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Abstract. We study the behaviour of thin elastic bodies of fixed cross-section
and of height h , with h → 0. We show that critical points of the energy functional
of nonlinear three-dimensional elasticity converge to critical points of the von
Kármán functional, provided that their energy per unit height is bounded by
Ch4 (and that the stored energy density function satisfies a technical growth
condition). This extends recent convergence results for absolute minimizers.
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1. Introduction and main result

The relation between three-dimensional nonlinear elasticity and theories for lower-
dimensional objects such as rods, beams, membranes, plates and shells has been an
outstanding question since the very beginning of the research in elasticity. Recently
there has been substantial progress in the rigorous understanding of this relation
through the use of variational methods, in particular Γ-convergence. This notion
of convergence assures, roughly speaking, that absolute minimizers of the three-
dimensional theory (subject to suitable boundary conditions and applied loads)
converge to absolute minimizers of the limiting two-dimensional theory. In this
paper we study the behaviour of possibly non-minimizing critical points of the en-
ergy functional. This is useful, e.g. to understand stability and bifurcation issues
and might also be seen as a preliminary step towards a better understanding of the
dynamic equations for which so far no rigorous results which start from the geomet-
rically nonlinear three-dimensional theory are available. We focus on the scaling of
applied forces and the elastic energy which leads to von Kármán’s equations.

To set the stage let us first review the variational setting. Consider a cylindri-
cal domain Ωh = S×(−h

2 ,
h
2 ), where S is a bounded subset of R

2 with Lipschitz
boundary. To a deformation v : Ωh → R

3 we associate the elastic energy (per unit
height)

Eh(v) =
1
h

∫
Ωh

W (∇v) dz. (1.1)

We assume that the stored-energy density function W satisfies the following condi-
tions:

W (RF ) = W (F ) ∀R ∈ SO(3) (frame indifference), (1.2)
W = 0 on SO(3), (1.3)
W (F ) ≥ cdist2(F, SO(3)), c > 0, (1.4)

W is C2 in a neighbourhood of SO(3). (1.5)
1
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Here SO(3) denotes the group of proper rotations. The frame indifference implies
that there exists a function W̃ defined on symmetric matrices such that W (∇v) =
W̃ ((∇v)T∇v), i.e., the elastic energy depends only on the pull-back metric of v .

To discuss the limiting behaviour as h → 0 it is convenient to rescale to a fixed
domain Ω = S×(−1

2 ,
1
2) by the change of variables z = (x1, x2, hx3) = (x′, hx3) and

y(x) = (y′(x), y3(x)) = v(z). With the notation

∇hy = (∂1y, ∂2y,
1
h∂3y) = (∇′y, 1

h∂3y) (1.6)

we have

Eh(v) = Ih(y) =
∫

Ω
W (∇hy) dx. (1.7)

The variational approach leads to a hierarchy of limiting theories depending on the
scaling of Ih . More precisely we have for h→ 0 in the sense of Γ-convergence

1
hβ
Ih Γ−→ Iβ . (1.8)

This implies, roughly speaking, that minimizers of Ih (subject to suitable boundary
conditions or body forces) converge to minimizers of Iβ , provided Ih evaluated on
the minimizers is bounded by Chβ . Such Γ-convergence was first established by
LeDret and Raoult for β = 0 (see [9]), then for all β ≥ 2 in [6, 7] (see also [16, 17]
for results for β = 2 under additional conditions). For 0 < β < 5/3 convergence
was recently obtained by Conti and Maggi in [4], see also [3]. The exponent β = 5/3
is conjectured to be relevant for the crumpling of elastic sheets (see [10, 18, 4]).

Here we focus on the case β = 4 which leads to von Kármán’s theory. For
the limit problem we consider the averaged in-plane and out-of-plane displacements
u ∈ W 1,2(S,R2) and v ∈ W 2,2(S). An equilibrium is a critical point of the von
Kármán functional

IvK(u, v) =
1
2

∫
S
Q2(

1
2
[∇′u+(∇′u)T +∇′v⊗∇′v]) dx′ +

1
24

∫
S
Q2((∇′)2v) dx′ (1.9)

subject to suitable boundary conditions (we will later include also applied vertical
forces, see (1.12) ). Here Q2 is a quadratic form which can be computed from
the linearization ∂2W/∂2F (Id) of the 3d energy at the identity. More precisely we
consider the quadratic form

Q3(F ) := D2W (Id)F : F (1.10)

and define the quadratic form Q2 : M
2×2 → R by minimizing Q3 over stretches in

the x3 direction:
Q2(G) = L2G : G := min

F ′′=G
{Q3(F )}. (1.11)

The 2 × 2 submatrix F ′′ given by F ′′
αβ := Fαβ for 1 ≤ α, β ≤ 2. Note that if

W (F ) = 1
2dist2(F, SO(3)), then simply Q2(A) = |A|2 .

In this paper we study convergence of equilibria for the case β = 4. We consider
the functional

Jh(y) =
∫

Ω
W (∇hy) − h3g(x′)y3 dx , (1.12)

subject to the clamped boundary conditions

y(x′, x3) = (x′, hx3) for all x′ ∈ Γ, (1.13)
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where Γ is a connected subset of ∂S of positive measure. The corresponding Γ-limit
is given by

JvK(ū, v̄) = IvK(ū, v̄) −
∫
gv̄dx′ , (1.14)

with the boundary conditions

ū(x′) = 0 , ∇′v̄(x′) = v̄(x′) = 0 for all x′ ∈ Γ. (1.15)

By calculating the respective variations of JvK(u, v) in v and in u we obtain the
following Euler-Lagrange equations in weak form:∫

S

(1
2
L2(∇′u+ (∇′u)T + ∇′v ⊗∇′v) : (∇′v ⊗∇′φ)

+
1
12

L2((∇′)2v) : (∇′)2φ− gφ
)
dx′ = 0, ∀φ ∈ C∞(S), φ|Γ = 0, ∇′φ|Γ = 0,

(1.16)
and∫

S
L2

(
∇′u+(∇′u)T +∇′v⊗∇′v

)
: ∇′ψ dx′ = 0, ∀ψ ∈ C∞(S,R2), ψ|Γ = 0, (1.17)

with the boundary conditions

u(x′) = 0 , ∇′v(x′) = v(x′) = 0 for all x′ ∈ Γ. (1.18)

We now assume in addition that DW (F ) grows at most linear at infinity, i.e.,

|DW (F )| ≤ C(|F | + 1). (1.19)

Together with the assumption that W is C2 near the identity and is minimized at
the identity this implies that

|DW (Id+A)| ≤ C|A| (1.20)

(with a different constant C ).
Theorem 1.1. Assume that (1.2)–(1.5) hold and that W is differentiable and satis-
fies the growth condition (1.19). Let (y(h)) be a sequence of stationary points of Jh

(subject to the boundary condition y(h)(x′, x3) = (x′, hx3) at x′ ∈ Γ and to natural
boundary conditions on the remaining boundaries). Assume that∫

Ω
W (∇hy

(h)) ≤ Ch4. (1.21)

Let

U (h)(x′) :=
∫ 1

2

− 1
2

(
y

(h)
1

y
(h)
2

)
(x′, x3) − x′dx3 , V (h)(x′) :=

∫ 1
2

− 1
2

y
(h)
3 dx3 . (1.22)

Then, up to subsequences,

v(h) =
1
h
V (h) → v in W 1,2(S), v ∈W 2,2(S) (1.23)

and
u(h) =

1
h2
U (h) ⇀ u in W 1,2(S) (1.24)

as h → 0, and the limit displacements (u, v) solve (1.16), (1.17) and satisfy the
boundary conditions (1.18).
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Remark 1.2. A careful application of the Poincaré inequality shows that the esti-
mate (1.21) holds automatically for minimizers (see [7], p. 219 and [8], Lemma 13
for the details).

The growth condition on DW is unsatisfactory since it rules out blow-up of W (F )
as detF → 0 (which corresponds to a very strong compression). This is a well-
known difficulty in nonlinear elasticity if one wants to go beyond absolute minimizers.
Indeed, without such a growth condition it is not even known whether minimizers
satisfy the Euler-Lagrange equations in the conventional form (3.1) given below
[2]. A condition which is compatible with blow-up for detF → 0 is F TW (F ) ≤
C(W (F ) + 1). Ball has shown that under this condition one can obtain a variant
of the Euler-Lagrange equation which involves the (weak) divergence of the energy-
momentum tensor (rather than the stress itself) [1, 2]. It would be interesting to
know whether our analysis can be extended to this setting.

In order to put the result above in context, one should mention the recent results
of Mora, Müller and Schultz [15] and of Mora and Müller [14] on the convergence
of equilibria of respectively two and three dimensional thin elastic beams. Also
it should be compared with a very interesting recent theorem of Monneau [12].
Monneau starts from a sufficiently smooth (and sufficiently small) solution of the
von Kármán equations and he shows that there exists a nearby solution of the three-
dimensional problem.

2. Properties of low energy deformation

One difficulty in deriving the limiting theory is that smallness of the energy does
not immediately imply that the gradient is close to the identity with the obvious
scaling h2 since frame indifference in principle allows for large rotations. A key
ingredient of argument is the decomposition of the deformation gradient into a rota-
tion (or order h) which only depends on the in-plane variables and a strain of order
h2 . At this point we use the rigidity estimates of [6] and [7] which provide control
of the rotation in terms of the energy. By

symA :=
A+AT

2
we denote the symmetric part of a square matrix.
Proposition 2.1 ([7], Theorem 6 and Remark 5). Let (y(h)) ⊂ W 1,2(Ω; R2) be a
sequence such that

F (h)(y(h)) :=
∫

Ω
dist2(∇hy

(h), SO(3)) dx ≤ Ch4,

for every h > 0. Then there exists an associated sequence (R(h)) ⊂ C∞(S; M3×3)
such that

R(h)(x′) ∈ SO(3) for every x′ ∈ S, (2.1)

‖∇hy
(h) −R(h)‖L2 ≤ Ch2, (2.2)

‖∇′R(h)‖L2 + h ‖(∇′)2R(h)‖L2 ≤ Ch (2.3)

for every h > 0.
Proposition 2.2 ([7], Lemma 1; [8], Lemma 13). Let y(h) be as be as above. Assume
that in addition

y(h)(x′, x3) = (x′, hx3) ∀x′ ∈ Γ,
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where Γ is a connected subset of ∂S of positive measure, then

‖R(h) − Id‖H1 ≤ Ch. (2.4)

Set

U (h)(x′) :=
∫ 1

2

− 1
2

(
y

(h)
1

y
(h)
2

)
(x′, x3) − x′dx3 , V (h)(x′) :=

∫ 1
2

− 1
2

y
(h)
3 dx3 . (2.5)

Then
v(h) =

1
h
V (h) → v ∈W 2,2(S) in W 1,2(S) (2.6)

and
u(h) =

1
h2
U (h) ⇀ u in W 1,2(S) (2.7)

as h→ 0. Moreover
R(h) − Id

h
⇀ A = −∇′v ⊗ e3 + e3 ⊗∇′v in W 1,2(S), (2.8)

and

sym
R(h) − Id

h2
→ A2

2
= −1

2
(∇′v ⊗∇′v + |∇′v|2e3 ⊗ e3) in Lq(S),∀q <∞. (2.9)

Finally, if ζ(h) is the first moment of the displacement

ζ(h)(x′) :=
∫ 1

2

1
2

x3

[
y(h)(x′, x3) −

(
x′

hx3

)]
dx3.

we have
1
h2
ζ(h) ⇀

1
12
Ae3 = − 1

12

(∇′v
0

)
in W 1,2(S,R3). (2.10)

We also make use of the following well-known fact about weak convergence and
linearization.
Proposition 2.3. Let 1 ≤ p <∞, let E be a bounded and measurable set in R

n and
let f : R

d → R be a function which differentiable at zero and satisfies |f(a)| ≤M |a|
for all a ∈ Rd . Suppose that

zδ ⇀ z in Lp(E).

Then
1
δ
f(δzδ) ⇀ Df(0)z in Lp(E). (2.11)

Proof. Since weak convergence commutes with the application of linear functions we
may assume without loss of generality that Df(0) = 0. Set

ω(δ) := sup
|a|≤√

δ

|f(a)|
|a| .

By assumption ω(δ) → 0 as δ → 0. Set Aδ := {x ∈ E : |zδ| ≥ δ−1/2}. Then
|Aδ| → 0 as δ → 0. Now assume first that p > 1. For every g ∈ Lq(E,Rd) (with
1/q + 1/p = 1) we have∣∣∣∣

∫
E
g · 1

δ
f(δzδ) dx

∣∣∣∣ ≤ ω(δ)||g||Lq sup
δ

||zδ ||Lp +M

(∫
Aδ

|g|q dx
)1/q

sup
δ

||zδ ||Lp .
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Since the right hand side converges to zero as δ → 0 we conclude that 1
δf(δzδ) ⇀ 0

in Lp as claimed. For p = 1 we use that fact that weak convergence in L1 implies
equiintegrability. For any g with ||g||∞ ≤ 1 we have∣∣∣∣

∫
E
g · 1

δ
f(δzδ) dx

∣∣∣∣ ≤ Cω(δ) +M

∫
Aδ

|zδ | dx

and the last term converges to zero by equiintegrability. This finishes the proof. �

3. Proof of Theorem 1.1

Proof. Let (y(h)) be a sequence of stationary points of Jh , i.e., suppose that:∫
Ω

(
DW (∇hy

(h)) :∇hϕ− h3g(x′)ϕ3

)
dx = 0 (3.1)

for every ϕ ∈ W 1,2(Ω; R3) with ϕ = 0 on Γ × (−1
2 ,

1
2). Assume that (1.21) holds

true.

Step 1. Decomposition of the deformation gradients in rotation and strain.
By Propositions 2.1 and 2.2 there exists a sequence (R(h)) ⊂ C∞(S; M3×3) such
that R(h)(x′) ∈ SO(3) for every x′ ∈ S and

‖∇hy
(h) −R(h)‖L2 ≤ Ch2, (3.2)

‖∇′R(h)‖L2 + h‖(∇′)2R(h)‖L2 ≤ Ch, (3.3)

‖R(h) − Id‖H1 ≤ Ch. (3.4)

The estimates (3.2) and (3.4) imply that

∇hy
(h) → Id strongly in L2(Ω; M2×2).

In particular ∂3y
(h) → 0 and thus

∇y(h) → diag{1, 1, 0} strongly in L2(Ω; M2×2). (3.5)

Since |y(h)(x′, x3)| ≤ h for x′ ∈ Γ, we deduce from Poincaré’s inequality and (3.5)
that y(h) → (x′, 0) strongly in W 1,2(Ω; R3). Assertions (1.23) and (1.24) follow from
Proposition 2.2.

Now we make use of the approximated sequence of rotations R(h) to decompose
the deformation gradients as

∇hy
(h) = R(h)(Id+ h2G(h)), (3.6)

where the G(h) : Ω → M
3×3 are bounded in L2(Ω; M3×3) by (3.2). Thus, up to

extracting a subsequence, we can assume that

G(h) ⇀ G weakly in L2(Ω; M3×3) (3.7)

for some G ∈ L2(Ω; M3×3).

Step 2. Characterization of the limiting strain.

Proposition 3.1 ([7], Lemma 2). The 2 × 2 submatrix G′′ given by G′′
αβ := Gαβ

for 1 ≤ α, β ≤ 2 satisfies

G′′(x′, x3) = G0(x′) + x3G1(x′) (3.8)

where
G1 = −(∇′)2v. (3.9)
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Moreover
symG0 =

1
2
(∇′u+ (∇′u)T + ∇′v ⊗∇′v). (3.10)

Step 3. Consequences of the Euler-Lagrange equations.
Let E(h) : Ω → M

3×3 be the scaled stress defined by

E(h) :=
1
h2
DW (Id+ h2G(h)). (3.11)

In view of (1.20) and the L2 bound on G(h) the functions E(h) are bounded in
L2(Ω; M3×3), too. Moreover, by Proposition 2.3,

E(h) ⇀ E := LG weakly in L2(Ω; M3×3), (3.12)

where the linear map L on matrix space is given by L := D2W (Id). This implies
that E is symmetric. Indeed, let H be a skew-symmetric matrix. Then by frame
indifference and the fact that DW (Id) = 0 we have (LH,H) = d2

dt2 |t=0
W (exp tH) =

0. Since Id is a minimum of W the map L defines a positive semidefinite quadratic
form. Thus for every skew-symmetric H we have LH = 0 and therefore (LG,H) =
(G,LH) = 0. This shows that E is symmetric.

By the decomposition (3.6) and by frame indifference we obtain that

DW (∇hy
(h)) = R(h)DW (Id+ h2G(h)) = h2R(h)E(h),

so that the Euler-Lagrange equations (3.1) can be written in terms of the stresses
E(h) as ∫

Ω

(
R(h)E(h) :∇hϕ− hg(x′)ϕ3

)
dx = 0 (3.13)

for every ϕ ∈W 1,2(Ω; R3) with ϕ = 0 on Γ× (−1
2 ,

1
2). Multiplying (3.13) by h and

passing to the limit as h→ 0, we get∫
Ω
Ee3 · ∂3ϕdx = 0 (3.14)

for every ϕ ∈ W 1,2(Ω; R3) with ϕ = 0 on Γ × (−1
2 ,

1
2 ). This yields Ee3 = 0 a.e. in

Ω. Since E is symmetric, we conclude that

E =

⎡
⎣ E11 E12 0
E12 E22 0
0 0 0

⎤
⎦ . (3.15)

Proposition 3.2. E′′ = L2G
′′ .

Proof. We write X = M
3×3 as the direct sum of two orthogonal subspaces Y ⊕ Y ⊥

where Y := {F ∈ M
3×3 : F3i = Fi3 = 0, 1 ≤ i ≤ 3}. By π : M

3×3 → Y and
π⊥ : M

3×3 → Y ⊥ we denote the orthogonal projections to Y and Y ⊥ , respectively.
We need to show the following implication:

La ∈ Y =⇒ La = L2πa. (3.16)

By definition of Q2 , for each y ∈ Y there exists a z ∈ Y ⊥ such that Q2(y) =
Q3(y + z), and this z is characterized by

(L(y + z), ζ) = 0, for all ζ ∈ Y ⊥ (3.17)

(in fact z is unique up an irrelevant skew-symmetric matrix, since L is positive
definite on symmetric matrices). By the linearity of this condition we have Q2(y1 +
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y2) = Q3(y1 + z1 + y2 + z2), if each zi satisfies (3.17) for yi . Expanding both sides
we see that (L2y1, y2) = (L(y1 +z1), y2 +z2) = (L(y1 +z1), y2), where we used (3.17)
in the last step. This yields L2y1 = L(y1 + z1). Now suppose that La = 0 and take
y1 = πa . Then z1 = π⊥a satisfies (3.17) and y1 + z1 = a . This proves (3.16). �

Step 4. Symmetry properties of E(h) .
Since W is frame indifferent, W (exp(tH)F ) = W (F ) for all skew-symmetric matrix
H ∈ M

3×3 . Taking the derivative in t and letting t = 0 we obtain

DW (F )F T : H = DW (F ) : HF = 0.

Hence the matrix DW (F )F T is symmetric. Applying this with F = Id + h2G(h) ,
we deduce that

E(h) − (E(h))T = −h2
(
E(h)(G(h))T −G(h)(E(h))T

)
, (3.18)

so that, using the boundedness of E(h) and G(h) in L2(Ω; M3×3), we have in par-
ticular the estimate

‖E(h) − (E(h))T ‖L1 ≤ Ch2. (3.19)

Step 5. Zeroth moment of the Euler-Lagrange equations.
We introduce the zeroth moment of the stress E(h) , defined by

E
(h)(x′) :=

∫ 1
2

− 1
2

E(h)(x) dx3,

for every x′ ∈ S . We shall derive the Euler-Lagrange equations satisfied by the
zeroth moment.

Let ϕ = (ψ, φ) : S → R
3 , ψ ∈ C∞ ∩W 1,2(S; R2) and φ ∈ C∞ ∩W 1,2(S) be

such that ϕ(x′) = 0 for all x′ ∈ Γ. Using the test function ϕ̃(x′, x3) := ϕ(x′) in the
Euler-Lagrange equation (3.13) we obtain∫

S

(
R(h)E

(h) : (∇′ϕ, 0) − hgφ
)
dx′ = 0. (3.20)

Since R(h) is bounded and converges to Id in W 1,2 and since E(h) weakly converges
in L2 , we obtain in view of (3.14)∫

S
E

′′ : ∇′ψ dx′ = 0, ∀ψ ∈W 1,2(S,R2), ψ|Γ = 0. (3.21)

On the other hand, taking ψ = 0 and dividing (3.20) by h we obtain
∫

S

( 1
h

2∑
i=1

(E(h)
3i ∂iφ) +

2∑
i=1

(A(h)E
(h))3i∂iφ− gφ

)
dx′ = 0, (3.22)

for all φ ∈ C∞ ∩W 1,2(S) such that φ|Γ = 0, where

A(h) =
R(h) − Id

h
.

By (2.8), A(h) ⇀ A in W 1,2(S,M3×3) and hence A(h) → A in all Lq , 2 ≤ q < ∞ .
As a consequence, (A(h)E

(h))3i is bounded in Ls for any 1 < s < 2, and hence
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converges weakly in Ls to (AE)3i . Recall that Ee3 = 0 and that E is symmetric.
Thus (2.8) yields

(A(h)E
(h))3i ⇀

2∑
j=1

(∂jv)Eji in Ls.

Passing to the limit in (3.22) we obtain that∫
S

1
h

(
E

(h)
)T

e3 · (∇′φ, 0) dx′ →
∫

S

(
− E

′′ : (∇′v ⊗∇′φ) + gφ
)
dx′ (3.23)

for all φ ∈ C∞ ∩W 1,2(S) such that φ|Γ = 0.

Step 6. First moment of the Euler-Lagrange equations.
Let us also introduce the first moment of the stress E(h) , defined by

Ê(h)(x′) :=
∫ 1

2

− 1
2

x3E
(h)(x) dx3,

for every x′ ∈ S .
In order to obtain the Euler-Lagrange equation for the first moment, we set

ϕ(x′, x3) = x3R
(h)

(
η(x′)

0

)
,

where η ∈ C∞ ∩W 1,2 ∩ L∞(S,R2) and η|Γ = 0 and we apply (3.13). This yields
∫

Ω

2∑
i=1

R(h)x3E
(h)ei · ∂i

[
R(h)

(
η

0

)]
+

1
h
R(h)E(h)e3 ·R(h)

(
η

0

)
dx = 0,

and thus∫
S
Ê′′(h) : ∇′η +

2∑
i=1

R(h)Ê(h)ei : ∂iR
(h)

(
η

0

)
+

1
h
E

(h)
e3 ·

(
η

0

)
dx′ = 0. (3.24)

Note that R(h) is uniformly bounded in L∞ and R(h) → Id in W 1,2(S). Thus
taking η = ∇′φ we conclude that∫

S

1
h
E

(h)
e3 · (∇′φ, 0) dx′ → −

∫
S
Ê′′ : (∇′)2φdx′ , (3.25)

for all φ ∈ C∞ ∩W 2,2(S), ∇′φ = 0 on Γ.

Step 7. Derivation of the limit equations.
By (3.8), (3.9), (3.10) and Proposition 3.2 we obtain that

E′′ = L2G
′′ = L2G0 + x3L2G1.

As a consequence

E
′′ = L2(symG0) = L2

(1
2
(∇′u+ (∇′u)T + ∇′v ⊗∇′v)

)
. (3.26)

Therefore (1.17) follows from (3.21). On the other hand

Ê′′ = − 1
12

L2

(
(∇′)2v

)
, (3.27)

which combined with (3.23), (3.25) and (3.19) yields (1.16).
From the boundary conditions for y(h) , we obtain immediately that u(x′) = 0

and v(x′) = 0 for all x′ ∈ Γ. In order to conclude, we only need to show ∇′v = 0
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on Γ. To this end we observe that ζ(h)(x′) = 0 for all x′ ∈ Γ, where ζ(h) is the
first moment of the displacement as defined in Proposition 2.2. Together with the
compact embedding from W 1,2(S) to L2(∂S) this proposition yields ∇′v = 0 on Γ.
This finishes the proof of Theorem 1.1. �

Remark 3.3. The main ingredient of the proof of the convergence theorems in [15]
and [14] is establishing the convergence of the energies (up to a subsequence)∫

Ω
E(h) : G(h) →

∫
Ω
E : G =

∫
Ω
LG : G. (3.28)

Here this is not needed for proving our result, however (3.28) is a straightforward
corollary of theorem 1.1, see below. As a consequence, we can establish strong
convergence of the symmetric parts of the strains, symG(h) , and of the stresses
E(h) , assuming that hG(h) converges to 0 uniformly. If this assumption is not
satisfied, one can introduce an auxiliary sequence of truncated deformations, whose
corresponding scaled strains satisfy this condition. See [15] and [14] for more details.

To conclude the remark and for the convenience of the reader we give a proof of
(3.28). First note that z(h) := y(h) − (x′, hx3) can be used as a test function in the
Euler-Lagrange equations (3.13). Hence we obtain∫

Ω
E(h) : G(h) =

∫
Ω
R(h)E(h) : R(h)G(h)

=
∫

Ω
R(h)E(h) :

(Id−R(h)

h2

)
+

∫
Ω
R(h)E(h) :

1
h2

∇hz
(h)

=
∫

Ω

1
2

(
E(h) − (E(h))T

)
: (R(h))T

(Id−R(h)

h2

)

+
∫

Ω
E(h) : sym

((R(h))T − Id
h2

)
+

∫
Ω

1
h
g(x′)z(h)

3 dx′dx3.

(3.29)

Using (2.9) and (3.19) and applying the dominated convergence theorem we obtain
that the first term on the right hand side converges to 0. Also by (2.9), (1.17) and
(3.26) we have for the second term

∫
Ω
E(h) : sym

((R(h))T − Id
h2

)
→ −

∫
S
L2G0 : symG0.

On the other hand applying (2.6), (1.16) and (1.17) we have
∫

Ω

1
h
g(x′)z(h)

3 dx′dx3 =
∫

S
g(x′)

( ∫ 1
2

− 1
2

1
h

(y(h)
3 − x3)dx3

)
dx′

=
∫

S
g(x′)

1
h
V (h)dx′ →

∫
S
g(x′)v(x′)dx′

= 2
∫

S
L2G0 : symG0 +

1
12

L2G1 : G1.

Therefore we finally obtain∫
Ω
E(h) : G(h) →

∫
S
L2G0 : G0 +

1
12

L2G1 : G1 =
∫

Ω
L2G

′′ : G′′ =
∫

Ω
E : G.
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