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Abstract

We study a diffuse interface model for the flow of two viscous incompress-
ible Newtonian fluids of the same density in a bounded domain. The fluids are
assumed to be macroscopically immiscible, but a partial mixing in a small inter-
facial region is assumed in the model. Moreover, diffusion of both components
is taken into account. This leads to a coupled Navier-Stokes/Cahn-Hilliard
system, which is capable to describe the evolution of droplet formation and
collision during the flow. We prove existence of weak solutions of the non-
stationary system in two and three space dimensions for a class of physical
relevant and singular free energy densities, which ensures – in contrast to the
usual case of a smooth free energy density – that the concentration stays in
the physical reasonable interval. Furthermore, we present some results on reg-
ularity and uniqueness of weak solutions. In particular, we obtain that unique
“strong” solutions exist in two dimensions globally in time and in three di-
mensions locally in time. Moreover, we show that for any weak solution the
concentration is uniformly continuous in space and time. Because of this reg-
ularity, we are able to show that any weak solution becomes regular for large
times and converges as t → ∞ to a solution of the stationary system. These
results are based on a regularity theory for the Cahn-Hilliard equation with
convection and singular potentials in spaces of fractional time regularity as well
as on a result on maximal regularity of a Stokes system with variable viscosity
and forces in L2(0,∞; Hs(Ω)), s ∈ [0, 1], which are new themselves.
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2 1 INTRODUCTION AND MAIN RESULT

1 Introduction and Main Result

In the present contribution we study a system describing the flow of viscous incom-
pressible Newtonian fluids of the same density, but different viscosity. Although it
is assumed that the fluids are macroscopically immiscible, the model takes a partial
mixing on a small length scale measured by a parameter ε > 0 into account. There-
fore the classical sharp interface between both fluids is replaced by an interfacial
region and an order parameter related to the concentration difference of both fluids
is introduced.

The model goes back to Hohenberg and Halperin [16] with the name “model
H”. Gurtin et al. [15] gave a continuum mechanical derivation based on the concept
of microforces. The model is a so-called diffuse interface model. These have been
successfully used during last years to describe flows of two or more macroscopically
fluids beyond the occurrence of topological singularities of the separating interface
(e.g. coalescence or formation of drops). We refer to Anderson and McFadden [5] for
a review on that topic.

This model leads to a Navier-Stokes/Cahn-Hilliard system:

∂tv + v · ∇v − div(ν(c)Dv) + ∇p = −ε div(∇c⊗∇c) in Ω × (0,∞), (1.1)

div v = 0 in Ω × (0,∞), (1.2)

∂tc+ v · ∇c = m∆µ in Ω × (0,∞), (1.3)

µ = ε−1φ(c) − ε∆c in Ω × (0,∞). (1.4)

Here v is the mean velocity, Dv = 1
2
(∇v + ∇vT ), p is the pressure, c is an order

parameter related to the concentration of the fluids (e.g. the concentration differ-
ence or the concentration of one component), and Ω is a suitable bounded domain.
Moreover, ν(c) > 0 is the viscosity of the mixture, ε > 0 is a (small) parameter,
which will be related to the “thickness” of the interfacial region, and φ = Φ′ for some
suitable energy density Φ specified below. It is assumed that the densities of both
components as well as the density of the mixture are constant and for simplicity equal
to one. We note that capillary forces due to surface tension are modeled by an extra
contribution ε∇c⊗∇c in the stress tensor leading to the term on the right-hand side
of (1.1). Moreover, we note that in the modeling diffusion of the fluid components
is taken into account. Therefore m∆µ is appearing in (1.3), where m > 0 is the
mobility coefficient, which is assumed to be constant. (The case m = 0 corresponds
to a pure transport of the components without diffusion.)

We close the system by adding the boundary and initial conditions

v|∂Ω = 0 on ∂Ω × (0,∞), (1.5)

∂nc|∂Ω = ∂nµ|∂Ω = 0 on ∂Ω × (0,∞), (1.6)

(v, c)|t=0 = (v0, c0) in Ω. (1.7)

Here (1.5) is the usual no-slip boundary condition for viscous fluids, n is the exterior
normal on ∂Ω, ∂nµ|∂Ω = 0 means that there is no flux of the components through the
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boundary, and ∂nc|∂Ω = 0 describes a “contact angle” of π/2 of the diffused interface
and the boundary of the domain.

The total energy of the system above is given by E(c, v) = E1(c) + E2(v), where

E1(c) =
1

2

∫

Ω

ε|∇c(x)|2 dx+

∫

Ω

ε−1Φ(c(x)) dx, (1.8)

E2(v) =
1

2

∫

Ω

|v(x)|2 dx. (1.9)

Here the Ginzburg-Landau energy E1(c) describes an interfacial energy associated
with the region where c is not close to the minima of Φ(c) and E2(v) is the kinetic
energy of the fluid. The system is dissipative. More precisely, for sufficiently smooth
solutions

d

dt
E(c(t), v(t)) = −

∫

Ω

ν(c(t))|Dv(t)|2 dx−m

∫

Ω

|∇µ(t)|2 dx.

There is a large literature on the mathematical analysis of free boundary value prob-
lems related to fluids with a classical sharp interface. Most results are a priori limited
to flows without singularities in the interface. There are some attempts to construct
weak solutions of a two-phase flow of two viscous, incompressible, immiscible fluids
with a classical sharp interface. But so far there is no satisfactory existence theory
of weak solutions in the case that capillary forces are taken into account. We refer
to [1, 2] for a review and some results in this direction.

There are only few results on the mathematical analysis of diffuse interface models
in fluid mechanics and the system above. First results on existence of strong solu-
tions, if Ω = R

2 and Φ is a suitably smooth double well potential were obtained by
Starovoitov [26]. More complete results were presented by Boyer [7] in the case that
Ω ⊂ R

d is a periodical channel and f is a suitably smooth double well potential. The
author showed the existence of global weak solutions, which are strong and unique
if either d = 2 or d = 3 and t ∈ (0, T0) for a sufficiently small T0 > 0. Moreover, the
case of the physical relevant logarithmic potential (1.10) presented below is also con-
sidered in connection with a degenerate mobility m = m(c) → 0 suitably as c→ ±1.
In this case existence of weak solutions with c(t, x) ∈ [−1, 1] is shown. The system
(1.1)-(1.4) was also briefly discussed by Liu and Shen [19].

It is the scope of the present contribution to present a more complete math-
ematical theory of existence, uniqueness, regularity of solutions to (1.1)-(1.7) and
asymptotic behavior as t → ∞. Qualitatively, our results are similar to the known
result on the uncoupled Navier-Stokes system, cf. e.g. Sohr [25]. Of course the
results are limited by the fact that the regularity and uniqueness of weak solution
of the non-stationary Navier-Stokes system in three space dimensions is an unsolved
problem.

Moreover, it is the purpose of this work to present a theory for a class of physically
relevant free energy densities Φ. More precisely, we assume throughout the article:
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Assumption 1.1 Let Φ ∈ C([a, b]) ∩ C2((a, b)) such that φ = Φ′ satisfies

lim
s→a

φ(s) = −∞, lim
s→b

φ(s) = ∞, φ′(s) ≥ −α

for some α ∈ R. Furthermore, we assume that ν ∈ C2([a, b]) is a positive function.

We extend Φ(x) by +∞ if x /∈ [a, b]. Hence E1(c) <∞ implies c(x) ∈ [a, b] for almost
every x ∈ Ω.

Often c is a just the concentration difference of both components and [a, b] =
[−1, 1]. But it is mathematically useful to consider a general interval.

Remark 1.2 The latter assumptions are motivated by the so-called regular solution
model free energy suggested by Cahn and Hilliard [9]:

Φ(c) =
θ

2
((1 + c) ln(1 + c) + (1 − c) ln(1 − c)) −

θc

2
c2, (1.10)

where θ, θc > 0, a = −1, b = 1. Here the logarithmic terms are related to the entropy
of the system. In the theory of the Cahn-Hilliard equation, this free energy is usually
approximated by a suitable smooth free energy density. But then one cannot ensure
that the concentration difference stays in the physical reasonable interval [−1, 1] due
to the lack of a comparison principle for fourth order diffusion equation. As was
first shown by Elliott and Luckhaus [12], using the latter free energy density, the
associated Cahn-Hilliard equation admits a unique solution with c(t, x) ∈ (−1, 1)
almost everywhere. For further references and results in that direction we refer to
Abels and Wilke [3].

We note that (1.1) can be replaced by

∂tv + v · ∇v − div(ν(c)Dv) + ∇g = µ∇c (1.11)

with g = p+ ε
2
|∇c|2 + ε−1Φ(c) since

µ∇c = ∇
(ε

2
|∇c|2 + ε−1Φ(c)

)
− ε div(∇c⊗∇c). (1.12)

In the following we will for simplicity assume that ε = 1 and m = 1. But all result
are valid for general ε > 0,m > 0. Moreover, µ∇c in (1.11) can be replaced by
P0µ∇c if g is replaced by g −m(µ)c, where m(µ) is the mean value of µ in Ω and
P0µ = µ−m(µ), cf. Section 2 below.

Furthermore, let Q(s,t) = Ω × (s, t), Qt = Q(0,t), and Q = Q(0,∞). We refer to
Section 2 for the definition of the function spaces in the following.

Definition 1.3 (Weak Solution)
Let 0 < T ≤ ∞. A triple (v, c, µ) such that

v ∈ BCw(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

0 (Ω)d),

c ∈ BCw(0, T ;H1(Ω)), φ(c) ∈ L2
loc([0, T );L2(Ω)),∇µ ∈ L2(QT )
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is called a weak solution of (1.1)-(1.7) on (0, T ) if

−(v, ∂tψ)QT
− (v0, ψ|t=0)Ω + (v · ∇v, ψ)QT

+ (ν(c)Dv,Dψ)QT
= (µ∇c, ψ)QT

(1.13)

for all ψ ∈ C∞
(0)([0, T ) × Ω)d with divψ = 0,

−(c, ∂tϕ)QT
− (c0, ϕ|t=0)Ω + (v · ∇c, ϕ)QT

= −(∇µ,∇ϕ)QT
(1.14)

(µ, ϕ)QT
= (φ(c), ϕ)QT

+ (∇c,∇ϕ)QT
(1.15)

for all ϕ ∈ C∞
(0)([0, T ) × Ω), and if the (strong) energy inequality

E(v(t), c(t))+

∫

Q(t0,t)

ν(c)|Dv|2 d(x, τ)+

∫

Q(t0,t)

|∇µ|2 d(x, τ) ≤ E(v(t0), c(t0)) (1.16)

holds for almost all 0 ≤ t0 < T including t0 = 0 and all t ∈ [t0, T ).

Throughout the article Ω ⊂ R
d, d = 2, 3, will denote a bounded domain with

C3-boundary if no other assumption are made. Our main results are as follows:

THEOREM 1.4 (Global Existence of Weak Solutions)
For every v0 ∈ L2

σ(Ω), c0 ∈ H1(Ω) with c0(x) ∈ [a, b] almost everywhere there is a
weak solution (v, c, µ) of (1.1)-(1.7) on (0,∞). Moreover, if d = 2, then (1.16) holds
with equality for all 0 ≤ t0 ≤ t <∞. Finally, every weak solution on (0,∞) satisfies

∇2c, φ(c) ∈ L2
loc([0,∞);Lr(Ω)),

t
1
2

1 + t
1
2

c ∈ BUC(0,∞;W 1
q (Ω)) (1.17)

where r = 6 if d = 3 and 1 < r <∞ is arbitrary if d = 2 and q > 3 is independent of
the solution and initial data. If additionally c0 ∈ H2

N(Ω) := {c ∈ H2(Ω) : ∂nc|∂Ω = 0}
and −∆c0 + φ0(c0) ∈ H1(Ω), then c ∈ BUC(0,∞;W 1

q (Ω)).

We note that the regularity statement t
1
2/(1 + t

1
2 )c ∈ BUC(0,∞;W 1

q (Ω)) with
q > d for any weak solution in the latter theorem is a crucial ingredient for obtaining
higher regularity of weak solutions. This is one of the most difficult steps in the
analysis. It is essentially based on the regularity result of the Cahn-Hilliard equation
with convection and singular potential in spaces of fractional time regularity pre-
sented in Lemma 3.2 below. This result and a careful interpolation argument using
the density of C∞

0 (Ω) in Hs(Ω) for |s| < 1
2

leads to the latter statement, cf. proof of
Theorem 1.4 in Section 6 as well as Remark 3.3 below.

Because of c ∈ BUC(δ,∞;W 1
q (Ω)), q > d, for all δ > 0 and δ = 0 for suitable

inital data, one is able to use a result on maximal regularity for an associated Stokes
system with variable viscosity, cf. Proposition 4.5 below, to conclude higher regularity
for the velocity v in the case of small or large times and in the case d = 2, which
is enough to obtain a (locally) unique solution. More precisely, the results are as
follows:
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Proposition 1.5 (Uniqueness)
Let 0 < T ≤ ∞, q = 3 if d = 3 and let q > 2 if d = 2. Moreover, assume that
v0 ∈ W 1

q,0(Ω)∩L2
σ(Ω) and let c0 ∈ H1

(0)(Ω)∩C0,1(Ω) with c0(x) ∈ [a, b] for all x ∈ Ω.

If there is a weak solution (v, c, µ) of (1.1)-(1.7) on (0, T ) with v ∈ L∞(0, T ;W 1
q (Ω))

and ∇c ∈ L∞(QT ), then any weak solution (v′, c′, µ′) of (1.1)-(1.7) on (0, T ) with the
same initial values and ∇c′ ∈ L∞(QT ) coincides with (v, c, µ).

THEOREM 1.6 (Regularity of Weak Solutions)
Let c0 ∈ H2

N(Ω) such that E1(c0) <∞ and −∆c0 + φ(c0) ∈ H1(Ω).

1. Let d = 2 and let v0 ∈ V 1+s
2 (Ω) with s ∈ (0, 1]. Then every weak solution (v, c)

of (1.1)-(1.7) on (0,∞) satisfies

v ∈ L2(0,∞;H2+s′(Ω)) ∩H1(0,∞;Hs′(Ω)) ∩BUC([0,∞);H1+s−ε(Ω))

for all s′ ∈ [0, 1
2
) ∩ [0, s] and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(0,∞;Lr(Ω))

for every 1 < r <∞. In particular, the weak solution is unique.

2. Let d = 2, 3. Then for every weak solution (v, c, µ) of (1.1)-(1.7) on (0,∞)
there is some T > 0 such that

v ∈ L2(T,∞;H2+s(Ω)) ∩H1(T,∞;Hs(Ω)) ∩BUC([T,∞);H2−ε(Ω))

for all s ∈ [0, 1
2
) and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(T,∞;Lr(Ω)) with

r = 6 if d = 3 and 1 < r <∞ if d = 2.

3. If d = 3 and v0 ∈ V s+1
γ (Ω), s ∈ (1

2
, 1], then there is some T0 > 0 such that

every weak solution (v, c) of (1.1)-(1.7) on (0, T0) satisfies

v ∈ L2(0, T0;H
2+s′(Ω)) ∩H1(0, T0;H

s′(Ω)) ∩BUC([0, T0];H
1+s−ε(Ω))

for all s′ ∈ [0, 1
2
) and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(0, T0;L

6(Ω)). In
particular, the weak solution is unique on (0, T0).

Finally, because of the regularity of any weak solution for large times, we are
able to modify the proof in [3], based on the Lojasiewicz-Simon inequality, to show
convergence to stationary solutions as t→ ∞.

THEOREM 1.7 (Convergence to Stationary Solution)
Assume that Φ: (a, b) → R is analytic and let (v, c, µ) be a weak solution of (1.1)-
(1.7). Then (v(t), c(t)) ⇀t→∞ (0, c∞) in H2−ε(Ω)d × H2(Ω) for all ε > 0 and for
some c∞ ∈ H2(Ω) with φ(c∞) ∈ L2(Ω) solving the stationary Cahn-Hilliard equation

−∆c∞ + φ(c∞) = const. in Ω, (1.18)

∂nc∞|∂Ω = 0 on ∂Ω, (1.19)∫

Ω

c∞(x) dx =

∫

Ω

c0(x) dx. (1.20)
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Remark 1.8 We note that the latter convergence result shows that asymptotically
solutions of the model H show the “right behaviour” in the sense that the velocity
goes to zero and the diffuse interface tends to a diffuse interface with constant “mean
curvature −∆c∞ + φ(c∞)” for large times might as one observes in real world two-
phase flows. But it also indicates that the model H and the Cahn-Hilliard equation
might share some common (unwanted) effects for large times. In particular we note
that it was shown by Sternberg and Zumbrun [28] that in a strictly convex domain
and for sufficiently small ε > 0 the diffuse interface of a stable stationary solution
of the Cahn-Hilliard equation is connected. This suggests that there are no stable
stationary solutions of the model H that represent two or more droplets, which is
clearly observed in real world two-phase flows. This is related to a coarsening effect,
known for the Cahn-Hilliard equation and which might be present also in the model
H, where mass from smaller droplets diffuses to larges droplets until finally (in a
stricly convex domain) almost all mass is contained in one droplet. More precise
studies of the dynamics of the model H for large times might be the topic of future
works.

Let us comment on the novelties: In comparision with the few known results
for the system (1.1)-(1.4) we present the first results on existence, uniqueness and
regularity for a class of singular free energies, including the physically important
logarithmic free energy (1.10), which assures that c(t, x) ∈ (a, b) almost everywhere.
– We note that in [7] the free energy (1.10) is consider together with a degenerating
mobility m(c) →c→±1 0; but only existence of solutions with c(t, x) ∈ [−1, 1] is
shown. No higher regularity or uniqueness was obtained. - In order to deal with the
singular free energies, we extend the results of [3], based on perturbation results for
monotone operator, to include the convective term in (1.3). In order to show that
c ∈ BUC(δ,∞;W 1

q (Ω)) for some q > d and any weak solution, it is essential to work
in spaces with fractional regularity in time since v has only very limited regularity
in time and space, cf. Lemma 3.2 and Remark 3.3. This is one of the most crucial
steps in the analysis. The latter regularity for c is essential in order to get higher
regularity from the linear Stokes system with variable viscosity in various situations.
The necessary results on maximal regularity are obtained by perturbation arguments
from the case with constant viscosity. Even these result seem to be original since
the Stokes with variable viscosity is little studied in the literature. We note that
the results above hold true for a suitable smooth free energy density Φ(c) as e.g.
Φ(c) = (c2 − 1)2 with even simpler proofs since the regularity of c for solutions
of (1.3)-(1.4) is easily obtained by standard results on parabolic partial differential
equations. But even in that case the regularity for large times and in particular the
convergence as t→ ∞, which is based on that, are new results.

By the assumption on Φ we have the decomposition

Φ(s) = Φ0(s) −
α

2
c2, φ(s) = φ0(s) − αc (1.21)

where Φ0 ∈ C([a, b])∩C2((a, b)) is convex. This will be the key point in the following
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analysis of the Cahn-Hilliard equation (1.3)-(1.4). The condition limc→a φ0(c) =
−∞, limc→b φ0(c) = ∞ for φ0 = Φ′

0 will keep the concentration difference c in the
(physical reasonable) interval [a, b] and ensures that the subgradient of the associated
functional is a single valued function with a suitable domain, cf. Theorem 2.3 below.

The structure of the article is as follows: In Section 2 we fix the notation and
summarize some basic results on the used function spaces, monotone operators and
subgradients. Then we start with an existence and regularity theory of the separated
systems. In Section 3 we derive the needed results for a Cahn-Hilliard equation

with convection, i.e., (1.3)-(1.4) for given v. In particular, we prove that
(

t
1+t

) 1
2 c ∈

BUC(0,∞;W 1
q (Ω)) for some q > 3 under regularity assumptions on v, which are

satisfied by any weak solution. This is done with aid of suitable estimates in vector-
valued Besov spaces. In order to prove existence of solutions we use the method of [3],
which is based on a decomposition of the associated operators in a monotone operator
plus a Lipschitz perturbation. Then in Section 4 we study the Stokes and Navier-
Stokes equation with variable viscosity ν(c) for a fixed c ∈ BUC(0,∞;W 1

q (Ω)), q > d,
in fractional L2-Sobolev spaces. Section 5 is devoted to the proof of Theorem 1.4. In
Section 6 the uniqueness and regularity results are shown. Finally, in Section 7 we
prove the convergence to stationary solutions as t→ ∞ with the aid of the regularity
results and the Lojasiewicz-Simon inequality.

Acknowledgments: The author is grateful to Dr. Hideyuki Miura for several
helpful comments on a preliminary version of this article and to Dr. Yutaka Terasawa
for bringing his attention to uniformly local Lp-spaces.

2 Preliminaries

For a set M the power set will be denoted by P(M) and χM denotes its characteristic
function. Moreover, we denote R

d
+ = {x ∈ R

d : xd > 0}, a ⊗ b = (aibj)
n
i,j=1 for

a, b ∈ R
d, Asym = 1

2
(A + AT ), and [A,B] = AB − BA for two operators A,B. If X

is a Banach space and X ′ is its dual, then

〈f, g〉 ≡ 〈f, g〉X′,X = f(g), f ∈ X ′, g ∈ X,

denotes the duality product. We writeX →֒→֒ Y ifX is compactly embedded into Y .
Moreover, if H is a Hilbert space, (·, ·)H denotes its inner product. In the following
all Hilbert spaces will be real-valued and separable.

2.1 Function Spaces

Spaces of continuous functions: The usual spaces of bounded continuous, Hölder
continuous, Lipschitz continuous, k-times differentiable and smooth functions on a
closed set A are denoted by C(A), Cα(A) for 0 < α < 1, C0,1(A), Ck(A), and C∞(A),
respectively. Here all derivatives and moduli of continuity (as long as they exist) are
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assumed to be bounded as well as. Furthermore, C∞
0 (Ω) ≡ D(Ω) denotes the space

of smooth and compactly supported functions f : Ω → R. If A ⊂ R
d, then

C∞
(0)(A) =

{
f : A→ R : f = F |A, F ∈ C∞

0 (Rd), supp f ⊆ A
}
.

Finally, let 0 < T ≤ ∞ and let X be a Banach space. Then BC(0, T ;X) is
the Banach space of all bounded and continuous f : [0, T ) → X equipped with the
supremum norm and BUC(0, T ;X) is the subspace of all bounded and uniformly
continuous functions. Moreover, we define BCw(0, T ;X) as the topological vector
space of all bounded and weakly continuous functions f : [0, T ) → X.

Spaces of integrable functions: If M ⊆ R
d is measurable, Lq(M), 1 ≤ q ≤ ∞

denotes the usual Lebesgue-space, ‖.‖q its norm, and (., .)M ≡ (., .)L2(M). Moreover,
Lq(M ;X) denotes its vector-valued variant of strongly measurable q-integrable func-
tions/essentially bounded functions, where X is a Banach space. If M = (a, b), we
write for simplicity Lq(a, b;X) and Lq(a, b). Furthermore, f ∈ Lq

loc([0,∞);X) if and
only if f ∈ Lq(0, T ;X) for every T > 0. Moreover, Lq

uloc([0,∞);X) denotes the uni-
formly local variant of Lq(0,∞;X) consisting of all measurable f : [0,∞) → X such
that

‖f‖L
q

uloc([0,∞);X) = sup
t≥0

‖f‖Lq(t,t+1;X) <∞.

Recall that, if X is a Banach space with the Radon-Nikodym property, then

Lq(M ;X)′ = Lq′(M ;X ′) for every 1 ≤ q <∞

by means of the duality product 〈f, g〉 =
∫

M
〈f(x), g(x)〉X′,X dx for f ∈ Lq′(M ;X ′), g ∈

Lq(M ;X). If X is reflexive or X ′ is separable, then X has the Radon-Nikodym prop-
erty, cf. Diestel and Uhl [11].

Moreover, recall the Lemma of Aubin-Lions: If X0 →֒→֒ X1 →֒ X2 are Banach
spaces, 1 < p <∞, 1 ≤ q <∞, and I ⊂ R is a bounded interval, then

{
v ∈ Lp(I;X0) :

dv

dt
∈ Lq(I;X2)

}
→֒→֒ Lp(I;X1). (2.1)

See J.-L. Lions [18] for the case q > 1 and Simon [23] or Roub́ıček [20] for q = 1.
Finally, let (X0, X1) be a compatible couple of Banach spaces, i.e., there is a

Hausdorff topological vector space Z such that X0, X1 →֒ Z, cf. Bergh and Löfström
[6], and let (., .)[θ] and (., .)θ,r, θ ∈ [0, 1], 1 ≤ r ≤ ∞, denote the complex and real
interpolation functor, respectively. Then for all 1 ≤ p0 < ∞, 1 ≤ p1 < ∞, and
θ ∈ (0, 1)

(Lp0(M ;X0), L
p1(M ;X1))[θ] = Lp(M ; (X0, X1)[θ]),

1

p
=

1 − θ

p0

+
θ

p1

, (2.2)

cf. [6, Theorem 5.1.2.]. Moreover, we will use that, if X1 →֒ X0, then

(X0, X1)θ1,q1 →֒ (X0, X1)θ0,q0 if 0 ≤ θ0 < θ1 ≤ 1, 1 ≤ q0, q1 ≤ ∞, (2.3)
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which follows from [6, Theorem 3.4.1].

Sobolev, Bessel potential, and Besov spaces: Wm
q (Ω), m ∈ N0, 1 ≤ q ≤ ∞,

denotes the usual Lq-Sobolev space, Wm
q,0(Ω) the closure of C∞

0 (Ω) in Wm
q (Ω), and

W−m
q (Ω) = (Wm

q′,0(Ω))′. The L2-Bessel potential spaces are denoted by Hs(Ω), s ∈ R,

which are defined by restriction of distributions in Hs(Rd) to Ω, cf. Triebel [29,
Section 4.2.1]. It is well-known that

(Hs0(Rd), Hs1(Rd))[θ] = (Hs0(Rd), Hs1(Rd))θ,2 = Hs(Rd), s = (1−θ)s0+θs1, (2.4)

for all θ ∈ (0, 1) s0, s1 ∈ R, cf. [6, Theorem 6.4.5]. Furthermore, if Ω ⊂ R
d has a

continuous extension operator E : W k
2 (Ω) → W k

2 (Rd) for all k ∈ N (in particular if Ω
is a bounded domain with Lipschitz boundary), thenHk(Ω) = W k

2 (Ω) by Plancharel’s
theorem and (2.4) holds with R

d replaced by Ω and all s0, s1 ≥ 0 by [29, Section 1.2.4].
Moreover, we note that, if Ω is a bounded domain with C1-boundary, then

Hs(Ω) = C∞
0 (Ω)

Hs(Ω)
and Hs(Ω)′ = H−s(Ω) for all |s| <

1

2
, (2.5)

cf. e.g. [29, Section 4.3.2. and 4.8.2].
Moreover, if X is a Banach space and 0 < T ≤ ∞, then f ∈ W 1

p (0, T ;X),

1 ≤ p < ∞ if and only if f, d
dt
f ∈ Lp(0, T ;X), where d

dt
f denotes the vector-valued

distributional derivative of f . Furthermore, W 1
p,uloc([0,∞);X) is defined by replacing

Lp(0, T ;X) by Lp
uloc([0,∞);X) and we set H1(0, T ;X) = W 1

2 (0, T ;X). Now let
X0, X1 be Banach spaces such that X1 →֒ X0 densely. Then

W 1
p (0, T ;X0) ∩ L

p(0, T ;X1) →֒ BUC(0, T ; (X0, X1)1− 1
p
,p), 1 ≤ p <∞, (2.6)

continuously, cf. Amann [4, Chapter III, Theorem 4.10.2]. Moreover, there is a
continuous extension operator

E : (X0, X1)1− 1
p
,p → W 1

p (0,∞;X0) ∩ L
p(0,∞;X1) such that Eu0|t=0 = u0, (2.7)

cf. [4, Chapter III, Theorem 4.10.2]. Actually (2.6) and (2.7) follow directly from
the trace method for the real interpolation, cf. [6, Corollary 3.12.3]. If additionally
X0 = H is a Hilbert space and H is identified with its dual, then X1 →֒ H →֒ X ′

1

and
1

2

d

dt
‖f‖2

H = 〈
d

dt
f(t), f(t)〉X′

1,X1
for almost all t ∈ [0, T ] (2.8)

provided that f ∈ Lp(0, T ;X1) and d
dt
f ∈ Lp′(0, T ;X ′

1), 1 < p < ∞, cf. Zeidler [30,
Proposition 23.23]. In particular, (2.8) implies

sup
t∈[0,T ]

‖f(t)‖2
H ≤ 2

(
‖∂tf‖L2(0,T ;X′

1)‖f‖L2(0,T ;X1) + ‖f(0)‖2
H

)
. (2.9)

Furthermore, we define H1,2(QT ) := L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) for 0 < T ≤
∞.
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The usual Besov spaces are denoted by Bs
pq(R

n), s ∈ R, 1 ≤ p, q ≤ ∞, cf. e.g.
[6, 29]. If Ω ⊆ R

n is a domain, Bs
pq(Ω) is defined by restriction of the elements of

Bs
pq(R

n) to Ω, equipped with the quotient norm. We refer to [6, 29] for the standard
results on interpolation of Besov spaces and Sobolev embeddings. We only note that
Hs(Ω) = Bs

22(Ω) and that, if Ω has a continuous extension operator as above, then

(W k
p0

(Ω),W k+1
p1

(Ω))θ,p = Bk+θ
pp (Ω)

1

p
=

1 − θ

p0

+
θ

p1

, k ∈ N0, (2.10)

for all θ ∈ (0, 1), cf. [29, Section 2.4.2 Theorem 1].
In order to derive some suitable estimates we will use vector-valued Besov spaces

Bs
q∞(I;X), where s ∈ (0, 1), 1 ≤ q ≤ ∞, I is an interval, and X is a Banach space.

They are defined as

Bs
q∞(I;X) =

{
f ∈ Lq(I;X) : ‖f‖Bs

q∞(I;X) <∞
}
,

‖f‖Bs
q∞(I;X) = ‖f‖Lq(I;X) + sup

0<h≤1
‖∆hf(t)‖Lq(Ih;X),

where ∆hf(t) = f(t + h) − f(t) and Ih = {t ∈ I : t + h ∈ I}. Moreover, we
set Cs(I;X) = Bs

∞∞(I;X), s ∈ (0, 1). Let X0, X1 be two Banach spaces. Using
f(t) − f(s) =

∫ t

s
d
dt
f(τ) dτ it is easy to show that for 1 ≤ q0 < q1 ≤ ∞

W 1
q1

(I;X1) ∩ L
q0(I;X0) →֒ Bθ

q∞(I;Xθ),
1

q
=

1 − θ

q0
+
θ

q1
, (2.11)

where θ ∈ (0, 1) and Xθ = (X0, X1)[θ] or Xθ = (X0, X1)θ,r, 1 ≤ r ≤ ∞. Finally,
Bs

q∞,uloc([0,∞);X) is defined in the obvious way replacing Lq(0,∞;X)-norms by
Lq

uloc([0,∞);X)-norms.

Weak Neumann Laplace equation: Given f ∈ L1(Ω), we denote by m(f) =
1
|Ω|

∫
Ω
f(x) dx its mean value. Moreover, for m ∈ R we set

Lq

(m)(Ω) := {f ∈ Lq(Ω) : m(f) = m}, 1 ≤ q ≤ ∞,

and P0f := f − m(f) is the orthogonal projection onto L2
(0)(Ω). Furthermore, we

define

H1
(0) ≡ H1

(0)(Ω) = H1(Ω) ∩ L2
(0)(Ω), (c, d)H1

(0)
(Ω) := (∇c,∇d)L2(Ω).

Then H1
(0)(Ω) is a Hilbert space due to Poincaré’s inequality. Moreover, let H−1

(0) ≡

H−1
(0) (Ω) = H1

(0)(Ω)′. Then the Riesz isomorphism R : H1
(0)(Ω) → H−1

(0) (Ω) is given by

〈Rc, d〉H−1
(0)

,H1
(0)

= (c, d)H1
(0)

= (∇c,∇d)L2 , c, d ∈ H1
(0)(Ω),

i.e., R = −∆N is the negative (weak) Laplace operator with Neumann boundary
conditions. In particular, this means that

(f, g)H−1
(0)

= (∇∆−1
N f,∇∆−1

N g)L2 = (∆−1
N f,∆−1

N g)H1
(0)
. (2.12)
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This implies the useful interpolation inequality

‖f‖2
L2 = −(∇∆−1

N f,∇f)L2 ≤ ‖f‖H−1
(0)
‖f‖H1

(0)
for all f ∈ H1

(0)(Ω). (2.13)

Moreover, we embed H1
(0)(Ω) and L2

(0)(Ω) into H−1
(0) (Ω) in the standard way:

〈c, ϕ〉H−1
(0)

,H1
(0)

=

∫

Ω

c(x)ϕ(x) dx, ϕ ∈ H1
(0)(Ω).

Finally, we note that, if u ∈ H1
(0)(Ω) solves ∆Nu = f for some f ∈ Lq

(0)(Ω), 1 < q <

∞, and ∂Ω is C2, then it follows from standard elliptic theory that u ∈ W 2
q (Ω) and

∆u = f a.e. in Ω and ∂nu|∂Ω = 0 in the sense of traces. If additionally f ∈ W 1
q (Ω)

and ∂Ω ∈ C3, then u ∈ W 3
q (Ω). Moreover,

‖u‖W k+2
q (Ω) ≤ Cq‖f‖W k

q (Ω) for all f ∈ W k
q (Ω) ∩ Lq

(0)(Ω), k = 0, 1, (2.14)

with a constant Cq depending only on 1 < q <∞, d, and Ω.

Spaces of solenoidal vector-fields: In the following C∞
0,σ(Ω) denotes the space of

all divergence free vector fields in C∞
0 (Ω)d and Lq

σ(Ω) is its closure in the Lq-norm.
The corresponding Helmholtz projection is denoted by Pq, cf. e.g. Simader and
Sohr [22]. We note that Pqf = f −∇p, where p ∈ Lq

loc(Ω) with p ∈ W 1
q (Ω)∩Lq

(0)(Ω)
is the solution of the weak Neumann problem

(∇p,∇ϕ)Ω = (f,∇ϕ) for all ϕ ∈ C∞
(0)(Ω). (2.15)

In particular, this implies that P2f ∈ Hk(Ω)d ∩L2
σ(Ω) if f ∈ Hk(Ω)d, k = 0, 1, 2, and

Ω is a bounded domain with C3-boundary by the regularity of the weak Neumann
problem discussed above.

Moreover, we denoteHs
σ(Ω) = Hs(Ω)d∩L2

σ(Ω) for s ≥ 0, V s
2 (Ω) = Hs

σ(Ω)∩H1
0 (Ω)d

for s ≥ 1, and V2(Ω) = V 1
2 (Ω). Because of Korn’s inequality V2(Ω) can be normed

by ‖Dv‖2.

Some useful estimates: Firstly, if f ∈ H2(Ω) and Ω ⊆ R
d, d ≤ 3 is a bounded

domain with Lipschitz boundary, then

‖f‖∞ ≤ C‖f‖
1− d

4

L2 ‖f‖
d
4

H2 . (2.16)

The latter estimate follows from the fact that

(L2(Rd), H2(Rd)) d
4
,1 = B

d
2
21(R

d) →֒ B0
∞1(R

d) →֒ L∞(Rd)

and that Ω has a continuous extension operator E : Hk(Ω) → Hk(Rd) for all k ∈ N0,
cf. Stein [27, Chapter VI, Section 3.2]. Here Bs

pq(R
d) denote the usual Besov spaces

and we have used [6, Theorems 6.4.5 and 6.5.1]. Moreover, we note that

‖fg‖W 1
p
≤ C‖f‖W 1

r
‖g‖W 1

p
for all 1 ≤ p ≤ r, r > d, (2.17)
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which can be easily proved using the Sobolev embedding theorem. Finally, if d ≤ 3,

‖fg‖Hs(Ω) ≤ Cs‖f‖
Hs+1

2 (Ω)
‖f‖Hs+1(Ω) (2.18)

for all s ≥ 0 and bounded Lipschitz domains sinceH
1
2 (Ω) →֒ L3(Ω), H1(Ω) →֒ L6(Ω).

This can be proved by first showing the case s ∈ N0 and then using bilinear complex
interpolation, cf. [6, Theorem 4.4.1].

We will frequently use the following simple lemma:

Lemma 2.1 Let Ω ⊂ R
N , N ≥ 1, be an open set and let ck ∈ L∞(Ω) be a bounded

sequence such that ck →∞ c in L1
loc(Ω). Then for every f ∈ Lr(Ω), 1 ≤ r <∞,

ckf →k→∞ cf in Lr(Ω).

Proof: Let ε > 0. Since C∞
0 (Ω) is dense in Lr(Ω), 1 ≤ r < ∞, there is some ϕ ∈

C∞
0 (Ω) such that ‖f−ϕ‖r ≤ ε. Moreover, there is some Nε such that ‖ϕ(ck−c)‖r ≤ ε

for every k ≥ Nε, where we use that ck →k→∞ c in L1
loc(Ω) implies the convergence

in Lr
loc(Ω) since ck are uniformly bounded. Hence

‖f(ck − c)‖r ≤ ‖ϕ(ck − c)‖r + C‖(f − ϕ)(ck − c)‖r

≤ ‖ϕ(ck − c)‖r + 2 sup
k∈N

‖ck‖∞‖f − ϕ‖r ≤ (1 + 2 sup
k∈N

‖ck‖∞)ε

for every k ≥ Nε. This proves the lemma.

2.2 Evolution Equations for Monotone Operators

We refer to Brézis [8] and Showalter [21] for basic results in the theory of monotone
operators. In the following we just summarize some basic facts and definitions. Let
H be a real-valued and separable Hilbert space. Recall that A : H → P(H) is a
monotone operator if

(w − z, x− y)H ≥ 0 for all w ∈ A(x), z ∈ A(y).

Moreover, D(A) = {x ∈ H : A(x) 6= ∅}. Now let ϕ : H → R ∪ {+∞} be a convex
function. Then dom(ϕ) = {x ∈ H : ϕ(x) <∞} and ϕ is called proper if dom(ϕ) 6= ∅.
The subgradient ∂ϕ : H → P(H) is defined by w ∈ ∂ϕ(x) if and only if

ϕ(ξ) ≥ ϕ(x) + (w, ξ − x)H for all ξ ∈ H.

Then ∂ϕ is a monotone operator and, if additionally ϕ is lower semi-continuous, then
∂ϕ is maximal monotone, cf. [8, Exemple 2.3.4].
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THEOREM 2.2 Let H0, H1 be real-valued, separable Hilbert spaces such that H1 →֒
H0 densely. Moreover, let ϕ : H0 → R ∪ {+∞} be a proper, convex and lower semi-
continuous functional such that ϕ = ϕ1 + ϕ2, where ϕ2 ≥ 0 is convex and lower
semi-continuous, domϕ1 = H1, and ϕ1|H1 is a bounded, coercive, quadratic form on
H1 and set A = ∂ϕ. Furthermore, assume that B : [0, T ] × H1 → H0 is measurable
in t ∈ [0, T ] and Lipschitz continuous in v ∈ H1 satisfying

‖B(t, v1) −B(t, v2)‖H0 ≤M(t)‖v1 − v2‖H1 for all v1, v2 ∈ H0, a.e. t ∈ [0, T ]

for some M ∈ L2(0, T ). Then for every u0 ∈ dom(ϕ) and f ∈ L2(0, T ;H0) there is
a unique u ∈ W 1

2 (0, T ;H0) ∩ L
∞(0, T ;H1) with u(t) ∈ D(A) for a.e. t > 0 solving

du

dt
(t) + A(u(t)) ∋ B(t, u(t)) + f(t) for a.a. t ∈ (0, T ), (2.19)

u(0) = u0. (2.20)

Moreover, ϕ(u) ∈ L∞(0, T ).

Proof: In the case that B is independent of t, the theorem is proved in [3]. – We
note that the assumption u0 ∈ D(A) in [3, Theorem 3.1] is a typo and u0 ∈ domϕ
is sufficient. – The latter proof directly carries over to the present case by using the
estimate
∫ t

0

|(B(v1) − B(v2), u1 − u2)H0| ds ≤ ‖M‖L2(0,t)‖v1 − v2‖L2(0,t;H1)‖u1 − u2‖L∞(0,T ;H0)

and using the fact that ‖M‖L2(0,t) →t→0 0.

2.3 Subgradients

In this section we study the “convex part” of E1 namely

E0(c) =
1

2

∫

Ω

|∇c(x)|2 dx+

∫

Ω

Φ0(c(x)) dx, (2.21)

where Φ0 is the same as in (1.21). Firstly, E0 is defined on L2
(m)(Ω), m ∈ (a, b), with

domE0 =
{
c ∈ H1(Ω) ∩ L2

(m)(Ω) : c(x) ∈ [a, b] a.e.
}
.

We denote by ∂E0(c) : L2
(m)(Ω) → P(L2

(0)(Ω)) the subgradient of E0 at c ∈ domE0

in the sense that w ∈ ∂E0(c) if and only if

(w, c′ − c)L2 ≤ E0(c
′) − E0(c) for all c′ ∈ L2

(m)(Ω).

Note that L2
(m)(Ω) is an affine subspace of L2(Ω) with tangent space L2

(0)(Ω). This
definition is the obvious generalization of the standard definition for Hilbert spaces
to affine subspaces of Hilbert spaces.
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The following result was proved in [3]1:

THEOREM 2.3 Let Φ0, φ0 be as in (1.21). Moreover, we set φ0(x) = +∞ for
x 6∈ (a, b) and let E0 be defined as in (2.21). Then

D(∂E0) =
{
c ∈ H2(Ω) ∩ L2

(m)(Ω) : φ0(c) ∈ L2, φ′
0(c)|∇c|

2 ∈ L1, ∂nc|∂Ω = 0
}

and
∂E0(c) = −∆c+ P0φ0(c). (2.22)

Moreover, there is some C > 0 independent of c ∈ D(∂E0) such that

‖c‖2
H2(Ω) + ‖φ0(c)‖

2
2 +

∫

Ω

φ′
0(c(x))|∇c(x)|

2 dx ≤ C
(
‖∂E0(c)‖

2
2 + ‖c‖2

2 + 1
)
. (2.23)

For the following analysis it is important that (2.23) can be improved as follows:

Lemma 2.4 Let Φ0, φ0, E0 be as above and let 2 ≤ r <∞. Then there is a constant
Cr such that for every c ∈ D(∂E0) satisfying ∂E0(c) ∈ Lr(Ω) we have

‖c‖W 2
r

+ ‖φ0(c)‖r ≤ Cr (‖∂E0(c)‖r + ‖c‖2 + 1) . (2.24)

Proof: Let ψ ∈ C1(R) be a non-negative function with sψ′(s) ≥ 0. Then multiplying
(2.22) by ψ(φ0(c))φ0(c) we obtain

(∇c,∇(ψ(φ0(c))φ0(c)))Ω +

∫

Ω

ψ(φ0(c))|φ0(c)|
2 dx

≤ C (‖∂E0(c)‖r +m(φ0(c))) ‖ψ(φ0(c))φ0(c)‖r′ ,

where

(∇c,∇(ψ(φ0(c))φ0(c)))Ω =

∫

Ω

φ′
0(c)|∇c|

2(ψ′(φ0(c))φ0(c) + ψ(φ0(c)) dx ≥ 0.

After a simple approximation we can replace ψ by ψk(s) = min(k, |s|r−2) to conclude

C (‖∂E0(c)‖r +m(φ0(c)) ‖ψk(φ0(c))φ(c)‖r′

≥

∫

Ω

ψk(φ0(c))|φ0(c)|
2 dx ≥

∫

Ω

ψk(φ0(c))
r′|φ0(c)|

r′ dx

since |φ0(c)|
2−r′ = (|φ0(c)|

r−2)
1

r−1 ≥ ψk(φ0(c))
1

r−1 . Therefore

‖ψk(φ0(c))φ0(c)‖
r′

r

r′ ≤ C (‖∂E0(c)‖r + |m(φ0(c))|) ≤ C (‖∂E0(c)‖r + ‖c‖2 + 1)

because of (2.23). Finally, passing k → ∞ the estimate of the second term in (2.24)
follows. The estimate of the first term then follows by using (2.22) and (2.14).

1We note that the estimate (2.23) is stated in [3, Theorem 4.3] without “+1” on the right-hand
side, which holds true if m = 0 and φ′(0) = 0, which is assumed in the proof of [3, Theorem 4.3]. By
a simple transformation one can reduce to that case; but then one has to add +1 on the right-hand
side or modify the estimate in another suitable way.
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Corollary 2.5 Let E0 be defined as above and extend E0 to a functional Ẽ0 : H−1
(0) (Ω) →

R∪{+∞} by setting Ẽ0(c) = E0(c) if c ∈ domE0 and Ẽ0(c) = +∞ else. Then Ẽ0 is

a proper, convex, and lower semi-continuous functional, ∂Ẽ0 is a maximal monotone
operator with ∂Ẽ0(c) = −∆N∂E0(c), and

D(∂Ẽ0) = {c ∈ D(∂E0) : ∂E0(c) = −∆c+ P0φ0(c) ∈ H1
(0)(Ω)}. (2.25)

Moreover, for every c ∈ D(∂Ẽ0)

‖c‖W 2
r

+ ‖φ0(c)‖r ≤ Cr

(
‖∂Ẽ0(c)‖H1

(0)
+ ‖c‖2 + 1

)
, (2.26)

where r = 6 if d = 3 and 2 ≤ r <∞ is arbitrary if d = 2.

Proof: The first part is the same as [3, Corollary 4.4.]. The last statement follows
from Lemma 2.4 and the Sobolev embedding theorem.

3 Cahn-Hilliard Equation with Convection

3.1 Existence and Regularity Theory

In this section we consider

∂tc+ v · ∇c = ∆µ in Ω × (0,∞), (3.1)

µ = φ(c) − ∆c in Ω × (0,∞), (3.2)

∂nc|∂Ω = ∂nµ|∂Ω = 0 on ∂Ω × (0,∞), (3.3)

c|t=0 = c0 in Ω (3.4)

for given c0 with E1(c0) < ∞ and v ∈ L∞(0,∞;L2
σ(Ω)) ∩ L2(0,∞;V2(Ω)). Here

φ = Φ′ and Φ is as in Assumption 1.1 and E1 is as in (1.8). We assume with loss of
generality that m(c0) = 0. By a simply shift of c, Φ, and [a, b] by a constant we can
always reduce to that case. Moreover, we can also assume that 0 ∈ (a, b) since a = 0
or b = 0 and E1(c0) <∞ and m(c0) = 0 implies that c0 ≡ 0.

We consider (3.1)-(3.4) as an evolution equation on H−1
(0) (Ω) in the following way:

∂tc(t) + A(c(t)) + B(v(t))c(t) = 0, t > 0, (3.5)

c|t=0 = c0 (3.6)

where A(c) = ∂Ẽ0(c) and

〈B(v)c, ϕ〉H−1
(0)

,H1
(0)

= (v · ∇c, ϕ)L2 − α(∇c,∇ϕ)L2 , ϕ ∈ D(B(v)) = H1
(0)(Ω).

I.e., A(c) = ∆N(∆c − P0φ
′
0(c)),B(v)c = v · ∇c + α∆Nc, where ∆N : H1

(0)(Ω) ⊂

H−1
(0) (Ω) → H−1

(0) (Ω) is the Laplace operator with Neumann boundary conditions as
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above, which is considered as an unbounded operator on H−1
(0) (Omega). Finally, we

note that A is a strictly monotone operator since

(A(c1) −A(c2), c1 − c2)H−1
(0)

= (−∆(c1 − c2) + φ0(c1) − φ0(c2), c1 − c2)L2 ≥ ‖∇(c1 − c2)‖
2
2 (3.7)

for all c1, c2 ∈ D(A).

In order to apply Theorem 2.2 we use that by Corollary 2.5, A = ∂Ẽ0 is a maximal
monotone operator with Ẽ0 = ϕ1 + ϕ2,

ϕ1(c) =
1

2

∫

Ω

|∇c(x)|2 dx, ϕ2(c) =

∫

Ω

Φ0(c(x)) dx,

domϕ1 = H1
(0)(Ω), and domϕ2 = domϕ = {c ∈ H1

(0) : c(x) ∈ [a, b] a.e.}. Obviously,

ϕ1|H1
(0)

(Ω) is a bounded, coercive quadratic form on H1
(0)(Ω). Furthermore,

|(v(t) · ∇c, ϕ)Ω| = |(vP0c,∇ϕ)L2|

≤ C‖v(t)P0c‖L2‖∇ϕ‖L2 ≤

{
C ′‖v(t)‖L2‖∇ϕ‖L2

C ′‖v(t)‖L3‖∇c‖L2‖∇ϕ‖L2

(3.8)

for all c, ϕ ∈ H1
(0)(Ω) with E1(c) < ∞ since div v = 0, n · v|∂Ω = 0, and |c(x)| ≤

max(|a|, |b|) almost everywhere. Hence

‖B(v(t))c‖H0 ≤ C (1 + ‖v(t)‖H1) ‖c‖H1
(0)

for almost every t ∈ [0,∞) and all c ∈ H1
(0)(Ω), where M(t) := C(1 + ‖v(t)‖H1) ∈

L2(0, T ) for every T > 0. Hence Theorem 2.2 is applicable to the operators A, B(t)
defined above.

The main result of this section is the following:

THEOREM 3.1 Let v ∈ L2(0,∞;V2(Ω)) ∩ L∞(0,∞;L2
σ(Ω)). Then for every c0 ∈

H1
(0)(Ω) with E1(c0) < ∞ there is a unique solution c ∈ BC(0,∞;H1

(0)(Ω)) of (3.1)-

(3.4) with ∂tc ∈ L2(0,∞;H−1
(0) (Ω)), µ ∈ L2

uloc([0,∞);H1(Ω)). This solution satisfies

E1(c(t)) +

∫

Qt

|∇µ|2 d(x, τ) = E1(c0) −

∫

Qt

v · µ∇c d(x, τ) (3.9)

for all t ∈ [0,∞) and

‖c‖2
L∞(0,∞;H1) + ‖∂tc‖

2
L2(0,∞;H−1

(0)
)
+ ‖∇µ‖2

L2(Q) ≤ C
(
E1(c0) + ‖v‖2

L2(Q)

)
(3.10)

‖c‖2
L2

uloc([0,∞);W 2
r ) + ‖φ(c)‖2

L2
uloc([0,∞);Lr) ≤ Cr

(
E1(c0) + ‖v‖2

L2(Q)

)
(3.11)
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where r = 6 if d = 3 and 1 < r <∞ is arbitrary if d = 2. Here C,Cr are independent
of v, c0. Moreover, for every R > 0 the solution

c ∈ Y := L2
loc([0,∞);W 2

r (Ω)) ∩H1
loc([0,∞);H−1

(0) (Ω))

depends continuously on

(c0, v) ∈ X := H1(Ω) × L2
loc([0,∞);L2

σ(Ω)) with E1(c0) + ‖v‖L2(0,∞;H1) ≤ R

with respect to the weak topology on Y and the strong topology on X.

Proof: We apply Theorem 2.2 to the choice H1 = H1
(0)(Ω), H0 = H−1

(0) (Ω), f = 0, and

ϕ1, ϕ2 as above, where we assume w.l.o.g. that Φ(c) ≥ 0. This gives the existence
of a unique solution c : [0,∞) → H0 of (3.5)-(3.6) such that c ∈ W 1

2 (0, T,H0) ∩
L∞(0, T ;H1), ϕ(c) ∈ L∞(0, T ) for every T > 0 and c(t) ∈ D(A) for almost all t > 0.

Now we define µ according to (3.2). Then

∆Nµ(t) = ∆N(−∆c(t) + φ0(c(t)) − αc(t)) = −∂Ẽ0(c(t)) − α∆Nc(t). (3.12)

due to Corollary 2.5 and therefore

∆Nµ(t) = ∂tc(t) + v(t) · ∇c(t) in H−1
(0) (Ω). (3.13)

In particular, this implies

‖∇µ‖L2(QT ) ≤ C
(
‖∂tc(t)‖L2(0,T ;H−1

(0)
) + ‖v‖L2(Q)

)
<∞

for every T > 0 due to (3.8). Now using (2.26) and (3.12) we obtain

‖c(t)‖W 2
r

+ ‖φ0(c(t))‖r ≤ C
(
‖∂Ẽ0(c(t))‖H1

(0)
+ ‖c(t)‖2

)
≤ C ′ (‖∇µ(t)‖2 + ‖∇c(t)‖2)

for all t > 0. This implies (3.11) once (3.10) is proved. In order to prove (3.9), we

use that E1(c(t)) = Ẽ0(c(t)) −
α
2
‖c(t)‖2

L2 . Because of [21, Lemma 4.3, Chapter IV],
(2.8), (3.12), and (3.13), we have

d

dt
E1(c(t)) = (∂Ẽ0(c(t)), ∂tc(t))H−1

(0)
− α〈∂tc(t), c(t)〉H−1

(0)
,H1

(0)

= (∂Ẽ0(c(t)), ∂tc(t))H−1
(0)

+ α(∆Nc(t), ∂tc(t))H−1
(0)

= −(∆Nµ(t),∆Nµ(t))H−1
(0)

− (∆Nµ(t), v(t) · ∇c(t))H−1
(0)

= −(∇µ(t),∇µ(t))L2 − (µ(t), v(t) · ∇c(t))L2 ,

Integration on (0, t) shows (3.9). In order to obtain (3.10), we use that |(µ, v·∇c)QT
| ≤

C‖v‖L2(Q)‖∇µ‖L2(QT ) due to (3.8). Thus (3.9) and Young’s inequality imply

‖c‖2
L∞(0,∞;H1(Ω)) + ‖µ‖2

L2(0,∞;H1) ≤ C
(
E1(c0) + ‖v‖2

L2(Q)

)
.



3.1 Existence and Regularity Theory 19

The estimate of ‖∂tc‖L2(0,∞;H−1
(0)

) follows from (3.13) and ‖v·∇c‖L2(0,∞;H−1
(0)

) ≤ C‖v‖L2(Q).

In order to prove continuous dependence on (c0, v), let cj, j = 1, 2, be two solutions
of (3.1)-(3.4) with cj|t=0 = c0j ∈ domE0 and v replaced by vj. We set c̃ = c1 − c2 and
w = v1 − v2. Then

∂tc̃(t) + A(c1(t)) −A(c2(t)) + B(v1(t))c1(t) − B(v2(t))c2(t) = 0

for a.e. t > 0 and c̃(0) = c01 − c02. Hence taking the inner product of the equation
above with c̃(t) in L2(s, t;H−1

(0) (Ω)), 0 ≤ s < t <∞, and using (3.7) we conclude

1

2
‖c̃(t)‖2

H−1
(0)

+

∫ t

s

‖∇c̃‖2
2 dτ

≤ α

∫ t

s

‖c̃‖2
2 dτ +

1

2
‖c̃(s)‖2

H−1
(0)

−

∫ t

s

(v1 · ∇c1 − v2 · ∇c2, c̃)H−1
(0)
dτ.

Due to (2.13) and Young’s inequality

‖c̃(t)‖2
H−1

(0)

+

∫ t

s

‖∇c̃‖2
2 dτ

≤ C

(∫ t

s

‖c̃‖2
H−1

(0)

dτ + ‖c̃(s)‖2
H−1

(0)

+

∣∣∣∣
∫ t

s

(v1 · ∇c1 − v2 · ∇c2, c̃)H−1
(0)
dτ

∣∣∣∣
)
.(3.14)

Now

(v1 · ∇c1 − v2 · ∇c2, c̃)H−1
(0)

= (v1 · ∇c̃, (−∆N)−1c̃)Ω − (wc2,∇(−∆N)−1c̃)Ω

and
∣∣∣∣
∫ t

s

(v1 · ∇c̃, (−∆N)−1c̃)Ω dτ

∣∣∣∣ ≤ ‖∇c̃‖L2(Q(t,s))

(∫ t

s

‖v1‖
2
6‖(−∆N)−1c̃‖2

6 dτ

) 1
2

∣∣∣∣
∫ t

s

(wc2,∇(−∆N)−1c̃)Ω dτ

∣∣∣∣ ≤ C‖w‖L1(s,t;L2)‖∇(−∆N)−1c̃‖L∞(s,t;L2). (3.15)

Hence by Young’s inequality and ‖(−∆N)−1c̃‖6 ≤ C‖∇(−∆N)−1c̃‖2 ≤ C ′‖c̃‖H−1
(0)

sup
s≤τ≤t

‖c̃(τ)‖2
H−1

(0)

+

∫ t

s

‖∇c̃(τ)‖2
2 dτ

≤ C

(∫ t

s

(1 + ‖v1(τ)‖
2
H1)‖c̃(τ)‖2

H−1
(0)

dτ + ‖c̃(s)‖2
H−1

(0)

+ ‖v1 − v2‖
2
L1(s,t;L2)

)
.

Thus the lemma of Gronwall yields

sup
s≤τ≤t

‖c̃(τ)‖2
H−1

(0)

+

∫ t

s

‖∇c̃(τ)‖2
2 dτ

≤ C exp

(∫ t

s

(
1 + ‖v1(τ)‖

2
H1

)
dτ

)(
‖c̃(s)‖2

H−1
(0)

+ ‖v1 − v2‖
2
L1(s,t;L2)

)
.(3.16)
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This implies the continuous dependence of c ∈ L∞(0, T ;H−1
(0) (Ω)) ∩ L2(0, T ;H1(Ω))

on (c0, v) ∈ X for every T > 0 with respect to the strong topologies. Because of
(3.10)-(3.11) the continuous dependence of c ∈ Y with respect to the weak topology
on (c0, v) ∈ X with E1(c0) + ‖v‖L2(0,∞;H1) ≤ R follows.

Finally, since ∂tc ∈ L2(0,∞;H−1
(0) (Ω)) and c ∈ L∞(0,∞;H1

(0)(Ω)), (2.8) implies c ∈

BUC(0,∞;L2(Ω)). Since H1
(0)(Ω) →֒→֒ L2(Ω), c ∈ BCw(0,∞;H1

(0)(Ω)) necessarily.

Moreover, because of (3.9), E1(c(t)) is continuous. Hence

lim sup
s→t

1

2
‖∇c(s)‖2

2 ≥ E1(c(t)) −

∫

Ω

Φ(c(t)) dx =
1

2
‖∇c(t)‖2

2

because of (1.21) with Φ0(c) convex and since c ∈ BUC(0,∞;L2(Ω)). On the other
hand 1

2
‖∇c(t)‖2

2 ≤ lim infs→t
1
2
‖∇c(s)‖2

2 by the weak continuity in H1
(0)(Ω). Thus

t 7→ 1
2
‖∇c(t)‖2

2 is continuous and therefore c ∈ BC(0,∞;H1
(0)(Ω)).

The following improved regularity statement will be important to get higher reg-
ularity of solutions to the Navier-Stokes-Cahn-Hilliard system.

Lemma 3.2 Let the assumption of Theorem 3.1 be satisfied and let (c, µ) be the

corresponding solution of (3.1)-(3.4). Moreover, let κ ≡ 1 if c0 ∈ D(∂Ẽ0)and let

κ(t) =
(

t
1+t

) 1
2 else.

1. If ∂tv ∈ L1
uloc([0,∞);L2(Ω)) and r is as in Theorem 3.1, then (c, µ) satisfy

κ∂tc ∈ L∞(0,∞;H−1
(0) (Ω)) ∩ L2

uloc(0,∞;H1(Ω))

κc ∈ L∞(0,∞;W 2
r (Ω)), κφ(c) ∈ L∞(0,∞;Lr(Ω)), κµ ∈ L∞(0,∞;H1(Ω)).

2. If v ∈ Bα
4
3
∞,uloc

([0,∞);Hs(Ω)) ∩ BCw(0,∞;L2
σ(Ω)) for some −1

2
< s ≤ 0 and

α ∈ (0, 1), then

κc ∈ Cα([0,∞);H−1
(0) (Ω)) ∩Bα

2∞,uloc([0,∞);H1(Ω)). (3.17)

Finally, the same statements hold true if [0,∞) is replaced by [0, T ), T <∞,

Remark 3.3 We note that the second part of the latter lemma is essential to obtain
that any weak solution satisfies c ∈ BUC([δ,∞);W 1

q (Ω)) for some q > d and all
δ > 0 in the proof of Theorem 1.4 below. Moreover, it is essential that v(t) has
some suitable positive regularity in time with values in Hs(Ω), −1

2
< s ≤ 0. In

the latter case C∞
0 (Ω) is dense in Hs(Ω) and H−s(Ω) and therefore v(t) · ∇c(t) is

well defined for v ∈ H−s(Ω). By (1.1) and the energy estimate one obtains directly

∂tv ∈ L
4
3
uloc(0,∞;H−1(Ω)); but ∂tv · ∇c(t) is not well-defined if only ∂tv(t) ∈ H−1(Ω)

since ∇c(t) 6∈ H1
0 (Ω) in general.
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Proof: Let ∂h
t f(t) = 1

h
(f(t + h) − f(t)), h > 0. First of all, we note that, if

c0 ∈ D(∂Ẽ0), then [8, Lemme 3.1, Chapter III] with u(t) = c(t), v(t) ≡ c0, f(t) =

−B(v(t))c(t), g(t) ≡ ∂Ẽ0(c0) implies

‖∂h
t c(0)‖H−1

(0)
≤

1

h

∫ h

0

‖B(v)c− ∂Ẽ0(c0)‖H−1
(0)
dτ ≤ ‖B(v)c− ∂Ẽ0(c0)‖L∞(0,∞;H−1

(0)
)

≤ C
(
‖(v,∇c)‖L∞(0,∞;L2) + ‖∂Ẽ0(c0)‖H−1

(0)

)
(3.18)

Next let ωt(τ) ≡ 1 or ωt(τ) = τ − t and let ∂tv ∈ L1
uloc(0,∞;L2(Ω)). In the case

ωt ≡ 1 we use (3.16) with c1(t) = 1
h
c(t+ h), c2 = 1

h
c(t), h > 0, v1(t) = 1

h
v(t+ h), and

v2(t) = 1
h
v(t). Hence c̃(t) = 1

h
(c(t+ h) − c(t)) = ∂h

t c(t), w = ∂h
t v, and

sup
t≤τ≤t+1

ωt(τ)‖∂
h
t c(τ)‖

2
H−1

(0)

+

∫ t+1

t

ωt(τ)‖∇∂
h
t c(τ)‖

2
2 dτ

≤ C(c0, v)

(
ωt(τ)‖∂

h
t c(t)‖

2
H−1

(0)

+ ‖∂h
t v‖

2
L1(t,t+1;L2)

)
(3.19)

for all t ≥ 0 and ωt(τ) ≡ 1. In the case ωt(τ) = τ − t the proof of (3.16) can be
easily modified to derive the latter inequality in this case. More precisely, one gets
an additional term

∫ t

s
|∂tωt|‖c‖

2
H−1

(0)

dτ =
∫ t

s
‖c‖2

H−1
(0)

dτ , which can be estimated by the

same quantities as in the case ω ≡ 1.
Since ∂h

t c →h→0 ∂tc in L2(0,∞;H−1
(0) (Ω)), ‖∂h

t v‖L1
uloc(0,T ;L2) ≤ ‖∂tv‖L1

uloc(0,T ;L2),

(3.19) with ωt(t) = t − τ yields κ∂tc ∈ L∞(0,∞;H1
(0)(Ω)) ∩ L2

uloc([0,∞);H1(Ω))

for κ =
(

t
1+t

) 1
2 . If c0 ∈ D(Ẽ0), we can use (3.19) with t = 0 and ωt(τ) ≡ 1 to

conclude ∂tc ∈ L∞(0,∞;H−1
(0) ) ∩ L

2
uloc([0,∞);H1(Ω)) in this case. In both cases we

can conclude further that

κ∆Nµ = κ∂tc+ κv · ∇c ∈ L∞(0,∞;H−1
(0) (Ω))

due to (3.8), which implies the κ∇µ ∈ L∞(0,∞;L2(Ω)). Because of (3.12), this

shows κ∂Ẽ0 ∈ L∞(0,∞;H−1
(0) (Ω)). Using Corollary 2.5 we conclude κφ0(c), κ∇

2c ∈

L∞(0,∞;Lr(Ω)). Finally, κµ ∈ L∞(0,∞;L2(Ω)) because of (3.2).
Finally, let v ∈ Bα

4
3
∞,uloc

([0,∞);H−s(Ω)) for some −1
2
< s ≤ 0 and α ∈ (0, 1).

Then one can derive similarly

sup
t≤τ≤t+1,0<h≤1

h−2αωt(τ)‖∆hc(τ)‖
2
H−1

(0)

+ sup
0<h≤1

∫ t+1

t

ωt(τ)‖∇∆hc(τ)‖
2
2 dτ

≤ C(c0, v)

(
sup

0<h≤1
ωt(t)h

−2α‖∆hc(t)‖
2
H−1

(0)

+ 1

)
(3.20)

for all t ≥ 0. More precisely, one chooses c1(t) = h−αc(t + h), c2 = h−αc(t), h > 0,
v1(t) = h−αv(t + h), and v2(t) = h−αv(t) in the proof of (3.16). Then c̃ = h−α∆hc
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and w = h−α∆hv and the proof is done in the same way as for (3.16) (with ωt added)
except that one uses instead of (3.15) the estimate

sup
0<h≤1

h−2α

∣∣∣∣
∫ t+1

t

ωt(τ)(∆hv,∇c(−∆N)−1∆hc)Ω dτ

∣∣∣∣

≤ C‖v‖Bα
4
3∞,uloc

([0,∞);H−s) sup
0<h≤1

h−α‖ω
1
2
t ∇c(−∆N)−1∆hc‖L4(t,t+1;Hs)

≤ C(c0, v)‖∇c‖
L4

uloc([0,∞);B
1
2
33)

sup
0<h≤1

h−α‖ω
1
2
t (−∆N)−1∆hc‖L∞(t,t+1;H1)

≤ C(c0, v) sup
t≤τ≤t+1,0<h≤1

h−αωt(τ)
1
2‖∆hc(τ)‖H−1

(0)

for all t ≥ 0. Here we have used (2.5), ‖fg‖Hs ≤ C‖f‖
B

1
2
33

‖g‖H1 for 0 < s < 1
2
, cf. e.g.

[17, Theorems 6.6 and 7.2], and ‖∇c‖
L4(t,t+1;B

1
2
33)

≤ C‖∇c‖
1
2

L∞(0,∞;L2)‖c‖
1
2

L2(t,t+1;W 2
6 )

≤

C(c0, v) due to (2.10) and (3.11).

Choosing ωt(τ) = t − τ in (3.20) yields (3.17) if κ(t) =
(

t
1+t

) 1
2 . If c0 ∈ D(∂Ẽ0),

then (3.18) implies

sup
0<h≤1

h−2α‖∆hc(t)‖
2
H−1

(0)

≤ sup
0<h≤1

h2−2α‖∂h
t c(t)‖

2
H−1

(0)

<∞.

Hence we use (3.20) with t = 0 and ωt(τ) ≡ 1 to conclude that (3.17) holds also with
κ ≡ 1.

Finally, if [0,∞) is replaced by [0, T ), T < ∞, one simply extends v for t ≥ T
suitably (e.g. v(t) = ψ(t)v(T ) with ψ(T ) = 1 and ψ ∈ C∞

0 (R))) and applies the first
part.

3.2 Lojasiewicz-Simon Inequality

First we consider solutions c∞ ∈ D(∂E0) of the stationary Cahn-Hilliard equation
(1.18)-(1.20), which are the critical points of the functional E1(c) on H−1

(0) (Ω). Here

E0 denotes the convex part of E1 as defined in (2.21).

Proposition 3.4 Let c∞ ∈ D(∂E0) be a solution of (1.18)-(1.20). Then there are
constants Mj, j = 1, 2, such that

a < M1 ≤ c∞(x) ≤M2 < b for all x ∈ Ω. (3.21)

A proof of the proposition can be found in [3, Proposition 6.1].
Because of (3.21), one can replace the singular Φ in E1(c) by a smooth and

bounded Φ̃ such that Φ̃|[M1,M2] = Φ|[M1,M2] for all c. Let Ẽ1 denote the correspond-
ing functional. Therefore one can prove the following Lojasiewicz-Simon gradient
inequality, which is the main tool to prove convergence to stationary solutions.
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Proposition 3.5 (Lojasiewicz-Simon inequality) Let c′ ∈ D(∂E0) be a solution

of (1.18)-(1.20) and let Ẽ1 be defined as above for some a < M1 < M2 < b. Then
there exist constants θ ∈ (0, 1

2
], C, δ > 0 such that

|Ẽ1(c) − Ẽ1(c
′)|1−θ ≤ C‖DẼ1(c)‖H−1

(0)
(3.22)

for all ‖c−c′‖H1
(0)

≤ δ, where DẼ1 : H1
(0)(Ω) → H−1

(0) (Ω) denotes the Frechét derivative

of Ẽ1 : H1
(0)(Ω) → R.

The proposition follows from [3, Proposition 6.1].
Finally, we note that the only critical point of the quadratic energy E2 is v = 0

and obviously,

|E2(v) − E2(0)|
1
2 ≤ C‖DE2(v)‖L2 for all v ∈ L2

σ(Ω)

since the Frechét derivative of E2 : L2
σ(Ω) → R is DE2(v) = v. I.e., the Lojasiewicz-

Simon gradient inequality holds for E2 as well. Hence under the same assumptions
as in Proposition 3.5 there are constants θ ∈ (0, 1

2
], C, δ > 0 such that Ẽ(v, c) :=

Ẽ1(c) + E2(v) satisfies

|Ẽ(v, c) − Ẽ(0, c′)|1−θ ≤ C
(
‖DẼ1(c)‖H−1

(0)
+ ‖DE2(v)‖L2

)
(3.23)

for all ‖c− c′‖H1
(0)

≤ δ, v ∈ L2
σ(Ω).

4 Navier-Stokes System with Variable Viscosity

4.1 Stokes System with Variable Viscosity

We first consider the Stokes system

∂tv − div(ν(c)Dv) + ∇p = f in Ω × (0, T ), (4.1)

div v = 0 in Ω × (0, T ), (4.2)

v|∂Ω = 0 on ∂Ω × (0, T ), (4.3)

v|t=0 = v0 in Ω. (4.4)

for given v0 ∈ L2
σ(Ω), f ∈ L2(0, T ;V2(Ω)′), 0 < T ≤ ∞ and measurable c : QT → R.

Here ν ∈ C2(R) such that ν(c) ≥ c0 > 0 for all c ∈ R.
As usual we call v ∈ L2(0, T ;V2(Ω)) a weak solution of (4.1)-(4.4) if

−(v, ∂tϕ)QT
+ (v0, ϕ|t=0)Ω + (ν(c)Dv,Dϕ)QT

=

∫ T

0

〈f(t), ϕ(t)〉V ′

2 ,V2
dt (4.5)

for all ϕ ∈ C∞
(0)([0, T )×Ω)d with divϕ = 0. Note that (4.5) implies ∂tv ∈ L2(0, T ;V2(Ω)′)

and therefore c ∈ BUC(0, T ;L2
σ(Ω)) due to (2.8).
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THEOREM 4.1 Let v0 ∈ L2
σ(Ω), f ∈ L2(0, T ;V2(Ω)′) and let c : QT → R be a

measurable function, where 0 < T ≤ ∞. Then there is a unique solution v ∈
L2(0, T ;V2(Ω)) of (4.1)-(4.4) satisfying ∂tv ∈ L2(0, T ;V2(Ω)′) and

‖∂tv‖L2(0,T ;V ′

2) + ‖v‖L2(0,T ;V2) ≤ C
(
‖v0‖2 + ‖f‖L2(0,T ;V ′

2)

)
(4.6)

where C = C(ν,Ω) is independent of f, v0 and c. Moreover, the mapping of (c, f, v0) ∈
L1

loc(QT )×L2(0, T ;V ′
2)×L

2
σ(Ω) to v ∈ L2(0, T ;V2)∩H

1(0, T ;V ′
2), T <∞, is strongly

continuous.

Proof: By the assumptions the operator

〈A(c)v, ϕ〉V2,V2 = (ν(c)Dv,Dϕ)L2(Ω), ϕ ∈ V2(Ω),

is a monotone mapping/positive linear operator A(c) : V2(Ω) → V2(Ω)′ which satis-
fies all assumptions of [21, Proposition 4.1]. Hence the existence of a unique solution
v ∈ L2(0, T ;V2(Ω)) with ∂tv ∈ L2(0, T ;V2(Ω)′) follows directly form the latter propo-
sition.

In order to derive (4.6), we choose ϕ = vχ[0,t] in (4.5), use (2.8), and obtain

sup
0≤t≤T

‖v(t)‖2
2 +

∫

QT

|Dv|2 d(x, t) ≤ C
(
‖f‖L2(0,T ;V ′

2)‖Dv‖L2(QT ) + ‖v0‖
2
2

)
.

By Young’s inequality we obtain the estimate of v ∈ L2(0, T ;V2(Ω)). The estimate
of ∂tv ∈ L2(0, T ;V2(Ω)′) follows from (4.5).

In order to prove the stated continuity, let (cj, fj, v
j
0) ∈ L1

loc(QT )×L2(0, T ;V2(Ω)′)×
L2

σ(Ω), j = 1, 2, let vj be the corresponding weak solution of (4.1)-(4.4), and set
v := v1 − v2, v0 = v0

1 − v0
2. Then

∂tv(t) + A(c1(t))v(t) = f1(t) − f2(t) − (A(c1(t)) − A(c2(t)))v2(t) in V2(Ω)′.

Hence taking the duality product with v(t) and using (2.8) yields

1

2
‖v(T )‖2

2 +

∫

QT

ν(c1)|Dv|
2 d(x, t)

=

∫ T

0

〈f1(t) − f2(t), v(t)〉 +

∫

QT

(ν(c1) − ν(c2))Dv2 : Dv d(x, t) +
1

2
‖v0‖

2
2

≤ C(R)

(
‖f1 − f2‖L2(0,T ;V ′

2) + ‖(ν(c1) − ν(c2))Dv2‖L2(QT ) +
1

2
‖v0‖

2
2

)
,

where R = maxj=1,2 ‖vj‖L2(0,T ;V2). The first term on the right-hand side gets arbitrar-
ily small if f1 − f2 is sufficiently small in L2(0, T ;V2(Ω)′). By Lemma 2.1 the second
term converges to zero as c1 converges to c2 in L1

loc(QT ). Hence v1 converges to v2 in
L2(0, T ;V2(Ω)) if (c1, f1, v

1
0) converge to (c2, f2, v

2
0) in L1

loc(QT ) × L2(0, T ;V2(Ω)′) ×
L2

σ(Ω). The convergence of ∂tv1 in L2(0, T ;V ′
2) follows from (4.5) and Lemma 2.1.
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Next we consider some results on higher regularity for the Stokes system (4.1)-
(4.4), which are needed for the proof of Theorem 2.3. We start with the stationary
system.

Lemma 4.2 Let ν ∈ C2(R) be as above, c ∈ W 1+j
r (Ω), j = 0, 1, r > d ≥ 2, with

‖c‖
W

1+j
r

≤ R, and let v ∈ V2(Ω) be a solution of

(ν(c)Dv,Dϕ)L2(Ω) = (f, ϕ)L2(Ω) for all ϕ ∈ C∞
0,σ(Ω), (4.7)

where f ∈ Hs(Ω)d, s ∈ [0, j]. Then v ∈ H2+s(Ω)d and

‖v‖H2+s(Ω) ≤ C(R)‖f‖Hs(Ω), (4.8)

where C(R) depends only on Ω, ν, r > d, and R > 0.

Proof: First of all, if ν(c) ≡ 1, the statement follows from the well-known regularity
theory for the stationary Stokes system with constant viscosity. More precisely, it is
known that in this case for every 1 < p <∞, f ∈ W j

p (Ω), and j = 0, 1

‖v‖
W

2+j
p

≤ Cp‖f‖W
j
p
, f ∈ W j

p (Ω), (4.9)

cf. Galdi [14, Chapter IV, Lemma 6.1]. Moreover, there is a pressure π ∈ W j+1
p (Ω)∩

Lp

(0)(Ω) depending continuously on f ∈ W j
p (Ω) such that

−∆v + ∇π = f in Ω. (4.10)

Next let s = j = 0 and ν be as in the assumptions. Let ϕ = ν(c)−1ψ−B[div(ν(c)−1ψ)],
where ψ ∈ C∞

0,σ(Ω) and B is the Bogovskii operator, cf. [14, Chapter III, Theorem
3.2]. – Note that

B : W k
p,0(Ω) ∩ Lp

(0)(Ω) → W k+1
p,0 (Ω), divBf = f, (4.11)

for every k ∈ N0, 1 < p < ∞. Hence ‖B[(∇ν(c)−1)ψ]‖W 1
p

≤ C‖(∇ν(c)−1)ψ‖p,

ϕ ∈ W 1
p,0(Ω),divϕ = 0, and

‖ϕ‖W 1
p
≤ C(R)‖ψ‖W 1

p
for all 1 < p ≤ r,

where we have used (2.17). Then

(Dv,∇ψ)Ω = (ν(c)Dv,∇(ν(c)−1ψ))Ω − (ν(c)Dv, (∇ν(c)−1) ⊗ ψ)Ω

= (ν(c)−1f, ψ)Ω − (ν(c)Dv, (∇ν(c)−1)ψ)Ω + (ν(c)Dv,∇B[(∇ν(c)−1) · ψ])Ω

−(f,B[(∇ν(c)−1) · ψ])Ω ≡ (g, ψ)Ω,

where ‖g‖s0 ≤ C (‖f‖2 + ‖Dv‖2) (1 + ‖∇c‖r) with 1
s0

= 1
r

+ 1
2
. Thus v ∈ W 2

s0
(Ω)d

by (4.9) and therefore v ∈ W 1
p (Ω)d with 1

p
= 1

r
− 1

d
+ 1

2
. Since r > d, we conclude

p > 2. Using this in the estimates above, we see that g ∈ Lmin(2,s1)(Ω) with 1
s1

=
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1
r

+ 1
p
. If s1 < 2, then we repeat this argument finitely many times to conclude that

g ∈ Lmin(2,sk)(Ω) with 1
sk

= 1
2

+ 1
r
− k(1

r
− 1

d
) until sk ≥ 2. Hence v ∈ H2(Ω) since

f ∈ L2(Ω). Moreover, (4.8) simply follows from the boundedness and linearity of the
mapping f 7→ v.

If s = j = 1, then v ∈ H2(Ω) by the first part. Hence there is some π ∈ L2(Ω)
such that (4.10) holds with f replaced by g := ν−1(c)f + (∇ν(c)) · Dv ∈ W 1

s0
(Ω).

Using the same boot trapping argument it is easy to show that g ∈ H1(Ω) by first
showing that g ∈ W 1

sj
(Ω) for some increasing sequence sj. Finally, the general case

s ∈ [0, 1], j = 1, follows by interpolation.

In particular, the latter lemma shows that the operator

A(c) : V 2+j
2 ⊂ V j

2 (Ω) → V j
2 (Ω) : v 7→ A(c)v := −P2 div(2ν(c)Dv),

where j = 0, 1,
V 2+j

2 (Ω) =
{
u ∈ V 2

2 (Ω) : A(c)u ∈ V j
2 (Ω)

}

and V 1
2 (Ω) = V2(Ω), V 0

2 (Ω) = L2
σ(Ω), is an invertible operator provided that c ∈

W 1+j
r (Ω), r > d. By interpolation one gets the same results for intermediate spaces

V 2+s
2 (Ω), V s

2 (Ω), resp., where we define

V s+k
2 (Ω) = (V k

2 (Ω), V k+1
2 (Ω))s,2

for s ∈ (0, 1), k = −1, 0, 1, 2 and where V −1
2 (Ω) = V2(Ω)′. We will characterize the

interpolation spaces above later.
For the following we denote

Σδ = {z ∈ C \ {0} : | arg z| < δ}, δ ∈ (0, π).

Lemma 4.3 Let c ∈ W 1+j
r (Ω), j = 0, 1, r > d = 2, 3 and s ∈ [0, j]. Then

−A(c) : V s+2
2 (Ω) ⊂ V s

2 (Ω) → V s
2 (Ω) defined as above is a sectorial operator such

that Σδ ⊂ ρ(−A(c)) for every 0 < δ < π. Moreover, there is a constant Cδ such that

‖(λ+ A(c))−1‖L(V s
2 (Ω)) ≤

Cδ

|λ|
for every λ ∈ Σδ. (4.12)

Here Cδ depends only on ‖c‖
W

1+j
r

, Ω, and ν.

Proof: By the definition of the spaces V s
2 (Ω), V s+2

2 (Ω), it is sufficient to consider
only the cases s = 0, 1 since the general case follows by interpolation. If s = 0, then
obviously A is a symmetric, positive operator on L2

σ(Ω) due to

(A(c)u, v)L2(Ω) = (2ν(c)Du,Dv)L2(Ω) = (u,A(c)v)L2(Ω)

for all u, v ∈ D(A(c)) = V 2
2 (Ω). Moreover, A(c) is invertible because of Lemma 4.2.

Hence (A(c)u, u) ∈ (0,∞) and the statement of the lemma follows e.g. from [13,
Corollary 4.8], see also the remark after Corollary 4.8.
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If s = 1, then A(c) is again a symmetric, positive operator on V 1
2 (Ω) if we equip

V 1
2 (Ω) with the inner product (u, v)V2(Ω) = (2ν(c)Du,Dv)L2(Ω) for u, v ∈ V2(Ω). Then

(A(c)u, v)V2(Ω) = −(2ν(c)∇A(c)u,Dv)L2(Ω)

= (P2 div(2ν(c)Du), div(2ν(c)Dv))L2(Ω) = (u,A(c)v)V2(Ω)

for all u, v ∈ V 3
2 (Ω) since P2 div(2ν(c)Du)|∂Ω = 0. Moreover, A(c) : V 3

2 (Ω) → V 1
2 (Ω)

is invertible because of Lemma 4.2. Therefore the statement follows again from [13,
Corollary 4.8].

We need the following characterization of the interpolation spaces:

Lemma 4.4 Let θ ∈ (0, 1) with θ 6= 3
4
. Then

(V −1
2 (Ω), V 1

2 (Ω))θ,2 =

{
H2θ−1

σ (Ω) if 2θ − 1 < 1
2

H2θ−1
σ (Ω) ∩H2θ−1

0 (Ω)d if 2θ − 1 > 1
2

(4.13)

(V 1
2 (Ω), V 3

2 (Ω))θ,2 =

{
H1+2θ

σ (Ω) ∩H1
0 (Ω)d if 1 + 2θ < 5

2

H1+2θ
σ (Ω) ∩ {u|∂Ω = Au|∂Ω = 0} if 1 + 2θ > 5

2

(4.14)

Finally, if 0 ≤ θ ≤ 1 with 2θ 6= 1
2
, then

(L2
σ(Ω), V 2

2 (Ω))θ,2 = V 2θ
2 (Ω). (4.15)

Proof: First we show that

(L2
σ(Ω), V2(Ω))θ,2 =

{
Hθ

σ(Ω) ∩Hθ
0 (Ω)d if θ > 1

2
,

Hθ
σ(Ω) if θ < 1

2
.

(4.16)

Then (4.13) follows by duality and reiteration, cf. [6, Theorem 3.7.1 and Theo-
rems 3.5.3/3.5.4], where we note that

(V −1
2 (Ω), V 1

2 (Ω)) 1
2
,2 = L2

σ(Ω) = V 0
2 (Ω)

follows from Theorem 4.1 together with (2.6) and (2.7). In order to prove (4.16), we
define a projection P : L2(Ω)d → L2

σ(Ω) by v = Pu if and only if

(v,∆ϕ)L2(Ω) = (u,∆ϕ)L2(Ω) for all ϕ ∈ H2(Ω)d ∩H1
0 (Ω)d ∩ L2

σ(Ω) = V 2
2 (Ω).

Since −P2∆: V 2
2 (Ω) → L2

σ(Ω) is invertible, the latter condition defines a unique
v = Pu ∈ L2

σ(Ω) and v = u if u ∈ L2
σ(Ω). Moreover, if u ∈ H1(Ω)d, then there is a

unique solution v ∈ V 1
2 (Ω) of the weak Stokes equation

(∇v,∇ϕ) = (∇u,∇ϕ) = −(u,∆ϕ) for all ϕ ∈ C∞
0,σ(Ω),
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which coincides with Pu. Thus P : H1(Ω)d → V 1
2 (Ω). Therefore a general theorem

on interpolation spaces and retracts, cf. [29, Section 1.2.4, Theorem], yields

(L2
σ(Ω), V 1

2 (Ω))θ,2 = P (L2(Ω)d, H1(Ω)d)θ,2 = PHθ(Ω)d.

By interpolation P : Hθ(Ω) → Hθ
0 (Ω)d ∩Hθ

σ(Ω) for all θ 6= 1
2
, where Hθ

0 (Ω) = Hθ(Ω)
if 0 ≤ θ < 1

2
. Hence PHθ(Ω)d ⊆ Hθ

σ(Ω) ∩ Hθ
0 (Ω)d. Conversely, P is the identity

on Hθ
σ(Ω) ∩ Hθ

0 (Ω)d ⊆ L2
σ(Ω) and therefore PHθ(Ω)d = Hθ

σ(Ω) ∩ Hθ
0 (Ω)d where

Hθ
0 (Ω) = Hθ(Ω) if 0 ≤ θ < 1

2
. This shows (4.16).

In order to prove (4.14), we use as before that A : V 1+2θ
2 (Ω) → V 2θ−1

2 (Ω) is an
isomorphism for θ = 0, 1. Hence

(V 1
2 (Ω), V 3

2 (Ω))θ,2 = A−1(V −1
2 (Ω), V 1

2 (Ω))θ,2 = A−1V 1−2θ
2 (Ω).

Moreover, because of (4.13) and Lemma 4.2, u ∈ A−1V 1−2θ
2 (Ω) if and only if u ∈

H1+2θ
σ (Ω) ∩H1

0 (Ω) and Au = 0 if 1 + 2θ > 1
2
.

Finally, by (4.13)-(4.14) and the reiteration theorems, cf. [6, Theorems 3.5.3/3.5.4],
it only remains to prove (L2

σ(Ω), V 2
2 (Ω)) 1

2
,2 = V 1

2 (Ω) to conclude (4.15). To this end,

we use that A is an invertible and symmetric operator on L2
σ(Ω). In particular, A is

a monotone operator on L2
σ(Ω) and

(Au, u)L2(Ω) = (2ν(c)Du,Du)Ω.

Hence A is the L2
σ-subgradient of ϕ(u) = (ν(c)Du,Du)Ω and we can e.g. use [8,

Theoreme 3.6, Chapter II] to conclude that for every u0 ∈ V2(Ω) there is some
u ∈ H1(0,∞;L2

σ(Ω)) ∩ L2(0,∞;V 2
2 (Ω)) such that u|t=0 = u0. More precisely, u is

determined as solution of the evolution equation

du

dt
+ Au = 0 for t > 0, u|t=0 = u0.

Thus (L2
σ(Ω), V 2

2 (Ω)) 1
2
,2 ⊇ V 1

2 (Ω). But the converse inclusion holds since for every

u ∈ H1(0,∞;L2
σ(Ω)) ∩ L2(0,∞;V 2

2 (Ω)) we obviously have u0 = u|t=0 ∈ H1
σ(Ω) and

u0|∂Ω = 0 because of (L2(Ω), H2(Ω)) 1
2
,2 = H1(Ω) and (2.6).

Proposition 4.5 Let c ∈ BUC([0,∞);W 1
r (Ω)) with r > d ≥ 2, let 0 < T ≤ ∞, and

let 2 ≤ q < ∞. If f ∈ Lq(0, T ;L2
σ(Ω)) ∩ L2(0, T ;V2(Ω)′), v0 ∈ (L2

σ(Ω), V 2
2 (Ω))1− 1

q
,q

and v is the weak solution of (4.1)-(4.4), then v ∈ W 1
q (0, T ;L2

σ(Ω))∩Lq(0, T ;V 2
2 (Ω))

and

‖(∂tv,∇
2v)‖Lq(0,T ;L2) ≤ Cq

(
‖f‖Lq(0,T ;L2)∩L2(0,T ;V ′

2) + ‖v0‖(L2
σ(Ω),V 2

2 (Ω))
1− 1

q ,q

)
(4.17)

where Cq is independent of 0 < T ≤ ∞.
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If additionally, c ∈ BUC(0,∞;W 2
r (Ω)), f ∈ L2(0, T ;V s

2 (Ω)), v0 ∈ (V s
2 (Ω), V 2+s

2 (Ω)) 1
2
,2

for some s ∈ [0, 1
2
), then the weak solution v of (4.1)-(4.4) satisfies v ∈ H1(0, T ;V s

2 (Ω))∩
L2(0, T ;V s+2

2 (Ω)) and

‖(∂tv, A(c)v)‖L2(0,T ;V s
2 ) ≤ C

(
‖f‖L2(0,T ;V s

2 ) + ‖v0‖(V s
2 (Ω),V 2+s

2 (Ω)) 1
2 ,2

)
(4.18)

where C is independent of 0 < T ≤ ∞.

Proof: First of all, it is sufficient to consider the case T = ∞ since the case T <∞
can be reduced to that case by extending f(t) by 0 for t ≥ T .

Firstly, we consider the case that c(t) = c0 ∈ W 1+j
r (Ω) with r > d, is constant

in time. We can easily reduce to the case v0 = 0 since for every v0 ∈ (X0, X1)1− 1
q
,q

there is some w ∈ W 1
q (0,∞;X0) ∩ Lq(0,∞;X1) with w|t=0 = v0 and the norm of

w is bounded by a constant times the norm of v0 in (X0, X1)1− 1
q
,q because of (2.7).

Then the statement of the theorem follows from Lemma 4.3 and [10, Theorem 4.4],
part “(ii) implies (i)”, where we note that R-boundedness of an operator family on
a Hilbert space coincides with uniform boundedness, cf. [10, Section 3.1], where
the constant in (4.17)-(4.18) can be chosen to depend only on some R > 0 with
‖c0‖W

1+j
r (Ω) ≤ R since the constant in (4.12) depends only on ‖c0‖W

1+j
r (Ω). Here

we note that V 2
2 (Ω) →֒ L2

σ(Ω) densely since C∞
0,σ(Ω) ⊂ V 2

2 (Ω) is dense in L2
σ(Ω).

Moreover, V 3
2 (Ω) →֒ V 1

2 (Ω) densely since A(c0) : V 2j+1
2 (Ω) → V 2j−1

2 (Ω), j = 0, 1, is
an isomorphism and V 1

2 (Ω) →֒ L2
σ(Ω) →֒ V −1

2 (Ω) densely. In particular, this shows
that for every c0 ∈ W 1+j

r (Ω) the linear operator L associated to (4.1)-(4.4) is a
bijection

L : Lq(0,∞;V s+2
2 ) ∩W 1

q (0,∞;V s
2 ) → L2(0,∞;V s

2 ) × (V s
2 (Ω), V s+2

2 (Ω))1− 1
q
,q.

: v 7→ (∂tv − P2(div(2ν(c)Dv), v|t=0),

where q = 2 if j = s = 1 and 1 < q <∞ if s = j = 0. Next we note that

‖(A(c) − A(c′))v‖L2 ≤ C
(
‖(ν(c) − ν(c′))∇2v‖L2 + ‖∇(ν(c) − ν(c′))∇v‖L2

)

≤ C
(
‖c− c′‖∞‖v‖H2 + ‖c− c′‖W 1

r
‖v‖W 1

p

)

≤ C‖c− c′‖W 1
r
‖v‖H2 (4.19)

for all c, c′ ∈ W 1
r (Ω), where 1

p
= 1

2
− 1

r
. Moreover, if j = 1, then

‖(A(c) − A(c′))v‖H1 ≤ C
(
‖(ν(c) − ν(c′))∇2v‖H1 + ‖∇(ν(c) − ν(c′))∇v‖H1

)

≤ C
(
‖c− c′‖∞‖v‖H3 + ‖c− c′‖W 2

r
‖v‖W 2

p

)
≤ C‖c− c′‖W 2

r
‖v‖H3

for all c, c′ ∈ W 2
r (Ω), where 1

p
= 1

2
− 1

r
. By interpolation we obtain

‖(A(c) − A(c′))v‖H1+s(Ω) ≤ C‖c− c′‖W 2
r (Ω)‖v‖H2+s(Ω) (4.20)
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for all 0 ≤ s ≤ 1 if j = 1. Because of (4.19), (4.20), Lemma 4.4, and a simple Neu-
mann series argument, there is some ε > 0 such that for every c ∈ L∞(0,∞;W 1+j

r (Ω))
with supt≥0 ‖c(t) − c0‖W

1+j
r (Ω) ≤ ε the statement of the theorem holds true with a

constant C in (4.17) depending only on ‖c0‖W
1+j
r

.

Now let c ∈ BUC([0,∞);W 1+j
r (Ω)) and let ε > 0 such that the latter state-

ment holds for all c0 with ‖c0‖W
1+j
r

≤ sup0≤t<∞ ‖c(t)‖
W

1+j
r

. Since c(t) is uniformly
continuous, there is some δ > 0 such that ‖c(t) − c(t′)‖

W
1+j
r

≤ ε for all t, t′ ≥ 0
with |t − t′| ≤ δ. In order to localize in time, let tk := δk, k ∈ N0 ∪ {−1} and
set Ik = (tk−1, tk+1), k ∈ N0. Then it is easy to construct a partition of unity of
[0,∞) subordinated to Ik with the following properties: Let ϕk(t) = ϕ0(t − kτ),
k ∈ Z, be such that suppϕ0 ⊆ [−τ, τ ] and

∑∞
k=−∞ ϕk(t) = 1 for all t ∈ R. Then∑∞

k=−∞ ϕk(t) =
∑∞

k=0 ϕk(t) = 1 for t ≥ 0 and ‖ϕk‖C1([0,∞)) ≤ ‖ϕ0‖C1([0,∞)) for all
k ∈ Z.

Now let v ∈ L∞(0,∞;L2
σ(Ω))∩L2(0,∞;V2(Ω)) be a weak solution of (4.1)-(4.4).

Then wk := ϕkv, k ∈ N0, is a solution of (4.1)-(4.4) with f replaced by fk =
ϕkf +(∂tϕk)v and v0 replaced by 0 if k ≥ 1. Since fk(t) = ∂tvk(t) = A(c(t))vk(t) = 0
for t 6∈ Ik, A(c(t)) can be replaced by A(ck(t)) with

ck(t) =





c(tk−1) if 0 ≤ t ≤ tk−1,

c(t) if tk−1 < t < tk+1,

c(tk+1) if t ≥ tk+1.

Since by construction sup0≤t<∞ ‖ck(t) − c(tk)‖W
1+j
r

≤ ε for all k ∈ N0, we can apply
the result proved so far to conclude that

‖wk‖Lq(0,∞;V s+2
2 ) + ‖∂twk‖Lq(0,∞;V s

2 ) ≤ Cq‖fk‖Lq(Ik;V s
2 ), k ≥ 1,

‖w0‖Lq(0,∞;V s+2
2 ) + ‖∂tw0‖Lq(0,∞;V s

2 ) ≤ Cq

(
‖f0‖Lq(0,δ;V s

2 ) + ‖v0‖(V s
2 ,V s+2

2 )
1− 1

q ,q

)

where 2 ≤ q <∞ if s = j = 0 and q = 2 if 0 < s < 1
2
. Hence

‖v‖Lq(0,∞;V s+2
2 ) + ‖∂tv‖Lq(0,∞;V s

2 )

≤
∞∑

k=0

(
‖wk‖Lq(0,∞;V s+2

2 ) + ‖∂twk‖Lq(0,∞;V s
2 )

)

≤ C

(
∞∑

k=1

‖fk‖L2(Ik;V s
2 ) + ‖f0‖L2(0,δ;V s

2 ) + ‖v0‖(V s
2 ,V s+2

2 )
1− 1

q ,q

)

≤ C

(
‖f‖Lq(0,∞;V s

2 ) + ‖v‖Lq(0,∞;V s
2 ) + ‖v0‖(V s

2 ,V s+2
2 )

1− 1
q ,q

)

≤ C

(
‖f‖Lq(0,∞;V s

2 ) + ‖f‖L2(0,∞;V ′

2) + ‖v0‖(V s
2 ,V s+2

2 )
1− 1

q ,q

)

by (4.6) where 2 ≤ q < ∞ if s = j = 0 and q = 2 if 0 < s < 1
2
. Here we have

used that v ∈ L∞(0,∞;L2(Ω)) ∩ L2(0,∞;H1(Ω)) →֒ Lq(0,∞;L2(Ω)) in the case
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s = 0, 2 ≤ q < ∞ and v ∈ L2(0,∞;V2(Ω)) →֒ L2(0,∞;V s
2 (Ω)) if 0 < s < 1

2
. This

proves the proposition.

Next we construct strong solutions to the associated Navier-Stokes system:

∂tv + v · ∇v − div(ν(c)Dv) + ∇p = f in Ω × (0, T ), (4.21)

div v = 0 in Ω × (0, T ), (4.22)

v|∂Ω = 0 on ∂Ω × (0, T ), (4.23)

v|t=0 = v0 in Ω. (4.24)

for given c, v0, f and suitable 0 < T ≤ ∞.

THEOREM 4.6 Let c ∈ BUC(0,∞;W 1+j
q (Ω)), q > d, d = 2, 3, j = 0, 1. More-

over, let v0 ∈ V s+1
2 (Ω) with s = 0 if j = 0 and 0 ≤ s < 1

2
if j = 1 and

let f ∈ L2(0,∞;Hs
σ(Ω))). Then there is some T > 0 and a unique solution

v ∈ L2(0, T ;V s+2
2 (Ω))∩H1(0, T ;Hs

σ(Ω)) of (4.21)-(4.24). Furthermore, there is some
ε0 > 0 such that, if ‖v0‖V s+1

2
+ ‖f‖L2(0,∞;Hs

σ) ≤ ε0, then there is a unique solution

v ∈ L2(0, T ;V s+2
2 (Ω)) ∩H1(0, T ;Hs

σ(Ω)) of (4.21)-(4.24) with T = ∞.

Proof: We prove the theorem with the aid of the contraction mapping principle.
To this end we define a mapping

F : XT :=
{
w ∈ L2(0, T ;V s+2

2 (Ω)) ∩H1(0, T ;V s
2 (Ω)) : w|t=0 = v0

}
→ XT

as follows: Given u ∈ XT let v = F (u) ∈ XT be the solution of (4.1)-(4.4) with f
replaced by fu := f − u · ∇u. Then

‖F (u1) − F (u2)‖XT
≤ C0 min(T

1
4 , 1) max

j=1,2
{‖uj‖XT

}‖u1 − u2‖XT

since

‖fu1 − fu2‖L2(0,T ;Hs)

≤ ‖u1 − u2‖L∞(0,T ;Hs+1)‖u1‖
L2(0,T ;Hs+3

2 )
+ ‖u2‖L∞(0,T ;Hs+1)‖u1 − u2‖

L2(0,T ;Hs+3
2 )

≤ C1 min(T
1
4 , 1) max

j=1,2
{‖uj‖XT

} ‖u1 − u2‖XT
,

if d ≤ 3. Here we have used (2.6), (2.18), and that L∞(0, T ;Hs+1)∩L2(0, T ;Hs+2) →֒

L4(0, T ;Hs+ 3
2 )). This implies

‖F (u)‖XT
≤ C2 min(T

1
4 , 1)‖u‖2

XT
+ C3

(
‖f‖L2(0,∞;Hs) + ‖v0‖V s+1

2 (Ω)

)
,

where Cj, j = 2, 3, are independent of 0 < T ≤ ∞.
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In order to prove the first part, let R := 2C3

(
‖f‖L2(0,∞;Hs

σ) + ‖v0‖V s+1
2 (Ω)

)
and

choose 0 < T ≤ 1 so small that max{C0, C2}T
1
4R ≤ 1

2
. Then

‖F (u)‖XT
≤

1

2
‖uj‖XT

+
1

2
R ≤ R

‖F (u1) − F (u2)‖XT
≤ C0T

1
4R‖u1 − u2‖XT

≤
1

2
‖u1 − u2‖XT

if ‖(u, u1, u2)‖XT
≤ R. Hence F : BR(0) ∩ XT → BR(0) ∩ XT is a contraction and

there is a unique fixed-point u ∈ BR(0) ∩XT . Uniqueness of the solution among all
u ∈ XT follows from Proposition 4.8 below.

To prove the second part, let R := 1
2
min(C−1

0 , C−1
2 ) and let ε0 := 1

2
C−1

3 R. Then

F : BR(0) ∩ X∞ → BR(0) ∩ X∞ is a contraction if ‖f‖L2(0,∞;Hs) + ‖v0‖Hs+1 ≤ ε0.
Uniqueness of the solution in X∞ follows again from Proposition 4.8.

As for the usual Navier-Stokes equation and similarly to Definition 1.3 we call
v ∈ L∞(0, T ;L2

σ(Ω)) ∩ L2(0, T ;V2(Ω)) a weak solution of (4.21)-(4.24) if

−(v, ∂tϕ)QT
− (v0, ϕ(0))Ω

+(v · ∇v, ϕ)QT
+ (ν(c)Dv,Dϕ)QT

=

∫ T

0

〈f(t), ϕ(t)〉V ′

2 ,V2
dt (4.25)

for all ϕ ∈ C∞
(0)([0, T ) × Ω)d with div v = 0. Here c is a measurable function, v0 ∈

L2
σ(Ω), f ∈ L2(0, T ;V2(Ω)′), and 0 < T ≤ ∞. Moreover, we require that a weak

solution is in BCw(0, T ;L2
σ(Ω)) and satisfies the strong energy inequality

1

2
‖v(t)‖2

2 + (ν(c)Dv,Dv)Q(s,t)
≤

1

2
‖v(s)‖2

2 + (f, v)Q(s,t)
for all t ∈ [s, T ) (4.26)

and for s = 0 and almost every 0 < s < T .

Remark 4.7 We note that, because of the energy equality (3.9) a weak solution of
(1.1)-(1.7) is a weak solution of (4.25) with f = µ∇c satisfying (4.26).

Proposition 4.8 (Uniqueness)
Let v, v′ be two weak solutions of (4.21)-(4.24) on (0, T ) with the same data (f, v0) ∈
L2(QT ) × V2(Ω) and c. If ∇v ∈ L2(0, T ;L3(Ω)), then v′ coincides with v.

Proof: Let v, v′ be as in the assumptions and let w = v − v′. Since v · ∇v ∈
L2(0, T ;L

6
5 ) →֒ L2(0, T ;H−1), ∂tv ∈ L2(0, T ;V ′

2) . Thus we can use wχ[0,t], 0 < t < T ,
in (4.25) and (2.8) to conclude

1

2
‖v(t)‖2

2 − (∂tv, v
′)Qt

+ (ν(c)Dv,Dw)Qt
=

1

2
‖v0‖

2
2 + (f, w)Qt

− (v · ∇v, w)Qt
.
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On the other hand choosing ϕ = vχ[0,t] in the equation for v′ we conclude

−(v′, ∂tv)Qt
+ (v(t), v′(t))Ω + (ν(c)Dv′, Dv)Qt

= ‖v0‖
2
2 + (f, v)Qt

+ (v′, v′ · ∇v)Qt
.

Moreover, by the energy inequality for v′

1

2
‖v′(t)‖2

2 + (ν(c)Dv′, Dv′)Qt
≤

1

2
‖v0‖

2
2 + (f, v′)Qt

.

Hence

1

2
‖w(t)‖2

2 + (ν(c)Dw,Dw)Qt
≤ −(w · ∇v, w)Qt

≤

∫ t

0

‖w‖2‖w‖H1‖∇v‖L3 dτ.

Because of Young’s inequality, we obtain

1

2
‖w(t)‖2

2 + (ν(c)Dw,Dw)Qt
≤ C

∫ t

0

‖w‖2
2‖∇v‖

2
L3 dτ.

Thus Gronwall’s inequality shows w = v − v′ ≡ 0 since ∇v ∈ L2(0, T ;L3(Ω)).

5 Existence of Weak Solutions

We prove existence of weak solutions with the aid of solutions to following approx-
imative system: Let Ψεw = P2ψε ∗ w, where ψε(x) = ε−dψ(x/ε), ε > 0, is a usual
smoothing kernel and w is extended by 0 outside of Ω. Then we consider

∂tv + Ψεv · ∇v − div(ν(c)Dv) + ∇p = − div(∇c⊗∇c) in Ω × (0, T ), (5.1)

div v = 0 in Ω × (0, T ), (5.2)

∂tc+ v · ∇c = ∆µ in Ω × (0, T ), (5.3)

µ = φ(c) − ∆c in Ω × (0, T ), (5.4)

where 0 < T <∞, together with the boundary and initial conditions

v|∂Ω = 0 on ∂Ω × (0, T ), (5.5)

∂nc|∂Ω = ∂nµ|∂Ω = 0 on ∂Ω × (0, T ), (5.6)

(v, c)|t=0 = (v0, c0) in Ω. (5.7)

The definition of a weak solution is completely analogous to Definition 1.3.

THEOREM 5.1 Let 0 < T < ∞, ε > 0, and let c0 ∈ domE0, v0 ∈ L2
σ(Ω). Then

there is a weak solution (v, c) of (5.1)-(5.7), which satisfies ∇2c, φ(c) ∈ L2(0,∞;Lr(Ω)),
where r = 6 if d = 3 and 1 < r < ∞ is arbitrary if d = 2. Moreover, (1.16) holds
with equality for all 0 ≤ s ≤ t ≤ T and c satisfies (3.10)-(3.11).
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Proof: LetX := L2(0, T ;V2(Ω))∩H1(0, T ;V2(Ω)′).We define a mapping F : X → X
as follows: Given u ∈ X, let c be the solution of (3.1)-(3.4) due to Theorem 3.1 with
v replaced by u and c0 as in the assumptions. Then u 7→ c is continuous from the
strong topology of X to the weak topology of

Y = L2(0, T ;W 2
r (Ω)) ∩H1(0, T ;H−1

(0) (Ω))

as stated in Theorem 3.1. Moreover, X ∋ u 7→ c ∈ Y ∩ L∞(0, T ;H1(Ω)) is a
bounded mapping and Y →֒→֒ L2(0, T ;C1(Ω)) by (2.1). Interpolation implies that
X ∋ c 7→ ∇c ∈ L4(QT ) and X ∋ c 7→ ∇c⊗∇c ∈ L2(ΩT ) are completely continuous
mappings. Now let v = F (u) be the solution of (4.1)-(4.4) with

f = f(u) = − div(∇c⊗∇c) − Ψεu · ∇u.

Then the mapping X ∋ u 7→ f(u) ∈ L2(0, T ;H−1(Ω)) →֒ L2(0, T ;V2(Ω)′) is com-
pletely continuous as well. Because of the continuity statement in Theorem 4.1
F : X → X is completely continuous. In order to apply the Leray-Schauder principle
to F , cf. e.g. [25, Chapter II, Lemma 3.1.1], it only remains to show that there is
some R > 0 such that

λF (u) = u for some u ∈ X,λ ∈ [0, 1] ⇒ ‖u‖X ≤ R.

Assume that λF (u) = u for some u ∈ X, λ ∈ (0, 1]. (The case λ = 0 is trivial).
Hence v = λ−1u solves (4.1)-(4.4) with right-hand side f(u) as above. Thus taking
the L2-scalar product of (4.1) and v we conclude that

1

2
‖v(T )‖2

2 + (ν(c)Dv,Dv)QT

=
1

2
‖v0‖

2
2 − λ−1(Ψεu · ∇u, u)QT

+ (∇c⊗∇c,∇v)QT
=

1

2
‖v0‖

2
2 + λ−1(µ∇c, u)QT

where we have used (1.12). Combining this with (3.9) we obtain

1

2
‖v(T )‖2

2+

∫

QT

ν(c)|Dv|2 d(x, τ)+
1

λ
E1(c(T ))+

1

λ

∫

QT

|∇µ|2 d(x, τ) =
1

2
‖v0‖

2
2+

1

λ
E1(c0)

and therefore ‖u‖2
L2(0,T ;H1) = λ2‖v‖2

L2(0,T ;H1) ≤ CE(v0, c0). Because of (3.10), (3.11),

there is some R > 0 such that ‖u‖X ≤ ‖F (u)‖X ≤ C‖u‖L2(0,T ;H1) ≤ R. Hence we
can apply the Leray-Schauder principle to conclude the existence of a fixed point
v = F (v), v ∈ X. Finally, the energy identity is proved by same calculations as
above with λ = 1 and T replaced by 0 < t < T .

Proof of Theorem 1.4: It remains to consider the limit ε → 0 in (5.1)-(5.7). To
this end let (vε, cε, µε), ε > 0, denote the solution of (5.1)-(5.7) with T = 1

ε
due to
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Theorem 5.1. Because of (1.16), (3.10), (3.11), we can pass to a suitable subsequence
(vk, ck, µk) ≡ (vεk

, cεk
, µεk

), limk→∞ εk = 0 such that

vk ⇀k→∞ v in L2(0,∞;H1(Ω)), vk ⇀
∗
k→∞ v in L∞(0,∞;L2(Ω)),

ck ⇀k→∞ c in L2
loc(0,∞;W 2

r (Ω)), ∇µk ⇀k→∞ ∇µ in L2(Q),

where (vk, ck, µk) are extended by zero for t > 1
εk

and r is as in Theorem 5.1. Since

〈∂tvk, ϕ〉 = −(ν(ck)Dvk, Dϕ)Q − (Ψkvk · ∇vk, ϕ)Q + (∇ck ⊗∇ck,∇ϕ)Q,

for all ϕ ∈ C∞
0 (Q)d with divϕ = 0, ∂tvk is uniformly bounded in L2(0, T ;H−m

σ (Ω)),
m > d

2
, for all 0 < T < ∞, where H−m

σ (Ω) = (Hm
0 (Ω)d ∩ L2

σ(Ω))′. Because of this
and vk ∈ L2(0, T ;H1(Ω)), (2.1) implies vk →k→∞ v in L2(QT ) for all T > 0 and a
suitable subsequence. Thus

Ψkvk · ∇vk ⇀k→∞ v · ∇v in L1(Q).

Moreover, using (1.14) and (2.1) again ck →k→∞ c strongly in L2(0, T ;C1(Ω)) for
every 0 < T < ∞ and since (ck) is bounded in L∞(0, T ;H1(Ω)), ∇ck →k→∞

∇c in L4(QT ) for every 0 < T < ∞. In particular, ∇ck ⊗∇ck →k→∞ ∇c ⊗∇c in
L2

loc(Q).
Because of the continuous dependence of the solutions of (3.1)-(3.4), c is the

solution of (3.1)-(3.4) with convective term v ·∇c. Furthermore, since (ck) converges
strongly in L2(0, T ;C1(Ω)), we conclude

(ν(ck)Dvk, Dϕ)Q →k→∞ (ν(c)Dv,Dϕ)Q

for all ϕ ∈ C∞
(0)(Q)d. Hence (v, c, µ) solve (1.13)-(1.15), where we use again (1.12).

Furthermore, (1.16) holds for almost all 0 ≤ s ≤ t <∞ (including s = 0) because
of the corresponding equality for (vk, ck) and by using the fact that (vk(s),∇ck(s)) →k→∞

(v(s),∇c(s)) strongly in L2(Ω) for almost every s > 0 as well as

∫

Q(s,t)

ν(c)|Dv|2 d(x, τ) ≤ lim inf
k→∞

∫

Q(s,t)

ν(ck)|Dvk|
2 d(x, τ)

for all 0 ≤ s ≤ t < ∞ since ν(ck)
1
2Dvk ⇀k→∞ ν(c)

1
2Dv in L2(Q). Using that

v,∇c ∈ BCw(0,∞;L2(Ω)) and the weak lower semi-continuity of the L2-norm one
obtains (1.16) for almost all s > 0 and s = 0 and all s ≤ t <∞.

Moreover, if d = 2, then v ∈ L4(0,∞;H
1
2 (Ω)) →֒ L4(Q) by (2.2). Therefore

v · ∇v = div(v ⊗ v) ∈ L2(0,∞;V2(Ω)′) and ∂tv ∈ L2(0,∞;V2(Ω)′) because of (1.13)

and P0µ∇c ∈ L2(0,∞;L
3
2 (Ω)) →֒ L2(0,∞;V2(Ω)′). Hence using ϕ = vχ[0,t] in (1.13)

and using (2.8) we obtain

1

2
‖v(t)‖2

2 + (ν(c)Dv,Dv)Qt
=

1

2
‖v0‖

2
2 + (µ∇c, v)Qt
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for all t > 0. Together with (3.9) this implies (1.16) with equality for all t > 0.
Finally, let (v, c, µ) be any weak solution. We have to show that there is some

q > 3 such that κc ∈ BUC(0,∞;W 1
q (Ω)), where κ(t) ≡ 1 if c0 ∈ H2(Ω) and

−∆c0 + φ(c0) ∈ H1(Ω) and κ(t) =
(

t
1+t

)2
else. To this end we use that v ∈

L
8
3 (0,∞;L4(Ω)) and therefore v · ∇v = div(v ⊗ v) ∈ L

4
3 (0,∞;H−1(Ω)). Hence

∂tv ∈ L
4
3
uloc([0,∞);V −1

2 (Ω)) because of (1.13). This means

v ∈ W 1
4
3
,uloc

([0,∞);V −1
2 (Ω)) ∩ L2(0,∞;V 1

2 (Ω)) →֒ Bs
q∞,uloc([0,∞);V 1−2s

2 (Ω))

for every 0 < s < 1 and 1
q

= 1−s
2

+ 3s
4

because of (2.11). Now let s ∈ (2
3
, 3

4
). In

particular this implies −1
2
< 1 − 2s < 0 and therefore V 1−2s

2 (Ω) = H1−2s
σ (Ω) ⊂

H1−2s(Ω)d due to (4.13). Hence we can apply Lemma 3.2 to conclude that κc ∈
Bs

2∞,uloc([0,∞);H1(Ω)). Next we use that for θ ∈ (0, 1)

Bs
2∞,uloc([0,∞);H1(Ω)) ∩ L2

uloc([0,∞);W 2
6 (Ω)) →֒ Bsθ

2∞,uloc([0,∞);B2−θ
pp (Ω)),

where 1
p

= 1
6

+ θ
3
, cf. (2.10). Since s > 2

3
, there is some θ ∈ ( 1

2s
, 3

4
). Hence

B2−θ
pp (Ω) →֒ W 1

q (Ω) with
1

q
= −

1

6
+

2θ

3
<

1

3

because of Sobolev’s embedding theorem, cf. [6, Theorem 6.5.1]. Thus

κc ∈ Bsθ
2∞,uloc([0,∞);B2−θ

pp (Ω)) →֒ BUC([0,∞);W 1
q (Ω))

because of sθ > 1
2

and the Sobolev embedding theorem for vector-valued Besov
spaces, cf. [24, Corollary 26]. This finished the proof.

6 Uniqueness and Regularity of Weak Solutions

Lemma 6.1 Let q = 3 if d = 3 and let q > 2 if d = 2. If (vj, cj), j = 1, 2, are
weak solutions of (1.1)-(1.7) on (0, T ), 0 < T ≤ ∞, with ∇v2 ∈ L∞(0, T ;Lq(Ω)) and
∇c1,∇c2 ∈ L∞(QT ), then (v1, c1) ≡ (v2, c2).

Proof: It suffices to consider T <∞. First of all, c̃ = c1 − c2 solves

∂tc̃+ A(c1) −A(c2) = −α∆c̃− w · ∇c1 − v2 · ∇c̃,

where w = v1 − v2. Hence multiplication with c̃ in L2(0, t;H−1
(0) (Ω)) with 0 < t ≤ T

yields

1

2
‖c̃(t)‖2

H−1
(0)

+ ‖∇c̃‖2
L2(Qt)

≤ C

(
‖c̃‖2

L2(Qt)
+

∫ t

0

‖w · ∇c1‖H−1
(0)
‖c̃‖H−1

(0)
dτ +

∫ t

0

‖v2 · ∇c̃‖H−1
(0)
‖c̃‖H−1

(0)
dτ

)

≤ C(v2)

(
‖c̃‖L2(0,t;H1)‖c̃‖L2(0,t;H−1

(0)
) + ‖w‖2

L2(Qt)
+ ‖c̃‖2

L2(0,t;H−1
(0)

)

)
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where we have used (2.13), (3.7), (3.8). Hence

1

2
‖c̃(t)‖2

H−1
(0)

+ ‖∇c̃‖2
L2(Qt)

≤ C(T, c1, v2)‖w‖
2
L2(Qt)

(6.1)

by Young’s and Gronwall’s inequality.
Because of Remark 4.7, one derives, by the same calculations as in Proposition 4.8,

that

1

2
‖w(T )‖2

2 + (ν(c1)Dw,Dw)QT
≤ (w · ∇v2, w)QT

+((ν(c1) − ν(c2))Dv2 : Dw)QT
+ (∇c1 ⊗∇c1 −∇c2 ⊗∇c2,∇w)QT

,

where we have used again (1.12). Since ∇cj ∈ L∞(QT ) and ∇v2 ∈ L∞(0, T ;Lq(Ω)),

1

2
‖w(T )‖2

2 + (ν(c1)Dw,Dw)QT

≤ C(c1, c2, v2)
(
‖w‖L2(QT ) + ‖∇c̃‖L2(QT )

)
‖w‖L2(0,T ;H1)

≤ C ′(T, c1, c2, v2)‖w‖L2(QT )‖w‖L2(0,T ;H1)

where we have used (6.1) and ‖ν(c1(t)) − ν(c2(t))‖Lr(Ω) ≤ C‖∇c̃(t)‖L2(Ω) with r = 6
if d = 3 and 1

r
= 1

2
− 1

q
if d = 2. Hence by Young’s inequality

1

2
‖w(T )‖2

2 + ‖w‖2
L2(0,T ;H1) ≤ C(T, c1, c2, v2)

∫ T

0

‖w(t)‖2
2 dt,

which implies w ≡ 0 by the lemma of Gronwall. Finally, by (6.1) c1 ≡ c2 follows,
which proves uniqueness.

Lemma 6.2 Let v0 ∈ V 1+s
2 (Ω), s ∈ (0, 1], and let c0 ∈ H2

N(Ω) such that −∆c0 +
φ0(c0) ∈ H1(Ω), and let d = 2. Then every weak solution (v, c, µ) of (1.1)-(1.7)
satisfies c ∈ L∞(0,∞;W 2

r (Ω)) for every r <∞, ∂tc ∈ L∞(0,∞;H−1
(0) (Ω)), and

v ∈ L2(0,∞;V 2+s′

2 (Ω)) ∩H1(0,∞;V s′

2 (Ω)) ∩BUC([0,∞);H1+s−ε(Ω))

for all s′ ∈ [0, 1
2
) ∩ [0, s] and all ε > 0. In particular, the weak solution is unique.

Proof: First we show that the weak solution satisfies v ∈ H1,2(Q). First of all, be-
cause of Theorem 1.4, c ∈ BUC([0,∞);W 1

3 (Ω)). Hence P0µ∇c ∈ L2(Q). Moreover,
we can apply Theorem 4.6 and Proposition 4.8 to conclude that there is some T > 0
such that the weak solution (v, c) satisfies v ∈ H1,2(QT ) →֒ BUC([0, T ];H1(Ω)).
Hence it suffices to prove that there is some C = C(v0, c) independent of T such that

sup
0≤t≤T

‖∇v(t)‖2
2 + ‖v‖2

H1,2(QT ) ≤ C(v0, c).
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If this is shown, we can apply again Theorem 4.6 and Proposition 4.8 to conclude
that v ∈ H1,2(Q). To this end we apply Proposition 4.5 with f = P0µ∇c − v · ∇v
and obtain

sup
0≤t≤T

‖∇v(t)‖2
2 + ‖v‖2

L2(0,T ;H2) ≤ C
(
‖v‖2

H1,2(QT ) + ‖∇v0‖
2
2

)

≤ C ′(c)
(
‖v · ∇v‖2

L2(QT ) + ‖∇v0‖
2
2 + ‖P0µ∇c‖

2
L2(Q)

)

with a constant C independent of T because of (2.9) and C ′(c) depending only on
‖c‖BUC([0,∞);W 1

3 (Ω)). Moreover,

∫ T

0

‖v · ∇v‖2
2 dt ≤ ‖v‖2

L4(0,T ;L∞)‖∇v‖
2
L4(0,T ;L2)

≤ C‖v‖L∞(0,T ;L2)‖v‖L2(0,T ;H2)‖∇v‖
2
L4(0,T ;L2)

≤ C(v0, c0)‖v‖L2(0,T ;H2)‖∇v‖
2
L4(0,T ;L2)

because of (1.16) and (2.16). Hence, applying Young’s inequality, we obtain

sup
0≤t≤T

‖∇v(t)‖2
2 + ‖v‖2

H1,2(QT ) ≤ C(c, v0)

(∫ T

0

‖∇v‖4
2 dt+ 1

)
.

Thus Gronwall’s inequality implies

sup
0≤t≤T

‖∇v(t)‖2
2 + ‖v‖2

H1,2(QT ) ≤ C(v0, c0) exp

(
C(v0, c0)

∫ T

0

‖∇v(t)‖2
2 dt

)
≤ C ′(v0, c0)

with C ′(v0, c0) independent of T . Hence v ∈ H1,2(Q).
Therefore Lemma 3.2 yields

∂tc ∈ L∞(0,∞;H−1
(0) (Ω)), µ ∈ L∞(0,∞;H1(Ω)), c ∈ L∞(0,∞;W 2

r (Ω))

for every 1 < r < ∞, which implies µ0∇c ∈ L2(0,∞;H1(Ω)). Hence we can apply
Theorem 4.6 and Proposition 4.8 again to conclude that

v ∈ L2(0, T ;V 2+s′

2 (Ω)) ∩H1(0, T ;V s′

2 (Ω)) for all 0 < T <∞,

where s′ ∈ [0, 1
2
) ∩ [0, s] is arbitrary. Moreover,

‖v · ∇v‖2
L2(0,T ;Hs′ )

≤ C

∫ T

0

‖v‖
Hs′+3

2
‖v‖Hs′+1 dt ≤ C ′

∫ T

0

‖v‖
1
2

Hs′+2‖v‖
3
2

Hs′+1 dt

≤ C‖v‖
1
1

L2(0,T ;Hs′+2)
‖v‖

3
2

L2(0,T ;H2) ≤ C ′(c, v0)‖v‖
1
2

L2(0,T ;Hs′+2)

by (2.18) with a constant independent of T . Therefore Proposition 4.5 yields

‖v‖L2(0,T ;Hs′+2) + ‖∂tv‖L2(0,T ;Hs′ ) ≤ C(c, v0)
(
‖v‖

1
4

L2(0,T ;Hs′+2)
+ 1
)
.
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Hence ‖v‖L2(0,T ;Hs′+2) + ‖∂tv‖L2(0,T ;Hs′ ) is uniformly bounded in 0 < T < ∞ and

therefore v ∈ L2(0,∞;Hs′+1(Ω)) ∩H1(0,∞;Hs′(Ω)), where still s′ ∈ [0, 1
2
) ∩ [0, s] is

arbitrary. Furthermore, we can use that v ∈ BUC([0,∞);Hs′+1(Ω)) →֒ L∞(Q) for
any 0 < s′ < min(s, 1

2
). Hence

f = −v · ∇v + µ0∇c ∈ L∞(0,∞;L2(Ω))

and Proposition 4.5 yields

v ∈ W 1
q (0,∞;L2(Ω)) ∩ Lq(0,∞;H2(Ω)) →֒ BUC([0,∞); (L2(Ω), H2(Ω))1− 1

q
,q)

for all 2 ≤ q <∞ with 2 − 2
q
< 1 + s, where we note that

V 1+s
2 (Ω) = (L2

σ(Ω), V 2
2 (Ω)) 1

2
(1+s),2 →֒ (L2

σ(Ω), V 2
2 (Ω))1− 1

q
,q,

(L2(Ω), H2(Ω))1− 1
q
,q →֒ (L2(Ω), H2(Ω))1− 1

q
+ε,q = H2− 2

q
−2ε(Ω)

for all ε > 0 due to (2.3), (2.4), and (4.15).

Lemma 6.3 Let d = 3, v0 ∈ V 1+s
2 (Ω), 1

2
≤ s ≤ 1 and let c0 ∈ H2

N(Ω) such that
−∆c0 + φ0(c0) ∈ H1(Ω). Then there is some T > 0 such that any weak solution
(v, c, µ) with initial values (v0, c0) satisfies ∇2c, φ(c) ∈ L∞(0, T ;L6(Ω)) and

v ∈ L2(0, T ;V 2+s′

2 (Ω)) ∩H1(0, T ;V s′

2 (Ω)) ∩BUC([0, T ];H1+s−ε(Ω))

for all s′ ∈ [0, 1
2
) and all ε > 0. In particular, the weak solution is unique on (0, T ).

Proof: As in the proof of Lemma 6.2, Theorem 4.6 and Proposition 4.8 imply the
existence of some T depending only on (c0, v0) such that v ∈ L2(0, T ;H2+s′(Ω)) ∩
H1(0, T ;Hs′(Ω)), where s′ ∈ [0, 1

2
). In particular, ∂tv ∈ L2(QT ) and Lemma 3.2

implies that c ∈ L∞(0, T ;W 2
6 (Ω). Again

f = −v · ∇v + µ0∇c ∈ L∞(0, T ;L2(Ω))

and Proposition 4.5 yields

v ∈ W 1
q (0,∞;L2(Ω)) ∩ Lq(0,∞;H2(Ω)) →֒ BUC([0,∞); (L2(Ω), H2(Ω))1− 1

q
,q)

for all 2 ≤ q < ∞ with 2 − 2
q
< 1 + s, where V 1+s

2 (Ω) →֒ (L2
σ(Ω), V 2

2 (Ω))1− 1
q
,q and

(L2(Ω), H2(Ω))1− 1
q
,q →֒ H2− 2

q
−ε(Ω) for all ε > 0 as in the proof of Lemma 6.2.

Finally, the uniqueness follows from Proposition 1.5.
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Lemma 6.4 Let d = 2, 3. Moreover, let (v, c, µ) be a weak solution of (1.1)-(1.7) on
(0,∞). Then there is some T > 0 such that ∇2c, φ(c) ∈ L∞(T,∞;Lr(Ω)) with r = 6
if d = 3 and 1 < r <∞ if d = 2 and

v ∈ L2(T,∞;V 2+s
2 (Ω)) ∩H1(T,∞;V s

2 (Ω)) ∩BUC([T,∞);H2−ε(Ω))

for all s ∈ [0, 1
2
) and all ε > 0. Moreover, (1.16) holds with equality for all T ≤ s ≤

t <∞.

Proof: First of all,

‖µ0∇c‖L2((T,∞)×Ω) ≤ ‖µ0‖L2(T,∞;L6(Ω))‖∇c‖L∞(T,∞;L3(Ω))

≤ C(v0, c0)‖∇µ‖L2((T,∞)×Ω) →T→∞ 0

since ∇µ ∈ L2(Q). Moreover, since v ∈ L2(0,∞;H1(Ω)), for every T > 0 and ε > 0
there is some t ≥ T such that v(t) ∈ H1(Ω) and ‖∇v(t)‖2 ≤ ε. Hence there is some
T > 0 such that

‖∇v(T )‖2 + ‖µ0∇c‖L2((T,∞)×Ω) ≤ ε0,

where ε0 > 0 is the same as in Theorem 4.6 for s = 0. Thus v ∈ L2(T,∞;V 2
2 (Ω)) ∩

H1(T,∞;L2
σ(Ω)) by Theorem 4.6 with j = 0 and Proposition 4.8. Hence c ∈

L∞(T,∞;W 2
6 (Ω)) by Lemma 3.2. By the same argument as before there is some

T ′ ≥ T
‖v(T ′)‖H2 + ‖µ0∇c‖L2((T ′,∞);H1(Ω)) ≤ ε1,

where ε1 > 0 is the same as in Theorem 4.6 for 0 ≤ s ≤ j = 1. Hence

v ∈ L2(T ′,∞;V 2+s
2 (Ω)) ∩H1(T ′,∞;V s

2 (Ω))

for all s ∈ [0, 1
2
). By the same argument as at the end of the proof of Lemma 6.2

one shows v ∈ BUC([T ′,∞);H2−ε(Ω)) for all ε > 0. Since v ·∇v ∈ L2(T ′,∞;L2(Ω))
and v ∈ BUC([T ′,∞);L2(Ω)) it is easy to prove (1.16) for all T ′ ≤ s ≤ t < ∞ by
the same arguments as in the proof of Theorem 1.4 for d = 2.

Proof of Theorem 1.6: All statements follow from the Lemmas 6.2-6.4.

7 Asymptotic Behavior in Time

Let (v, c) be a weak solution. Then by Lemma 6.4 there is some T ≥ 0 such that
v ∈ BUC(T,∞;H2−ε(Ω)) and c ∈ L∞(T,∞;W 2

6 (Ω)) for all ε > 0. Since we are only
discussing the asymptotic behavior of (v, c) we can by a simple shift in time reduce
to the case that v ∈ L∞(0,∞;H2(Ω)) and c ∈ L∞(0,∞;W 2

6 (Ω)).
Now we define the ω-limit set of (v, c) as

ω(v, c) =
{
(v′, c′) ∈ H2r(Ω)d+1 : ∃(tn) ր ∞ s.t. (v(tn), c(tn)) → (v′, c′) in H2r

}
,
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where r ∈ (3
4
, 1). By the definition and since (v, c) ∈ BUC(0,∞;H2r′(Ω))d+1 with

r < r′ < 1, ω(v, c) is a non-empty, compact, and connected subset of H2r(Ω)d+1.
Since E is a strict Lyaponov functional for (1.1)-(1.7), we are able to prove:

Lemma 7.1 Let (v, c) ∈ L∞(0,∞;H2r(Ω)d ×H2(Ω)) be as above. Then

ω(v, c) ⊆
{
(0, c′) : c′ ∈ H2(Ω) ∩H1

(0)(Ω) solves (1.18)-(1.20)
}
.

Proof: First of all, since (1.16) holds for all 0 ≤ s ≤ t < ∞, cf. Lemma 6.4,
E(v(t), c(t)) is non-increasing in t > 0 and E∞ := limt→∞E(v(t), c(t)) exists. Let
(tn) ր ∞ such that limn→∞(v(tn), c(tn)) = (v′0, c

′
0) and let (vn(t), cn(t)) := (v(t +

tn), c(t + tn)), t ∈ [0,∞). Since v ∈ L2(0,∞;H1(Ω)), vn →n→∞ 0 strongly in
L2(0,∞;H1(Ω)). Because of ∂tv ∈ L2(Q) and (2.8), vn →n→∞ 0 inBUC(0,∞;L2

σ(Ω))
and v(tn) →n→∞ 0 = v′0 in L2

σ(Ω). Moreover, due to Theorem 3.1 (cn)n∈N converges
weakly to a solution c′ of (3.1)-(3.4) with v = 0 and initial value c′|t=0 = c′0 in the
sense stated in Theorem 3.1. In particular, cn →n→∞ c′ in L2

loc(0,∞;H1
(0)(Ω)) and

therefore

E1(cn(t)) →n→∞ E1(c
′(t)) for a.e. t ∈ [0,∞)

and a suitable subsequence. On the other hand, since limn→∞E(vn(t), cn(t)) =
limn→∞E1(cn(t)) = E∞,

E1(c
′(t)) = E∞ for a.e. t ∈ [0,∞).

Hence by (3.9) ∇µ(t) = 0 for almost all t ∈ [0,∞). Thus ∂tc
′(t) = 0, and c′(t) ≡ c′0

solves the stationary Cahn-Hilliard equation (1.18)-(1.20).

Using Proposition 3.4 we are able to prove:

Lemma 7.2 Let (v, c) be as above. Then there are some T > 0, ε > 0 such that

a+ ε ≤ c(t, x) ≤ b− ε for all t ≥ T, x ∈ Ω.

Proof: By Lemma 7.1, Proposition 3.4, H2r(Ω) →֒ C(Ω), and the compactness of
ω(v, c) there are some a < M1 ≤M2 < b such that

M1 ≤ c′(x) ≤M2 for all x ∈ Ω, (0, c′) ∈ ω(v, c).

Since limt→∞ dist((v(t), c(t)), ω(v, c)) = 0 in the norm of H2r(Ω), we conclude that
there are some T > 0 and a < M ′

1 ≤M ′
2 < b such that

M ′
1 ≤ c(t, x) ≤M ′

2 for all x ∈ Ω, t ≥ T,

which proves the lemma.
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Now let Φ̃ be a smooth and bounded function such that Φ̃|[a+ε,b−ε] = Φ|[a+ε,b−ε]

and such that Proposition 3.5 holds. In particular this implies that the Lojasiewicz-
Simon inequality (3.23) holds as seen in Section 3.2.

Proof of Theorem 1.7: In order to prove convergence as t→ ∞, we consider

H(t) := (E(v(t), c(t)) − E∞)θ ,

where θ is as in (3.23). Then H(t) is non-increasing and

−
d

dt
H(t) = θ

(
‖∇µ(t)‖2

2 +

∫

Ω

ν(c(t))|Dv(t)|2 dx

)
(E(v(t), c(t)) − E∞)θ−1

≥ C

(
‖∇µ(t)‖2

2 +

∫

Ω

ν(c(t))|Dv(t)|2 dx

)(
‖DẼ1(c(t))‖H−1

(0)
+ ‖v(t)‖L2

)−1

by (3.23) and (1.16) with equality. Now we use that

DẼ1(c(t)) = −∆c(t) + P0φ̃(c(t)) = −∆c(t) + P0φ(c(t)) = P0µ(t), φ̃ = Φ̃′,

for t ≥ T since M1 ≤ u(t) ≤ M2. Because of ‖P0µ(t)‖H−1
(0)

≤ C‖∇µ(t)‖2 and

‖v(t)‖2 ≤ C‖Dv(t)‖2 by Korn’s inequality, − d
dt
H(t) ≥ C (‖∇µ(t)‖2 + ‖Dv(t)‖2) .

This implies
∫ ∞

T

‖∇µ(t)‖2 dt+

∫ ∞

T

‖Dv(t)‖2 dt ≤ CH(T ) <∞

and therefore
∫ ∞

T

‖∂tc(t)‖H−1
(0)
dt ≤

∫ ∞

T

‖∇µ(t)‖H−1
(0)
dt+

∫ ∞

T

‖v‖L2 dt ≤ CH(T ) <∞

due to (1.1) and (3.8). Hence ∂tc ∈ L1(T,∞;H−1
(0) ) and therefore

c(t) = c(T ) +

∫ t

T

∂tc(τ) dτ →t→∞ c∞ in H−1
(0) (Ω).

In particular, ω(v, c) = {(0, c∞)} and c∞ solves the stationary Cahn-Hilliard equa-
tion (1.18) -(1.20) because of Lemma 7.1. Since (v(t), c(t)) ∈ H2(Ω)d+1 is uni-
formly bounded in t ≥ 0, we conclude that (v(t), c(t)) converges weakly to (0, c∞) in
H2(Ω)d+1.
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