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Abstract

Hierarchical matrices provide a data-sparse way to approximate fully populated matrices.
In this paper we exploit robust H-matrix techniques to approximate the resolvents of stiffness
matrices as they appear in (finite element or finite difference) discretisations of elliptic partial
differential equations.
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1 Introduction

Usually, resolvents
(zId − A)−1 (z ∈ C, A ∈ R

n×n)

are not often used in numerical applications, since the computation of inverse matrices is prohibitively
costly. Even if, for a given right-hand side b, systems of the form (zId − A)x = b are to be solved
for different complex z, the iterative solution method may depend on z. In particular, even if A is
positive definite, A − zId may be indefinite.

For the interesting case that the matrix A is obtained by a discretisation of an elliptic boundary
value problem, the novel technique of hierarchical matrices is able to perform all matrix operations
including the inversion approximately with almost linear cost. The exact cost of the inversion is
O(nk2 log2 n) (cf. [5]), where k is the local rank (cf. §2).

Due to the almost linear cost, the interest in resolvents is renewed. For instance, the approximation
of integrals like

∮

C

f(z)(zId − A)−1dz (1.1)

over a closed curve C in the complex plane can be used to represent interesting matrix-valued functions.
In [4], an open parabola C (x = cy2 for z = x + iy) is used to represent the matrix exponential:

exp(−tA) =
1

2πi

∫

C

e−zt(zId − A)−1dz. (1.2)

In the latter case, the spectrum of A must lie in the interior
{

z = x + iy : x > cy2
}

of the parabola
C.

In the case of (1.1), one introduces an appropriate parametrisation. Then the resulting integral
with a periodic integrand can be approximated by the trapezoidal rule, which yields exponential
convergence when the number N of quadrature points zi increases. Hence, N = O(logα 1

ε
) evaluations

of (ziId − A)−1 are sufficient. The parametrisation of the parabola in (1.2) leads to an integral over
(−∞, +∞) , which can be treated by sinc quadrature, yielding a similar size of N (cf. [8, §§2.2-2.4]).
We see from these examples that the evaluation of the complex integrals is possible with a cost of
O(n logα 1

ε
logβ n).
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The error analysis of the hierarchical matrix operations is done for a fixed z ∈ C. The dependence
of the approximation errors on z and their possibly uniform behaviour is hard to analyse. On the other
hand, such results are of fundamental interest for the applications mentioned above. In particular,
two questions need to be answered:

• How does the approximation error of the inversion procedure behave when |z| becomes large?

• How does the approximation error behave when z approaches an eigenvalue?

The latter case happens when the curve C intersects the real axis between two real eigenvalues λi

and λi+1. Therefore, in [3], the first author investigated the error behaviour with respect to z ∈ C

numerically, at least for A being the discretisation of the Laplace operator. These results are given
in Section 3. We first recapitulate some basic facts about hierarchical matrices in Section 2.

2 Hierarchical Matrices

In this section we give a brief introduction to a method for the data-sparse approximation of matrices
resulting from the discretisation of non-local operators occurring in boundary integral methods or
as the inverses of partial differential operators. The result of the approximation will be so-called
hierarchical matrices (or short H-matrices, c.f. [2], [5], [7]). These matrices form a subset of the set of
all matrices and have a data-sparse representation. The essential operations for these matrices (matrix-
vector and matrix-matrix multiplication, addition and inversion) can be approximately performed in
linear logarithmic complexity, [5].
In §3 the index set I consists of the finite element nodal points. The formal definition of an H-matrix
depends on appropriate hierarchical partitionings of the index set and also of the product index set
which are organised in (block) cluster trees as defined below.

Definition 2.1 (cluster tree) Let I be a finite set, and let T (I) = (V,E) be a tree with vertex set
V and edge set E. For a vertex v ∈ V we define the set of sons of v as S(v) := {w ∈ V : (v, w) ∈ E}.
The tree T (I) is called a cluster tree of I if its vertices consist of subsets of I and satisfy the following
conditions:

• I ∈ V is the root of T (I) and v ⊂ I, v 6= ∅, for all v ∈ V .

• For all v ∈ V there either holds S(v) = ∅ or v = ∪̇w∈S(v)w.

In the following we identify V and T (I); i.e., we write v ∈ T (I) instead of v ∈ V . The nodes v ∈ V
are called clusters. The support of a cluster v ∈ T (I) is given by the union of the supports of the basis
functions corresponding to its elements, i.e.,

Ωv :=
⋃

i∈v

Ωi, where Ωi := supp ϕi for all i ∈ I.

Definition 2.2 (leaf, father, level, depth) Let T (I) be a cluster tree. The set of leaves of the tree
T (I) is L := {v ∈ T (I) : S(v) = ∅}. The uniquely determined predecessor (father) of a nonroot vertex
v ∈ T (I) is denoted by F(v). The levels of the tree T (I) are defined by

T
(0)
I := {I}, T

(l)
I := {v ∈ T (I) : F(v) ∈ T

(l−1)
I }, for l ∈ N,

and we write level(v) = l if v ∈ T
(l)
I . The depth of T (I) is defined as d(T ) := max{l ∈ N : T

(l)
I 6= ∅}.

Definition 2.3 (block cluster tree) Let T (I) be a cluster tree of the index set I. A cluster tree

T (I × I) is called a block cluster tree (based upon T (I)) if for all v ∈ T
(l)
I×I there exist t, s ∈ T

(l)
I such

that v = t × s. The nodes v ∈ T (I × I) are called block clusters.
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Analogously to the cluster tree, for any block cluster tree T (I × I) there holds I × I = ˙⋃{v : v ∈
L(TI×I)}; i.e., the leaves of the block cluster tree provide a disjoint block partition of the product
index set I × I. The objective is to construct a block cluster tree from a given cluster tree such that
the leaves (of the block cluster tree) correspond to (preferably large) matrix blocks with smooth data
that can be approximated by low rank matrices, [2]. Figure 2.1 shows a partition for a 1D case where
I corresponds to nodal points in an interval. 1

In the following construction, we will build a block cluster tree iteratively starting from I × I and

Figure 2.1: Example of a matrix partition

refining the block clusters if they do not satisfy a certain admissibility condition. The choice of the
admissibility condition depends on the underlying continuous problem (i.e., elliptic partial differential
equation, in particular its associated Greens function) and shall ensure that all admissible blocks allow
a sufficiently accurate low rank approximation. A typical admissibility condition for uniformly elliptic
problems is as follows:

block cluster s × t is admissible :⇔ min(diam(Ωs), diam(Ωt)) ≤ η dist(Ωs, Ωt),

where Ωs and Ωt are the supports of the clusters, see definition 2.1.
A given cluster tree along with an admissibility condition allows the following canonical construction
of a block cluster tree, [5]:
Let the cluster tree T (I) be given. We define the block cluster tree T (I × I) by root(T ) := I × I, and
each vertex s × t ∈ T (I × I)) has the set of successors:

S(t × s) :=







∅ if s × t is admissible,
∅ if min{#s,#t} ≤ nmin,
{s̃ × t̃ : s̃ ∈ S(s), t̃ ∈ S(t)} otherwise .

The parameter nmin ensures that blocks do not become so small that the matrix arithmetic of a full
matrix is more efficient than any further subdivision. It is typically set to nmin = 16 or even nmin = 32.

Definition 2.4 (H-matrix) Let k, nmin ∈ N0. The set of H-matrices induced by a block cluster tree
T := T (I × I) with blockwise rank k and minimum block size nmin is defined by

H(T, k) := {M ∈ C
I×I : ∀t × s ∈ L(T ) : rank(M |t×s) or min{#s, #t} ≤ nmin}.

1For an illustration, a 1D example is more appropriate since any illustration must order the indices in a subsequent

order. However, only in the 1D case there is a natural ordering.
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For the practical use it is essential that each matrix block A|b with b = t × s is represented as a
product Bb ∗ C⊤

b with Bb ∈ C
t×{1,...,k} and Cb ∈ C

s×{1,...,k}. In practice, matrix blocks for b = t × s
of sufficiently small size, min{#t, #s} ≤ nmin are stored instead as full matrices, as described above.

The first approximate operation is the matrix addition, where A,B ∈ H(T, k) leads to
rank ((A + B) |b) ≤ 2k. For instance by SVD the exact sum (A + B) |b is replaced by the optimal
approximation of rank k, producing an approximation in H(T, k). Due to the hierarchical structure
of block-cluster tree the multiplication A ∗ B can be performed recursively including truncations of
the matrix blocks back to rank k. Inversion by means of the block Gauss elimination requires only
the foregoing matrix operations ±, ∗ and recursively accomplished inversions. For a more detail
description see also [2], [5] and [7].

Since the diagonal entries belong to the small blocks (size ≤ nmin) which are treated as full matrices
(see Figure 2.1), a simple observation can be stated.

Remark 2.5 If A ∈ H(T, k), then zId − A also belongs to H(T, k), for all z ∈ C.

Due to the choice of the admissibility condition, the following statement is a simple consequence.

Remark 2.6 Any finite-element matrix A belongs to H(T, k) for all k ∈ N0, since A|b = 0 for all
b = t × s ∈ T with min{#t,#s} > nmin.

A more difficult question is whether the (exact) inverse A−1 of a finite-element matrix A has good
approximants in H(T, k). The answer is positive, and, astonishingly, the result does not depend on
the smoothness of the coefficients in the differential operator (details in [1]).

Theorem 2.7 ([1]) Let Lu = f be a boundary value problem in a Lipschitz domain Ω ⊂ R
d with

L = div K(x) grad, where the symmetric d × d-matrix K(·) ∈ L∞(Ω) has eigenvalues in the interval
[a, b] with 0 < a ≤ b < ∞. Then the inverse A−1 of a finite-element matrix has approximants in
H(T, k) so that the error decays exponentially in k.

Since zId−A corresponds to a compact perturbation of −A, the same result holds for the resolvent
(zId−A)−1 for any regular value of z. In further discussions we will denote the approximated inverse
of A in H(T, k) by invH(A).

3 Numerical Results

3.1 Model Problem

Theorem 2.7 indicates that hierarchical matrix inversion is robust with respect to the PDE coefficients
and to the domain. This is confirmed by numerical experiments. Hence, it suffices to test the resolvents
for the matrix A obtained from the Poisson equation in a square.

Definition 3.1 (Model Problem) The model problem is the Poisson equation −△u = f with
Dirichlet condition u|∂Ω = 0 in the square Ω := (0, 1)2 ⊂ R

2. The finite element discretisation
uses the uniform grid from Figure 3.1 and piecewise linear elements. The (positive definite) finite
element matrix is denoted by A. The step size is h = 1/N so that the size of the matrix is

n = (N − 1)2. (3.1)

For the following numerical experiments the knowledge of all eigenvalues of the matrix A is helpful.

Remark 3.2 The matrix A from Definition 3.1 has the eigenvalues

λℓm = 4

[

sin2

(

ℓπh

2

)

+ sin2

(

mπh

2

)]

(1 ≤ ℓ,m ≤ N − 1),

which are not all different. The multiplicity of λℓm is given by the number of equal indices λℓm = λℓ′m′

(1 ≤ ℓ′,m′ ≤ N − 1). The extreme eigenvalues are

λmin = λ1,1 = 8 sin2

(

πh

2

)

= ‖A−1‖−1
2 , λmax = λN−1,N−1 = 8 cos2

(

πh

2

)

= ‖A‖2.

Proof. See [6, Thm. 4.1.1 and Lemma 4.1.2].
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Figure 3.1: Regular finite element triangulation of Ω

3.2 Error Consideration on Selected Curves

We have calculated absolute errors for the resolvents in Frobenius norm ‖ · ‖F .

Notation 3.3 (Approximation Error) Let A ∈ R
n×n be the matrix from Definition 3.1. The error

of the resolvent is denoted by

△n
F (z) := ‖Id − invH(zId − A)(zId − A)‖F for regular values z ∈ C.

We use △n
F instead of △n

F (z), if the z-dependence is clear from the context.

The following plots represent the approximation error in logarithmic scaling. The ordinates range
from minimal to maximal error value. On the abscissae the parameter interval of the curve is visible.

3.2.1 Curve between two Eigenvalues

First, we consider a curve which intersects the real axis and therefore comes close to two neighbouring
eigenvalues. In this case, the curve meets the real axis between λ10,10 = 0.679772 and λ09,11 =
0.690279. Its definition is

γ1(τ) := i · τ +
1

2
(λ10,10 + λ09,11) for 0 ≤ τ ≤ 1

(see also Figure 3.2).

λmin λmax

i

λ10,10 = 1.679772
λ09,11 = 1.690279

λ10,10 λ09,11

im(γ1)

Figure 3.2: Image of γ1, for 0 ≤ τ ≤ 1.

The discretisation parameter is n = 1024. The minimum and maximum value of the error
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△1024
F (γ1(τ)), 0 ≤ τ ≤ 1, is shown in the following Table for different choices of the local rank k:

local rank k min(△1024
F ) max(△1024

F )
4 2.9 × 10−5 9.8 × 10−4

5 7.0 × 10−6 9.5 × 10−5

6 3.0 × 10−6 1.4 × 10−5

7 2.0 × 10−6 4.0 × 10−6

8 1.0 × 10−6 2.0 × 10−6

9 6.5 × 10−8 0.9 × 10−7

10 4.0 × 10−10 8.5 × 10−10

11 1.5 × 10−14 6.0 × 10−14

Obviously, the minimum and maximum values are not so different. The (exponential) decrease of
the error with respect to k is the typical behaviour. For k = 9 and k = 10 the error dependence of
the curve parameter τ is shown in Figure 3.3.

 1e-007

 1e-006

 0  0.2  0.4  0.6  0.8  1

’g9.dat’

 1e-010

 1e-009

 0  0.2  0.4  0.6  0.8  1

’g10.dat’

Figure 3.3: Behaviour of the approximation error △1024
F as a function of τ on γ1(τ) := i ·τ + 1

2 (λ10,10 +
λ09,11). Left: k = 9, right: k = 10.

3.2.2 Curve intersecting an Eigenvalue

The previous example corresponds to the desired case that the curve passing the gap between two
eigenvalues should have similar distances from both eigenvalues. If the eigenvalues are not known, or
only approximately known, it may happen that the curve comes very close to one of the eigenvalues.
The same happens if there is a dense cluster of eigenvalues. The difficulties of inverting zId − A
frequently occur in eigenvalue problems with shift, where z may be very close to an eigenvalue of A.
Our method can be also used in these cases.
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Therefore, next we consider the extreme case of a curve intersecting the real axis at the eigenvalue
λ3,3 = 0.1620281 . . . The definition of the curve γ2 in this test is

γ2(τ) = i · τ + λ3,3 for 0 < τ ≤ 1.

By definition, the resolvent becomes singular at τ = 0. Therefore, it is not astonishing that the
error △1024

F (γ2(τ)) increases as τ approaches 0. But, as can be seen from Figure 3.4 for k = 9 and
Figure 3.5 for k = 10, the error has a stable behaviour until τ ≈ 5×10−3. Only in a tiny neighbourhood
of the eigenvalue does the computation of a proper resolvent approximation fail.

 1e-008

 1e-007

 0  0.2  0.4  0.6  0.8  1

’e9.dat’

Figure 3.4: Behaviour of the approximation error △1024
F as a function of τ on γ2(τ) := i · τ + λ3,3 for

k = 9.
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Figure 3.5: Behaviour of the approximation error △1024
F as a function of τ on γ2(τ) := i · τ + λ3,3 for

k = 10.

At the first glance, it may be surprising that the computation of the resolvents can be performed
in a robust way close to the singularity. The reason is stated in the following remark.

Remark 3.4 Assume that A = AH . Let z0 be a simple eigenvalue corresponding to the normalised
eigenvector v. When z approaches z0, the resolvent (zId−A)−1 behaves like R0(z) + 1

z−z0

vvH , where
R0(z) is continuous (even analytic) at z0. Due to [1], R0(z) can be well approximated by hierarchical
matrices. The term 1

z−z0

vvH is large, but its restriction to each block b ∈ T (see §2) is a rank-1 matrix
which can be represented exactly.

Generalisations to non-Hermitean matrices or multiple eigenvalues are straightforward. For non-
Hermitean matrices we can consider the singular value decomposition of A (R0(z) + 1

z−z0

vvH is
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replaced by R0(z) + 1
z−z0

uvH). In the multiple eigenvalue case the restriction to each block can be
represented by a rank-k matrix, where k is the multiplicity of the eigenvalue.

3.2.3 Curves with |z| → ∞

The example (1.2) is an integral over a parabola, which can be considered as a closed curve intersecting
z = ∞ ∈ C̄. Therefore, we choose the curve

γP (τ) := τ2 + iτ.

For the local ranks k = 4, 10 the errors △1024
F are plotted in Fig. 3.6. The maximum error max(△1024

F )
is attained in the interval [−2, 2]. For τ > 7 (k = 4), τ > 3 (k = 10) and in particular for τ → ±∞
the error is smaller than 10−14. The approximation error decreases for |τ | > 2 very fast in both cases.
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Figure 3.6: Behaviour of the approximation error △1024
F as a function of τ on γp(τ) := τ2 + iτ . Left:

k = 4, right: k = 10.
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4 Conclusion

The computation of the resolvents appears to be rather stable. Large values of z are not dangerous
as (zId − A)−1 becomes small anyway. More remarkably, the computation of (zId − A)−1 in the
neighbourhood of singular values z0 only fails if |z − z0| is very small (5 × 10−3 in the example of
§3.2.2). As a consequence, given a curve γ for a matrix with unknown spectrum, it is rather unlikely
that γ comes so close to one of the eigenvalues. The more severe drawback is that the convergence of
the quadrature error slows down if there are nearby singularities, when we replace the exact integral
by a quadrature formula.
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