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1. Introduction

The purpose of this article is to present existence theorems for problems associated with the
minimization of the elastic energy stored in a crystal in presence of dislocations. The setting is
that of nonlinear elasticity.

Dislocations represent an important class of defects in crystalline solids and are very often
the primary agents of plasticity. See for example [8], [11] for a general survey on this subject.
The constituent atoms of a crystal are arranged in a pattern that repeats itself periodically in
the space forming a three dimensional lattice. Dislocations occur when atomic planes slide over
each other on so-called slip planes. The extent to which one part of the crystal has slipped
relative to the other is determined by a translation vector b, called the Burgers vector.

Here we take a continuum point of view which goes back to Volterra. In this setting the
dislocation may be thought of as the result of cutting the crystal across a surface S in the slip
plane, imposing a relative translation b between the upper and the lower part of S and rejoining
the cut region. This leads to the definition of a dislocation loop as the boundary that separates
the region S on the slip plane which has undergone slip from the region that has not (the curve
Γ in Figure 1-(a)).

More precisely, we consider a bounded region Ω ⊂ R3 which represents the reference configu-
ration of the crystal and we look at deformations u : Ω → R3. In a modern view of the Volterra
picture [10] u is a special map of bounded variations (SBV, see, e.g. [1]) and its distributional
deformation gradient Du consists of a singular part due to the jump across S and an absolutely
continuous part (with respect to Lebesgue measure)
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(1.1) Du = ∇u+ b⊗ ν dH2�S .
Following [10] we interpret ∇u as the elastic deformation. As usual we assume that the elastic

energy we consider has the form

(1.2)
∫

Ω
W (∇u) dx ,

where the function W : M3×3 → R ∪ {+∞} is polyconvex and is allowed to take the value +∞
to incorporate constraints like detDu > 0, which prevents interpenetration of matter.

Taking the curl of equation (1.1) in the sense of distributions yields the relation

curl∇u = −b⊗ Γ̇ dH1�Γ .
The above formula suggests to minimize (1.2) over those fields F : Ω → M3×3 whose curl is
concentrated along the curve Γ:

(1.3) curlF = −b⊗ Γ̇ dH1�Γ
in the sense of distributions. Note that the surface S no longer appears explictly in this formula-
tion. Indeed, for any surface S ′ which has Γ as its boundary (with the appropriate orientation)
the field F ′ := Fdx + b ⊗ ν ′ dH2�S ′ is curl-free (in the sense of distributions) and thus the
distributional gradient of a deformation u′, with a jump discontinuity across S ′. In that sense
F and Γ are the natural variables, while the choice of a specific cut surface S is a matter of
convenience.

The constraint (1.3) can be expressed by the equivalent condition

(1.4)
∫

α
F
α̇

|α̇| = bLink(α,Γ)

for every smooth closed curve α contained in Ω \ Γ (see Figure 1-(b)). Here Link(α,Γ) denotes
the winding number of the curve α with respect to Γ.

By (1.4) we also deduce that the admissible fields, i.e. the deformation gradients compatible
with the dislocation, cannot expect to be in Lp(Ω) for p ≥ 2. Indeed if α is a circle or radius r
around Γ, then (1.4) implies that

−
∫

α
F
α̇

|α̇| =
1

2πr
bLink(α,Γ) ∀ r > 0 ,

which yields

(1.5) |F (x)| ∼ 1
dist(x,Γ)

.

From (1.5) it is readily seen that the L2 norm of F in a cylindrical neighborhood of Γ diverges
logarithmically. This is exactly why in a linear elastic setting the energy of dislocation line is
infinite. We will avoid this difficulty by considering energy densities W which grow slower then
quadratic at ∞. We will later use the following growth condition from below (for a suitable
p < 2)

(1.6) ∀A ∈ M3×3 W (A) ≥ c(|A|p + |adjA|p + |detA|p) − C .

Here adjA denotes the matrix of 2 × 2 minors.
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Figure 1. (a) The dislocation loop Γ. (b) A generic curve α winding
around Γ.

Summarizing we address the problem of minimizing

(1.7)
∫

Ω
W (F ) dx ,

over all matrix fields F ∈ Lp(Ω,M3×3) which satisfy the constraint (1.3) and for which adjF and
detF are in Lp (further conditions on the precise class of admissible functions will be discussed
below). We do not require that Γ lies in a plane and allow any curve which is the image of a
standard planar S1 under a smooth diffeomorphism R3 → R3.

The fact that the exponent p in the growth condition is restricted to p < 2 does not allow
us to use Ball’s original existence results [2], which require W (A) ≥ c|A|q − C, with q ≥ 3. For
2 ≤ p ≤ 3 extensions due to Šverák [12] and Conti and De Lellis [3] are available, but these do
not apply for p < 2. We will still follow Ball’s strategy of proof using the refined setting of [9]
and [6], respectively. More precisely, we establish the existence of minimizers for (1.7) in two

different classes. In the first existence result, Theorem 3.4, that holds for
3
2
< p < 2, we require

the admissible fields be locally the gradients of Sobolev functions for which the distributional
Jacobian determinant and the distributional Jacobian cofactors are represented by functions.

In the second existence result, Theorem 4.6, we work in a class of fields which are locally the
gradients of Cartesian maps. In this context one needs to use the notion of rectifiable currents
and related compactness results due to Giaquinta, Modica and Souček [6]. In this setting we
consider the range 1 < p < 2.

2. Assumptions and notations

We assume that the function W : M3×3 → R∪{+∞} is polyconvex, i.e. there exists a convex
function g : R19 → R ∪ {+∞} such that

W (A) = g(A, adjA,detA) ∀A ∈ M3×3 .

We assume that g is lower semicontinuous and W satisfies the following growth condition

(2.1) W (A) ≥ c(|A|p + |adjA|p + |detA|p) − C ∀A ∈ M3×3 ,

for some positive constants c and C.
We denote by Ω an open bounded set of R3. The curve Γ ⊂ Ω is assumed to be smooth,

closed and diffeomorphic to the standard S1. More precisely we assume that there exists a
diffeomorphism ψ : R3 → R3 such that ψ(Γ) = S1. In particular Γ is unknot.
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For a matrix A, adjA denotes the transpose of its cofactors, so that A adjA = (detA)I. We
will use the minors of a matrix and therefore we introduce the following notation. Let I, J
be ordered multiindices, I = {i1, . . . , ir}, 1 ≤ i1 < · · · < ir ≤ 3. We write |I| = r and we
denote by Ī the index which complements I in {1, 2, 3} in the natural increasing order. For
|I| = |J | = r, let AIJ be the submatrix of A consisting of rows i1, . . . , ir and columns j1, . . . , jr.
We set MJ

I (A) = detAJ
I . We denote by Ai the ith column of the matrix A.

Differentiation w.r.t. the variable xi is denoted by ,i. Finally {ρδ}δ>0 is a sequence of standard
convolution kernels in R3, i.e., ρδ(x) = δ−3ρ(x/δ), ρ ≥ 0,

∫
ρ = 1, Sptρ ⊂ {|x| < 1}.

3. Main result

In the present section we provide an existence theorem for the minimizers of (1.7) over a class
of fields which are “locally” the gradients of Sobolev functions satisfying certain differential
properties and which are subject to the constraint (1.3) that keeps track of the presence of a
dislocation. In order to define the set of such fields, we need to recall the notion of distributional
determinant which will be largely used in the sequel.

Let u ∈ W 1,p(Ω,R3), p ≥ 1, and assume that u1(adjDu)1 ∈ L1(Ω,R3). Then the distribu-
tional determinant of Du, denoted by DetDu, is defined as the distribution

DetDu = div(u1(adjDu)1) ,

i.e.,

〈DetDu,ϕ〉 := −
∫

Ω
u1(adjDu)1 ·Dϕ dx , ∀ϕ ∈ D(Ω,R3) .

In general DetDu is not a function and DetDu �= detDu.
Similarly, we denote by AdjDu the distribution defined by expressing each of the subdetermi-
nants of Du as the divergence of an R2-valued map. For instance

(AdjDu)11 := (u2u3
,3),2 − (u2u3

,2),3 .

We are now ready to introduce the set F of admissible functions:

(3.1) F := {F ∈ Lp(Ω,M3×3) : |adjF |,detF ∈ Lp(Ω), (i) and (ii) hold } ,
where

(i) curlF = −b⊗ Γ̇ dH1�Γ in D′(Ω) ;

(ii) if B is a ball contained in Ω \ Γ , then by (i) there exists u ∈W 1,p(B,R3) (unique up to

an additive constant) such that Du = F in B . We require that for all such balls

u ∈ E(B) := {u ∈W 1,p(B) : DetDu ∈ L1(B) ,AdjDu ∈ L1(B,M3×3)} .
Remark 3.1. Observe that (i) can be replaced by one of the following equivalent conditions:

(ia) for every smooth closed curve α : [0, 1] → Ω \ Γ∫ 1

0
Fδ(α(t))α̇(t) dt → bLink(α,Γ) as δ → 0 ,

with Fδ = F ∗ ρδ , δ < dist(α,Γ) ;

(ib)
∫ 1

0
F̃ (α(t))α̇(t) dt = bLink(α,Γ) , for every α such that H1- a.e. x ∈ α is a Lebesgue

point for F (denoting by F̃ the Lebesgue representative of F ) .
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Figure 2. The cones C1 and C2.

Lemma 3.2. Let 3
2 < p < 2. Then the set F is not empty.

Proof. We make an explicit construction. Let D1(O) be the disk of radius 1 and center O =
(0, 0, 0) contained in the plane {x3} = 0, so that ∂D1(O) = S1. We first define a map u ∈
C∞

0

(
ψ(Ω) \D1(O),R3

)
and then compose it with ψ.

Let C1 be the cone of base D1(O) and vertex V1 = (0, 0, 1) and C2 be the cone of base
D1(O) and vertex V2 = (0, 0, 2) as in Figure 3. Without loss of generality we may assume that
C1, C2 ⊂ ψ(Ω).

Then let P1 = (1, 0, 0) and P2 = (1
2 , 0, 1). Set u(x) = 0 in ψ(Ω) \ C2 and u(x) = b in C1. In

C2 we first define u in the triangle V2OP1 and then extend it by axial symmetry with respect
to the axis V2O. In the triangle V1OP1 u is already defined and is equal to b. In the triangle
V2V1P2 let u be the affine interpolation and then in V1P1P2 let u be affine in the x1 direction. It
can be easily checked that u ∈W 1,p(ψ(Ω) \D1(O)) for p < 2, and that detDu = 0, adjDu = 0
a.e. in ψ(Ω). We can then smoothen u on the lateral surface of C1 and C2 in order to obtain a
smooth map in ψ(Ω) \D1(O) with constant jump equal to b on D1(O).

In order to obtain a map defined in Ω and with non-zero Jacobian determinant, we compose
u with ψ and add, for instance, the identity map:

ũ(x) := u(ψ(x)) + x .

Next we set F := ∇ũ, i.e. F is defined as the absolutely continuous part of the gradient Dũ.
The field F constructed in this way satisfies all the desired properties, that is F ∈ F . Indeed (i)
is readily seen to be fulfilled. Moreover if B ⊂ Ω is a ball such that ψ(B)∩D1(O) �= Ø, then one
can define a new potential ṽ ∈ E(B) in the following way. Choose a smooth surface S ⊂ ψ(Ω)
which has S1 as its boundary, i.e. ∂S = S1, and such that S ∩ ψ(B) = Ø. Suppose that S lies
below D1(O). Then define v = u+ b in the region enclosed by the surfaces S and D1(O), and
v = u elsewhere in ψ(Ω). We have thus moved the jump of u from D1(O) to S and the function
v defined in this way is smooth in ψ(Ω) \ S. Finally set ṽ = v ◦ ψ.

�

The next result provides sufficient conditions under which the distributional determinant is
in fact a function. It will be the main tool in the proof of the existence Theorem 3.4.
Theorem 3.3. ([9], Thm. 1). Let V ⊂ R3 be open, let 1 ≤ p < 3 and let u ∈W 1,p(V ; R3).
(i) If p ≥ 3/2 and AdjDu ∈ L1, then AdjDu = adjDu.
(ii) If p ≥ 3/2, adjDu ∈ Lp and DetDu ∈ L1, then DetDu = detDu.



6 STEFAN MÜLLER AND MARIAPIA PALOMBARO

We are now in the position to state the main result of this section.
Theorem 3.4. Let 3

2 < p < 2. Assume that there exists F ∈ F such that W(F ) is finite. Then
the functional W attains its minimum on F .

Proof. We apply the direct method. In order to exploit the semicontinuity property of the
functional (1.7) we will use the gradient structure of the fields F in simply connected sets. Let
{Fk} be a minimizing sequence. By (2.1) it follows that∫

Ω
|Fk|p + |adjFk|p + |detFk|p < C

and therefore, up to subsequences, we find

Fk ⇀ F in Lp(Ω,M3×3) ,

adjFk ⇀ A in Lp(Ω,M3×3) ,

detFk ⇀ D in Lp(Ω) .

If

(3.2) F ∈ F , A = adjF , D = detF ,

then standard lower-semicontinuity results for convex integrands will imply that

W(F ) ≤ lim inf
k

W(Fk) = inf{W(F ) , F ∈ A}
and therefore F will be a minimizer for W.

In order to prove (3.2) it is enough to show that F ∈ F and

(adjFk,detFk) → (adjF,detF ) in D′(B) , for every ball B ⊂ Ω \ Γ .

Let ϕ be a smooth function supported in a ball B ⊂ Ω \ Γ. By (ii) it follows that Fk = Duk

in B with uk ∈ E(B). Since uk is defined only up to an additive constant, we may assume that
uk has zero average in B. The Poincaré inequality implies that the sequence {uk} is bounded in

W 1,p(B). Then the compact embedding of W 1,p into Lq, for 1 ≤ q < p∗ =
3p

3 − p
, yields

(3.3) uk → u in Lq(B) ,

and hence F = Du in B. Moreover, since by Theorem 3.3 adjDuk = AdjDuk, we have

(3.4)
∫

Ω
(adjFk)11ϕdx = −

∫
Ω
u2

k(u
3
k,3,−u3

k,2) · (ϕ,2, ϕ,3) dx .

On the other hand, since p > 3/2, the strong convergence (3.3) holds for q = 3 and therefore we
can pass to the limit on the right hand side of (3.4)

−
∫

Ω
u2

k(u
3
k,3,−u3

k,2) · (ϕ,2, ϕ,3) dx→ −
∫

Ω
u2(u3

,3,−u3
,2) · (ϕ,2, ϕ,3) dx = 〈(AdjDu)11, ϕ〉 .

Thus A1
1 = (AdjDu)11 (in the sense of distributions in B). The above argument can be applied

to each component of adjFk. Thus AdjDu = A and in particular AdjDu ∈ L1(B). It follows
from Theorem 3.3 that adjDu = AdjDu = A.

Similarly∫
Ω

detDukϕdx = −
∫

Ω
u1

k(adjDuk)1 ·Dϕdx→ −
∫

Ω
u1(adjDu)1 ·Dϕdx
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and therefore, again by Theorem 3.3, DetDu = detDu = D a.e. in B, which implies detF = D
a.e. in Ω.

Finally observe that F satisfies the constraint (i) since the latter is closed under weak con-
vergence in Lp.

Remark 3.5. If Ω is a simply connected set, then (ii) is equivalent to the following condition:

(3.5) for every smooth surface S ⊂ Ω such that ∂S = Γ, F = Du with u ∈ E(Ω \ S) .

In such a case, in the proof of Theorem 3.4, one can prove the convergence of (adjFk,detFk)
directly in D′(Ω \ S), for any surface S with ∂S = Γ.

Also, observe that if we required (3.5) to hold only for one given surface instead of every
surface having Γ as its boundary, then the set of admissible fields would be larger (see Example
3.6) and we would therefore get, at least in principle, a smaller minimum.

The following example shows that in general u ∈ E(Ω \ S)∩W 1,p(Ω,R3) does not necessarily
imply u ∈ E(Ω).

Example 3.6. Let φ : R2 → R2 be given by

φ(x′) =
x′

|x′| , x′ = (x1, x2) .

It can be easily checked that φ ∈ W 1,p
loc (R2,R2) for any p < 2 and that the distributional

determinant DetDφ has an atom at x′ = 0 :

DetDφ = πδ0.

Then let η ∈ C∞
0 ((−1, 1)), η = 1 in (−1

2 ,
1
2), and define u : R3 → R3 in the following way

u(x1, x2, x3) :=
(
φ(x1, x2)η(x3), 0

)
.

The function u satisfies for any p < 2

u ∈W 1,p
loc (R3,R3) ,

DetDu = detDu = 0 a.e. in R3 ,

AdjDu = adjDu ∈ Lp
loc(R

3 \ l) , where l = {(0, 0, t) ∈ R3 : t ∈ (−1, 1)} ,
(AdjDu)33 = πη2(x3)δ{x′=0}(x′) in D′(R3) .

Therefore for any ball B centered at the origin we have that u ∈ E(B \ l), but u /∈ E(B).

4. Minimization over Cartesian maps

In the present section we propose an alternative approach to the problem of minimizing (1.7)
based on the theory of Cartesian maps. We first recall some basic definitions and results.

Let V ⊂ R3 be an open set. We introduce the space D3(V × R3) of smooth 3-forms with
compact support in V ×R3 and the dual space D3(V ×R3) of 3-dimensional currents in V ×R3

(see [4] and [7], Vol. I, for a comprehensive treatment on this subject). We say that the sequence
{Tk} ⊂ D3(V × R3) converges weakly to T ∈ D3(V × R3), Tk ⇀ T , if

(4.1) Tk(ω) → T (ω) ∀ω ∈ D3(V × R3).

For p ≥ 1 let
Ap(V,R3) := {u ∈W 1,p(V,R3) : detDu , |adjDu| ∈ Lp(V )} ,
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and for u ∈ Ap(V,R3) we set

‖u‖Ap := ‖u‖Lp(V ) + ‖|M(Du)|‖Lp(V ) ,

where M(F ) = (F, adjF,detF ). We remark that Ap(V,R3) is not a linear space and ‖ · ‖A is
not a norm. Also, observe that our definition of Ap slightly diffears from that given in [6]. We
say that a sequence {uk} in Ap(V,R3) converges weakly in Ap(V,R3) to u ∈ Ap(V,R3)

uk ⇀ u in Ap(V,R3)

if and only if

uk → u strongly in Lp(V,R3) ,

MJ
I (Duk) ⇀MJ

I (Du) weakly in Lp(V ) ,

for all I, J with 1 ≤ |I| = |J | ≤ 3.
For u ∈ Ap(V,R3) one can define the 3-current Gu carried by the graph of u by integrating

any form ω ∈ D3(V × R3) over the graph of u, Gu, i.e.

Gu(ω) :=
∫
Gu

ω =
∑

|I|+|J |=3

σ(I, Ī)
∫

V
hIJ(x, u(x))MJ

Ī (Du(x)) dx ,

for any 3-form ω

ω(x, y) =
∑

|I|+|J |=3

hIJ(x, y) dxI ∧ dyJ

where hIJ ∈ C∞
0 (V ×R3) and σ(I, Ī) is the sign of the permutation which reorders the multiindex

(I, Ī) in its natural order. The boundary of T ∈ D3(V × R3) is defined as the 2-current

∂T (η) := T (dη) , ∀ η ∈ D2(V × R3) .

If u is a smooth map, then Stokes theorem implies that Gu has no boundary in V × R3:

∂Gu(η) = 0 ∀ η ∈ D2(V × R3) ,

a condition which is clearly preserved by weak convergence (4.1). We can now introduce the
class of p-Cartesian maps

cartp(V,R3) := {u ∈ Ap(V,R3) : ∂Gu�V × R3 = 0} .
The condition that the current associated with the graph of a Cartesian map is boundaryless
ensures that the set cartp(V,R3) is closed under weak convergence in Lp of u and of all minors
of Du, as clarified by the following theorem.

Theorem 4.1. If uk and u belong to cartp(V,R3), p ≥ 1, and

uk ⇀ u weakly in Lp(V,R3) ,(4.2)

MJ
I (Duk) ⇀ vJ

I weakly in Lp(V ) ,

for all I, J with 1 ≤ |I| = |J | ≤ 3, then

(4.3) vJ
I (x) = MJ

I (Du(x)) a.e. x ∈ Ω .

Remark 4.2. The proof of the above theorem can be found in [6], Vol. I, Sec 3.2, Theorem 1.
Here we only remark that (4.3) is a consequence of the fact that the assumptions (4.2) imply
the convergence of graphs Guk

⇀ Gu in D3(V ×R3) which in turn relies on the Federer-Fleming
closure theorem [5].
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The sequential weak compactness of bounded sets in Lp, p > 1, together with Theorem 4.1
yields the following compactness result.

Theorem 4.3. Let {uk} be a sequence of maps in cartp(V,R3), p > 1. Suppose that

(4.4) sup
k

‖uk‖Ap <∞ ,

then there exists a subsequence {uki
} of {uk} and a map u ∈ cartp(V,R3) such that

uki
⇀ u in Ap(V,R3) .

For the proof of Theorem 4.3 we refer the reader to [6], Vol. I, Sec 3.2, Theorem 2.

Remark 4.4. In contrast with the case p = 1, for p > 1 the weak convergence of a sequence
{uk} in cartp(V,R3) is equivalent to the convergence of the graphs Guk

in D3(V × R3) together
with the equiboundedness of the norms ‖uk‖Ap . This is not true for p = 1 and indeed Theorem
4.3 is false in this case. More precisely, when p = 1, by (4.4) we can only infer the existence of
a subsequence {uki

}, a function u ∈ BV (V,R3) and a current T ∈ D3(V × R3) such that

uki
⇀ u weakly in BV (V,R3) ,

MJ
I (Duk) ⇀ µJ

I as measures ,

Guk
⇀ T in D3(V × R3) ,

but in general T �= Gu and u and µJ
I are only partially related.

Theorem 4.3 allows us to reformulate the minimization problem for (1.7) on a different set
of fields. More precisely, in the definition of F , (3.1), we may replace the set E(B) in (ii) by
cartp(B,R3). We denote by (ii’) the new assumption. Consequently we define

F̃ := {F ∈ Lp(Ω,M3×3) : (i) and (ii’) hold } .
Remark 4.5. It is known that the condition required in (ii′) is stronger than that in (ii), more
precisely

cartp(V,R3) � {u ∈W 1,p(V,R3) : adjDU = AdjDu ∈ Lp(V,M3×3),detDu = detDu ∈ Lp(V )} .
Consequently we find that the set F̃ is a proper subset of F :

F̃ � F .

We now state the existence theorem on the set F̃ which, unlike Theorem 3.4, holds for any
1 < p < 2.

Theorem 4.6. Let 1 < p < 2. Assume that there exists F ∈ F̃ such that W(F ) is finite. Then
the functional W attains its minimum on F̃ .

Proof. The proof is an immediate consequence of Theorem 4.3. �

Remark 4.7. Observe that a remark similar to Remark 3.5 also holds in the setting of Cartesian
maps. Indeed the function u constructed in Example 3.6 is smooth far away from l and it
therefore belongs to cartp(V \ l,R3) for every open bounded set V ⊂ R3.

�
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[12] V. Šverák: Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal. 100

(1988), 105–127.


