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STABILITY OF SHOCK WAVES IN SPECIAL AND GENERAL

RELATIVITY

HEINRICH FREISTÜHLER AND MOHAMMEDREZA RAOOFI

Abstract. For general relativity, the persistence problem of shock fronts in
perfect fluids is also a continuation problem for a pseudo-Riemannian metric
of reduced regularity. In this paper, the problem is solved by considerations on
a Cauchy problem which combines a well-known formulation of the Einstein-
Euler equations as a first-order symmetric hyperbolic system and Rankine-
Hugoniot type jump conditions for the fluid variables with an extra (non-)jump
condition for the first derivatives of the metric. This ansatz corresponds to
the use of space-time coordinates which are natural in the sense of Israel and
harmonic at the same time. As in non-relativistic settings, the shock front
must satisfy a Kreiss-Lopatinski condition in order for the persistence result
to apply. The paper also shows that under standard assumptions on the fluid’s
equation of state, this condition actually holds for all meaningful shock data.

1. Introduction

Consider the Einstein-Euler equations with a self-gravitating fluid,

Gαβ = 8κπTαβ (1.1)

where, with the Christoffel symbols Γα
βδ = 1

2gατ (∂δgβτ + ∂βgδτ − ∂τgβδ) and the
Ricci tensor Rαβ = ∂σΓσ

αβ − ∂βΓσ
ασ + Γσ

γσΓγ
αβ − Γσ

γβΓγ
ασ,

Gαβ = Rαβ − 1

2
Rγ

γgαβ

is the Einstein tensor and

T αβ = (ρ + p)UαUβ + pgαβ

the energy–momentum tensor. The metric is denoted by gαβ, and ρ, p, U stand for
total-energy density, pressure, and 4-velocity, respectively. Here and elsewhere in
this article we use Einstein’s summation convention (i.e., sums are taken over any
indices that appear twice, once up and once down). The lowering and raising of
indices is done by the metric g; Greek indices can have any value between 0 and 3,
while Latin indices get only values between 1 and 3.

We consider two settings. The fluid is either specified by an equation of state of
the form p = p(ρ, n) with n the particle number density, and the system is closed
by the law of particle conservation,

Uβn;β + nUβ
;β = 0. (1.2)
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2 H. FREISTÜHLER AND M. RAOOFI

Or the fluid is “barotropic”: the equation of state is p = p(ρ) and equation (1.2)
is disregarded.1 Here and elsewhere in this article the notation ;β is used in the
standard fashion to denote covariant differentiation with respect to a coordinate
xβ .

Just as solutions to the classical Euler equations, flows governed the Einstein-
Euler system may contain shock waves. A shock front Σ divides space–time in two
parts in which the metric and fluid variables, and hence the tensors G and T , are
smooth and satisfy (1.1), while across Σ, the jump conditions

[Gαβ ]νβ = 0 (1.3)

hold, with ν the normal vector to Σ. Eqs. (1.3) entail the Rankine–Hugoniot
conditions

[T αβ]νβ = 0. (1.4)

The jump condition corresponding to (1.2) is

[nUβ ]νβ = 0. (1.5)

As shown in [I] (cf. also [ST3]),

[gαβ] = [∂γgαβ] = 0 (1.6)

is a sufficient (though not necessary) condition for (1.3) to hold. The idea being
that it seems consistent to have the metric g of class C1 — jumps in the fluid
variables ρ, n, U go hand in hand with jumps in the second derivatives of g —, we
will always impose the stronger condition (1.6) instead of (1.3).

It is well-known that the Einstein–Euler equations are not a priori hyperbolic (or
elliptic or parabolic) — due to the physically evident invariance against diffeomor-
phic transformations in the independent variables, solutions to their initial value
problem are obviously not even unique. In order to overcome this difficulty and
pose a correct Cauchy problem, one usually deactivates the freedom of coordinate
changes by choosing one or the other preferred coordinate system (see [CBr, Ta]).
One option is given by so-called harmonic coordinates (cf. Section 4); we will con-
sistently take this option. In harmonic coordinates, the Einstein-Euler equations
(1.1) read (cf. Rendall [Re])

−1

2
gγδ∂γ∂δgαβ + Hαβ(g, ∂g) = 8πκ(Tαβ − 1

2
T γ

γgαβ)

T
αβ

;β = 0,

(1.7)

The — hyperbolic — equations (1.7) (with (1.2)), together with jump conditions
(1.4) and (1.6) (and (1.5)) are the object of our investigations.

This paper studies the issue of persistence of shock fronts, i. e., the question:
If Cauchy data for (1.1) contain a shock front, can they be continued to an open
patch of space-time? An affirmative answer to this question is the main result of
this paper:

1If p = p(ρ), then for any function ñ (reflecting for example isentropicity or isothermality)
equation (1.2) with n = ñ(ρ) is compatible with (1.1) for smooth solutions. It generally is not for

weak solution, i. e., in the presence of shock waves. In shock wave theory, the barotropic-fluid case
is thus considered for rather mathematical motives, namely as a simpler counterpart of the other
case, in (slightly twisted) analogy with the barotropic version of the classical Euler equations,
which has only mass density and velocity as independent variables.
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Theorem 1.1. (I) Let Σ0 be a C∞ surface in R3 and Ω̃0 a closed ball of positive

radius in R
3 which is centered at a point x∗ of Σ0 such that Ω̃0 ∩ Σ0 is connected

and Ω̃0 \ Σ0 has two connected components Ω̃−
0 , Ω̃+

0 . Consider C∞ functions

(̊g±, k̊±, ρ̊±, n̊±, Ů±) on clos Ω̃±
0 (1.8)

such that the data

(̊g, k̊, ρ̊, n̊, Ů) ≡ (̊g±, k̊±, ρ̊±, n̊±, Ů±) on Ω̃±
0 (1.9)

respect the compatibility relations (cf. Sec. 4)

G0
δ|t=0 =: G0

δ (̊gαβ , ∂i∂j g̊αβ, k̊αβ , ∂ik̊αβ) = 8πκT 0
δ, (1.10)

together with

[̊gαβ] = [∂ig̊αβ] = [̊kαβ ] = 0. (1.11)

Assume that at every point of Σ0, the data satisfy
(i) the Rankine-Hugoniot conditions (1.4),(1.5), with a smooth function ν on Σ

that extends the spatial normal N of Σ to a 4-vector, νi = Ni, i = 1, 2, 3,
(ii) the uniform Kreiss-Lopatinski condition (cf. Sec. 2) for the corresponding

frozen-coefficients special-relativistic planar shock front, and
(iii) consistency-of-derivatives conditions of all orders.
Then there exist
(a) a positive time T > 0, a ball Ω0 ⊂ R3 of positive radius with center x∗, and

a C∞ hypersurface
Σ ≡ ∪0≤t≤T ({t} × Σt) ⊂ R

4

extending Σ0 to positive times such that with Ω ≡ [0, T ] × Ω0, Σ ∩ Ω is connected
and divides Ω \ Σ in two connected components Ω−, Ω+,

(b) two C∞ functions

(g±, ρ±, n±, U±) on clos Ω±

satisfying (1.1), (1.2) classically at every interior point and the jump conditions
(1.6),(1.4),(1.5) at every point of Σ, such that

(c) the function

(g, ρ, n, U) ≡ (g±, ρ±, n±, U±) on Ω± (1.12)

is the only such piecewiese smooth weak solution on Ω with

(g, ∂tg, ρ, n, U)|t=0 = (̊g, k̊, ρ̊, n̊, Ů).

(II) An analogous statement holds with the variable n and Equation (1.2) sup-
pressed.

To illustrate Theorem 1.1 at a simple level, we formulate what it means in
the special case of special relativity. This case corresponds to κ = 0 and g =
diag(−1, 1, 1, 1), i. e., (1.7),(1.2) reduce to

∂β(T αβ) = 0, ∂β(nUβ) = 0. (1.13)

For the case of special relativity, the assertion of Theorem 1.1 reads

Corollary 1.2. (I) Let Σ0 be a C∞ surface in R3 and Ω̃0 a closed ball of positive

radius in R
3 which is centered at a point x∗ of Σ0 such that Ω̃0 ∩ Σ0 is connected

and Ω̃0 \ Σ0 has two connected components Ω̃−
0 , Ω̃+

0 . Consider C∞ data

(ρ̊±, n̊±, v̊
±) on clos Ω̃±

0 (1.14)
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satisfying, at every point of Σ0,
(i) the Rankine-Hugoniot conditions (1.4),(1.5), with ν ≡ (−s, N) where N is

the spatial normal to Σ0 and s : Σ0 → R an appropriate smooth speed function,
(ii) the uniform Kreiss-Lopatinski condition and
(iii) consistency-of-derivatives conditions of all orders.

Then there exist (a) a positive time T > 0, a ball Ω0 ⊂ Ω̃0 of positive radius with
center x∗, and a timelike C∞ hypersurface

Σ ≡ ∪0≤t≤T ({t} × Σt) ⊂ R
4

extending Σ0 to positive times such that with Ω ≡ [0, T ] × Ω0, Σ ∩ Ω is connected
and divides Ω \ Σ in two connected components Ω−, Ω+, (b) two C∞ functions

(ρ±, n±,v±) on clos Ω±

satisfying (1.13) classically at every interior point and the Rankine-Hugoniot con-
ditions (1.4),(1.5) at every point of Σ, such that (c) the function

(ρ, n,v) ≡ (ρ±, n±,v±) on Ω± (1.15)

is the only such piecewiese smooth weak solution on Ω with data (1.14) on {0}×Ω̃0.
(II) An analogous statement holds with the variable n and Equation (1.13)2 sup-

pressed.

While Corollary 1.2 by itself is a straightforward example of the general Theorem
on Shock Stability proved by Majda [Ma2] and (in refined form) by Métivier [Mé],
quite some extra and novel considerations are needed to treat the general case. We
follow Rendall [Re] and introduce

gαβγ := ∂γgαβ

to write the first line of (1.7) as

− g00∂tgαβ0 − 2g0i∂igαβ0 − gij∂igαβj + 2Hαβ(gγδ, gγδσ) = 16κπ(Tαβ − 1

2
T γ

γgαβ)

gij∂tgαβi − gij∂igαβ0 = 0

∂tgαβ − gαβ0 = 0.

(1.16)
Here and henceforth, t ≡ x0 denotes a coordinate which is time-like for the solutions
of (1.1) we consider. Regarding the equations, (1.16) or (1.7)1, for the metric g,
using jump condition (1.6) corresponds to considering the natural weak solutions
of these equations with bounded source κ̃(Tαβ − 1

2T γ
γgαβ).

There is a deeper justification of using (1.6): It actually is (equivalent to (1.3))
as soon as one works in what is called natural coordinates (cf. [I]). It may be one
key idea of this paper that we treat the problem in harmonic natural coordinates.
Why this is possible, is explained in Section 4.

The proof of Theorem 1.1 is given in Section 3. Section 2 explains the uniform
Kreiss-Lopatinksi condition and shows that it is often satisfied.

Shock waves in general relativistic fluids have been considered since long ago;
cf. notably the works of Lichnerowicz, Taub, and Israel, [Li, Tb, I]. In recent
years, new interest in such waves has been prompted notably by the results of
Smoller, Temple, and associates, who gave interesting concrete examples of shock
waves in general relativity and solved initial value problems both for the Lorentz
invariant Euler equations and the Einstein-Euler equations, for data containing or
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generating shock waves. Cf. notably [ST1, ST2, Ch1, Ch2, GT] and the survey
[ST3] with further references. The initial-value problems with shock wave data for
the fully (1 + 3)-dimensional original versions of the Einstein-Euler equations and
of the “Lorentz-Euler” equations seem however not to have been studied prior to
this paper.

2. The Lopatinski determinant of shock fronts in relativistic fluids

2.1. Lopatinski determinant and Kreiss-Lopatinski condition. Consider a
system of hyperbolic conservation laws in d space dimensions,

∂

∂t
f0(w) +

d
∑

j=1

∂

∂xj
f j(w) = 0, (2.1)

w ∈ Rn, with a (without loss of generality) standing planar shock wave solution
w(x, t) = w̄(x1) defined by

w̄(x1) =

{

w− for x1 < 0

w+ for x1 > 0.
(2.2)

satisfying the Rankine-Hugoniot condition

[f1] = f1(w+) − f1(w−) = 0. (2.3)

The linearized stability of the shock can be investigated using a Lopatinski de-
terminant, which is defined as follows. Let Aj = Df j , ξ = (ξ1, . . . , ξd)

tr , ξ̃ =
(ξ2, . . . , ξd)

tr, and

f ξ :=

d
∑

j=1

ξjf
j, f ξ̃ := f (0,ξ̃). (2.4)

Aξ and Aξ̃ are defined similarly and

A(λ, ξ̃) := (λA0 + iAξ̃)(A1)
−1. (2.5)

and A± is A, evaluated at the endstates w±. For a Lax p-shock, let {r−1 , · · · , r−p−1}
and {r+

p+1, · · · , r+
n } be the bases for the stable and unstable manifolds of A−(λ, ξ̃)

and A+(λ, ξ̃), respectively. A Fourier–Laplace mode analysis of the linearization of
(2.1),(2.3) around (2.2) leads ([K, Ma1]) to the Lopatinski determinant

∆(λ, ξ̃) = det(r−1 , · · · , r−p−1, λ[f0(w)] + i[f ξ̃(w)], r+
p+1 , · · · , r+

n ), (2.6)

where [ ] stands for the jump.

Definition 2.1. ([K, Ma1]) The planar shock w̄ is said to satisfy the uniform

Kreiss-Lopatinski condition (resp. the weak Kreiss-Lopatinski condition) if ∆(λ, ξ̃)

does not vanish for any (λ, ξ̃) ∈ C×Rd−1 \ {(0, 0)} with Reλ ≥ 0 (resp. Reλ > 0).

It is a not so difficult observation that, if the shock is an extreme shock, i.e.,
p = 1 or p = n, then ∆ can be expressed by

∆ = ℓ · (λ[f0(w)] + i[f ξ̃(w)]) (2.7)

where ℓ is, in the case p = 1, a left eigenvector of A+ corresponding to an eigenvalue
β with Reβ < 0, and, in the case p = n, a left eigenvector of A− corresponding to
an eigenvalue β with Reβ > 0.
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In the remainder of this section, we show that many relativistic shock waves
satisfy the uniform Kreiss-Lopatinski condition.

2.2. Results on the Lopatinski determinant. In the setting of special relativ-
ity, the equations for conservation of energy, momentum and mass are

∂t

































ρ+pv2

1−v2

(ρ+p)v1

1−v2

(ρ+p)v2

1−v2

(ρ+p)v3

1−v2

n√
1−v2

































+∂x1



































(ρ+p)v1

1−v2

(ρ+p)(v1)2

1−v2 + p

(ρ+p)v1v2

1−v2

(ρ+p)v1v3

1−v2

nv1

√
1−v2



































+∂x2



































(ρ+p)v2

1−v2

(ρ+p)v1v2

1−v2

(ρ+p)(v2)2

1−v2 + p

(ρ+p)v2v3

1−v2

nv2

√
1−v2



































+∂x3



































(ρ+p)v3

1−v2

(ρ+p)v1v3

1−v2

(ρ+p)v2v3

1−v2

(ρ+p)(v3)2

1−v2 + p

nv3

√
1−v2



































= 0,

(2.8)
where ρ is the density of total energy, n the number density of particles, p = p(ρ, n)
the pressure, v = (v1, v2, v3) the velocity, and v2 = (v1)2 + (v2)2 + (v3)2. The

first four equations above are obtained from equation T
αβ

;β = 0, considered in an

inertial frame with gαβ = diag(−1, 1, 1, 1), i. e., the Minkowski metric. The last
equation is the equation of conservation of matter, (1.2), in such frame. The aim
is to find the Lopatinski determinant for a planar shock wave

(n̄, ρ̄, v̄) =

{

(n−, ρ−,v−) x1 < st

(n+, ρ+,v+) x1 > st.
(2.9)

moving along the x1-axis, and thereby analyze the stability of the shock.In the
sequel, we freely put the minus or plus sign on the top or bottom of the variable,
whenever convenient (so, for example, v+ and v+ denote the same thing).

Shock waves for relativistic fluiddynamics in one space dimension have been
investigated in [Ch1] and[Ch2]. The fact that applying Lorentz transformations,

t → γ(t − kx), x1 → γ(x − kt), xi → xi,

v1 → v1 − k

1 − kv1
, vi → vi

γ(1 − kv1)
,

with γ = 1√
1−k2

and i = 2, 3, to equations (2.8) does not change them is known as

Lorentz invariance. It implies that any planar shock wave in 3 space dimensions can
be regarded as a standing 1-dimensional shock wave. I. e., we can assume without
loss of generality that s = 0, v2

− = v2
+ = 0, v3

− = v3
+ = 0. We write v1

± =: v± and

µ := ρ+p
1−v2 .

Result 2.2. For the Lopatinski determinant of a 1-shock, we have

∆(λ, ξ2, ξ3) =
1

(λ − βv+)p+
n

(

[
ρ + pv2

1 − v2
]λ

(

p+
ρ (λ − βv+) + v+(p+

ρ +
n+p+

n

µ+(1 − (v+)2)
)(λv+ − β)

)

+λn+p+
n (1 − v+

v−
)(λ − βv+) + (ξ2

2 + ξ2
3)[p](p+

ρ +
n+p+

n

µ+(1 − (v+)2)
)(1 − (v+)2)

)

(2.10)
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(where [ ] stands for the jump at the shock), subject to the following conditions:

Re(β) < 0, Re(λ) ≥ 0,

− (p+
ρ +

n+p+
n

µ+(1 − (v+)2)
)(β − λv+)2 + (βv+ − λ)2 + (ξ2

2 + ξ2
3)(1 − (v+)2)(p+

ρ +
n+p+

n

µ+(1 − (v+)2)
) = 0

(2.11)

Result 2.3. A Lax 1-shock (2.9) for the system of equations (2.8) does not (even)
satisfy the (weak) Kreiss-Lopatinski condition if

(

p+
ρ + v+

√

p+
ρ +

n+p+
n

µ+(1 − (v+)2)

)

[
ρ + pv2

1 − v2
] + n+p+

n (1 − v+

v−
) (2.12)

is negative; it satisfies the weak Kreiss-Lopatinski condition if (2.12) is positive.
The shock satisfies the uniform Kreiss-Lopatinski condition if and only if

(p+
ρ + (v+)2)[

ρ + pv2

1 − v2
] + n+p+

n (1 − v+

v−
) ≥ [p](1 − (v+)2). (2.13)

Result 2.4. In the case of a barotropic fluid, i. e., when the fifth equation of (2.8)
is dropped and the pressure function is of the form p = p(ρ) with p′(ρ) > 0,

∆(λ, ξ2, ξ3) = [
ρ + pv2

1 − v2
]λ

(

(λ−βv+)+v+(λv+−β)
)

+(ξ2
2+ξ2

3)[p](1−(v+)2), (2.14)

under the conditions

Re(β) < 0, Re(λ) ≥ 0,

− p+
ρ (β − λv+)2 + (βv+ − λ)2 + (ξ2

2 + ξ2
3)(1 − (v+)2)(p+

ρ ) = 0.
(2.15)

In this case, every 1-shock satisfies (at least) the weak Kreiss-Lopatinski condition;
it satisfies the uniformly stable Kreiss-Lopatinski condition when

[
ρ + pv2

1 − v2
](p+

ρ + (v+)2) ≥ [p](1 − (v+)2). (2.16)

Result 2.5. In the special cases of

a “γ-gas” [Tb]: p(ρ, n) = (γ − 1)(ρ − n) with 1 < γ < 5
3

or

a barotopic fluid with p′(ρ) > 0 and p′′(ρ) > 0,

every shock it satisfies the uniform Kreiss-Lopatinski condition.

2.3. Calculating the Lopatinski determinant. Now consider a 1-shock for the
system (2.8). Introducing the new variable µ = ρ+p

1−v2 , we get

∂tf
0(n, µ, v) + ∂x1f1(n, µ, v) + ∂x2f2(n, µ, v) + ∂x3f3(n, µ, v) :=

∂t













µ − P

µv1

µv2

µv3
n√

1−v2













+ ∂x1













µv1

µ(v1)2 + P

µv1v2

µv1v3
nv1

√
1−v2













+ ∂x2













µv2

µv1v2

µ(v2)2 + P

µv2v3

nv2

√
1−v2













+ ∂x3













µv3

µv1v3

µv2v3

(µv3)2 + P
nv3

√
1−v2













= 0,

(2.17)
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where P = P (n, µ, v) = p(n, ρ) is the pressure function with the new variables.
From the relation p + ρ = µ(1 − v2), we obtain

Pµ =
pρ(1 − v2)

1 + pρ

Pvi
=

−2µvipρ

1 + pρ

Pn =
pn

1 + pρ

(2.18)

For Reλ > 0, we are looking for a left eigenvector ℓ of (λDf0
+ + iξ2Df2

+ +

iξ3Df3
+)(Df1

+)−1, with an eigenvalue β, such that Reβ < 0. This means finding
solutions β, ℓ for ℓ(λDf0

+ + iξ2Df2
+ + iξ3Df3

+ − βDf1
+) = 0. Now,

B := λDf0
+ + iξ2Df2

+ + iξ3Df2
+ − βDf1

+

=



















λ − λP+
µ − βv+ −λP+

v − βµ+ iξ2µ
+ iξ3µ

+ −P+
n λ

λv+ − βv2
+ − βP+

µ λµ+ − 2βµ+v+ − βP+
v iξ2µ

+v+ iξ3µ
+v+ −P+

n β

iξ2P
+
µ iξ2P

+
v λµ+ − βµ+v+ 0 iξ2P

+
n

iξ3P
+
µ iξ3P

+
v 0 λµ+ − βµ+v+ iξ3P

+
n

0 n+

(1−(v+)2)
3
2

(λv+ − β) iξ2n+

(1−(v+)2)
1
2

iξ3n+

(1−(v+)2)
1
2

λ−βv+

(1−(v+)2)
1
2



















(2.19)
Suppressing +-signs, and using (2.18), we obtain

det B =
µ3(βv − λ)3

(1 + pρ)
√

1 − v2

(

− (pρ +
npn

µ(1 − v2)
)(β − λv)2 + (βv − λ)2 + (ξ2

2 + ξ2
3)(1 − v2)(pρ +

npn

µ(1 − v2)
)
)

(2.20)
Solving ℓB = 0 for ℓ = (ℓ1, · · · , ℓ5), we find out:

ℓ1 =
ℓ5

(λ − βv)
√

1 − v2

( pρ

pn

(λ − 2βv + λv2) +
n(λv − β)

µ(1 − v2)

)

,

ℓ2 = ℓ5

(

− pρv

pn

√
1 − v2

− (
n

µ(1 − v2)
3
2

+
pρ

pn

√
1 − v2

)(
λv − β

λ − βv
)
)

,

ℓ3 =
−iξ2ℓ5

(λ − βv)
√

1 − v2

(pρ(1 − v2)

pn

+
n

µ

)

ℓ4 =
ξ3

ξ2
ℓ3.

Notice that, by the Rankine-Hogoniot condition, [f1] = 0; as a consequence
n+v1

+√
1−(v+)2

=
n−v1

−√
1−(v−)2

hence [ n√
1−v2

] = n+√
1−(v+)2

(

1 − v+

v−

)

. Hence, letting ℓ5 =
√

1 − (v+)2, and using (2.6), we obtain (2.10). This finishes the proof of Result
2.2.

2.4. Analysing the Lopatinski determinant. In the case of a 1-shock, it can
easily be seen that [v] < 0 and [µ] > 0. Also, using the Rankine-Hogoniot condition
[µv] = 0, we find out that

[µ(v1)2] = µ+(v+)2 − µ−(v−)2

=(µ+v+ − µ−v−)v+ + (µ+v+ − µ−v−)v− + v−v+(µ− − µ+)

= − [µ]v−v+.

(2.21)

Now, on the one hand, [ρ+pv2

1−v2 ] = [µv2] + [ρ] = −[p] + [ρ] (by the Rankine-Hugoniot

condition [µ(v1)2 + p] = 0), and on the other hand, [ρ+pv2

1−v2 ] = [µ]− [p], which gives
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us [µ] = [ρ] and

[
ρ + pv2

1 − v2
] = [ρ](1 − v−v+) > 0. (2.22)

For the proofs of Results 2.2 to 2.4, let us start from the barotropic case, p =
p(ρ), p′(ρ) > 0; this case is easier and sheds some light on the analysis of the more

general case. In this case, ∆ is given by(2.14). Having in mind that [ρ+pv2

1−v2 ] > 0

and [p] > 0, it is quite easy to see that, in this case, ∆, given by (2.14), can not
vanish with Reλ > 0, Reβ < 0 (just by evaluating where the expression falls in
the imaginary plane). Hence in this case every 1-shock is (at least) weakly stable.
Also, one can see that ∆ vanishes for Reλ = 0 only if Reβ = 0. Letting λ = iα

and β = −iθ, the equations ∆ = 0 (with ∆ given by (2.14)) and (2.15) become,
respectively, two hyperbolas

H1(θ, α) := (1 − v2)α2 + 2αθv − ξ2[p]([
ρ + pv2

1 − v2
])−1 = 0

H2(θ, α) := (θv + α)2 − p′(ρ)(θ + αv)2 − ξ2(1 − v2)p′(ρ) = 0

(2.23)

and the only way ∆ can vanish in this regime is when the two hyperbolas intersect
at some point θ ≥ θ∗, where θ∗ is the minimum point for the hyperbola H2. A

routine calculation shows that θ∗ = v(1−p′(ρ))√
(1−v2)(p′(ρ)−v2)

with corresponding minimum

value α∗ =
√

p′(ρ)−v2

1−v2 . Therefore, there is no point of intersection to the right of

(θ∗, α∗), if and only if H1(θ∗, α∗) < 0, and this is equivalent to (2.16).
For the case p = p(ρ, n), notice that for λ and β satisfying ∆ = 0 in (2.10) and

(2.11), we can clearly see that

λ ∈ iR if and only if β ∈ iR.

Therefore, we again set α = iλ and θ = −iβ, and we have again two hyperbolas

H1(θ, α) := [
ρ + pv2

1 − v2
]α

(

pρ(α + θv) + vQ(αv + θ)
)

+pnn(1 − v

v−
)α(α + θv) − ξ2[p]Q(1 − v2) = 0

H2(θ, α) := (θv + α)2 − Q(θ + αv)2 − ξ2(1 − v2)Q = 0

(2.24)

with Q := pρ + nPn

µ(1−v2) . Let (θj , αj), j = 1, · · · , 4 be four (real or imaginary)

solutions to (2.24). We analyze how the (θj , αj)’s change with the parameters of
the problem. We notice that strong instability holds only when for some j, αj and
θj both have positive imaginary parts (that is, for corresponding λ and β we have
Reλ > 0, Reβ < 0); let us say such a pair (θj , αj) falls in the “unstable quarter”.

We notice, first, that the asymptotes for H1 are α = 0 and

d : α = −pρ[k]v + vQ[k] + vr

pρ[k] + v2Q[k] + r
θ (2.25)

with r := npn(1 − v
v−

) and k := µ − p. The asymptotes to H2 are

d1 : (1 −
√

Qv)α = +(
√

Q − v)θ

d2 : (1 +
√

Qv)α = −(
√

Q + v)θ.
(2.26)

Now we have the following regimes to consider. First, when the slope of d is
bigger than zero and less than the slope of d1, the two hyperbolas cannot intersect
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in the real θ–α plane, see figure 1, so there are four non-real solutions to the
intersection of the two hyperbolas. In this regime, some αj , θj fall in the unstable
quarter, so we have strong instability. Note that the slope of d being bigger than

H1

H2

θ

α

Figure 1. Unstable case

zero and less than the slope of d1, is equivalent to (2.12) being negative. Imagine
that the position of d1, d2 are fixed, but by changing parameters we change d, so that
now its slope is bigger than the slope of d1. (note that the case d = d1 corresponds
to 1–dimensional instability; see, e.g., [BS]). Then there will be immediately one
pair of intersection of H1 and H2 in the real θ-α plane (figurere 2), while the other
pair is not in the unstable quarter; so we have weak stability in this regime. Finally,

H1

H2

θ∗

α∗

θ

α

Figure 2. Weakly stable case

denoting the minimum point of H2 by (θ∗, α∗), we show that the change from weak
to uniform stability happens when we have H1(θ∗, α∗) < 0; a simple calculation
shows that

θ∗ =
v+(1 − Q)

√

(1 − v2)(Q − v2)
α∗ =

√

Q − v2

1 − v2
. (2.27)

and it is very easy to see that H1(θ∗, α∗) < 0 is equivalent to (2.13).
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H1

H2

θ∗
θ

α

Figure 3. Uniformly stable case

Remark 2.6. (i) Some findings similar to those of this Section had been made
already in [AR]. That paper also contains a comparison between stability in the
sense of Section 2.2 and so-called corrugational stability, a notion which had been
proposed by Anile and Russo.

(ii) Our above results on the Lopatinski determinant for shock fronts are anal-
ogous to the situation with the (classical) Euler equations [Ma1]. For the latter
case, arguments such as those used in [JL] can be simplified in analogy with the
considerations of this subsection. Cf. also [BS].

3. Persistence of shock fronts in relativistic fluids

3.1. The case of special relativity. As mentioned above, Corollary 1.2, besides
being a special case of Theorem 1.1, is a straightforward consequence of the general
Theorem on Shock Stability proved by Majda and (in refined form) by Métivier.
The central fact is

Proposition 3.1. ([Ma1, Mé]). Consider the mixed problem

{

Lau :=
∑n

j=0 Aj(a)∂ju = f x1 > 0

Ba(ϕ, u) := b(a) · ∇ϕ + M(a)u = g x1 = 0
(3.1)

with a ∈ U ⊂ RM . Assume that
(i) The System L is hyperbolic symmetric, i.e., there is a smooth matrix valued func-
tion S(a) on U such that SAj is symmetric and SA0 is positive definite. Moreover,
assume that it has constant multiplicity.
(ii) For all a ∈ U the constant coefficient system (La,Ba) satisfies the uniform
Kreiss-Lopatinski condition.

Let Ω := Rn
+ × [0,∞) and ω := ∂Ω = {x ∈ Ω; x1 = 0} and write

L2
γ := eγtL2, H1

γ := eγtH1, ‖v‖L2
γ

:= ‖e−γtv‖L2, ‖v‖H1
γ

:= ‖e−γtv‖H1

with respect to either of these domains. Fix a constant K > 0 and a compact
set K ⊂ U . Then there are γ0 > 0 and C such that for all Lipschitz functions a

on Ω valued in K satisfying ‖a‖W 1,∞ ≤ K, for all γ > γ0 and for all (u, ϕ) ∈
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H1
γ(Ω) × H1

γ(ω) satisfying (3.1), the following estimate holds:

γ‖u‖2
L2

γ(Ω) + ‖u‖2
L2

γ(ω) + ‖∇ϕ‖2
L2

γ(ω)

≤ C(
1

γ
‖f‖2

L2
γ(Ω) + ‖g‖2

L2
γ(ω)).

(3.2)

How this proposition is used in the proof of the Majda-Métivier Theorem and
thus of Theorem 1.2, can be found in [Ma2, Mé, BS] or by “projecting” the following
considerations for the general-relativity case on the special case of special relativity.

3.2. Linearization. We follow Majda’s strategy. Let (g−, ρ−, n−, U−) and (g+, ρ+, n+, U+)
denote states at either side of the shock front, a time-like hypersurface

Σ = ∪0≤t≤T ({t} × Σt).

Let ν(η) a unit normal to Σ0, the initial position of the shock surface, and
consider the mapping

x(η, τ) := η + τν(η), (3.3)

which for sufficiently small τ , parameterizes a neighborhood of Σ0, so that given
any x with d(x, Σ0) < δ, there is a unique η = η(x), such that (3.3) holds with a
unique τ . The shock surface Σt at later times is parameterized by a function ξ(η, t),
so that

Σt = {η + ξ(η, t)ν(η)}
with ξ(η, 0) = 0.

(3.4)

Furthermore, we assume the perturbation of the solution is given by

gǫ±
αβ, gǫ±

αβδ, ρ
ǫ±, nǫ±, U ǫ±

and that of the shock surface by

Σǫ
t = {η + ξǫ(η, t)ν(η)},

so that

(gǫ±
αβ , gǫ±

αβδ, ρ
ǫ±, nǫ±, U ǫ±, ξǫ)|ǫ=0 = (g±αβ , g±αβδ, ρ

±, U±, ξ).

Let ̺(x) be a smooth cut-off function that is equal to one near Σ0, and vanishes away
from it. We make a change of variables, which for sufficiently small T , maps the
(perturbed) shock front Σǫ = ∪0≤t≤T ({t}×Σǫ

t) to the fixed hypersurface Σ0×[0, T ],
via

x̃ := x − ̺(x)ξǫ(η(x), t)ν(η(x)),

t̃ := t.
(3.5)

Correspondingly,

∂

∂xi
=

∂

∂x̃i
−

3
∑

j=1

∂(̺ξǫνj)

∂xi

∂

∂x̃j

∂

∂t
=

∂

∂t̃
− ̺

∂ξǫ

∂t

3
∑

j=1

νj ∂

∂x̃j
.

(3.6)

Now let hαβ, hαβγ be the infinitesimal changes in gαβ , gαβγ , i.e.,

(h±
αβ , h±

αβδ) :=
∂

∂ǫ
(gǫ±

αβ , gǫ±
αβδ)|ǫ=0,
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and ϕ := ∂ξǫ

∂ǫ
|ǫ=0 the infinitesimal change in the location of the shock wave. On

the minus side, we will have the following linear equations (with tildes dropped for
convenience):

−g00∂th
−
αβ0 + g00∂t(̺ξνk)∂kh−

αβ0 − 2g0i∂ih
−
αβ0 + 2g0i∂i(̺ξνk)∂kh−

αβ0

− gij∂ih
−
αβj + gij∂i(̺ξνk)∂kh−

αβj = A−
αβ(h−

γδ, h
−
γδσ,∇ϕ, wi)

gij∂th
−
αβi − gij∂t(̺ξνk)∂kh−

αβi − gij∂i(̺ξνk)∂kh−
αβ0 + gij∂ih

−
αβ0 = B

j
αβ(h−

γδσ,∇ϕ)

∂th
−
αβ − ∂t(̺ξνk)∂kh−

αβ − h−
αβ0 = Cαβ(∇ϕ)

(3.7)

with Aαβ , B
j
αβ , Cαβ linear. An analogous system holds on the plus side.

As for the second equation in (1.7), let us write µ := (p+ρ)(U0)2, uα := Uα

U0 , and

z := nU0. From now on we consider µ, z, and the ui’s as our fluid variables. Let
P (µ, ui, z, gαβ) := p(ρ, n) be the pressure in these new variables. We write Dmetric

and Dfluid for the gradient with respect to the metric and the fluid variables,
respectively. Then the second equation in (1.7) and equation (1.2) can be written,
respectively, as:

(DfluidT αβ)∂β

(

µ

ui

)

+ (DmetricT
αβ)∂β(gγδ) + Γα

δβT δβ + Γβ
δβT δα = 0 (3.8)

and

(zuβ);β . (3.9)

Changing coordinates to t̃, x̃, and linearizing, we obtain

(DfluidT αβ)∂β

(

m

wi

)

− (DfluidT αβ)(∂β(̺ξνk))∂k

(

m

wi

)

= Eα(m, wi, ζ, ϕ, Dϕ, hγδ, hγδσ)

(3.10)
with E linear, and with m, wi, ζ the infinitesimal changes in µ, ui, z. In a simi-
lar way, we linearize the equation (3.9). Hence, we consider the following linear
equations for the minus side,

Linearized equations:

−g00∂th
−
αβ0 + g00∂t(̺ξνk)∂kh−

αβ0 − 2g0i∂ih
−
αβ0 + 2g0i∂i(̺ξνk)∂kh−

αβ0

− gij∂ih
−
αβj + gij∂i(̺ξνk)∂kh−

αβj = H1−
αβ

gij∂th
−
αβi − gij∂t(̺ξνk)∂kh−

αβi − gij∂i(̺ξνk)∂kh−
αβ0 + gij∂ih

−
αβ0 = H2−

αβ

∂th
−
αβ − ∂t(̺ξνk)∂kh−

αβ − h−
αβ0 = H3−

αβ

(3.11)

and

(DfluidT αβ)∂β

(

m−

wi
−

)

− (DfluidT αβ)(∂β(̺ξνk))∂k

(

m−

wi
−

)

= Fα−

uα
−

(

∂αζ− − ∂α(̺ξνk)∂kζ−
)

+ z−
(

∂iw
i
− − ∂i(̺ξνk)∂kwi

−
)

= K−
(3.12)

with DfluidT αβ computed at µ−, uα
−, z−, and analogous equations for the plus

side. The linearized boundary conditions, obtained from (1.4) and (1.6), read

B(m±, w±, ζ±, ϕ) := b0ϕt + b1∇tanϕ + b2ϕ + M(m±, w±, ζ±) = G

h+
αβ = h−

αβ , h+
αβδ = h−

αβδ

(3.13)



14 H. FREISTÜHLER AND M. RAOOFI

on [0, T ] × Σ0, with bi’s and coefficients of M depending on the metric and fluid
quantities at the two sides of the shock.

3.3. Principal estimates. The following estimates link the stability of fluiddy-
namic shock waves in general relativity to that of corresponding shock waves in
special relativity:

Lemma 3.2. Assume that at each point of the front, the frozen-coefficient versions
of (3.12) satisfy the uniform Kreiss-Lopatinski condition. Then, for ϕ, m±, w±

and h±
αβ, h±

αβδ satisfying (3.11), (3.12) on Ω = [0, T ] × (R3 \ Σ0) and (3.13) at

σ = [0, T ]× Σ0, and vanishing at t = 0, we have

γ‖(m, w, ζ)‖2
L2

γ(Ω) + ‖(m, w, ζ)‖2
L2

γ(σ) + ‖∇ϕ‖2
L2

γ(σ)

≤ C(
1

γ
‖F‖2

L2
γ(Ω) +

1

γ
‖K‖2

L2
γ(Ω) + ‖G‖2

L2
γ(σ))

(3.14)

and

‖h‖2
L2(σ) + ‖h‖2

H1(Ω) ≤ C‖H‖L2(Ω). (3.15)

Proof. We first invoke Proposition 3.1; this yields Estimate (3.14). Estimate (3.15)
then follows from the subsequent observation. �

Lemma 3.3. Consider a uniformly Lipschitz continuous matrix aij(t, x) which
is symmetric and positive definite for (t, x) ∈ [0, T ] × R3 and a function h =
(h0, · · · , h3) : [0, T ] × R3 → R4 that is smooth, up to the boundary, on either
side of a time-like hypersurface σ ⊂ [0, T ]× R3. Assume that h solves the system

{

∂th0 − aij(t, x)∂ihj = H1

aij∂thi − aij∂ih0 = H
j
2

(3.16)

separately on either side of Σ, and h vanishes for t = 0. Then, if h is continuous
across Σ, it satisfies the estimate

‖h‖2
L2([0,T ]×R3) ≤ C(T )‖H‖2

L2([0,T ]×R3) (3.17)

for some positive constant C(T ).

Proof. h is the weak solution of the symmetric hyperbolic system (3.16). �

Starting from Lemma 3.2, existence, regularity, and uniqueness now follow as in
[Ma2, Mé, BS]. This concludes the proof of Theorem 1.1. See, however, Section 4.

We also observe

Lemma 3.4. With coefficients frozen, Eq. (3.12) is identical with the linearization
of a planar special-relativistic shock front on a fixed constant Lorentz background
metric g.

A linear change of coordinates taking g into diag(−1, 1, 1, 1) thus takes (3.12)
into (2.8). This makes the results of Section 2 directly applicable.
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4. Harmonic natural coordinates

Still, something remains to be done in order to know that we have treated the
Einstein-Euler equations really adequately. Namely, what we have indeed shown
completely in Section 3 is a modification of Theorem 1.1 in which Equations (1.1)
are replaced by Equations (1.7).

With Γα
βδ the Christoffel symbols for the metric tensor gαβ , we define

λα := gβδΓα
βδ =

1

2
gβδgατ (∂δgβτ + ∂βgδτ − ∂τgβδ), (4.1)

and then rewrite the Ricci tensor as

Rαβ = R̃αβ +
1

2
gατ∂βλτ +

1

2
gβτ∂αλτ , (4.2)

where

R̃αβ := −1

2
gγδ∂γ∂δgαβ + Hαβ(g, ∂g). (4.3)

A harmonic coordinate system is one which satisfies λα = 0. Quite obviously, in
such coordinates the Einstein equations take the form (1.7). However, we did not
check whether our coordinates xβ are harmonic; and indeed our assumptions (1.10)
easily allow for data which violate the condition λα = 0. We will now first show
that if they the data do satisfy λα = 0, then the solution so does also for t > 0;
after that we show that we can actually reduce the problem always to that case.
In both steps we use a standard procedure (see [Ta]) which follows the argument
of [CBr], based on the work in [La]. The point here is that we allow shock waves;
that requires a little extra care.

First we rewrite the Einstein tensor as

Gαβ =
1

2
(∂αλβ + ∂βλα − gαβ∂δλ

δ) + T̃ αβ, T̃αβ := R̃αβ − 1

2
R̃δ

δgαβ . (4.4)

From the Bianchi identity G
αβ

;β = 0, we obtain

∂δ∂
δλα + B

αβ
δ (g, ∂g)∂βλδ = −2T̃

αβ
;β . (4.5)

On the other hand, if (1.3) holds, then

[∂αλβ + ∂βλα − gαβ∂δλ
δ]νβ + [T̃ αβ]νβ = 0. (4.6)

Now let S = {t = 0} the 3-dimensional, space-like initial hypersurface and

g̊αβ := gαβ|S , k̊αβ := ∂tgαβ|S . (4.7)

It is well-known (e. g., [Ta] (page 580)) that the restriction G0
δ|S is given in terms

of g̊αβ , k̊αβ and their tangential derivatives, while it does not involve ∂2
t gαβ . Let

G0
δ = G0

δ (̊gαβ , ∂i∂j g̊αβ, k̊αβ , ∂ik̊αβ)

denote the resulting expression. The key lemma which enables the use of harmonic
coordinates is

Lemma 4.1. Assume we have a solution of (1.7) on [0, T ] × S that is smooth on
the two sides of a time-like hypersurface, Σ and, at Σ satisfies the jump condition
(1.4), and gαβ , ∂gαβ are continuous (which implies (1.3)). Assume for 0 ≤ δ ≤ 3
we have λδ|S = 0 and the compatibility conditions

G0
δ|S =: G0

δ (̊gαβ , ∂i∂j g̊αβ , k̊αβ , ∂i̊kαβ) = 8πκT 0
δ, (4.8)

are satisfied. Then λδ = 0 on [0, T ]× S.



16 H. FREISTÜHLER AND M. RAOOFI

Proof. Equations (1.7),(4.4) and (4.5) imply

∂δ∂
δλα + B

αβ
δ (g, ∂g)∂βλδ = 0. (4.9)

Note that this holds for both sides of the shock, and the coefficients are continuous
across Σ. On the other hand one can conclude easily from compatibility condition
(4.8) and λδ|S = 0 that ∂tλ

δ|S = 0 (see [Ta]). Also, at Σ, we have [λα] = 0, and

since by (1.7) T̃αβ = 8κπTαβ, (4.6) and (1.4) imply

[∂αλβ + ∂βλα − gαβ∂δλ
δ]νβ = 0. (4.10)

which implies that the normal derivative of λα is continuous at the shock. So λα

vanishes identically on [0, T ]× S. �

Finally, harmonic coordinates yα(x0, . . . , x3) are obtained (cf. [Ta]) by solving

g̃γδ(x)∂γ∂δy
α(x) = 0, y(x)|S = x|S , ∂y(x)|S = ∂x|S (4.11)

in which g̃ denotes the auxiliary metric given by

g̃(t, x1, x2, x3) ≡ g̊(x1, x2, x3) + t̊k(x1, x2, x3).

We may think of the whole problem as posed in the coordinates yα. As they are
harmonic, (1.7) is indeed equivalent to (1.1) in this frame. On the other hand,
the diffeomorphism invariance of the Einstein equations shows that the solution
obtained in the y coordinates transforms to a solution of (1.1) when pulled back to
the x coordinates.

As g̃ is C1, the coordinate change x 7→ y(x) is C2. As (1.6) means that the
x-coordinates are natural in the sense of Lichnerowicz and Israel, we have found

Lemma 4.2. The harmonic coordinates underlying formulation (1.7), ( (1.2),),
(1.4), (1.6) (and (1.5)) are natural in the sense of Lichnerowicz and Israel.

All shock waves constructed by Smoller and Temple, once one recasts them in
natural coordinates, provide examples of the solutions we have constructed here in
a general setting. This might seem a tautology because for these data we know
the solutions, but —: it is actually not difficult to come up with initial data not
taken from known open patches of space-time. The upcoming paper [FR2] will
(show that, and then) address the construction of an interesting, non-trivial class
of admissible inital data by solving (1.10), (1.11) directly.
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