR) − Φ(mred

R )
〉

Σ

Φ(mred
R )

‖Φ(mred
R )‖2

L2(Σ)

,

that is,

‖m‖L2(Σ) − ‖P0(m)‖L2(Σ)

≤ ‖m‖L2(Σ)‖mR − mred
R ‖L∞(Σ) + ‖m‖L2(Σ)

‖∂xmR − ∂xmred
R ‖L2(Σ)

‖∂xmred
R ‖L2(Σ)

+ ‖m‖L2(Σ)

‖Φ(mR) − Φ(mred
R )‖L2(Σ)

‖Φ(mred
R )‖L2(Σ)

Thus, with Theorem 1, we can find R̃ǫ such that

‖m‖L2(Σ) − ‖P0(m)‖L2(Σ) ≤ ǫ‖m‖L2(Σ) for all R ≤ R̃ǫ. m ∈ TSR.

After reducing Rǫ we can assume that Lemma 10 implies

〈
LRm, m

〉

Σ
≥
〈
LR

0 m, m
〉

Σ
− ǫ‖m‖2

H1(Σ) for all R ≤ R̃ǫ, m ∈ TSR.

Then we have

〈
LRm, m

〉

Σ
≥ (1 − ǫ)

〈
LR

0 m, m
〉

Σ
+ ǫ‖∇m‖2

L2(Σ)

− ǫ

(∫

Σ

(
2|∇mred

R |2 + |(mred
R )y|2

)

︸ ︷︷ ︸

≤2

m2

)

− ǫ‖m‖2
H1(Σ)

≥ (1 − ǫ)
〈
LR

0 m, m
〉

Σ
− 3ǫ‖m‖2

L2(Σ).

Since the operator LR
0 is the second variation of the energy E0 and since mR

0 is a
minimiser of the energy, the operator LR

0 is positive semidefinite. Moreover, it is
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symmetric on the set {m ∈ H2(Σ, R3) : ∂νm|∂Σ = 0}, so LR
0 (TSR

0 ) ⊂ (TSR
0 )L2

implies
〈
LR

0 m, m
〉

Σ
=
〈
LR

0 (P0(m)), P0(m)
〉

Σ
+
〈
LR

0 (m − P0(m)), m − P0(m)
〉

Σ

≥
〈
LR

0 (P0(m)), P0(m)
〉

Σ
≥ 1

4
‖P0(m)‖2

L2(Σ)

≥ 1 − ǫ

4
‖m‖2

L2(Σ).

Thus,
〈
LRm, m

〉

Σ
≥ 1

4‖m‖2
L2(Σ) − 4ǫ‖m‖2

L2(Σ).

Lemma 12. There exists λ, C > 0, R̃ > 0 such that

‖LR(g) + λg‖L2(Σ) ≥ ‖g‖H2(Σ)

‖LR(g)‖L2(Σ) ≤ C‖g‖H2(Σ)

for all R ≤ R̃ and all g ∈ TSR.

Proof. We split the operator in two parts and set

LR
H(g) := 2

(
H(g) − (H(g) · mR)mR − (H(mR) · g)mR − (H(mR) · mR)g

)
,

LR
∆(g) := 2

(
−∆g + (∆g · mR)mR + (∆mR · g)mR + (∆mR · mR)g

)
.

First, we show H(mR) ∈ L∞(Σ) using a result by Carbou and Fabrie [2] for
bounded domains. Let η : Σ → [0, 1] be a smooth function with

η(p) = 1 for p ∈ [−1, 1]× DR, η(p) = 0 for p′ ∈ Σ \ ([−2, 2] × DR),

and set ηx : (x′, y′) 7→ η(x′ − x, y).

Then [2, Lemma 2.3] and the Sobolev embedding W 1,4(Σ) →֒ L∞(Σ) imply that
there exist constants C, C̃ independent of x such that

‖H(m · ηx)‖L∞(Σ) ≤ C̃‖H(m · ηx)‖W 1,4(Σ)

≤ ‖m · ηx‖W 1,4(Σ) ≤ (2π)
1

4 ‖m‖C1(Σ) (26)

Moreover, using the representation of H in terms of Ki of [8, Lemma 2.6] we
obtain for all p = (x, y) ∈ Σ the estimate

H(m · (1 − ηx))(p)

≤ 3
(
‖Ki‖L1(Σ\([−1,1]×DR)) + ‖Ki‖L1(∂Σ\([−1,1]×∂DR))

)
‖m‖C1(Σ). (27)

The combination of (26) and (27) implies that ‖H(mR)‖L∞(Σ) is finite.

Since ‖H(g)‖L2(Σ) ≤ ‖g‖L2(Σ) and since ‖mR‖L∞(Σ) = 1, we have for all g ∈
(TS)L2

‖LR
H(g)‖L2(Σ) ≤

(
4 + 4‖H(mR)‖L∞(Σ)

)
‖g‖L2(Σ). (28)

Thus the operator LR
H : (TS)L2 → (TS)L2 is continuous.

Since ∂im
R ⊥ mR (i ∈ {1, 2, 3}) and since g ⊥ mR for all g ∈ TSR, we have

0 = ∆(mR · g) = ∆mR · g + 2∇mR · ∇g + mR · ∆g,

0 = div(∇mR · mR) = ∆mR · mR + |∇mR|2,
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and therefore

LR
∆(g) = −2∆g − 4(∇mR · ∇g)mR − 2|∇mR|2g. (29)

Moreover, we have the estimate

‖ − 2∆g + λg‖2
L2(Σ) =

∫

Σ

(
4|∆g|2 − 4∆g · λg + λ2g2

)

=

∫

Σ

(
4|D2g|2 + 4λ|∇g|2 + λ2|g|2

)

≥ 1

3

(

2‖D2g‖L2(Σ) + 2
√

λ‖∇g‖L2(Σ) + λ‖g‖L2(Σ)

)2

.

This yields

‖LR
∆(g) + λg‖L2(Σ)

≥ ‖ − 2∆g + λg‖L2(Σ) − 4‖mR‖C1‖∇g‖L2(Σ) − 2‖mR‖2
C1(Σ)‖g‖L2(Σ)

≥ 2√
3
‖D2g‖L2(Σ) +

(

2
√

λ√
3

− 4‖mR‖C1(Σ)

)

‖∇g‖L2(Σ)

+

(
λ√
3
− 2‖mR‖2

C1(Σ)

)

‖g‖L2(Σ),

and we can choose λ such that

‖LR
∆(g) + λg‖L2(Σ) ≥ ‖g‖H2(Σ). (30)

Combining (28) and (29), we obtain the second estimate.

Using the above estimates, we show that the operator LR is bijective and has
an continuous inverse.

Lemma 13. There exists R̃ > 0 such that for all R < R̃

(i) the operator LR : TSR → (TSR)L2 is injective,

(ii) LR(TSR) is dense in (TSR)L2 ,

(iii) LR(TSR) is closed in (TSR)L2 ,

(iv) the operator LR : TSR → (TSR)L2 is bijective,

(v) the operator (LR)−1 : (TSR)L2 → TSR is bounded.

Proof. Let R̃ be so small and λ, C so large that for all R ≤ R̃ and all g ∈ TSR

Lemma 11 and Lemma 12 imply

〈
LR(m), m

〉

Σ
≥ 1

8
‖m‖2

L2(Σ), (31)

‖LR(g) + λg‖L2(Σ) ≥ ‖g‖H2(Σ), (32)

‖LR(g)‖L2(Σ) ≤ C‖g‖H2(Σ). (33)

(i) This is a direct implication of (31).
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(ii) We show the statement by contradiction and assume that LR(TSR) is
not dense in (TSR)L2 . Then there exists v ∈ (TSR)L2 that is orthogonal on
LR(TSR), and there exists w in TSR such that

〈w, g〉Σ <
1

10C
‖w‖L2(Σ)‖g‖L2(Σ) for all g ∈ LR(TSR), g 6≡ 0.

Thus with (33) we have

〈
LR(w), w

〉

Σ
<

1

10C
‖LR(w)‖L2(Σ)‖w‖L2(Σ) ≤ 1

10
‖w‖2

L2(Σ).

This is in contradiction to (31).

(iii) Let (LR(gn))n∈N, gn ∈ TSR be a sequence that converges to some h0 ∈
(TSR)L2 in L2(Σ, R3). We have to show h0 ∈ LR(TSR).

Because of (31), the sequence (gn)n∈N is a Cauchy sequence in L2(Σ, R3), so the
sequence (LR(gn) + λgn)n∈N is a Cauchy sequence in L2(Σ, R3), too. Thus the
estimate (32) implies that (gn)n∈N is a Cauchy sequence in H1(Σ, R3) converging
to some g0 ∈ TSR. Using (33), we obtain

LR(g0) = lim
n→∞

LR(gn) = h0.

(iv) Since LR(TSR) is dense and closed in (TSR)L2 , we have LR(TSR) =
(TSR)L2 . Thus, with (i), LR : TSR → (TSR)L2 is bijective.

(v) The arguments for (iii) imply: If LR(g0) = limn→∞ LR(gn) in L2(Σ) then
gn converges to g0 in H2(Σ).

Theorem 6 summarises the statements of Lemma 13.
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[3] G. Carbou and S. Labbé. Stability for static walls in ferromagnetic
nanowires. Discrete Contin. Dyn. Syst. Ser. B, 6(2):273–290 (electronic),
2006.

[4] H. Forster, T. Schrefl, D. Suess, W. Scholz, V. Tsiantos, R. Dittrich, and
J. Fidler. Domain wall motion in nanowires using moving grids. J. Appl.
Phys., 91:6914–6919, 2002.

[5] R. Hertel and J. Kirschner. Magnetization reversal dynamics in nickel
nanowires. Physica B, 343:206–210, 2004.
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