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Abstract

The global attraction is established for all finite energy solutions to a model U(1)-invariant nonlinear Klein-Gordon
equation in one dimension coupled to a finite number of nonlinear oscillators: We prove that each finite energy solution
converges as t → ±¥ to the set of all “nonlinear eigenfunctions” of the form f(x)e−iw t if all oscillators are strictly
nonlinear, and the distances between all neighboring oscillators are sufficiently small. The global attraction is caused by
the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation. This
result for one oscillator was obtained in [KK07].

We construct counterexamples showing that the convergence to the solitary waves may break down if the distance
between some of the neighboring oscillators is sufficiently large or if some of the oscillators are harmonic. In these cases,
the global attractor can contain “multifrequency solitary waves” or linear combinations of distinct solitary waves.

1 Introduction

This is the second paper where we establish the global attraction to solitary waves in U(1)-invariant dispersive systems. In
[KK07], we proved such an attraction for the Klein-Gordon field coupled to one anharmonic oscillator. Here we generalize
this result to several anharmonic oscillators.

The long time asymptotics for nonlinear wave equations have been the subject of intensive research, starting with the
pioneering papers by Segal [Seg63a, Seg63b], Strauss [Str68], and Morawetz and Strauss [MS72], where the nonlinear
scattering and the local attraction to zero solution were proved. Local attraction to solitary waves, or asymptotic stability,
in U(1)-invariant dispersive systems was addressed in [SW90, BP93, SW92, BP95] and then developed in [PW97, SW99,
Cuc01a, Cuc01b, BS03, Cuc03]. Global attraction to static, stationary solutions in the dispersive systems without U(1)
symmetry was established in [Kom91, Kom95, KV96, KSK97, Kom99, KS00]. The first result about the global attraction
to solitary waves in U(1)-invariant dispersive systems was obtained in [KK06, KK07].

In this paper, we establish the global attraction for the complex Klein-Gordon field y (x, t), interacting with N nonlinear
oscillators located at the points X1 < X2 < .. . < XN :

ÿ = y ′′ −m2y +
J
d(x−XJ)FJ(y (XJ, t)), x ∈ R, (1.1)

where m > 0 and FJ are nonlinear functions describing anharmonic oscillators at the points X J . The dots stand for the
derivatives in t, and the primes for the derivatives in x. All derivatives and the equation are understood in the sense of
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distributions. We assume that equation (1.1) is U(1)-invariant; that is,

FJ(eiqy ) = eiqFJ(y ), q ∈ R, y ∈ C, 1 ≤ J ≤ N. (1.2)

This symmetry leads to the charge conservation and to the existence of the solitary wave solutions, which are finite energy
solutions of the following form:

yw (x,t) = fw (x)e−iw t , w ∈ C, fw ∈ H1(R). (1.3)

Above, H1(R) denotes the Sobolev space.

Definition 1.1. S is the set of all functions fw (x) ∈ H1(R) with w ∈ C, so that fw (x)e−iw t is a solution to (1.1).

Note that S also contains the zero solution.
Generically, the quotient S/U(1) is isomorphic to a finite union of one-dimensional intervals. The set of all solitary

waves for equation (1.1) is described in Proposition 2.8. Typically, such solutions exist for w from an interval or a
collection of intervals of the real line.

Our main result is the following long-time asymptotics: In the case when all oscillators are polynomial and strictly
anharmonic (see Assumptions 2.1 and 2.2 below) and all distances |XJ+1 −XJ| are sufficiently small, we prove that any
finite energy solution converges to the set S of all solitary waves:

y (·, t) −→ S, t →±¥ , (1.4)

where the convergence holds in local energy seminorms. For a similar result in the case N = 1 and for the motivation and
relation to problems of Quantum Mechanics, see [KK06, KK07]. In the case N > 1, the general plan of the proof is similar
to N = 1: Separation of dispersive components, absolute continuity of spectrum outside a bounded interval, compactness
of time shifts of the bound component, and a nonlinear spectral analysis of omega-limit trajectories by the Titchmarsh
Convolution Theorem. However, the justifications of all steps are based on new arguments.

The requirement that the nonlinearities FJ are polynomial allows us to apply the Titchmarsh theorem which is vital in
the proof. We construct counterexamples showing the sharpness of our assumptions for the global attraction to the solitary
waves. Namely, in the case N = 2, we construct multifrequency solitary waves if the distance |X 2−X1| is sufficiently large
or one of the oscillators is linear. For N = 1, a counterexample given by a superposition of two different solitary waves is
constructed in [KK07].

Our paper is organized as follows. In Section 2, we formulate our main results. In Section 3, we separate first
dispersive component. In Sections 4 and 5, we construct spectral representation for the remaining component, and
prove absolute continuity of its spectrum for high frequencies. In Sections 6, we separate first dispersive component
corresponding to the high frequencies and establish compactness for the remaining bound component with the bounded
spectrum. In Section 7, we study omega-limit trajectories of the solution: (i) first, we prove that any omega-limit trajectory
also is a solution to the nonlinear Klein-Gordon equation, (ii) second, we reduce the spectrum of the trajectory to a
bounded set, (iii) finally, we reduce the spectrum to a single point using the Titchmarsh Convolution Theorem. This
means that any omega-limit trajectory is a solitary wave, and proves the global attraction to the set of all solitary waves.
In Section 8 we collect counterexamples, and in Appendix A we establish global well-posedness.

2 Main results

Model

We consider the Cauchy problem for the Klein-Gordon equation with the nonlinearity concentrated at the points X 1 <
X2 < .. . < XN : {

ÿ (x,t) = y ′′(x,t)−m2y (x, t)+ J d(x−XJ)FJ(y (XJ , t)), x ∈ R, t ∈ R,

y |t=0 = y0(x), ẏ |t=0 = p0(x).
(2.1)

If we identify a complex number y = u+ iv ∈ C with the two-dimensional vector (u,v) ∈ R 2, then, physically, equation
(2.1) describes small crosswise oscillations of the infinite string in three-dimensional space (x,u,v) stretched along the
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x-axis. The string is subject to the action of an “elastic force” −m2y (x, t) and coupled to anharmonic oscillators of forces
FJ(y ) attached at the points XJ . We denote by X the set of all the locations of oscillators:

X = {X1, X2, . . . , XN}. (2.2)

We will assume that the oscillator forces FJ admit real-valued potentials:

FJ(y ) = − UJ(y ), y ∈ C, U ∈C2(C), (2.3)

where the gradient is taken with respect to Rey and Imy . We define Y (t) =
[

y (x,t)
p(x,t)

]
and write the Cauchy problem

(2.1) in the vector form:

Ẏ (t) =

[
0 1

¶2
x −m2 0

]
Y (t)+

J
d(x−XJ)

[
0

FJ(y )

]
, Y |t=0 = Y 0 ≡

[
y0

p0

]
. (2.4)

Equation (2.4) formally can be written as a Hamiltonian system,

Ẏ (t) = J DH (Y ), J =

[
0 1

−1 0

]
, (2.5)

where DH is the variational derivative of the Hamilton functional

H (Y ) =
1
2

∫
R

(|p|2 + |y ′|2 +m2|y |2)dx+
J

UJ(y (XJ)), Y =

[
y (x)

p(x)

]
. (2.6)

We assume that the potentials UJ(y ) are U(1)-invariant, where U(1) stands for the unitary group e iq, q ∈ Rmod2p.
Namely, we assume that there exist uJ ∈C2(R) such that

UJ(y ) = uJ(|y |2), y ∈ C, 1 ≤ J ≤ N. (2.7)

Remark 2.1. In the context of the model of the infinite string in R 3 that we described after (2.1), the assumption (2.7)
means that the potentials UJ(y ) are rotation-invariant with respect to the x-axis.

Conditions (2.3) and (2.7) imply that

FJ(y ) = aJ(|y |2)y , y ∈ C, (2.8)

where aJ(·) = −2u′J(·) ∈C1(R) are real-valued. Therefore, (1.2) holds. Since (2.4) is U(1)-invariant, the Nöther theorem
formally implies that the charge functional

Q(Y ) =
i
2

∫
R

(yp−py ) dx, Y =

[
y (x)

p(x)

]
, (2.9)

is conserved for solutions Y (t) to (2.4).
Let us introduce the phase space E of finite energy states for equation (2.1). Denote by L 2 the complex Hilbert space

L2(R) with the norm ‖ · ‖L2 , and denote by ‖ · ‖L2
R

the norm in L2(−R,R) for R > 0.

Definition 2.2. (i) E is the Hilbert space of the states Y = (y ,p), with the norm

‖Y ‖2
E := ‖p‖2

L2 +‖y ′‖2
L2 +m2‖y ‖2

L2 . (2.10)

(ii) EF is the space E endowed with the Fréchet topology defined by local energy seminorms

‖Y ‖2
E ,R := ‖p‖2

L2(−R,R) +‖y ′‖2
L2(−R,R) +m2‖y ‖2

L2(−R,R), R > 0. (2.11)

Remark 2.3. The space EF is metrizable. The metric could be introduced by

dist(Y ,F ) =
¥

R=1

2−R‖Y −F ‖E ,R.

Equation (2.4) is formally a Hamiltonian system with the phase space E and the Hamilton functional H . Both H
and Q are continuous functionals on E . Let us note that E = H 1 ⊕L2, where H1 denotes the Sobolev space

H1 = H1(R) = {y (x) ∈ L2(R) : y ′(x) ∈ L2(R)}.
We introduced into (2.10) the factor m2 > 0, to have a convenient relation H (y , ẏ ) = 1

2‖(y , ẏ )‖2
E + J UJ(y (XJ)).
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Global well-posedness

To have a priori estimates available for the proof of the global well-posedness, we assume that

UJ(y ) ≥ AJ −BJ|y |2 for y ∈ C, where AJ ∈ R, BJ ≥ 0, 1 ≤ J ≤ N;
J

BJ < m. (2.12)

Theorem 2.4. Let FJ(y ) satisfy conditions (2.3) and (2.7):

FJ(y ) = − UJ(y ), UJ(y ) = uJ(|y |2), uJ(·) ∈C2(R).

Additionally, assume that (2.12) holds. Then:

(i) For every Y 0 ∈ E the Cauchy problem (2.4) has a unique solution Y (t) such that Y ∈C(R,E ).

(ii) The map W (t) : Y 0 
→ Y (t) is continuous in E for each t ∈ R.

(iii) The energy and charge are conserved: H (Y (t)) = const, Q(Y (t)) = const, t ∈ R.

(iv) The following a priori bound holds: ‖Y (t)‖E ≤C(Y 0), t ∈ R.

We prove this Theorem in Appendix A.

Solitary waves and the main theorem

Definition 2.5. (i) The solitary waves of equation (2.1) are solutions of the form

y (x,t) = fw (x)e−iw t , where w ∈ C, fw ∈ H1(R). (2.13)

(ii) The solitary manifold is the set S =
{
(fw ,−iwfw ): w ∈ C, fw ∈ H1(R)

}⊂ E .

Remark 2.6. (i) Identity (1.2) implies that the set S is invariant under multiplication by e iq , q ∈ R.

(ii) Let us note that for any w ∈ C there is a zero solitary wave with fw (x) ≡ 0 since FJ(0) = 0 by (2.8).

(iii) According to (2.8), aJ(|C|2) = FJ(C)/C ∈ R for any C ∈ C\0.

Definition 2.7. The function FJ(y ) is strictly nonlinear if the equation aJ(C2) = a has a discrete (or empty) set of positive
roots C for each particular a ∈ R.

The following proposition provides a concise description of all solitary waves. Formally this proposition is not neces-
sary for our exposition.

Proposition 2.8. Assume that FJ(y ) satisfy (1.2) and that FJ(y ), 1 ≤ J ≤ N, are strictly nonlinear in the sense of
Definition 2.7. Then all solitary wave solutions to (2.1) are given by (2.13) with

fw (x) =
J

CJe−k(w )|x−XJ |, k(w ) =
√

m2 −w 2, (2.14)

where w ∈ [−m,m] and CJ ∈ C, 1 ≤ J ≤ N, satisfy the following relations:

2k(w )CJ = FJ

(
K

CKe−k(w )|XJ−XK |
)
. (2.15)

Remark 2.9. By (2.14), w = ±m can only correspond to zero solution.

The proof of this Proposition repeats the proof of a similar result for the case N = 1 in [KK07].
As we mentioned before, we need to assume that the nonlinearities are nonlinear polynomials. This condition is

crucial in our argument: It will allow to apply the Titchmarsh convolution theorem. Now all our conditions on F J can be
summarized as following two assumptions
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Assumption 2.1. For all 1 ≤ J ≤ N,

FJ(y ) = − UJ(y ), where UJ(y ) =
pJ

n=0
uJ,n|y |2n , uJ,n ∈ R. (2.16)

Assumption 2.2. For all 1 ≤ J ≤ N, we have

uJ,pJ > 0 and pJ ≥ 2. (2.17)

These Assumptions guarantee that all nonlinearities FJ are strictly nonlinear and satisfy (2.3), (2.7), and also that the
bound (2.12) takes place. We introduce the following quantities:

m1 = m, mJ+1 = (2pJ −1)mJ; m ′
N = m, m ′

J−1 = (2pJ −1)m ′
J, (2.18)

where pJ are exponentials from (2.16) We also denote

MJ = min(mJ,m
′
J), L = max

1≤J≤N
(2pJ −1)MJ. (2.19)

We will show later that the spectrum of any omega-limit trajectory belongs to the intervals [−L ,L ]. We also denote

wJ,n :=

√
p2n2

|XJ+1 −XJ|2 +m2, 1 ≤ J ≤ N −1, n ∈ N, (2.20)

and introduce the set of frequencies

W = {±wJ,n: 1 ≤ J ≤ N −1, n ∈ N}. (2.21)

The frequencies ±w J,n correspond to the trapped modes, vanishing at the endpoints of the interval [X J,XJ+1]. We will
prove that if all the frequencies ±w J,n are outside of [−L ,L ], then the global attractor consists of the solitary waves only.
This will be the case if the intervals [XJ,XJ+1] are sufficiently small.

Assumption 2.3. We assume that the intervals [XJ,XJ+1], 1 ≤ J ≤ N −1, are small enough so that

wJ,1 =

√
p2

|XJ+1 −XJ|2 +m2 > L , 1 ≤ J ≤ N −1. (2.22)

Under this assumption, we have
[−L ,L ]∩W = /0. (2.23)

Remark 2.10. The condition (2.22) guarantees that there are no trapped modes of frequencies smaller than L that vanish
at the adjacent points XJ , XJ+1.

Our main result is the following theorem.

Theorem 2.11 (Main Theorem). Let Assumptions 2.1, 2.2 and 2.3 hold. Then for any Y 0 ∈ E the solution Y (t) to the
Cauchy problem (2.4) converges to S:

lim
t→±¥ dist(Y (t),S) = 0, (2.24)

where dist(Y ,S) := inf
F∈S

dist(Y ,F ).

Remark 2.12. (i) It suffices to prove Theorem 2.11 for t → +¥ .

(ii) In Sections 8.1 and 8.2, we construct counterexamples to the convergence (2.24) in the case when (2.22) or (2.17)
are not satisfied.
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3 Separation of dispersive component

Let us split the solution y (x,t) into two components, y (x, t) = c(x, t)+j(x, t), which are defined for all t ∈R as solutions
to the following Cauchy problems:

c̈(x,t) = c′′(x,t)−m2c(x, t), (c, ċ)|t=0 = (y0(x),p0(x)), (3.1)

j̈(x,t) = j ′′(x,t)−m2j(x, t)+
J
d(x−XJ) fJ(t), (j , j̇)|t=0 = (0,0), (3.2)

where (y0(x),p0(x)) is the initial data from (2.1), and

fJ(t) := FJ(y (XJ, t)), t ∈ R. (3.3)

The following lemma is proved in [KK07, Lemma 3.1].

Lemma 3.1. There is a local energy decay for c:

lim
t→¥

‖(c(·, t), ċ(·, t))‖E ,R = 0, ∀R > 0. (3.4)

Let k(w ) be the analytic function with the domain D := C\((−¥ ,−m]∪ [m,+¥)) such that

k(w ) =
√
w 2 −m2, Imk(w ) > 0, w ∈ D. (3.5)

Let us also denote its limit values for w ∈ R by

k±(w ) := k(w ± i0), w ∈ R. (3.6)

︸ ︷︷ ︸
k(w±i0)=i

√
m2−w 2

k(w−i0)=−
√
w 2−m2

k(w+i0)=+
√
w 2−m2

k(w−i0)=+
√
w 2−m2

k(w+i0)=−
√
w 2−m2 m0−m

Figure 1: Domain D and the values of k±(w ) := k(w ± i0), w ∈ R.

As illustrated on Figure 1 (where all square roots take positive values), we have

k−(w ) = k+(w ) for −m ≤ w ≤ m, k−(w ) = −k+(w ) for w ∈ R\[−m,m], (3.7)

and also
w k+(w ) ≥ 0 for w ∈ R\[−m,m]. (3.8)

Let us study the Fourier transform ĉ(x,w ) := Ft→w [c(x, t)] in the sense of tempered distributions. For test functions

j(t), from the Schwarz space, we set Ft→w [j(t)] =
∫

R

eiw tj(t)dt.

Lemma 3.2. • ĉ(x,w ) is a continuous function of x ∈ R with values in L1
loc(R), and

ĉ(x,w ) = 0, |w | < m. (3.9)

• The following bound holds:

sup
x∈R

∫
|w |>m

|ĉ(x,w )|2w k+(w )dw < ¥ . (3.10)
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Proof. Set w (k) = sgnk
√

m2 + k2 for k ∈ R. Note that the function k+(w ) for |w | > m is inverse to the function w (k),
k �= 0. We have:

c(x,t) =
1

2p

∫
R

e−ikx
[
ŷ0(k)cos(w (k)t)+ p̂0(k)

sin(w (k)t)
w (k)

]
dk. (3.11)

Hence, for the Fourier transform of c(x,t), we formally obtain:

ĉ(x,w ) =
∫

R

e−ikx
[
ŷ0(k)

d(w −w (k))+d(w +w (k))
2

+ p̂0(k)
d(w −w (k))−d(w +w (k))

2iw (k)

]
dk

=
∫
|w ′|>m

e−ik+(w )x
[
ŷ0(k+(w ′))

d(w −w ′)+d(w +w ′)
2

+ p̂0(k+(w ′))
d(w −w ′)−d(w +w ′)

2iw ′
] w ′ dw ′

k+(w ′)
.

Above, we used the substitution k = k+(w ′). Now (3.9) is obvious. Evaluating the last integral, we get:

ĉ(x,w )=
w

2k+(w )

{
e−ik+(w )xŷ0(k+(w ))+ eik+(w )xŷ0(−k+(w ))+ e−ik+(w )x p̂0(k+(w ))

iw
− eik+(w )x p̂0(−k+(w ))

iw

}
, |w |> m.

We took into account that k+(−w ) = −k+(w ) for w ∈ R\[−m,m] (see (3.7)). Thus, we have:∫
|w |>m

|ĉ(x,w )|2w k+(w )dw ≤
∫

|w |>m

[w 2|ŷ0(k+(w ))|2
k2(w )

+
|p̂0(k+(w ))|2

k2(w )

]
w k+(w )dw =

∫
R

[
|ŷ0(k)|2 +

|p̂0(k)|2
w 2(k)

]
w 2(k)dk.

The finiteness of the right-hand side follows from the finiteness of the energy of the initial data (y 0,p0):

‖(y0,p0)‖2
E =

1
2p

∫
R

[
w 2(k)|ŷ0(k)|2 + |p̂0(k)|2

]
dk < ¥ .

4 Spectral representation

The function j(x,t) = y (x,t)−c(x,t) satisfies the following Cauchy problem:

j̈(x,t) = j ′′(x,t)−m2j(x, t)+
J

d(x−XJ) fJ(t), (j , j̇)|t=0 = (0,0), (4.1)

with fJ(t) defined in (3.3). Note that y (XJ, ·) ∈Cb(R) for 1 ≤ J ≤ N by the Sobolev embedding, since (y (x, t), ẏ (x,t)) ∈
Cb(R,E ) by Theorem 2.4 (iv). Hence, f J(t) ∈ Cb(R). On the other hand, since c(x, t) is a finite energy solution to the
free Klein-Gordon equation, we also have

(c(x, t), ċ(x, t)) ∈Cb(R,E ). (4.2)

Therefore, the function j(x,t) = y (x,t)−c(x,t) satisfies

(j(x, t), j̇(x, t)) ∈Cb(R,E ). (4.3)

The Fourier transform
ĵ(x,w ) = Ft→w [j(x, t)], (x,w ) ∈ R

2, (4.4)

is continuous function of x ∈ R with values in tempered distribution of w ∈ R. It satisfies the following equation (Cf.
(4.1)):

−w 2ĵ(x,w ) = ĵ ′′(x,w )+
J
d(x−XJ) f̂J(w ), (x,w ) ∈ R

2. (4.5)

We are going to construct a representation for the solution ĵ(x,w ) in a form suitable for our purposes.
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Lemma 4.1. ĵ is a smooth function of x ∈ R\X (where X = {X1, X2, . . . , XN}), with values in tempered distributions
of w ∈ R, and there exist quasimeasures F̂ ±

J , 1 ≤ J ≤ N, and Q̂ J, 1 ≤ J ≤ N −1, so that

ĵ(x,w ) =

⎧⎪⎪⎨⎪⎪⎩
F̂ +

1 (w )e−ik+(w )(x−X1) + F̂ −
1 (w )e−ik−(w )(x−X1), x ≤ X1,

F̂ J(w )cos(k+(w )(x−XJ))+ Q̂ J(w ) sin(k+(w )(x−XJ))
k+(w ) , x ∈ [XJ,XJ+1], 1 ≤ J ≤ N −1,

F̂ +
N (w )eik+(w )(x−XN) + F̂ −

N (w )eik−(w )(x−XN), x ≥ XN ,

(4.6)

where F̂ J(w ) := F̂ +
J (w )+ F̂ −

J (w ).

Remark 4.2. A tempered distribution m(w ) ∈ S ′(R) is called a quasimeasure if m̌(t) = F−1
w→t [m(w )] ∈Cb(R). For more

details, see [KK07, Appendix B].

Remark 4.3. The representation (4.6) implies that

F̂ J(w ) = ĵ(XJ,w ), 1 ≤ J ≤ N, (4.7)

F̂ +
1 (w )+ F̂ −

1 (w ) = F̂ 1(w ) = ĵ(X1,w ), F̂ +
N (w )+ F̂ −

N (w ) = ĵ(XN ,w ), (4.8)

and also that
ĵ ′(XJ + 0,w ) = Q̂ J(w ), 1 ≤ J ≤ N −1. (4.9)

Proof. Step 1: Complex Fourier-Laplace transform. We denote

f±J (t) := q(±t) fJ(t) = q(t)FJ(y (XJ, t)) (4.10)

and split j(x, t) into
j(x,t) = j+(x,t)+j−(x, t), where j±(x, t) := q(±t)j(x, t). (4.11)

Then j±(x, t) satisfy
j̈±(x,t) = ¶2

x j
±(x,t)−m2j±(x, t)+

J
d(x−XJ) f±J (t), t ∈ R, (4.12)

since (j±, j̇±)|t=0 = (0,0). Let us analyze the complex Fourier-Laplace transforms of j ±(x, t):

j̃±(x,w ) = Ft→w [q(±t)j(x, t)] :=
∫ ¥

0
q(±t)eiw tj(x, t)dt, w ∈ C

±, (4.13)

where C± := {z ∈ C : ±Imz > 0}. Due to (4.3), j̃±(·,w ) are H1-valued analytic functions of w ∈ C±. In what follows,
we will consider j+; the function j− considered in the same way.

Equation (4.12) implies that j+ satisfies

−w 2j̃+(x,w ) = ¶2
x j̃

+(x,w )−m2j̃+(x,w )+
J

d(x−XJ) f̃ +
J (w ), w ∈ C

+. (4.14)

The fundamental solutions G±(x,w ) =
e±ik(w )|x|

±2ik(w )
satisfy

G′′
±(x,w )+ (w 2 −m2)G±(x,w ) = d(x), w ∈ C

+.

The solution j̃(x,w ) could be written as a linear combination of these fundamental solutions. We use the standard
“limiting absorption principle” for the selection of the fundamental solution: Since j̃+(·,w ) ∈ H1 for w ∈ C+, only G+
is appropriate, because for w ∈ C+ the function G+(·,w ) is in H1 by definition (3.5), while G− is not. This suggests the
following representation:

j̃+(x,w ) = −
J

f̃ +
J (w )G+(x−XJ,w ) = −

J
f̃ +
J (w )

eik(w )|x−XJ |

2ik(w )
, w ∈ C

+. (4.15)

The proof is straightforward since (4.15) belongs to H 1(R) for w ∈ C+ while the solution to (4.14) which is an H 1-valued
analytic function in w is unique. For x ≤ X1, the relation (4.15) yields

j̃+(x,w ) = −
J

f̃ +
J (w )

e−ik(w )(x−XJ)

2ik(w )
= e−ik(w )(x−X1)j̃+(X1,w ), x ≤ X1, w ∈ C

+. (4.16)
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For x ∈ [XJ,XJ+1], the relation (4.15) implies that

j̃+(w ) = F̃ +
J (w )cos(k(w )(x−XJ))+ Q̃ +

J (w )
sin(k(w )(x−XJ))

k(w )
, x ∈ [XJ,XJ+1], w ∈ C

+, (4.17)

where F̃ +
J and Q̃ +

J , 1 ≤ J ≤ N −1, are analytic functions of w ∈ C+. We note that, by (4.15),

F̃ +
J (w ) = j̃+(XJ,w ), Q̃ +

J (w ) = ¶xj̃
+(XJ + 0,w ) = −

J′
sgn(XJ −XJ′) f̃ +

J′ (w )
eik(w )|XJ−XJ′ |

2
. (4.18)

Step 2: Traces on real line. The Fourier transform ĵ+(x,w ) := Ft→w [q(t)j(x, t)] is a tempered H1-valued distribution
of w ∈ R by (4.3). It is the boundary value of the analytic function j̃+(x,w ), in the following sense:

ĵ+(x,w ) = lim
e→0+

j̃+(x,w + ie), w ∈ R, (4.19)

where the convergence is in the space of tempered distributions S ′(R,H1(R)). Indeed,

j̃+(x,w + ie) = Ft→w [q(t)j(x, t)e−et ], q(t)j(x, t)e−et −→
e→0+

q(t)j(x, t)

where the convergence holds in S ′(R,H1(R)). Therefore, (4.19) holds by the continuity of the Fourier transform F t→w

in S ′(R).
Similarly to (4.19), the distributions F̂ +

J (w ), Q̂ +
J (w ) ∈ S ′(R), w ∈ R, are the boundary values of the functions

F̃ +
J (w ) and Q̃ +

J (w ) analytic in w ∈ C
+:

F̂ +
J (w ) = lim

e→0+
F̃ +

J (w + ie), w ∈ R, 0 ≤ J ≤ N, (4.20)

Q̂ +
J (w ) = lim

e→0+
Q̃ +

J (w + ie), w ∈ R, 1 ≤ J ≤ N −1. (4.21)

The above convergence holds in the space of quasimeasures by (4.18), since j̃+(XJ,w ) and f̃ +
J (w ) are quasimeasures

(see Remark 4.2) while the exponential factors are multiplicators in the space of quasimeasures [KK07, Appendix B].
Therefore, the formulas (4.17) with 1 ≤ J ≤ N −1 imply, in the limit Imw → 0+, that

ĵ+(x,w ) = F̂ +
J (w )cos(k(w + i0)(x−XJ))+ Q̂ +

J (w )
sin(k(w + i0)(x−XJ))

k(w + i0)
, x ∈ [XJ,XJ+1], w ∈ R, (4.22)

since cos(k(w + i0)(x− XJ)) and sin(k(w+i0)(x−XJ))
k(w+i0) are smooth functions of w ∈ R. Similar representation holds for

ĵ−(x,w ). Therefore, the representation (4.6) follows for X1 ≤ x ≤ XN .
The formula (4.6) for x ≤ X1 follows from taking the limit Imw → 0+ in the expression (4.16) for j̃+(x,w ) and the

limit Imw → 0− in a similar expression for j̃−(x,w ):

j̃−(x,w ) = −
J

f̃−J (w )
e−ik(w )(x−XJ)

2ik(w )
= e−ik(w )(x−X1)j̃−(X1,w ), x ≤ X1, w ∈ C

−, (4.23)

and then taking the sum of the resulting expressions. This justifies (4.6) for x ≤ X 1. Similarly we justify (4.6) for
x ≥ XN .

5 Absolute continuity of the spectrum

Lemma 5.1. The distributions F̂ ±
1 (w ), F̂ ±

N (w ) are absolutely continuous for |w | > m, and moreover∫
|w |>m

[|F̂ ±
1 (w )|2 + |F̂ ±

N (w )|2]w k+(w )dw < ¥ , (5.1)

where w k+(w ) ≥ 0 by (3.8).
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The bound for each of F̂ ±
1 (w ), F̂ ±

N (w ) is obtained verbatim by applying the proof of [KK07, Proposition 3.3].

Proposition 5.2. The distributions F̂ J(w ), 1 ≤ J ≤ N, and Q̂ J(w ), 1 ≤ J ≤ N−1, are absolutely continuous for |w |> mJ

and |w | > (2pJ −1)mJ, respectively, with mJ defined in (2.18). Moreover, for any e> 0,∫
|w |>mJ+e

|F̂ J(w )|2w 2 dw < ¥ , 1 ≤ J ≤ N;
∫
|w |>(2pJ−1)mJ+e

|Q̂ J(w )|2 dw < ¥ , 1 ≤ J ≤ N −1. (5.2)

Proof. We will use induction, proving the absolute continuity of ĵ(XJ,w ) and ¶xĵ(XJ ± 0,w ) starting with J = 1 and
going to J = N. By Lemma 4.1, ĵ(X1,w ) = F̂ 1(w ) = F̂ +

1 (w ) + F̂ −
1 (w ) and ¶xĵ(X1 − 0,w ) = −ik+(w )F̂ +

1 (w )−
ik−(w )F̂ −

1 (w ). Hence, Lemma 5.1 implies that, for any e> 0,∫
|w |>m+e

|ĵ(X1,w )|2w 2 dw < ¥ ,

∫
|w |>m+e

|ĵ ′(X1 −0,w )|2 dw < ¥ . (5.3)

Now assume that for some 1 ≤ J < N and for any e> 0 we have:∫
|w |>mJ+e

|ĵ(XJ,w )|2w 2 dw < ¥ ,

∫
|w |>mJ+e

|ĵ ′(XJ −0,w )|2 dw < ¥ . (5.4)

Lemma 4.1 and equation (4.5) yield the jump condition

Q̂ J(w ) = ĵ ′(XJ + 0,w ) = ĵ ′(XJ −0,w )− f̂J(w ), w ∈ R, (5.5)

where fJ(t) = FJ(y (XJ,t)) by (3.3).

Lemma 5.3. For any e> 0 the following inequality holds:∫
|w |>(2pJ−1)(mJ+2e)

| f̂J(w )|2 dw < ¥ . (5.6)

Proof. Let zJ(w ) ∈C¥
0 (R) be such that zJ(w ) ≡ 1 for |w | ≤ mJ +e and zJ(w )≡ 0 for |w | ≥ mJ +2e. We denote y (XJ,t)

by ψJ(t), and split it into
ψJ(t) =ψJ,b(t)+ψJ,d(t), (5.7)

where the functions in the right-hand side are defined by their Fourier transforms:

ψ̂J,b(w ) = zJ(w )ψ̂J(w ) = zJ(w )ŷ (XJ,w ), ψ̂J,d(w ) = (1−zJ(w ))ψ̂J(w ) = (1−zJ(w ))ŷ (XJ,w ). (5.8)

By Lemma 3.2 and by (5.4), we have∫
R

|(1−zJ(w ))ĉ(XJ ,w )|2w 2 dw < ¥ ,

∫
R

|(1−zJ(w ))ĵ(XJ,w )|2w 2 dw < ¥ . (5.9)

Since ψ̂J,d(w ) = (1−zJ(w ))(ĉ(XJ,w )+ ĵ(XJ,w )), we also have∫
R

∣∣(1−zJ(w ))ψ̂J(w )
∣∣2w 2 dw < ¥ ,

proving that
ψJ,d(t) ∈ H1(R). (5.10)

For f̂J(w ) = Ft→w [FJ(ψJ(t))] = Ft→w [FJ(y (XJ, t))], taking into account (2.16) and (5.7), we have:

f̂J(w ) = −
pJ

n=1

2nuJ,n (ψ̂J ∗ ψ̂J)∗ . . .∗ (ψ̂J ∗ ψ̂J)︸ ︷︷ ︸
n−1

∗ψ̂J

= . . . . . −
pJ

n=1

2nuJ,n (ψ̂J,b ∗ ψ̂J,b)∗ . . .∗ (ψ̂J,b ∗ ψ̂J,b)︸ ︷︷ ︸
n−1

∗ψ̂J,b, (5.11)

where the dots in the right-hand side denote the convolutions of ψ̂J,b, ψ̂J,b, ψ̂J,d , and ψ̂J,d that contain at least one of ψ̂J,d ,

ψ̂J,d . Since ψJ,b(t), ψJ,d(t) are bounded while ψJ,d(t) ∈ H1(R) by (5.10), all these terms belong to L2(R). Finally, since
suppψ̂J,b ⊂ [−mJ −2e,mJ +2e], the convolutions under the summation sign in the right-hand side of (5.11) are supported
inside [−(2pJ −1)(mJ + 2e),(2pJ −1)(mJ + 2e)] and do not contribute into the integral (5.6).
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Using (5.4) and Lemma 5.3 to estimate the norms of ¶xĵ(XJ − 0,w ) and f̂J(w ) in the right-hand side in the relation
(5.5), we conclude that ∫

|w |>(2pJ−1)(mJ+2e)

∣∣ĵ ′(XJ + 0,w )
∣∣2 dw < ¥ . (5.12)

Now the inequalities ∫
|w |>(2pJ−1)(mJ+2e)

|ĵ(XJ+1,w )|2w 2 dw < ¥ ,
∫

|w |>(2pJ−1)(mJ+2e)

|ĵ ′(XJ+1 −0,w )|2 dw < ¥ (5.13)

follow from the representation (4.6) for x ∈ [XJ,XJ+1], where we apply the first inequality from (5.4) and the inequality
(5.12). Therefore, starting with (5.3), one shows by induction that (5.4) holds for all 1 ≤ J ≤ N. The estimates on
F̂ J(w ) = ĵ(XJ,w ) and Q̂ J(w ) = ĵ ′(XJ + 0,w ) stated in the Proposition follow from (5.4) and (5.12), respectively. This
finishes the proof of Proposition 5.2.

Corollary 5.4. The distributions F̂ J(w ) = ĵ(XJ,w ), 1 ≤ J ≤ N, are absolutely continuous for |w | > MJ, while Q̂ J(w ) =
¶xĵ(XJ + 0,w ), 1 ≤ J ≤ N −1, are absolutely continuous for |w | > (2pJ −1)MJ, where MJ := min(mJ ,m ′

J) is defined in
(2.19).

Proof. In the proof of Proposition 5.2, we could as well proceed from J = N to J = 1, proving the result stated in the
Corollary.

6 Compactness

Second dispersive component

Let z(w ) ∈C¥
0 (R) be such that z(w ) ≡ 1 for |w | < L , where L is from (2.19). Define j d(x, t) by its Fourier transform:

ĵd(x,w ) := (1−z(w ))ĵ(x,w ) x ∈ R, w ∈ R. (6.1)

Lemma 6.1. jd(x,t) is a bounded continuous function of t ∈ R with values in H 1(R):

jd(x, t) ∈Cb(R,H1(R)). (6.2)

The local energy decay holds for jd(x,t):

lim
t→¥

‖(jd , j̇d)‖E ,R = 0, ∀R > 0. (6.3)

Proof. We generalize the proof of [KK07, Proposition 3.6]. By Lemma 4.1,

ĵd(x,w ) =

⎧⎪⎪⎨⎪⎪⎩
(1−z(w ))

[
F̂ +

1 (w )e−ik+(w )(x−X1) + F̂ −
1 (w )e−ik−(w )(x−X1)

]
, x ≤ X1,

(1−z(w ))F̂ J(w )cos(k+(w )(x−XJ))+ (1−z(w ))Q̂ J(w ) sin(k+(w )(x−XJ))
k+(w )(x−XJ)

, x ∈ [XJ,XJ+1],

(1−z(w ))
[
F̂ +

N (w )eik+(w )(x−XN ) + F̂ −
N (w )eik−(w )(x−XN)

]
, x ≥ XN .

(6.4)

Each of the functions entering the above expression, considered on the whole real line, corresponds to a finite energy
solution to a linear Klein-Gordon equation, satisfying the properties stated in the lemma. For example, define u(x,t) by
its Fourier transform:

û(x,w ) := (1−z(w ))F̂ 1(w )cos(k+(w )(x−X1)), x ∈ R.

Then u(x, t) is a solution to a linear Klein-Gordon equation, and by Proposition 5.2 the corresponding initial data are of
finite energy:

(u(x,0), u̇(x,0)) ∈ E .

Hence u(x, t)∈Cb(R,H1(R)) and satisfies the local energy decay of the form (6.3) (see [KK07, Lemma 3.1]. This finishes
the proof.
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Compactness for the bound component

We introduce the bound component of j(x,t) by

jb(x,t) = j(x,t)−jd(x,t) = y (x, t)−c(x, t)−jd(x, t), x ∈ R, t ∈ R. (6.5)

By Lemma 6.1,
jb(x, t) ∈Cb(R,H1(R)). (6.6)

Lemma 4.1 and (6.1), (6.5) imply the multiplicative relation

ĵb(x,w ) =

⎧⎪⎪⎨⎪⎪⎩
z(w )

[
F̂ +

1 (w )e−ik+(w )(x−X1) + F̂ −
1 (w )e−ik−(w )(x−X1)], x ≤ X1,

z(w )
[
F̂ J(w )cos(k+(w )(x−XJ))+ Q̂ J(w ) sin(k+(w )(x−XJ))

k+(w )

]
, x ∈ [XJ,XJ+1],

z(w )
[
F̂ +

N (w )eik+(w )(x−XN) + F̂ −
N (w )eik−(w )(x−XN )], x ≥ XN .

(6.7)

By (6.6), the functions
jb,J(t) := jb(XJ, t) = j(XJ, t)−jd(XJ , t)

are bounded and continuous. Therefore, ĵb(XJ, ·) ∈ S ′(R) are quasimeasures (see Remark 4.2).

Proposition 6.2. (i) The function jb(x,t) is smooth for x ∈ R\X (where X = {X1, X2, . . . , XN}) and t ∈ R.

(ii) For any R > 0,
sup

|x|≤R,x/∈X
sup
t∈R

|¶m
x ¶

n
t jb(x, t)| < ¥ . (6.8)

The argument repeats the proof of Proposition [KK07, Proposition 4.1].

Remark 6.3. Let us note that the bounds (6.8) are independent of x and remain valid for x /∈ X , although the derivatives
¶m

x ¶
n
t jb(x, t) with m �= 0 may have jumps at x = XJ . (Note that this is the case for the solitary waves in (2.14).)

We now may deduce the compactness of the set of translations of the bound component, {j b(x,s+ t): s ≥ 0}.

Corollary 6.4. (i) By the Ascoli-Arzelà Theorem, for any sequence s j → ¥ there exists a subsequence s j′ → ¥ such
that for any nonnegative integers m and n,

¶m
x ¶

n
t jb(x,s j′ + t)→ ¶m

x ¶
n
t b(x, t), x /∈ X , t ∈ R, (6.9)

for some b(x,t) ∈ Cb(R,H1(R)). The convergence in (6.9) is uniform in x and t as long as |x|+ |t| ≤ R, for any
R > 0.

(ii) By the Fatou Lemma,
sup
t∈R

‖b(·, t)‖H1 < ¥ . (6.10)

We call omega-limit trajectory any function b(x, t) that can appear as a limit in (6.9).

Remark 6.5. Previous analysis demonstrates that the long-time asymptotics of the solution y (x, t) in E F depends only on
the singular component j(x,t). Due to Corollary 6.4, to conclude the proof of Theorem 2.11, it suffices to check that
every omega-limit trajectory belongs to the set of solitary waves; that is,

b(x,t) = fw+(x)e−iw+t for some w+ ∈ [−m,m]. (6.11)

7 Nonlinear spectral analysis

Bounds for the spectrum

By Lemmas 3.1 and 6.1, the dispersive components c(·, t) and j d(·, t) converge to zero in EF as t → ¥ . On the other hand,
by Corollary 6.4, the bound component j b(x,t + s j′) converges to b(x, t) as j′ → ¥ , uniformly in every compact set of the
plane R2. Hence, y (x,t + s j′) = jb(x,t + s j′)+ c(x, t + s j′)+jd(x, t + s j′) also converges to b(x, t) uniformly in every
compact set of the plane R2. Therefore, taking the limit in equation (2.1), we conclude that the omega-limit trajectory
b(x, t) also satisfies the same equation:

b̈(x,t) = b ′′(x, t)−m2b(x, t)+
J
d(x−XJ)FJ(b). (7.1)
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Remark 7.1. Note that the bound component j b(x, t) itself generally does not satisfy equation (7.1).

Taking the Fourier transform of b in time, we see by (6.9) that b̂(x,w ) is a continuous function of x ∈ R, smooth for
x ∈ R\X , with values in tempered distributions of w ∈ R, and that it satisfies the corresponding stationary equation

−w 2b̂(x,w ) = b̂ ′′(x,w )−m2b̂(x,w )+
J

d(x−XJ)ĝJ(w ), (x,w ) ∈ R
2, (7.2)

valid in the sense of tempered distributions of (x,w ) ∈ R2, where ĝJ(w ) are the Fourier transforms of the functions

gJ(t) := FJ(b(XJ , t)), 1 ≤ J ≤ N. (7.3)

We also denote
βJ(t) := b(XJ,t), SJ := supp β̂J, 1 ≤ J ≤ N. (7.4)

From (6.7), we know that the spectrum of jb(x, t) is bounded for all x ∈ R. Hence, the convergence (6.9) implies that
the spectrum of b(x,t) is also bounded. We will need more precise bounds on the size of the spectrum of b:

Lemma 7.2. (i) SJ ⊂ [−MJ,MJ ], 1 ≤ J ≤ N;

(ii) supp b̂ ′(XJ + 0,w ) ⊂ [−(2pJ −1)MJ,(2pJ −1)MJ], 1 ≤ J ≤ N −1, with MJ > 0 defined in (2.19).

Proof. For every x ∈ R, we have formally the relations

j(x,s j + t) =
1

2p

∫
R

e−iw t e−iw s j ĵ(x,w )dw , ¶xj(x,s j + t) =
1

2p

∫
R

e−iw t e−iw s j¶xĵ(x,w )dw , t ∈ R.

Then the convergence (6.9) implies that

e−iw s j′ ĵ(x,w ) → b̂(x,w ), e−iw s j′¶xĵ(x,w ) → ¶xb̂(x,w ), s j′ → ¥ , (7.5)

in the sense of quasimeasures. Since ĵ(XJ,w ) are locally L2 for |w | > MJ while ĵ ′(XJ + 0,w ) are locally L2 for |w | >
(2pJ −1)MJ by Corollary 5.4, the convergence (7.5) at x = XJ shows that β̂J(w ) and b̂ ′(XJ + 0,w ) vanish for |w | > MJ

and |w | > (2pJ −1)MJ, respectively.

We denote
k(w ) := −ik+(w ), w ∈ R, (7.6)

where k+(w ) was introduced in (3.6). We then have Rek(w ) ≥ 0, and also

k(w ) =
√
w 2 −m2 > 0 for −m < w < m,

in accordance with (2.14).

Proposition 7.3. The distribution b̂(x,w ) admits the following representation:

b̂(x,w ) =

⎧⎪⎪⎨⎪⎪⎩
β̂1(w )ek(w )(x−X1), x ≤ X1,

β̂J(w )cosh(k(w )(x−XJ))+ b̂ ′(XJ + 0,w ) sinh(k(w )(x−XJ))
k(w ) , x ∈ [XJ,XJ+1], 1 ≤ J ≤ N −1,

β̂N(w )e−k(w )(x−XN), x ≥ XN .

(7.7)

Proof. By (7.5), the middle line in (7.7) follows from the representation (4.6) since the multiplicators are smooth bounded
functions of w ∈ R. Taking the limit in the first line of (4.6), we obtain the first line in (7.7) since S 1 ⊂ [−m,m] by
Lemma 7.2, while k+(w ) = k−(w ) = ik+(w ) for −m ≤ w ≤ m (Cf. (3.7), (7.6)). Similarly we explain the last line in
(7.7).
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Reduction to point spectrum

Proposition 7.4. Any omega-limit trajectory b(x, t) is a solitary wave, i.e. b(x, t) = f(x)e−iw+t with w+ ∈ [−m,m] and
f(x) ∈ H1(R).

Proof. The proof is based on the following lemmas.

Lemma 7.5. If S1 = /0, then b(x,t) ≡ 0.

Proof. According to equation (7.2), the function b̂ ∈C(R,S ′(R)) satisfies the following continuity and jump conditions
at the point X1:

b̂(X1 + 0,w ) = b̂(X1 −0,w ) = β̂1(w ), b̂ ′(X1 + 0,w ) = b̂ ′(X1 −0,w )+ ĝ1(w ), w ∈ R. (7.8)

S1 = /0 means that β̂1(w ) ≡ 0, that is, β1(t) ≡ 0. Hence, g1(t) ≡ F1(β1(t)) ≡ 0, and ĝ1(w ) ≡ 0. On the other hand,
first line of (7.7) implies that b̂(x,w ) ≡ 0 for x ≤ X1, and in particular b̂ ′(X1 −0,w ) ≡ 0. Therefore, the jump condition
(7.8) implies that b̂ ′(X1 + 0,w ) ≡ 0. Hence, b̂(x,w ) ≡ 0 for x ∈ [X1,X2] by the middle line of (7.7). By induction,
β̂J(x,w ) ≡ 0.

Now we consider the case S1 �= /0.

Lemma 7.6. If S1 �= /0, then S1 = {w+} for some w+ ∈ [−m,m].

Proof. By Lemma 7.2, we know that S1 ⊂ [−m,m]. To show that S1 consists of a single point, we assume that, on the
contrary, infS1 < supS1. By (2.16), the Fourier transform ĝ1(w ) of g1(t) := F1(b(X1, t)) is given by

ĝ1 = −
p1

n=1

2nu1,n (β̂1 ∗ β̂1)∗ . . . ∗ (β̂1 ∗ β̂1)︸ ︷︷ ︸
n−1

∗β̂1. (7.9)

Applying the Titchmarsh Convolution Theorem [Tit26] (see also [Lev96, p.119] and [Hör90, Theorem 4.3.3]) to the
convolutions in (7.9), we obtain the following equalities:

infsupp ĝ1 = infsupp β̂1 +(p1 −1) infsupp(β̂1 ∗ β̂1) = infS1 +(p1 −1)(infS1 − supS1), (7.10)

supsupp ĝ1 = supsupp β̂1 +(p1 −1)supsupp(β̂1 ∗ β̂1) = supS1 +(p1 −1)(supS1 − infS1), (7.11)

where we used the relations infsupp β̂1 = −supsupp β̂1, supsupp β̂1 = − infsupp β̂1. Note that the Titchmarsh theorem
is applicable since supp β̂1 is compact by Lemma 7.2. Since we assumed that infS1 < supS1, (7.10) and (7.11) imply that
infsupp ĝ1 < infS1, supsupp ĝ1 > supS1. Therefore, the jump condition (7.8) with J = 1 implies that

infsupp b̂ ′(X1 + 0, ·) = infsupp ĝ1 < infS1, supsupp b̂ ′(X1 + 0, ·) = supsupp ĝ1 > supS1. (7.12)

The ratio sinh(k(w )(X2 −X1))/k(w ) could only vanish at certain points from W (see (2.21)), while supp b̂ ′(X1 +0,w )∩
W = /0 due to Lemma 7.2 and the condition (2.23). Hence, the middle line of (7.7) at x = X 2 − 0 and the inequalities
(7.12) imply that

infS2 = infsupp ĝ1 < infS1, supS2 = supsupp ĝ1 > supS1. (7.13)

We proceed by induction, proving that

infS1 > infS2 > .. . > infSN , supS1 < supS2 < .. . < supSN . (7.14)

It then follows that infSN < supSN . Starting from J = N and going to the left, we also prove the opposite inequalities:

infS1 < infS2 < .. . < infSN , supS1 > supS2 > .. . > supSN . (7.15)

The contradiction of (7.14) and (7.15) shows that our assumption that infS 1 < supS1 was false, hence S1 = {w+} for
some w+ ∈ [−m,m].
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Thus, supp b̂1(w ) = S1 ⊂ {w+}, with w+ ∈ [−m,m]. Therefore,

b̂1(w ) = a1d(w −w+), with some a1 ∈ C. (7.16)

Note that the derivatives d(k)(w −w+), k ≥ 1 do not enter the expression for b̂1(w ) = Ft→w [b(X1, t)] since b(x,t) is a
bounded continuous function of (x,t) ∈ R2 due to the bound (6.10).

Lemma 7.7. b̂(x,w ) = a(x)d(w −w+), where a(x) is a bounded continuous function.

Proof. For x ≤ X1, the representation stated in the lemma follows from the first line in (7.7) and from (7.16). Let us prove
this representation for X1 ≤ x ≤ X2. By (7.16), we have b1(t) := b(X1, t) = a1e−iw+t/2p, hence g1(t) := F1(b1(t)) =
b1e−iw+t for some b1 ∈ C due to the U(1)-invariance (1.2). Therefore, ĝ 1(w ) = 2pb1d(w −w+). Moreover, by (7.7), we
have b̂ ′(X1−0,w )= k(w+)a1d(w −w+). Hence, the jump condition (7.8) implies that b̂ ′(X1 +0,w )= c1d(w −w+), for
some c1 ∈C. Finally, (7.7) implies that b̂(x,w ) = a(x)d(w −w+) for x ∈ [X1,X2], with a(x) a continuous complex-valued
function of x. Proceeding by induction, we obtain similar representation for b̂(x,w ) for all x ∈ R.

Now we can finish the proof of Proposition 7.4. Lemma 7.7 implies that b(x, t) = f(x)e−iw t , where f(x) = a(x)/2p.
We conclude from (6.10) that f ∈H 1(R), finishing the proof of Proposition 7.4. Note that w =±m could only correspond
to the zero solution (see Remark 2.9).

According to Remark 6.5, Proposition 7.4 completes the proof of Theorem 2.11.

8 Multifrequency solitary waves

We will show that when the assumptions of Theorem 2.11 are not satisfied, then the attractor could be more complicated
because the equation admits multifrequency solitary wave solutions.

8.1 Wide gaps

Let us consider equation (2.1) with N = 2, under Assumptions 2.1 and 2.2.

Proposition 8.1. If the Assumption 2.3 is violated, then the conclusion of Theorem 2.11 may no longer be correct.

Proof. We will show that if L := X2 −X1 is sufficiently large, then one can take F1(y ) and F2(y ) satisfying Assump-
tions 2.1 and 2.2 such that the global attractor of the equation contains the multifrequency solutions which do not converge
to solitary waves of the form (2.13). For our convenience, we assume that X 1 = 0, X2 = L. We consider the model (2.1)
with the nonlinearity

F1(y ) = F2(y ) = F(y ), where F(y ) = ay +b|y |2y , a , b ∈ R. (8.1)

In terms of the condition (2.16), p1 = p2 = 2. We take L to be large enough:

L >
p

23/2m
. (8.2)

Consider the function

y (x,t) = A(e−k(w )|x| + e−k(w )|x−L|)sin(w t)+Bc[0,L](x)sin(k(3w )x) sin(3w t), A, B ∈ C. (8.3)

Then y (x, t) solves (2.1) for x away from the points XJ . We require that

k(3w ) =
p

L
, (8.4)

so that y (x, t) is continuous in x ∈ R and symmetric with respect to x = L/2:

y (x, t) = y (
L
2
− x, t), x ∈ R.
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We need |w | < m to have k(w ) > 0, and 3|w | > m to have k(3w ) ∈ R. We take w > 0, and thus m < 3w < 3m. By (8.4),
this means that we need

m <

√
p2

L2 +m2 < 3m.

The second inequality is satisfied by (8.2).
Due to the symmetry of y (x,t) with respect to x = L/2, the jump condition (7.8) both at x = 0 and at x = L takes the

following identical form:

2Ak(w )sinw t −Bk(3w )sin3w t = F
(
A(1+ e−k(w )L)sin(w t)

)
. (8.5)

Using the identity

sin3q =
3
4

sinq− 1
4

sin3q, (8.6)

we see that

F(A(1+ e−k(w )L)sinw t) =
(
aA(1+ e−k(w )L)+

3
4
b|A|2A(1+ e−k(w )L)3

)
sin(w t)− 1

4
b|A|2A(1+ e−k(w )L)3 sin(3w t).

(8.7)
Collecting in (8.5) the terms at sinw t and at sin3w t, we obtain the following system:{

2Ak(w ) = aA(1+ e−k(w )L)+ 3
4b|A|2A(1+ e−k(w )L)3,

Bk(3w ) = 1
4b|A|2A(1+ e−k(w )L)3.

(8.8)

Assuming that A �= 0, we divide the first equation by A:

2k(w ) = a(1+ e−k(w )L)+
3
4
b|A|2(1+ e−k(w )L)3. (8.9)

The condition for the existence of a solution A �= 0 is( 2k(w )
1+ e−k(w )L −a

)
b > 0. (8.10)

Once we found A, the second equation in (8.8) can be used to express B in terms of A.

Remark 8.2. Condition (8.10) shows that we can choose b < 0 taking large a > 0. The corresponding potential U(y ) =
−a |y |2/2−b|y |4/4 satisfies (2.12) and Assumptions 2.1 and 2.2.

8.2 Linear degeneration

Let us consider equation (2.1) with N = 2, under Assumptions 2.1 and 2.3.

Proposition 8.3. If the Assumption 2.2 is violated, then the conclusion of Theorem 2.11 may no longer be correct.

Proof. Again, we construct multifrequency solutions. Consider the equation

ÿ = y ′′ −m2y +d(x)F1(y )+d(x−L)F2(y ), (8.11)

where
F1(y ) = ay +b|y |2y , F2(y ) = gy , a , b, g∈ R. (8.12)

Note that the function F2 is linear, failing to satisfy Assumption 2.2. The function

y (x,t) =

⎧⎪⎪⎨⎪⎪⎩
(A+B)ek(w )x sin(w t), x ≤ 0,(
Ae−k(w )x +Bek(w )x

)
sin(w t)+C sinh(k(3w )x)sin(3w t), x ∈ [0,L],

(Ae−k(w ) +Bek(w )(2L−x))sin(w t)+ C
sinh(k(3w )L)e

−k(3w )(x−L) sin(3w t), x ≥ L,
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where w ∈ (0,m/3), will be a solution if the jump conditions are satisfied at x = 0 and at x = L:

−y ′(0+,t)+y ′(0−,t) = ay (0, t)+by 3(0, t), (8.13)

−y ′(L+,t)+y ′(L−, t) = ay (L, t)+by 3(L, t). (8.14)

We use the identity

a(A+B)sin(w t)+b((A+B)sin(w t))3 =
(
a(A+B)+b

3(A+B)3

4

)
sin(w t)−b

(A+B)3

4
sin(3w t)

which follows from (8.6). Collecting the terms at sin(w t) and at sin(3w t), we see that the condition (8.13) takes the form

2k(w )A =
(
a(A+B)+b

3(A+B)3

4

)
, (8.15)

−k(3w )C = −b (A+B)3

4
. (8.16)

The condition (8.14) takes the form

2Bk(w )ek(w )L = g(Ae−k(w )L +Bek(w )L), (8.17)

k(3w )C
sinh(k(3w )L)

+k(3w )C cosh(k(3w )L) = gC sinh(k(3w )L). (8.18)

Equations (8.15), (8.16), (8.17), and (8.18) could be satisfied for arbitrary L > 0. Namely, for any w ∈ (0,m/3), one uses
(8.18) to determine g. For any b �= 0, there is always a solution A, and B to the nonlinear system (8.15), (8.17). Finally, C
is obtained from (8.16).

A Global well-posedness

Here we prove Theorem 2.4. We first need to adjust the nonlinearity F so that it becomes bounded, together with its
derivatives. Define

l0 =

√
H (y0,p0)− J AJ

m− J BJ
, (A.1)

where (y0,p0) ∈ E is the initial data from Theorem 2.4 and AJ , BJ are constants from (2.12). Then we may pick a
modified potential function ŨJ ∈C2(C,R), ŨJ(y ) = ŨJ(|y |), j = 1, 2, so that

ŨJ(y ) = UJ(y ) for |y | ≤ l0, y ∈ C, (A.2)

ŨJ(y ) satisfy (2.12) with the same constants AJ , BJ as UJ(y ) do:

ŨJ(y ) ≥ AJ −BJ|y |2, for y ∈ C, where AJ ∈ R, BJ ≥ 0, 1 ≤ J ≤ N,
J

BJ < m, (A.3)

and so that |ŨJ(y )|, |Ũ ′
J(y )|, and |Ũ ′′

J (y )| are bounded for y ≥ 0. We define

F̃J(y ) = − ŨJ(y ), y ∈ C, (A.4)

where denotes the gradient with respect to Rey , Imy ; Then F̃J(eisy ) = eisF̃J(y ) for any y ∈ C, s ∈ R.
We consider the Cauchy problem of type (2.1) with the modified nonlinearity,{

ÿ (x,t) = y ′′(x,t)−m2y (x, t)+ J d(x−XJ)F̃J(y (XJ , t)), x ∈ R, t ∈ R,

y |t=0 = y0(x), ẏ |t=0 = p0(x).
(A.5)
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Equation (A.5) formally can be written as the following Hamiltonian system (Cf. (2.5)):

Ẏ (t) = J DH̃ (Y ), J =

[
0 1

−1 0

]
, (A.6)

where DH̃ is the variational derivative of the Hamilton functional

H̃ (Y ) =
∫
R

(|p|2 + | y |2 +m2|y |2) dx+
J

ŨJ(y (XJ, t)), Y =

[
y (x)

p(x)

]
∈ E , (A.7)

which is Fréchet differentiable in the space E = H 1×L2. By the Sobolev embedding theorem, L¥ (R)⊂ H1(R), and there
is the following inequality:

‖y ‖2
L¥ ≤ 1

2m
(‖y ′‖2

L2 +m2‖y ‖2
L2) ≤ 1

2m
‖Y ‖2

E . (A.8)

Thus, (A.3) leads to

ŨJ(y (0)) ≥ AJ −BJ‖y ‖2
L¥ ≥ AJ − BJ

2m
‖Y ‖2

E . (A.9)

Taking into account (A.7), we obtain the inequality

‖Y ‖2
E = 2H̃ (Y )−2

J
ŨJ(y (XJ)) ≤ 2H̃ (Y )−2

J
AJ + J BJ

m
‖Y ‖2

E , Y ∈ E . (A.10)

It follows that

‖Y ‖2
E ≤ 2m

m− J BJ

(
H̃ (Y )−

J
AJ

)
, Y ∈ E . (A.11)

Lemma A.1. (i) There is the identity H̃ (Y 0) = H (Y 0).

(ii) If Y =

[
y (x)

p(x)

]
∈ E satisfies H̃ (Y ) ≤ H̃ (Y 0), then ŨJ(y (x)) = UJ(y (x)) for any x ∈ R.

Proof. According to (A.11), the Sobolev embedding (A.8), and the choice of l 0 in (A.1),

‖y0‖2
L¥ ≤ 1

2m
‖Y 0‖2

E ≤ H (Y 0)− J AJ

m− J BJ
= l2

0 . (A.12)

Thus, by (A.2), Ũ(y0(x)) = U(y0(x)) for all x ∈ R. This proves (i).
By (A.8), the relation (A.11), the condition H̃ (Y ) ≤ H̃ (Y 0), and part (i) of the Lemma, we have:

‖y ‖2
L¥ ≤ 1

2m
‖Y ‖2

E ≤ H̃ (Y )− J AJ

m− J BJ
≤ H̃ (Y 0)− J AJ

m− BJ
=

H (Y 0)− J AJ

m− J BJ
= l2

0 .

Now the statement (ii) follows by (A.2).

If Y (t) solves (A.6), then H̃ (Y (t)) = H̃ (Y 0), By Lemma A.1 (ii), ŨJ(y (x, t)) = UJ(y (x, t)) for all x ∈ R, t ∈ R.
Hence, F̃J(y (x, t)) = FJ(y (x,t)) for all x ∈ R, t ≥ 0, allowing us to conclude that y (t) solves (2.1) as well as (A.5). The
rest of the proof of Theorem 2.4 repeats the proof of a similar result for the case N = 1 [KK07, Theorem 2.3].
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