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ON THE GRADIENT SET OF LIPSCHITZ MAPS

BERND KIRCHHEIM AND LASZLO SZEKELYHIDI JR.

ABSTRACT. We prove that the essential range of the gradient of planar
Lipschitz maps has a connected rank-one convex hull. As a corollary, in
combination with the results in [7] we obtain a complete characterization
of incompatible sets of gradients for planar maps in terms of rank-one
convexity.

1. INTRODUCTION

This paper is concerned with the range of gradients of Lipschitz maps.
More precisely, let 2 C R™ be a bounded domain, and let u : Q@ C R" —
R™ be a Lipschitz map. We denote by [Du| the essential range of the
gradient of u, i.e. the smallest closed subset of R"™*" such that Du(z) € [Dul]
for almost every x € €. Our aim is to find geometric restrictions on, or
characterizations of the essential range of gradients of Lipschitz maps.

This issue plays a central role in the study of material microstructure
[2, 3, 5, 9], and is linked to the question of existence and regularity of
solutions to partial differential inclusions of the type

Du(x) € K a.e. x €,

where K C R™*™ is a prescribed (compact) set of matrices.

The following construction is well known: let A, B € R™*" be two matri-
ces such that rank(A—B) = 1, so that A— B = a®v for some vectors a € R™
and v € R™. For any Lipschitz “profile” h: R — R with h/(¢) € {0,1} a.e.,
the map

u(x) = Bx + ah(z - v)

is a Lipschitz map whose gradient takes the values A or B almost everywhere.
This type of example is called a simple laminate, and whenever two matrices
A, B satisfy rank(A — B) = 1, one speaks of a rank-one connection (or, more
classically, A and B are said to satisfy the Hadamard jump condition). On
the other hand, it is also well known that if A, B € R"*" with rank(A—B) >
1, then the only Lipschitz maps with gradient Du(z) € {A, B} a.e. are
affine maps. Moreover, in [2] J. M. Ball and R. D. James established the
much stronger statement that whenever {u;} is a sequence of maps bounded
in Wh1 such that dist (Duj, {4, B}) — 0 in L' strongly, then - up to a
subsequence - Du; — A or Du; — B strongly in L.

A general question, that has received considerable attention recently, is

to understand to what extent the above construction is universal. In other
1
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words to understand to what extent the presence of rank-one connections is
necessary in the essential range of gradients of Lipschitz maps. To put this
question into proper perspective, we need to recall the example given by the
first author together with D. Preiss of a Lipschitz map u : Q C R? — R?,
where [Du] consists of 5 matrices, none of which are rank-one connected
to each other ([12, Chapter 4], see also [11] for similar examples). Such
examples show that it may happen that the set [Du] itself contains no rank-
one connections. On the other hand, the construction of such maps relies
very much on the presence of rank-one segments in the sense that it proceeds
via an iteration scheme known as convex integration (see [13] for a survey of
the theory). In technical terms one key ingredient for this scheme to work
is that the rank-one convex hull [Du|™ is a connected set, which contains
many rank-one segments in the sense that for any matrix A € [Du|"¢ \ [Du]
there exists a rank-one segment through A contained in [Du|"¢. The upshot
is that although the iterative process of convex integration can eliminate
rank-one connections in the essential range [Du| of the limit, the “trail” it
leaves behind is a large rank-one convex hull (see Section 4 for a precise
definition of the rank-one convex hull).

Our main result shows that for planar maps this is in some sense optimal:

THEOREM 1. Let Q C R? be a bounded domain, and v : Q — R? a Lipschitz
map. Then the rank-one conver hull [Du]™ of the essential range of the
gradient is connected.

It is important to note that connectedness itself does not imply that
[Du]™ contains rank-one segments. The standard example is simply a planar
conformal map. However, in some sense this is the only example. Indeed, if
[Du]™ is connected and contains no rank-one connections, then in fact the
differential inclusion

Du(x) € [Du]™ a.e. x € Q

can be viewed as a (possibly degenerate) elliptic system (see [23, 25]). In
particular, we have the following statement.

COROLLARY 1. If the essential range of the gradient of a Lipschitz map

u: Q C R? — R? contains an isolated matriz A € [Du], then there exists
another matriz B € [Du]" \ {A} such that rank(A — B) = 1.

We emphasize that Theorem 1 and Corollary 1 are very specific for planar
mappings, and the analogue statements are false in higher dimensions in
general (see for example [9]).

Our Theorem 1 has interesting implications concerning the study of in-
compatible sets of gradients. In combination with the results in [6] and [7]
we obtain the following theorem.

THEOREM 2. Let K1, Ky C R?*? be disjoint compact sets which are rank-
one incompatible in the sense that

KN K3 =0 and KJ°U K5 = (K, UK>)™.
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Then for any bounded Lipschitz domain Q C R? and any p € [1,00) there
exists a constant C' = C(p,Q) such that

min(/ distp(Du,Kl),/ distp(Du,K2)> gC/distp(Du,Klqu)
Q Q Q

for all uw € WHP(Q,R?).

In the proof of Theorem 1 we follow the approach of [7], which is based
on the geometric characterization of rank-one incompatibility via a separat-
ing curve, introduced by the second author in [24]. As in the proof of [7,
Theorem 4], the existence of a separating curve I' : ST — R?*2 allows us to
consider the associated family of quasiregular mappings

ul(z) = u(x) — L(t)r.

However, since in our case we have no control over the boundary values of
u’, we cannot conclude that these maps are homeomorphisms. In general
they may have branch points. Our strategy is to prove that the set of branch
points is in fact independent of ¢t € S', and therefore cannot disconnect €.
In this way we will be able to conclude the incompatibility just as in [7,
Theorem 4].

Our paper is organized as follows. In Section 2 we prove a general result
about stability of the branch set of quasiregular mappings in R", and show
in Proposition 2 how it can be used to prove separation results for gradients
of Lipschitz maps in R™. Then in Section 3 we utilize the stability result to-
gether with the existence of a separating curve in case [Du|"¢ is disconnected
(as in [24]) to prove Theorem 1 and Corollary 1.

Finally, in Section 4 we discuss the implications of Theorem 1 to the study
of incompatible sets of gradients and in particular the proof of Theorem 2.
As the explanation of these implications requires introducing the language
of gradient Young measures which does not otherwise play a central role in
our paper, we defer the statements and proofs until that section.

2. STABILITY OF THE BRANCH SET

In the following, given a domain €2 C R™ and an open and discrete map-
ping u : @ — R", we shall write u(y,u,G) for the local degree of the map-
ping at y € R™ with respect to G (provided y ¢ u(9G)), N(y,u,G) =
card u1(y) N G, N(u,G) = sup, N(y,u,G) and i(x,u) for the local index
of u at x € 2. We recall that a domain D C 2 is called a normal domain
for the mapping w if u(0D) = Ou(D) (note that du(D) C u(9D) follows
automatically from openness of the map). A normal neighbourhood D of
r € Q is a normal domain such that D Nu~!(u(z)) = {z}.

A map u: Q — R" is said to be quasireqular, if for some constant IC > 1

|Du(x)||" < Kdet Du(xz) a.e. z €,

where || Du(x)|| denotes the operator norm of the matrix Du(x). It is well
known since the pioneering work of Y. G. Reshetnyak that non-constant
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quasiregular mappings are open and discrete. The branch set B(u) is defined
as the set of points x € Q) where u is not locally homeomorphic, that is,

B(u) :={x € Q: i(x,u) > 1}.

In particular for quasiregular maps B(u) is a closed set of topological di-
mension (n — 2) and Lebesgue measure zero [20]. For the basic theory of
quasiregular mappings, and their topological properties, we refer the reader
to [21].
PrOPOSITION 1. Let u : Q@ — R"™ be a K-quasiregular mapping such that
|Du(z)|| > € ae. © € Q, let G C Q be a subdomain with G C Q, and
assume that M := N(u,G) < oo.

There exists a constant § = (e, IC, M,n) > 0 and for each ¢ € G a radius
r(zg) > 0 so that for any Lipschitz mapping ¢ : Q@ — R™ with ||D¢(z)|| < 6
a.e. x €,

(1) | mir‘l |u(z) —u'(xo)| > 6r  for all v < r(xq), t €[0,1],
T—x|=r
where ut = u + to. In particular

i(xo,u) = i(zg,u+ @) for all zg € G,
and B(u) NG = B(u+ ¢)NG.

PRrROOF. From [19] for every =g € G there exists a radius r(xg) > 0 so that
Bi(z0)(T0) C €, and for r < 7(w0)

max |u(z) —u(wg)| <L min |u(x) — u(zo)l,

|x—x0|=" |x—xo|=r
where L = L(K, M,n). Moreover,
/ det Du(x)dx = N(y,u, By (x0))dy < M|f(B(x0))],
Br(l'()) Rn

and on the other hand |det Du(z)| > K~ '". Hence

1 1f(Be(a0)]
MK® = By(xo)]

In particular we deduce that for all r < r(z¢)

! min  |u(z) — u(xg)|.

LMK) /" S G n
For t € [0,1] define u’ = u + t¢. Then
ul(z) — u'(zg) = u(x) — u(x) + t((b(x) — (b(xo)),

so that

1
: t t
i o) > (e —9)

Choosing § = %L

W& we find

min  |u'(z) —u'(zo)| > 6r for all r < r(xg), t € [0,1],

|x—x0|=r
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and in particular u'(x) # u'(xq) for all z € B, (z¢). Hence
2)  p(u(zo),u’, B, (z0)) = p(ut(zo), ul, B,(x0)) for all 0 < r < r(z).
For x¢ € Q the local topological index of the mapping u at xg is defined to
be

i(wo, u) = p(u(zo), u, By(20)),
where r > 0 is chosen sufficiently small so that B,.(zg) Nu~ {u(zo)} = {xo}.
Therefore (2) implies that

i(zo,u) = i(zo,u + ¢).

Since the branch set is defined as B(u) = {z € Q : i(x,u) > 1}, we deduce
that B(u) NG = B(u+ ¢) NG. Q.E.D.

PROPOSITION 2. Let I' C R™ ™ be a compact set of n X n matrices and
Q C R™ an open domain. Let u € WH™(,R™), and suppose that there
exists IC > 1 and € > 0 such that for all A €T

e < ||[Du(z) — A||" < Kdet(Du(z) — A) a.e. x €.

Then there exists an open and connected subset Qo C Q with [\ Qo = 0
such that for all xo € Qo there exists a radius 7(xg) > 0 such that

u(z) —uly) # A(r —y)  for all v,y € Bjy,)(w0) and all A € T.

ProoF. For simplicity of notation let us treat I' C R™*™ as the image of a
continuous map I' : § — R™" where S is a compact metric space which
we think of as an index set. Consider for any ¢t € S the mapping

u'(z) == u(x) — T(t)x.
By assumption u! € W1H(Q,R") and
e < ||Dut(x)|™ < Kdet Du'(z) a.e. z€Q,
in particular {u'};cs is an equicontinuous family of quasiregular mappings.

Let G C Q be a subdomain with G C © and [0G| = 0. From [18] we
know that N(u',G) < oo for each t € S. We aim to show that in fact
supyes N(u',G) < oo. To this end note that since each u' is a discrete
mapping, for each x € G and each t € S there exists r = r(z,t) > 0 so that

B, () N (u")"Hu'(2)} = {z}.
More precisely from Proposition 1 we deduce that there exists r = r(x,t) > 0
and 6 = d(t) > 0 so that

B,(z) N (u®) " Hub(x)} = {x} for all |s —t| < 0,
and

dist (u®(x),u®(0B,(x))) > or for all |[s —t| < ¢
holds for all t € S§. Hence by compactness of S there exists r = r(x) > 0
and ¢ > 0 (now independent of ¢) so that

(3) B,(z) N ()" Hul(z)} = {z} for all t € S,
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and
(4) dist (u’(z),u’(0B,(x))) > or for all t € S.

Indeed, the sets V(t) :=={s € S: |t —s| < (t)} form an open cover for S,
so it suffices to take a finite subcover V' (t1),...,V (ty) and then define

r(z) = mlnNr(m,ti) and § = mlnN(S(ti)

=1,..., =1,...,

in (3) and (4). Let
s(z,t) := dist (u'(z),u" (0B, (x))),

and let U(x,t) be the connected component of

()™ (By(ap) (u'(2)))

containing x. Then U(x,t) C B,)(z) is a normal neighbourhood of z
for the mapping u'. Since the family {u'} is equicontinuous, from (4) we
deduce that there exists 7 = 7(z) > 0 so that Bi(x) C U(x,t). Since 7(x) is
independent of ¢, there exists a number J € N so that for each fixed t € S
the compact set G can be covered by at most J normal neighbourhoods

U(z1,t),...,U(x,t). Then

J J
N(u',G) §Z (u',U(zj,t) ):Zi(:vj,ut).

On the other hand Proposmon 1 implies that for each fixed x¢g € G the
function t +— i(z,u’) is continuous, hence bounded on S. Therefore we
deduce that N (u!, @) is bounded independently of .
Proposition 1 now implies that there exists 6 > 0 (not depending on t) so
that
Bu')NG = B(u®)NG for all 5,t € S with |s —t| < 4.

In particular the set
B=|JB@

teS
is a finite union of closed sets of topological dimension (n —2) and Lebesgue
measure zero [20], hence B is a closed set of dimension (n —2) and Lebesgue
measure zero. This implies that the set Gy := G\ B is open and connected
(see [8, Theorem IV.4]), and |G \ Gy| = 0.
In Gy each mapping u! is a local homeomorphism. More precisely, let
xo € Go. Since U(xp,t) is a normal neighbourhood of zy for the mapping

u?, we have

N(u',U(xg,t)) = i(xg,u’) =1 forallteS.

Since B (yy)(r0) C U(wo,t) for all t € S, we deduce that each mapping ul is
injective on Bj(y,)(z0). Therefore

ul(x) # u(y) for all t € S, 2,y € By(ay)(0),



ON THE GRADIENT SET OF LIPSCHITZ MAPS 7

in other words
u(z) —u(y) — A(x —y) # 0 for all 7,y € By(yy) (7o) and all A €T

The proposition now follows by exhausting 2 with a nested sequence of

subdomains G C Q with [0G| =0 and G C Q. Q.E.D.

3. PROOF OF THE MAIN RESULT

Proof of Theorem 1. Let K = [Du]. Recall, that by definition [Du] is the
smallest closed subset of R2*? such that Du(x) € [Du] for almost every
x € €.

We argue by contradiction, assuming that K¢ is not connected. Accord-
ing to [7, Theorem 5] there exists a continuous closed curve I' : St — R2*2
such that

K CUp:={AecR>?: det(A—T(t)) >0 for all t € S'},

where K is contained in more than one component of U, and the curve I'
satisfies I'(t) # I'(s) for t # s and for some K’ > 1

(5) IT(t) — (s)||* < K'det(I'(t) — T'(s)) for all t,s € S*.

Since K and I' are compact, there exist £ > K’ and € > 0 such that for all
te St

e < ||Du(z) —T(®)|?* < Kdet(Du(z) —T'(t)) ae. z€Q.

But then Proposition 2 implies that there exists a connected and open subset
Qo C Q with |2\Qp| = 0 and for each zg € Qg there exists a radius 7(zg) > 0
such that

u(z) —u(y) #L(t)(x —y) forall z,y € By, (z0) and t € St
Setting y = = + ce; for 0 < € < 7(z) we obtain

u(x 4+ eey) — u(x)
€
where A = {(z,¢) : © € Q9,0 < e < 7(z)}. Since I satisfies (5),

(e : ST — R?

#T(t)ey forallte S (z,6) € A,

is a continuous imbedding, hence by the Jordan separation theorem the
image {T'(t)e; : t € S'} separates R? into two disjoint regions w and R? \ @.
Since A is a connected set, we deduce that
u(x 4+ eey) — u(x)
€

cw for all (z,e) € A,
or

u(x 4+ eey) — u(x)

€R*\ @ for all (z,¢) € A.
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Since u is quasiregular, it is differentiable almost everywhere in €. Therefore,
recalling that |Q\ Q| = 0, we obtain

Op u(z) Ew for ae. x €,
© or
Oy u(z) ER?*\ @ for a.e. x € Q.

In light of [7, Lemma 2] this implies that K has to be contained in a single
component of Up, giving us the required contradiction.
Q.E.D.

Proof of Corollary 1. Suppose that A € [Du] is an isolated point, and as-
sume for a contradiction that for all B € [Du]"\{A} we have rank(A—B) >
1.

If det(A — B) > 0 for all B € [Du|\ {A}, then - since A is isolated and
hence [Du] \ {A} is compact - there exists a constant v > 1 so that

|Du(z) — A||? < ydet(Du(z) — A)  ae. z €.

This means that the map = — u(x) — Az is quasiregular. By the unique
continuation property of quasiregular mappings we deduce that Du(x) =
Ax a.e., a contradiction. Similarly, we obtain the same contradiction if
det(A — B) < 0 for all B € [Du]\ {A} (by just considering a linear change
of variables).

Therefore, we may assume that there exists at least two matrices

Ay, Az € [Du] \ {A}

such that det(A—A;) < 0 and det(A— Ag) > 0. If [Du]|"“\ {A} is connected,
we obtain by continuity the existence of B € [Du]"“\{A} with det(A—B) =
0.

Otherwise let K7, Ko be disjoint connected components of [Du]"\ {A}
containing A; and As, respectively. We claim first of all that

(7) Aefl ﬁfg.

Indeed, assume the contrary, so that, without loss of generality, A ¢ Kj.
Then there exists n > 0 with

(8) Bgn(A) NK;=0.
As [Du]" and hence K := [Du]"\ B, (A) is compact, and since K is clearly

the connected component of K containing A;, we see from (14, 842 II 2] or
[4, §4.4 11 6] that K, is equal to the intersection of the family 7 of all open
and closed subsets of K which contain A;. In particular, since F is closed

under finite intersections, we conclude that there is some V' € F with
V C Bn(Kl) and As ¢ V.

Here B, (Ki) denotes the open n-neighbourhood of Kj;. But then V N
By (A) = 0 because of (8), and hence V is closed and open in [Du]™. We
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conclude that [Du]" would be disconnected, in contradiction with Theorem
1. This proves the claim (7).

Now suppose without loss of generality that det(A; — As) > 0, and con-
sider the function f(X) = det(X — A;) restricted to K5. Since det(A—A4;) <
0 and A € K, there exists A’ € Ko such that f(A’) < 0, by continuity.
On the other hand f(As2) > 0, therefore there exists, again by continuity,
As € Ko with f(As) = 0. In particular [A;, A3] is a rank-one segment,
which therefore is contained in [Du]™. If A ¢ [Ay, A3] then we obtain a
contradiction with the assumption that A; € K; and A3 € Ky are con-
tained in different connected components of [Du]™ \ {A}. On the other
hand, if A € [A1, As], then in particular det(A — A;) = 0, contradicting the
assumption that det(A — A;) < 0. This finishes the proof. Q.E.D.

4. INCOMPATIBLE SETS OF GRADIENTS

Following [1] two disjoint compact sets of matrices K1, Ko C R™*™ are
said to be incompatible if whenever €2 is a bounded domain and {u;} is a
sequence of maps bounded in WH1(Q) such that

dist (Du;, K1 U K3) — 0 in L'(Q2) strongly,
then - up to a subsequence -
dist (Duj, K1) — 0 or dist (Duj, K3) — 0 strongly in L*().

In the language of Young measures this is equivalent to saying that whenever
{vz}zeq is a gradient Young measure supported in K7 U Ko, that is,

suppv, C K1 UKy ae. x € €,

then
either suppv, C K; a.e. or suppr, C Ky a.e.

In short, the sets K1 and Ky are incompatible for gradient Young measures.
From the point of view of material microstructure it is of interest to be
able to characterize such incompatible sets. Indeed, in this situation the
inclusion problem Du(z) € K7 U K9 would correspond to energy-minimizing
deformations of an elastic material, and roughly speaking incompatibility
prevents large scale oscillations (oscillations between K; and Ks), whilst
still allowing for local oscillations within each energy-well K or Ks.

Pairs of incompatible sets have several nice features. First of all, if Ky
and K are incompatible for gradient Young measures, then sufficiently small
e-neighbourhoods (K1), and (K3). are still incompatible. This was estab-
lished by Ball and James in the early 90s in their study of metastability
[1]. Moreover, one gets precise control of the gradient for approximating
sequences in the form of a rigidity estimate:

min(/ distp(Du,Kl),/distp(Du,K2)> gC(p,Q)/distp(Du,Klqu),
Q Q Q
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valid for all u € WHP(Q,R™) and all p € [1,00). This was proved in [6]
using the method of Ball and James [1].

The simplest example of incompatible sets, as already pointed out in the
introduction, is given by the singleton sets { A}, { B} whenever A, B € R"™*"
with rank(A— B) > 1. In [27] K. Zhang showed that in this case there exists
€ > 0, so that the sets

Ki={X €R™": |X — Al <e} and Ky = {X e R™": |X — B| < ¢}

are still incompatible (in fact Zhang’s result applies to the neighbourhood
of any finite collection of matrices contained in a subspace without rank-one
connections). More precisely, Zhang obtains explicit estimates for € > 0 in
terms of Schauder L™ — BM O estimates (see also [26] for a similar technique
applied to incompatible wells in 2D). In contrast, in the aforementioned sta-
bility result of Ball and James € > 0 is obtained in a contradiction argu-
ment. Other types of explicit examples of incompatible sets were obtained
by V. Sverék [22] in connection with the Monge-Ampére equation and by
J. P. Matos in [15] concerning the two-well problem in 3D.

Our Theorem 1, combined with results in [7] allows us to completely
characterize incompatible sets in R?*2 in terms of the underlying rank-one
geometry.

COROLLARY 2. Two disjoint compact sets K1, Ko C R?*? are incompatible
for gradient Young measures if and only if K1°N K3 =0 and K{°U K3° =
(Kl U Kg)rc.

In order to explain the meaning of this result, we briefly recall a few
more notions from the nonconvex calculus of variations. First of all, a gra-
dient Young measure {v, },cq is said to be homogeneous if v, is independent
of z € 2. Homogeneous gradient Young measures appear in the study of
compactness of sequences of gradients {Du;}. A further subclass of homo-
geneous gradient Young measures is formed by laminates. Roughly speaking
laminates are probability measures that can be constructed through rank-
one connections. More precisely, laminates are the smallest class of proba-
bility measures on the space of matrices that are

(i) closed under splitting,
(ii) closed under weak™ convergence,
(iii) and contain all measures of the form Ad4 + (1 — X\)dp whenever
rank(A — B) <1 and X € [0, 1].
Being closed under splitting means that if v is a laminate of the form

v=Aa+(1-Np

for some probability measure 7, and p is a laminate with barycenter @ = A,
then the measure

A+ (1=
is also a laminate. For basic properties of these classes of measures we refer
the reader to [16, 17].
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We recall in particular that the rank-one convex hull K¢ of a compact set
of matrices can be defined as the set of barycenters of laminates supported
in K:

K™ ={fi: pis a laminate with supppu C K}.
To each class of measures one can associate a notion of incompatibility for
pairs of compact sets. Thus for example K7, Ko are said to be incompatible
for laminates if whenever p is a laminate with support

supp p C K1 U Ko,

then

suppp C Ky or suppp C Ko.
Similarly, K1, Ky are said to be homogeneously incompatible if they are in-
compatible for homogeneous gradient Young measures. Equivalently, K1, Ko
are homogeneously incompatible if whenever {u;} is a sequence of maps
bounded in VVO1 () such that

dist (A + Duj, K1 U K3) — 0 in L*(Q2) strongly
for some matrix A, then - up to a subsequence -
dist (A + Duj, K1) — 0 or dist (A + Duj, K2) — 0 strongly in L*(1).

The meaning of Corollary 2 is that in the space of 2 x 2 matrices the three
notions of incompatibility are equivalent:

COROLLARY 3. Let K1, Ky C R?**? be disjoint compact sets. The following
are equivalent:

i) K1, Ko are incompatible for gradient Young measures

) K1, K. ' patibl gradient Young ,

(ii) K1, Ks are incompatible for homogeneous gradient Young measures,
(iii) Ky, Ky are incompatible for laminates.

The equivalence between (ii) and (iii) was already proved in [7, Corollary
1]. Here we establish the equivalence of (i) and (ii). Proving this equivalence
amounts to a passage from approximating sequences of the form {A + Du;}
with Du; € WOI’I(Q) to general sequences {Du;} C Wh1(Q). Indeed, a
crucial aspect of Theorem 1 is that there is no assumption made on the
boundary values of the map u : Q — R2.

Proof of Corollary 2. One direction is easy: if K1, Ko are incompatible for
gradient Young measures, then in particular they are incompatible for lam-
inates. Thus any laminate p with support suppu C K; U K5 has to be
supported in K or Ky. Therefore the definition of rank-one convex hull im-
plies that (K7 U Ks)™ = K]¢U K5¢. It remains to show that K{¢N K5¢ = (.
Assume for a contradiction that K¢ N K3¢ # (), so that there exist lami-
nates u1, uo with support supp p; C K; with common barycenter uy = s €
KN K35¢. But then the laminate defined as p := %Ml + %Mg has support
suppu C K1 U Ky, but doesn’t satisfy suppu C Ky or suppu C Ks. This
gives a contradiction, and therefore necessarily K7¢ N K3¢ = ().
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For the other direction suppose now that K{°NK3¢ = () and (K1 UK3)"™ =
Ki¢U K3¢. We claim that in this case K; and Ky are incompatible for
laminates. Indeed, suppose u is a laminate with support supp u C K7 U Ko.
Then

suppp C (K1 U K2)™ = KU K5°¢,
and on the other hand it is well known that (suppu)™ is a connected set
(see [12, Theorem 4.9]). Therefore necessarily

(supp )" C K{¢ or (suppp)™ C K5°.
To conclude that supppu C Kj or supppu C Ks just note that suppu C
(supp )™ and that K; N K7¢ = () for i # j.

Having just shown that K7 and K5 are incompatible for laminates, we can
now invoke [7, Corollary 1], which implies that K} and K5 are incompatible
for homogeneous gradient Young measures. In particular K{“NKJ° = () and
(K1 U K)% = K{°U KJ° (see [7, Corollary 3]).

Now suppose that {v,}.cq is a gradient Young measure such that

supp v, C K1 U K5 for a.e. x € €.

Since v, coincides with a homogeneous gradient Young measure for a.e. x
and K1, K5 are incompatible for homogeneous gradient Young measures, we
deduce that for almost every x € Q there exists i =i, € {1,2} such that
suppv, C K;,.
It remains to show that i, = 1 a.e. or i, = 2 a.e. To this end recall (see [10])
that because {v,}.cq is a gradient Young measure, there exists a Lipschitz
mapping u :  — R? such that Du(z) = 7, a.e. z € Q. In particular
[Du] C (Kl U Kg)qc.
By Theorem 1 we know that [Du]" is connected, and on the other hand
[Du]™ C [Du]? C (K3 U K3)%¢ = K{°U K.
Since K{“ N KJ =0, we deduce that
[Du] C K{ or [Du] C Ki*.

Finally, note that 7, € K/ if and only if suppr, C K; (for i = 1,2)
since K{°N KJ° = (. Hence we conclude that suppr, C K; a.e. z € Q or
supp v, C Ky ae. x € (.

QED.

Proof of Corollary 3. Since the implications (i)=-(ii)=-(iii) follow from the
definitions, it suffices to prove that (iii)=-(i). Suppose that Ki, Ky are in-
compatible for laminates. Then, precisely as in the proof of Corollary 2
above, we have that

(Kl U KQ)TC = K{C U Kgc and K{c N K = 0.

But then Corollary 2 implies that K, K5 are incompatible for gradient
Young measures. Q.E.D.
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Proof of Theorem 2. The statement of the theorem is a direct consequence

of Corollary 2 together with [6, Theorem 1.2]. Q.E.D.
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