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Abstract. This paper considers phase boundaries governed by regular kinetic relations as
first proposed by Abeyaratne and Knowles [1, 2]. It shows that static configurations of hyper-
elastic materials, in which two different martensitic (monoclinic) states meet along a planar
interface, are dynamically stable towards fully three dimensional perturbations.
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1. Introduction

At appropriate temperatures, certain crystalline materials are characterized by a multiplicity
of symmetry-related, preferred martensitic states of deformation. Nonlinear elasticity theory
(Ball and James [3, 4]) models such materials by a stored-energy density

W : R3×3
+ −→ [0,+∞)

which, as a frame-indifferent function of the deformation gradient U ∈ R 3×3
+ , has a non-

convex, multiple well structure with several global minima. Being any of these minima a
martensitic state, each corresponding well is called a martensitic phase. Many such materials
allow for pairs (U−,U+) of energy minimizing martensitic states which satisfy the Hadamard
condition

U+ − U− = a ⊗ ν (1)

for some a, ν ∈ R3, a � 0, |ν| = 1. In this case, U− and U+ are called rank-one connected, and
a configuration of the form

U0(x) =

{
U−, x · ν < 0,
U+, x · ν > 0,

(2)

is called a martensite twin. Mathematically, U0(x) is a weak solution to the system

divx σ(U) = 0,
curlxU = 0,

(3)

where σ(U) denotes the (first) Piola-Kirchhoff stress tensor

σ =
∂W
∂U

.

‡ Current address: Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Apartado Postal 20-726, C.P. 01000,
México D.F., México.
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Clearly, the function (U∗(x, t),V∗(x, t)) := (U0(x), 0) is a (time-independent) weak solution of
the equations of elastodynamics in the absence of external forces,

Ut − ∇xV = 0,
Vt − divx σ(U) = 0,

(4)

together with the physical constraint

curlxU = 0, (5)

in which the spatial and temporal derivatives of the local deformation X(x, t),

U(x, t) = ∇xX(x, t), and V(x, t) = Xt(x, t),

denote the now possibly time-dependent deformation gradient and velocity, respectively, of
the elastic material.

This paper addresses the stability of martensite twins (2) under the viewpoint of
elastodynamics. More precisely, we are concerned with the following question: What happens
to the solution (U∗,V∗) if its value at some time, say t = 0, is modified (perturbed) slightly? In
other words, will solutions (U,V) of (4), whose initial data (U(x, 0),V(x, 0)) are only near to
–but not identical with– (U∗(x), 0), be close and similar to –or far and qualitatively different
from– (U∗,V∗)?

Among the things that might happen upon perturbation of data are moving planar phase
boundaries, i.e. solutions of the form

(U,V)(x, t) =

{
(U−,V−), x · N − st < 0,
(U+,V+), x · N − st > 0,

(6)

that travel at a small speed s and satisfy canonical jump conditions

−s[U] − [V] ⊗ N = 0
−s[V] − [σ(U)]N = 0

[U] × N = 0.
(7)

Unlike classical shock waves, the dynamics of slowly (more precisely: subsonically) moving
phase boundaries for given initial data, cannot be determined solely by (4) and (7), but they
must satisfy one further condition. Any additional law introduced for this purpose is called a
kinetic rule. In the simplest case, a kinetic rule is given by an equation of the form

g((U−,V−), (U+,V+), s,N) = 0, (8)

which, just like the canonical jump conditions (7), interrelates the two states on either side (at
some point) of the moving boundary with its space-time normal (N,−s) (at that point). The
precise circumstances under which the motion of phase boundaries in real materials can be
captured by a kinetic rule of this simple kind, seem currently not clear from the literature. In
the present paper we simply assume such circumstances and consider rules that, with some
regular (at least once differentiable) real valued function

h = h((U−,V−), (U+,V+), s,N),

are of form (8) with

g = F + h, F (U+,U−,N) := [W(U)] − N�[U]�〈σ(U)〉N, (9)

and compatible with some martensite twin (2) in the sense that

h((U−, 0), (U+, 0), 0, ν) = 0. (10)

Such kinetic rules (9) have been introduced by Abeyaratne and Knowles [1, 2] under the
perspective of irreversible thermodynamics. The quantity F (U +,U−,N) is often called the
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driving traction (or driving force) across the boundary [1]. In particular, the present study
considers both the Maxwell (or Hugoniot) rule, corresponding to

h ≡ 0 identically, (11)

and regular Abeyaratne-Knowles rules, corresponding to h satisfying

h((·, ·), (·, ·), 0, ·) = 0, identically, (12a)

and

Dsh((U−, 0), (U+, 0), 0, ν) < 0. (12b)

Recently, Freistühler and Plaza [8] have shown that the nonlinear dynamic stability of
subsonic phase boundaries under regular kinetic rules is governed by a so-called reduced
Lopatinski or stability function

∆ : S −→ C
(defined on an appropriate compact set S of space-time frequencies), in the following sense:
The phase boundary is dynamically [weakly] stable whenever ∆ does not vanish in [the
interior of] S.

The goal of this paper is to show that at least one widely considered example of a
martensite twin is weakly stable under the Maxwell rule (11), and strongly stable under regular
Abeyaratne-Knowles rules (12). Following Ball and James [3], the example we have chosen
twins two monoclinic deformations

U+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
ε 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ and U− =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
−ε 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (13)

with ε > 0, which are clearly rank-one connected,

U+ − U− = 2εe2 ⊗ e1,

and satisfy detU+ = detU− = 1. The rotationally invariant energy wells are defined by
U+ = SO (3)U+ andU− = SO (3)U−, where SO (3) = {R ∈ R3×3 : R�R = I} is the group of
proper rotations. As the stored energy function, we concretely take

W(U) =
1
32

∣∣∣C −C+
∣∣∣2 ∣∣∣C −C−

∣∣∣2 (14)

where C(U) = U�U is the right Cauchy-Green strain, C± = C(U±), and | · | denotes the
Frobenius norm on R3×3,

|M|2 = Tr(M�M).

Clearly, (14) is a frame-indifferent function, as W(RU) = W(U) for all R ∈ SO (3), and attains
its minimum only on the set U = U− ∪ U+, that is, W(U) = 0 if and only if U ∈ U. This
energy density, a choice following Kružı́k and Luskin [11], is an example of the simplest
multiple well structure where the number of different variants is two, namely, a double-well
energy modelling orthorhombic-to-monoclinic transformations (see Ball and James [4]).

For this particular material, we evaluate the Lopatinski function ∆ numerically and find
that, (i) with Maxwell kinetics, ∆ has zeroes on the boundary of S and no zeroes in the interior
of S (weak stability), while, (ii) with various choices of regular Abeyaratne-Knowles kinetics,
∆ has no zeroes on all of S (strong stability).
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Notation

In this paper we adopt the following conventions. R 3×3
+ denotes the set of all 3 × 3 matrices

of positive determinant. With respect to the canonical (column) basis {e j}3j=1 of R3, the Piola-
Kirchhoff stress tensor σ(U) has (i, j)-componentσ i j(U) = ∂W/∂Ui j, for 1 ≤ i, j ≤ 3. U j and
σ j denote the j-th column of U and σ, respectively. To express the second derivatives of the
energy, for each pair (i, j), define the 3 × 3 matrix fields B j

i (U) = ∂σ j/∂Ui, whose (l, k)-entry
is

(Bj
i (U))lk =

∂2W
∂Ul j∂Uki

.

The B j
i are mutual transposes, (B j

i )
� = Bi

j, 1 ≤ i, j ≤ 3, and define the acoustic tensor as

N(ξ,U) =
3∑

i, j=1

ξiξ jB
j
i (U), (15)

for all U ∈ R3×3 and ξ ∈ R3. When evaluating at the wells (13), we write B j±
i := Bj

i (U
±).

Equations (4) constitute a system of conservation laws with state variables and fluxes,

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
U1

U2

U3

V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R
12×1, and F(u) = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
V 0 0
0 V 0
0 0 V

σ(U)1 σ(U)2 σ(U)3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R
12×3,

respectively. Derivatives are written according to custom as D yg, with (Dyg)i j = ∂gi/∂y j. For
short, D(U,V)g denotes D(U1 ,U2 ,U3 ,V)g, for each function g. Given any function f of the state
variables, we denote the jump across the interface as [ f ] = f + − f −, and the mean value as
〈 f 〉 = 1

2 ( f + + f −).

2. The reduced Lopatinski function

For simplicity, and in view of our choice of the wells (13), let us assume that in (2), ν points
in the positive direction along the x1-axis (i.e. ν = e1), and denote ξ̃ = (ξ2, ξ3) as the variables
transversal to the direction of propagation. The set S of space-time frequencies is defined by

S := {(λ, ξ̃) ∈ C × R2 : |λ|2 + |ξ̃|2 = 1,Re λ ≥ 0}, (16)

with interior,

S+ := S ∩ {Re λ > 0}.
Consider the two continuous matrix fieldsM± : S → R6×6 defined by

M±(λ, ξ̃) = M±(λ, ξ̃, s)|s=0 =
(

M±11 M±12
M±21 M±22

)
, (17)

with

M±11 = i(B1±
1 )−1(ξ2B1±

2 + ξ3B
1±
3 ),

M±12 = −(B1±
1 )−1,

M±21 = (ξ2B2±
1 + ξ3B

3±
1 )(B1±

1 )−1(ξ2B1±
2 + ξ3B

1±
3 ) − λ2I+

−(ξ2
2B2±

2 + ξ
2
3B3±

3 + ξ2ξ3(B
2±
3 + B3±

2 )),
M±22 = i(ξ2B2±

1 + ξ3B
3±
1 )(B1±

1 )−1.

(18)

The main observation in [8] is that the curl-free constraint (5) reduces the normal modes
analysis for the stability of such elastic fronts to a subspace of amplitudes, whose dynamics
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in the frequency (or Fourier-Laplace) space is captured by the matrix fields M ±. In view of
the analysis of [8], the stability function ∆ : S → C for such a static planar interface is given
by

∆(λ, ξ̃) = det

(
R̂s− Q̂ R̂u

+

p̂− q̂ p̂+

)
, (19)

where

Q̂ :=

(
[U1]

i[σ(U)](0, ξ̃)�

)
∈ C6×1, (20)

q̂ := −λ(Dsg) + i((0, ξ̃)�DNg) ∈ C1×1 (21)

p̂+ := (D(U+ ,V+)g)K+(λ, ξ̃)R̂u
+ ∈ C1×3

p̂− := −(D(U− ,V−)g)K−(λ, ξ̃)R̂s− ∈ C1×3 (22)

K±(λ, ξ̃) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i(B1±

1 )−1(ξ2B1±
2 + ξ3B

1±
3 ) −(B1±

1 )−1
−iξ2I 0
−iξ3I 0
−λI 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ C
12×6, (23)

and R̂u
+ = R̂u

+(λ, ξ̃) (resp. R̂s−) denotes the unstable (resp. stable) space of the matrix fields
M+ (resp. M−). In (19), Q̂ is the “jump vector” associated to Rankine-Hugoniot conditions
[12], and q̂ denotes its kinetic counterpart [7]. All these elements are evaluated at the wells,
for which W attains its minima, and at s = 0. In addition, ∆ is analytic in (λ, ξ̃) ∈ S+ and
continuous in (λ, ξ̃) ∈ S. For details on the definition of ∆ see [8].

2.1. Stable and unstable modes

Denote N±(µ, ξ̃) := N(µ, ξ̃2, ξ̃3,U±). It has been shown [8] that the eigenvalues β = −iµ of
M±, with µ ∈ C, satisfy the characteristic equation

π±(µ) := det(N±(µ, ξ̃) + λ2I) = 0, (24)

for all (λ, ξ̃) ∈ S. Moreover, restricting to S+, and due to hyperbolicity at the end states,
the eigenvalues split into stable (with Imµ < 0) and unstable (with Imµ > 0) modes [8, 9].
Under the current assumptions, there are exactly three unstable and three stable eigenmodes
(counting multiplicities) for each (λ, ξ̃) ∈ S+, implying that the stable and unstable spaces
of both M± have constant dimension in all S+. These invariant right spaces are represented
by mappings (or bundles) R̂s,u

± : S → C6×3 arranged in suitable column bases which can
be chosen analytic on S+ with continuous extensions to all of S (see [8] and the references
therein).

From Lemma 6 in [8], we reckon that the eigenvector ofM ± associated to an eigenvalue
β = −iµ has the form

R =

(
Y

i(µB1±
1 + ξ2B

1±
2 + ξ3B

1±
3 )Y

)
, (25)

where

Y ∈ ker(N±(µ, ξ̃) + λ2I). (26)
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2.2. Kinetic-rule and jump conditions blocks

In this section we compute the elements in ∆ associated to the classical jump conditions and
the kinetic rule. First, since σ = 0 at the wells, we have

Q̂ =

(
U+1 − U−1

0

)
= 2ε

(
e2

0

)
∈ R6×1

Anticipating expressions (37) and (38), specializing them to the case where N = e 1, evaluating
at the wells, and using (33), we arrive at

(Dsg)|s=0 = Ds(F + h)s=0 = (Dsh)|s=0,
(DNg)|s=0 = DN(F + h)s=0 = 0,

(D(U± ,V±)g)|s=0 = D(U± ,V±)(F + h)|s=0
=

(
− 1

2 [U1]
�B1±

1 , − 1
2 [U1]

�B1±
2 , − 1

2 [U1]
�B1±

3 , 0
)

= −ε3
(
(±2ε, 1 + 2ε2, 0), ±εe�2 , ±εe�3 , 0

)
∈ R1×12.

Anticipating (33) and (34), we also compute

K±(λ, ξ̃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 ξ2 ξ3
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ε−2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
− 1

2 (1 + 2ε2) ±ε 0
±ε −1 0
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−iξ2I 0
−iξ3I 0
−λI 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence,

(D(U+ ,V+)g)|s=0K+(λ, ξ̃) = −ε3
(
(2ε, 1 + 2ε2, 0), εe�2 , εe

�
3 , 0

)
K+(λ, ξ̃)

= ε(0, e�2 ) ∈ R1×6,

(D(U− ,V−)g)|s=0K−(λ, ξ̃) = −ε3
(
(−2ε, 1 + 2ε2, 0), −εe�2 , −εe�3 , 0

)
K−(λ, ξ̃)

= ε(0, e�2 ) ∈ R1×6,

2.3. Using the symmetry of the twin

Thanks to the symmetries associated to the martensitic wells, we can simplify the expression
for ∆. For instance, let

Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 −1 0
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Π2 = I.

A direct computation yields

ΠBi+
i Π = Bi−

i , for all i,
ΠB1+

i Π = −B1−
i , for all i � 1,

ΠB2+
3 Π = B2−

3 .

This implies that

ΠN+(µ, ξ̃)Π = N−(−µ, ξ̃)
for all µ ∈ C and all ξ̃ ∈ R2. Therefore if Y ∈ ker(N+(µ, ξ̃) + λ2I) for some µ ∈ C, then
ΠY ∈ ker(N−(−µ, ξ̃)) + λ2I), and the stable modes µ s− at U = U− can be computed from the
unstable modes µu

+ at the other well, by simply taking µ s− = −µu
+. Hence, it suffices to compute
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the unstable modes at U = U+. This symmetry provides a relation between the bundles R̂ as
well. By direct computation one finds

ΠM+11Π = −M−11, ΠM+12Π = M−11,

ΠM+22Π = −M−22, ΠM+21Π = M−21,

and letting

Λ :=

(
Π 0
0 −Π

)
, Λ2 = I,

we arrive at the similarity condition

ΛM+(λ, ξ̃)Λ = −M−(λ, ξ̃), (27)

for all (λ, ξ̃) ∈ S, which implies that if R̂u
+ is a continuous (analytic) representation on S+ of

the unstable space ofM+(λ, ξ̃), then the columns of

R̂s
− := ΛR̂u

+, (28)

span the stable space ofM−(λ, ξ̃) and constitute an analytic representation on S+ of this space
(this follows by a simple dynamical systems argument). These bundles have continuous, full-
rank extensions on the whole set S. Consequently, it suffices to compute the bundle R̂u

+.
Notice also that (0, e�2 )Λ = (0, e�2 ), and that by (28), we have

p̂+ = −p̂− = ε(0, e�2 )R̂u
+.

Summarizing, the stability function takes the form

∆(λ, ξ̃) = det

(
ΛR̂u
+ Q̂ R̂u

+

−p̂ q̂ p̂

)
, (29)

with

Q̂ = 2ε

(
e2

0

)
,

q̂ = −λ(Dsh)|s=0,
p̂ = ε(0, e�2 )R̂u

+.

(30)

2.4. Using the homogeneity of ∆

From the definition of ∆ and the analysis of [8], it is not hard to see that for all ρ > 0 and all
(λ, ξ̃), there holds the homogeneity-like relation

∆(λ, ξ̃) = Θ(ρ)∆(ρλ, ρξ̃),

with Θ continuous, non-vanishing factor, such that |Θ(±1)| = 1, Θ(ρ) � 0. This property
follows from the existence of a lifting matrix field J(λ, ξ̃) with constant rank and linear in
λ and ξ̃, which translates between original and reduced coordinates. (For details see [8].)
Therefore we can restrict to the case | ξ̃| = 1 and parametrize in polar coordinates by

ξ̃ = (cosϕ, sinϕ), ϕ ∈ [0, 2π).

Let us denote Ñ+(µ, ϕ) := N+(µ, ξ̃). Since N+(−µ,−ξ̃) = N+(µ, ξ̃) for all µ and ξ̃, then it
suffices to take ϕ ∈ [0, π]. Finally, as Ñ+(−µ,−ϕ) = Ñ+(µ, ϕ), we can restrict the computations
to the quarter circle ϕ ∈ [0, π2 ], meaning no loss of generality. From this point on, we write
indistinctively ∆(λ, ξ̃) or ∆(λ, ϕ) to indicate ∆(λ, eiϕ).
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3. Energy density function and kinetic rules

This section gathers needed properties of the energy density function (14) and the kinetic rules
(11) and (12).

3.1. Derivatives of the stress

First, we compute the matrices B j
i containing the second derivatives of the energy. Denoting

Φ±(U) := |C − C±|2, then clearly W(U) = 1
32Φ+(U)Φ−(U), with Φ±(U±) = 0 and Φ±(U∓) =

8ε2 > 0. By direct computation,

(DU1Φ±)(U) = 4
(
(|U1|2 − (1 + ε2))U1 + (U�2 U1 ∓ ε)U2 + (U�1 U3)U3

)
,

(DU2Φ±)(U) = 4
(
(|U2|2 − 1)U2 + (U�2 U1 ∓ ε)U1 + (U�2 U3)U3

)
,

(DU3Φ±)(U) = 4
(
(|U3|2 − 1)U2 + (U�3 U1 ∓ ε)U1 + (U�2 U3)U2

)
.

(31)

Since the stress σ vanishes at the wells, it is easy to see that for all i, j,

Bj±
i =

1
32
Φ∓(U±)(D2

UjUi
Φ±)(U±) =

1
4
ε2(D2

UjUi
Φ±)(U±).

From (31) we obtain

(D2
U1U1
Φ±)(U) = 4

(
2U1 ⊗ U1 + (|U1|2 − (1 + ε2))I + U2 ⊗ U2 + U3 ⊗ U3

)
,

(D2
U2U2
Φ±)(U) = 4

(
2U2 ⊗ U2 + (|U2|2 − 1)I + U1 ⊗ U1 + U3 ⊗ U3

)
,

(D2
U3U3
Φ±)(U) = 4

(
2U3 ⊗ U3 + (|U3|2 − 1)I + U1 ⊗ U1 + U2 ⊗ U2

)
,

(D2
U1U2
Φ±)(U) = (D2

U2U1
Φ±)� = 4

(
U1 ⊗ U2 + (U�2 U1 ∓ ε)I

)
,

(D2
U1U3
Φ±)(U) = (D2

U3U1
Φ±)� = 4

(
U1 ⊗ U3 + (U�1 U3)I

)
,

(D2
U2U3
Φ±)(U) = (D2

U2U1
Φ±)� = 4

(
U2 ⊗ U3 + (U�2 U3)I

)
,

(32)

and evaluating at the wells we readily get,

B1±
1 = ε

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 ±2ε 0
±2ε 1 + 2ε2 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B1±
2 = (B2±

1 )� = ε2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
0 ±ε 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

B2±
2 = ε

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 ±ε 0
±ε 2 + ε2 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B1±
3 = (B3±

1 )� = ε2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1
0 0 ±ε
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

B3±
3 = ε

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 ±ε 0
±ε 1 + ε2 0
0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B2±
3 = (B3±

2 )� = ε2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 1
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

(33)

From (33) one finds that

(B1±
1 )−1 = ε−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
2 (1 + 2ε2) ∓ε 0
∓ε 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (34)

Note that the eigenvalues of B1±
1 are

k1 =
1
2
ε2

(
3 + 2ε2 −

√
(3 + 2ε2)2 − 8

)
,

k2 = ε
2, (35)

k3 =
1
2
ε2

(
3 + 2ε2 +

√
(3 + 2ε2)2 − 8

)
,

with 0 < k1 < k2 < k3 and constant multiplicity 1. Therefore the six characteristic speeds
associated to the front are α j = ±

√
k j, j = 1, 2, 3. The analysis in [8] applies to all subsonic

propagating fronts with speed s2 < k j for all j.
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3.2. Rank-one convexity and constant multiplicity assumption

In this subsection, we verify two hypotheses made in [8], so as to guarantee that the results
of our computations really allow for the said conclusions. To assure hyperbolicity at the end
states, the first hypothesis is the rank-one convexity of W at the wells, or equivalently, that
Legendre-Hadamard condition,

ζ�N(ξ,U±)ζ > 0, for all ζ, ξ ∈ R3\{0}, (36)

holds [5]. In order to verify (36) we express W in terms of the Cauchy-Green strain as

W(U) =: Ŵ(C11,C22,C33,C12,C13,C23),

with Hessian

(D2
CŴ)|C=C± = ε2

(
1
2 I3×3 0

0 I3×3

)
> 0,

for all ε > 0 and evaluated, of course, at the minima C = C ±. Therefore, it is easy to see that
the quadratic form in (36) can be expressed as

b±(ξ, ζ) := ζ�N(ξ,U±)ζ = ξ�H(U±, ζ)�(D2
CŴ)|C=C±H(U±, ζ)ξ,

where the 6 × 3 matrix H(U±, ζ) is defined by

H(U±, ζ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(U±1 )�ζ 0 0
0 2(U±2 )�ζ 0
0 0 2(U±3 )�ζ

(U±2 )�ζ (U±1 )�ζ 0
(U±3 )�ζ 0 (U±1 )�ζ

0 (U±3 )�ζ (U±2 )�ζ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since for each ζ � 0, H(U±, ζ) has full rank (as detU± > 0) and in view of (D2
CŴ)|C=C± > 0,

then clearly b±(ξ, ζ) > 0 for all ζ, ξ ∈ R3\{0}, that is, W is rank-one convex at U = U ± and the
system is hyperbolic at the wells.

Another (though actually not essential) requirement for the analysis of [8] is the constant
multiplicity condition of Métivier [13], namely, that the eigenvalues of N(ξ,U) are all semi-
simple for all U near U+ or near U−, and all ξ � 0. By continuity of the eigenvalues, it suffices
to check this condition at the wells, as the property is preserved in open neighborhoods of
U = U±. Notice that N(ρξ,U±) = ρ2N(ξ,U±) for all ρ > 0. Hence, it suffices to consider
|ξ| = 1 which we parametrize in spherical coordinates by ξ 1 = sinψ cos θ, ξ2 = sinψ sin θ,
and ξ3 = cosψ, with θ ∈ [0, 2π], ψ ∈ [0, π]. One can easily check Métivier’s condition
numerically. Figure 1 shows the computed eigenvalues κ j of N(ξ,U±) for different values
of ε > 0 in a mesh of angles (ψ, θ), interpolated smoothly as surfaces. It turns out that the
eigenvalues are all simple for all values of ξ and the selected values of the material parameter
ε.

3.3. Derivatives of kinetic rules

We gather the derivatives of h and F from (10), (11) and (12). Noticing that for each i, j, we
have

∂U±i j (N
�[U]�〈σ(U)〉N) = ±Nj

∑
k Nk〈σ(U)ik〉+ 1

2 N�[U]�
∑

l Nl∂U±i j (σ(U±)l)
= ±Nj

∑
k Nk 〈σ(U)ik〉+ 1

2

∑
l,k Nl([U]N)k(Bl

j
±
)ki,
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Figure 1. Plot of the eigenvalues of N(ξ,U±), ξ = (sinψ cos θ, sinψ sin θ, cosψ) on a mesh
(ψ, θ) ∈ [0, π]× [0, 2π], for values of ε = 1 (top), ε = 0.75 (center), ε = 0.5 (bottom). The three
surfaces correspond to the continuous values of the three real eigenvalues κ1,2,3. The azimuthal
view (right) shows that the eigenvalues are simple and never coalesce.

one gets,

D(U± ,V±)F =
(
±σ(U±)�1 ∓ N1N� 〈σ(U)〉� − 1

2 N�[U]�
∑3

j=1 NjB
j±
1 ,

±σ(U±)�2 ∓ N2N� 〈σ(U)〉� − 1
2 N�[U]�

∑3
j=1 NjB

j±
2 ,

±σ(U±)�3 ∓ N3N� 〈σ(U)〉� − 1
2 N�[U]�

∑3
j=1 NjB

j±
3 ,

0
)
∈ R1×12,

(37)
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(where each element is a 1 × 3 block), and

DNF = N�([U]�〈σ(U)〉 + 〈σ(U)〉�[U]) ∈ R1×3, (38)

DsF ≡ 0. (39)

Furthermore, we obviously have

D(U± ,V±)h = 0,
DNh = 0,

at ((U+, 0), (U−, 0), 0, e1), (40)

both for Maxwell and Abeyaratne-Knowles rules.

4. Evaluating ∆

In this section we detail how to numerically evaluate the reduced Lopatinski function ∆
associated to the martensite twin in such a way that the numerical output provides secure
information about the dynamical stability behaviour of the twin.

4.1. Key ideas

4.1.1. The winding number argument We will look at the family of mappings

λ �→ ∆̄(λ, ϕ) ϕ ∈ [0, π/2],

for a suitable normalization of the stability function ∆̄ along the closed contours

λ ∈ Cρ := C+ρ ∪ C0
ρ,

C+ρ := {λ ∈ C : |λ| = ρ,Re λ > 0},
C0
ρ := {λ ∈ C : λ = iτ, τ ∈ [−ρ,+ρ]},

for some ρ > 0 sufficiently large. Given that for |λ| � 1 large, ∆(λ, ξ̃) ∼ ∆(1, 0) � 0, the
possible zeroes are bounded in λ and it is enough to consider contours C ρ with finite ρ > 0.
By the product formula of mapping degrees [6], the winding number of the curves λ �→ ∆̄(λ, ϕ)
with respect to zero determines the stability of the configuration.

4.1.2. The normalization There is a major ambiguity in the definition (29), consisting in
the freedom to choose specific representations R̂s− of the stable space of M−, and R̂u

+ of the
unstable space of M+. This ambiguity can largely obscure the picture when one tries to
apply the above computational evaluation of the winding number to the unmodified reduced
Lopatinski function ∆. In fact, in order to proceed correctly in that direction, one would
have to convince oneself that the concrete representations, chosen through formulation and
computing methodology, are not only continuous along the curves C ρ, but can be extended,
without modification, to continuous matrix functions of full rank at least on the whole interior
of these curves. However, given the fact that they are three-dimensional sub-bundles of
C

6, there does not seem to exist any easy way of doing such verification. We completely
circumvent this apparent difficulty by considering a normalized version of ∆,

∆̄ :=
∆

−|R| (41)

with

|R| := det(R̂s
− R̂u

+) = det(ΛR̂u
+ R̂u

+). (42)
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The simple idea of this normalization is that it automatically undoes all possible extraneous
winding. In other words: By whichever concrete factor the original ∆ deviates from what
it would be with respect to an admissible choice Rs−,Ru

+ of the representation, the scaling
denominator |R| deviates from the determinant det(R s− Ru

+) in exactly that way, and these two
effects cancel each other out!

4.1.3. ∆̄ for Maxwell vs. Abeyaratne-Knowles kinetics A simple consideration (see Section
4.4 below) on ∆ and |R| shows that

∆̄ = ∆̄0 − λ(Dsh), (43)

where ∆̄0 is the normalized Lopatinski function associated to Maxwell kinetics. This not only
simplifies the algorithms considerably, but also gives a direct explanation of how the images
of the Cρ change upon going from vanishing to non-vanishing driving traction. We invite the
reader to play with the geometric associations that formula (43) immediately prompts in that
direction.

4.2. The Lopatinski modes

The essential piece in reliably determining the Lopatinski spaces is the identification of the
frequencies. Once this is done in a secure way, standard algorithms allow to construct the
bundle representations R̂s− and R̂u

+ safely. We now discuss how to properly find the unstable
µ-roots of

π+(µ) = det(N+(µ, ξ̃) + λ2I) =
6∑

j=0

a jµ
j,

for each (λ, ξ̃) ∈ C × R2, with |ξ̃| = 1. After cumbersome but straightforward computations,
one finds that the coefficients a j = a j(λ, ξ̃, ε) are given by

a6 = 2ε6,
a5 = 0,
a4 = λ

2ε4(2ε2 + 5) + 6ε6|ξ̃|2,
a3 = 2ε5ξ2λ,
a2 = 2λ4ε3(2 + ε2) + λ2ε4((10 + 3ε2)|ξ̃|2 + ε2ξ2

3) + 6ε6|ξ̃|4,
a1 = 2λ2ε3ξ2(λ2 + ε2|ξ̃|2),
a0 = λ

6 + λ4ε2|ξ̃|2(4 + ε2) + λ2ε4|ξ̃|2((5 + ε2)|ξ̃|2 + ε2ξ2
3) + 2ε6|ξ̃|6.

(44)

Since a6 = 2ε6 > 0, we implemented a standard algorithm to compute the roots of the
polynomial π+(µ) = 0. More precisely, we calculated the eigenvalues of

C(λ, ξ̃, ε) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a5/a6 −a4/a6 −a3/a6 −a2/a6 −a1/a6 −a0/a6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

via a standard Schur factorization for complex non-Hermitian matrices [14].
For values of λ with Re λ > 0, the six µ-modes of π+(µ) = 0 are either stable or unstable.

But along the imaginary axis neutral modes can occur. These neutral modes, however, are the
continuous limits of stable or unstable modes as Re λ → 0+. When a neutral mode µ is the
limit of a stable (resp. unstable) mode we call it neutrally stable (resp. neutrally unstable).
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Therefore the roots of π+ come always in trios of stable/neutrally stable or unstable/neutrally
unstable modes.

We designed a direct algorithm to determine the stability nature of the neutral modes
along the imaginary axis, using a simple perturbation method. For each λ = iτ ∈ iR we make
λ̃ = iτ + δ with δ > 0 and compute the perturbed eigenmodes. Estimating the minimum
distance between the latter and the original neutral mode, we select the associated stable or
unstable mode which, by continuity, tends to the original neutral µ as δ → 0 +. In the case
of coalescence, that is, when there is a multiple neutral mode, the algorithm safely keeps
track of the perturbed modes already selected, in such a way that it produces exactly three
stable/neutrally-stable and three unstable/neutrally-unstable values, respecting the hyperbolic
dichotomy (it can happen that a multiple neutral mode is at the same time the limit of stable
and unstable modes). In our computations we take δ of order O(10 −6).

Figure 2 shows the computed values of stable and unstable modes for λ ∈ C +ρ , that is,
along half circles, for different values of ρ > 0. They behave as unstable/stable in trios, with
neutral limits as Re λ→ 0+.
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−3

−2

−1

0

1

2

3
Values of µ, λ = ρ ei θ, ρ = 1, θ in [−π/2,π/2], φ = 0
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Im
 µ
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Im
 µ
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Values of µ, λ = ρ ei θ, ρ = 3, θ in [−π/2,π/2], φ = π/2
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 µ

Figure 2. Computed values of µ for (λ, ξ̃) = (ρeiθ, eiϕ), θ ∈ [0, π], for different values of
(ρ, ϕ) = (1, 0) (left), (2, π/4) (center), (3, π/2) (right). The eigenmodes come in trios of stable
(Im µ < 0) and unstable (Im µ > 0) modes along the curves.

For values of λ along the imaginary axis we expect the presence of branch points, for
example, values of τ for which the eigenmodes µ change from neutral to stable/unstable, or
points where two or more modes coalesce. Figure 3 shows computed values of the unstable
modes along an interesting portion of the imaginary axis, namely, near zero (for τ large the
modes are always neutral), and for different values of ϕ. We observe that the modes coalesce,
for instance, at λ = 0. To illustrate the phenomenon of neutral to stable/unstable branching,
figure 4 depicts the imaginary parts of the unstable modes µ u against τ ∈ [−1, 1], again, for
different values of ϕ. It is clear the existence of six branch points of real-to-complex type.

4.3. Evaluation of the bundle R̂u
+

Once the Lopatinski frequencies have been computed, we procceed to assemble the unstable
Lopatinski bundle R̂u

+ according to formula (25). The main step is the computation of the
kernel of Ñ+(µ, ϕ)+ λ2I, where µ is the unstable mode under consideration. For that purpose,
we use a simple cross-product algorithm that calculates Y and numerically verify the result for
each unstable/neutrally-unstable mode µ. At most points, the constructed bundle (following
(25)) is a valid, full-rank representation of the unstable Lopatinski space, with the exception of
a discrete set of branch points associated to multiple modes where non-trivial Jordan blocks
may occur. But this factor, however, appears at the same order in both the numerator and
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Figure 3. Computed values of µ for (λ, ξ̃) = (iτ, eiϕ), τ ∈ [−1, 1], for different values of ϕ = 0
(left), ϕ = π/4 (center), ϕ = π/2 (right). The modes are neutral for |τ| large.
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Figure 4. Plots of the imaginary part of the unstable modes µu versus τ, along λ = iτ,
τ ∈ [−1, 1] for different values of ξ̃ = eiϕ, with ϕ = 0, π/4, 4π/9, and π/2 (upper left, upper
right, lower left and lower right corners, respectively). Note the presence of six branch points
of neutral-to-unstable type along this segment of the imaginary axis.

the denominator of (41), cancelling each other out, and yielding the desired effect of the
normalization.
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4.4. Reduction of determinants

Finally, one can make further reductions on the expression for ∆̄ in order to arrive at formula
(43). Suppose R̂u

+ is a continuous representation of the unstable space ofM+. Let us define

R̂u
+ =:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

z1

z2

z3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (45)

so that each y j and each z j are three-dimensional row vector-valued functions of (λ, ξ̃). From
(29) and (30), the reduced Lopatinski function takes the form

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 0 y1

−y2 2ε y2

−y3 0 y3

−z1 0 z1

z2 0 z2

z3 0 z3

−εz2 −λ(Dsh) εz2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Performing elementary column-row transformations and pivoting on the middle column, we
obtain

∆ = 8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 0 y1

z2 0 z2

z3 0 z3

0 0 y3

0 0 z1

0 2ε y2

0 −λ(Dsh) εz2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 16ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y1

z2 z2

z3 z3

0 y3

0 z1

0 εz2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 8λ(Dsh)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y1

z2 z2

z3 z3

0 y3

0 z1

0 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 16ε2

∣∣∣∣∣∣∣∣
y1

z2

z3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
y3

z1

z2

∣∣∣∣∣∣∣∣ + 8λ(Dsh)

∣∣∣∣∣∣∣∣
y1

z2

z3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
y3

z1

y2

∣∣∣∣∣∣∣∣ .

(46)

Similarly, from the definition (42) of |R|, we have

|R| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y1

−y2 y2

−y3 y3

−z1 z1

z2 z2

z3 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y1

z2 z2

z3 z3

0 z1

0 y2

0 y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 8

∣∣∣∣∣∣∣∣
y1

z2

z3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

z1

y2

y3

∣∣∣∣∣∣∣∣ .

In view of the normalization (41), this finally implies that

∆̄ = ∆̄0 − λ(Dsh), (47)
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where

∆̄0 = −2ε2

∣∣∣∣∣∣∣∣
y3

z1

z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z1

y2

y3

∣∣∣∣∣∣∣∣
(48)

is the normalized Lopatinski function associated to Maxwellian kinetics.
Thus, all we need to do is to safely compute the the bundle R̂u

+, rearrange its entries in
the two 3 × 3 determinants according to (45), and evaluate their quotient (48).

5. Output and stability results

This section displays the results of our computations, in which we fixed the value of the
material parameter as ε = 0.5. In what follows we reckon kinetic relations of linear type,
as proposed originally by Abeyaratne and Knowles [1] for irreversible processes close to
thermodynamic equilibrium. These have the form

F = s
M
, (49)

where M > 0 is a mobility coefficient; or, in other words, h = −s/M and D sg = Ds(F + h) =
−1/M. Clearly, when M → +∞ we recover the Maxwell rule.

We computed the parametrized curves λ �→ ∆̄(·, ϕ), λ ∈ Cρ, with ρ = 2 and for different
parameter values of ϕ, under both the Maxwell rule and linear kinetic rules with M = 10 and
M = 1. Since ∆̄ is continuous in ϕ ∈ [0, π/2], we chose ϕ = 0, π/8, π/4, 3π/8 and π/2 in order
to illustrate the behaviour along the whole parameter set. In each of the figures presented in
the following pages, the blue dots correspond to values of ∆̄ for λ = iτwith τ > 0, whereas the
red circles represent values of ∆̄ for λ = iτ with τ > 0; the green dots correspond to the values
of ∆̄ for λ ∈ C+ρ . Each figure shows a detailed view of an interesting part of the imaginary axis
(left), say iτ ∈ [−1, 1], and of the whole contour C ρ (right).

5.1. Maxwell kinetic rule: M = +∞
Our first calculation studies Maxwellian kinetics. Figures 5 and 6 show the computed curves
λ → ∆̄0(·, ϕ), corresponding to vanishing driving traction. For instance, in Figure 5, in thr
graph corresponding to the value ϕ = 0 (top) we notice the presence of two zeroes of ∆̄0 at
λ = ±iτ0 for some τ0 > 0. By continuity of the Lopatinski function in ϕ, this behaviour
persists if we move up to a critical value ϕc < π/8. This suggests the presence of a “cone” of
zeroes (cone in the variables ξ̃) along the imaginary axis for Maxwell kinetic rules. Observe
that for ϕ = π/8 (center) and ϕ = π/4 (bottom) there are no longer zeroes along the imaginary
axis. Figure 5 depicts the curves for ϕ = 3π/8 (top) and ϕ = π/2 (bottom), exhibiting the same
behaviour. Note, however, the presence of an isolated zero at λ = ±iτ ∗ for some τ∗ > 0. Also
note that by a winding number argument, there are no zeroes inside the contour for all values
of ϕ under consideration. These observations imply weak stability of the twin for Maxwellian
kinetics.
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5.2. Case M = 10

If we perturb by linear kinetic relations as described above with positive values of M, we
observe an stabilizing effect. Take, for instance, what happens when M = 10. In this case we
compute ∆̄ substituting Dsh = −1/10 in formula (43). Figures 7 and 8 show the computed
curves λ→ ∆̄ with λ ∈ Cρ, for different values of ϕ. The significant behaviour of the curve is
such that zero remains outside the contour, showing the evanescence of the winding number
of the curve with respect to zero and suggesting, in turn, strong stability. Figure 7 presents the
curves for ϕ = 0 (top), π/8 (center) and π/4 (bottom). Figure 8 shows the curves for ϕ = 3π/8
(top) and π/2 (bottom).

5.3. Case M = 1

When we perform the computation of ∆̄, but now taking the material parameter as M = 1,
the same stabilizing effect of the linear kinetic rule is observed. Figures 9 and 10 present
the numerical computation of the curves for M = 1. Figure 9 shows the curves for ϕ = 0
(top), π/8 (center) and π/4 (bottom). Figure 10 shows the curves for ϕ = 3π/8 (top) and π/2
(bottom). It turns out that the symmetric “opening” of the curve along the imaginary axis,
which avoids zero, is even more accentuated. These pictures indicate strong stability of the
twin with respect to linear kinetic rules as well.
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Figure 5. Maxwell kinetic rule (a): Images of the curve λ �→ ∆̄0 (with M = +∞), for a portion
of the imaginary axis (left), and the whole contour Cρ (right), with ρ = 2. These correspond to
values of ϕ = 0 (top), ϕ = π/8 (center) and ϕ = π/4 (bottom).
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Figure 6. Maxwell kinetic rule (b): Images of the curve λ �→∆̄0 (with M = +∞), for a portion
of the imaginary axis (left), and the whole contour Cρ (right), with ρ = 2. These correspond to
values of ϕ = 3π/8 (top) and ϕ = π/2 (bottom).
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Figure 7. Perturbed kinetic rule with M = 10 (a): Images of the curve λ �→ ∆̄ with M = 10,
for a portion of the imaginary axis (left), and the whole contour Cρ (right), with ρ = 2. These
correspond to values of ϕ = 0 (top), ϕ = π/8 (center), and ϕ = π/4 (bottom).
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Figure 8. Perturbed kinetic rule with M = 10 (b): Images of the curve λ �→ ∆̄ with M = 10,
for a portion of the imaginary axis (left), and the whole contour Cρ (right), with ρ = 2. These
correspond to values of ϕ = 3π/8 (top) and ϕ = π/2 (bottom).
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Figure 9. Perturbed kinetic rule with M = 1 (a): Images of the curve λ �→ ∆̄ with M = 1,
for a portion of the imaginary axis (left), and the whole contour Cρ (right), with ρ = 2. These
correspond to values of ϕ = 0 (top), ϕ = π/8 (center), and ϕ = π/4 (bottom).
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Figure 10. Perturbed kinetic rule with M = 1 (b): Images of the curve λ �→ ∆̄ with M = 1,
for a portion of the imaginary axis (left), and the whole contour Cρ (right), with ρ = 2. These
correspond to values of ϕ = 3π/8 (top) and ϕ = π/2 (bottom).


